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A  statistical emulator can be used as a surrogate of complex physics-based calculations to drastically reduce
the computational cost. Its successful implementation hinges on an accurate representation of the nonlinear
response surface with a high-dimensional input space. Conventional “space-filling” designs, including random
sampling and Latin hypercube sampling, become inefficient as the dimensionality of the input variables in-
creases, and the predictive accuracy of the emulator can degrade substantially for a test input distant from the
training input set. To  address this fundamental challenge, we develop a reliable emulator for predicting
complex functionals by active learning with error control ( A L E C ) .  The algorithm is applicable to infinite-
dimensional mapping with high-fidelity predictions and a controlled predictive error. The computational
efficiency has been demonstrated by emulating the classical density functional theory ( c D F T )  calculations, a
statistical-mechanical method widely used in modeling the equilibrium properties of complex molecular
systems. We show that A L E C  is much more accurate than conventional emulators based on the Gaussian
processes with “space-filling” designs and alternative active learning methods. Besides, it is computationally
more efficient than direct c D F T  calculations. A L E C  can be a reliable building block for emulating expen-sive
functionals owing to its minimal computational cost, controllable predictive error, and fully automatic
features.

I.     INTRODUCTION

Theoretical research in chemistry and materials science
is often hampered by computational bottlenecks in apply-
ing complex physical models to predict the microscopic
structure and physicochemical properties of many-body
systems. Statistical and machine learning (ML) meth-
ods, such as Gaussian process ( G P )  regression, basis ex-
pansion methods, and neural network models, have been
widely used as a surrogate of complex physical models
to emulate the atomic force fields, density functionals,
chemical reactions, and diverse properties of materials
and chemical systems1–8. Here a typical aim of a ML
approach is to learn the map with a high dimensional
input or a functional input from observations. Trained
on a set of pre-specified inputs, a statistical emulator can
obtain accurate predictions when a test point is close to
the training inputs9–11.

Constructing a statistical emulator often starts with se-
lecting a set of “space-filling” samples in the input space,
such as uniform samples or Latin hypercube samples
(LHS)12 . The statistical emulator will be trained based
on the outputs of the simulation at these pre-selected
inputs. The idea is to ensure that for each test point
in the input space, there are a sufficiently large num-
ber of inputs near this test point, where the outcomes
(such as the potential energy or atomic force in emulat-
ing the first-principles calculations) were observed. Using
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the space-filling samples and assuming a set of regular-
ity conditions, the predictive error of some ML methods,
such as the G P  regression, is guaranteed to converge to
zero, when the sample size goes to infinity13. The space-
filling samples have two main drawbacks in emulating
physics-based calculations such as molecular dynamics
simulation (MD). First, the input values, such as atomic
positions or pairwise inter-atomic distances in MD, may
not be directly controlled. Second, physics-based mod-
eling of molecules and materials often involves a high or
infinite dimensional input space, such as the external po-
tential function and atomic configurations. If the statis-
tical emulator is trained in a small parameter subspace,
the predictive accuracy of the emulator can be dramat-
ically degraded outside the subspace where no training
input is available. This scenario often occurs when the
outcome is required in a slightly different system or at
another experimental condition, such as different tem-
peratures or pressures, whereas the statistical emulator
becomes inaccurate if it is only trained on one set of con-
ditions. Obtaining accurate predictions of any test input
with a controlled predictive error is important to bypass
expensive computations based on complex physical mod-
els.

To  address the fundamental difficulty in predicting
functions and functionals with a high-dimensional in-
put space, active learning has become one of the most
promising techniques to sequentially reinforce the emula-
tion of physics-based modeling14. The active learning ap-
proach can be implemented in two broad scenarios. The
first one is an online scenario or “on-the-fly” prediction,
where the test inputs sequentially come and one does not



id

2

know what future input needs to be predicted15–17. The
online prediction scenario has many applications, such
as Bayesian optimization18,19 and model calibration20,21,
where the outcome of the simulation needs to be sequen-
tially predicted for every sampled input. The second sce-
nario is to sequentially select the samples to run a com-
puter simulation for predicting the entire input space,
where the uncertainty of the emulator is often used for
selecting the next design run22. In this work, we focus on
the online prediction scenario and test our approach us-
ing the classical density functional theory ( c D F T )  calcu-
lations for one-dimensional (1D) hard-rod systems, with
different external potentials. The availability of exact
densities and free-energy functional for various 1D sys-
tems of hard rods allows us to validate the efficiency
of the surrogate model with the ground truth. Here
the fundamental difficulty is on a user-specified exter-
nal potential–an arbitrary functional input with infinite
dimensions. For constructing statistical emulators, we
assume that no parametric form of this functional input
is available. We demonstrate that the new integrated
approach provides a high-fidelity prediction of particle
density profiles and grand potentials with a controlled
error in the probabilistic sense, more accurate than a G P
emulator with conventional “space-filling” designs, and it
is more computationally scalable than direct c D F T  cal-
culations.

We highlight the key novelty of this work in developing
the surrogate model and error control criteria for func-
tional mapping. First, while some popular criteria, such
as the D-optimality, were introduced in the active learn-
ing framework15,23, the threshold of determining whether
a test input can be reliably predicted may be hard to
choose, as the threshold may not be directly related to
the error in prediction. In practice, one may need to
tune the threshold for different systems for a given error
bound. Here, we use the internal uncertainty assessment
of the G P  emulator to decide whether a test input can be
predicted precisely. For any given threshold of predictive
error and probability tolerance bound, our approach au-
tomatically defines the criterion to control the predictive
error below the threshold with a large probability satis-
fying the probability tolerance bound (see Section I I I B) .
We demonstrate that our approach can identify whether
an upcoming input can be reliably predicted, and thus it
has much better performance than the conventional sta-
tistical emulation by training the emulator with a space-
filling design, such as random sampling. Furthermore,
we derive an iterative formula that reduces the computa-
tional complexity for Gaussian process models with aug-
mented samples. In each iteration, updating our algo-
rithm only requires O(n2) operations, while a direct ap-
proach requires O(n3) operations. Other emulation ap-
proaches, such as those enforcing the invariance symme-
tries, can be easily included in our integrated framework
for reliable predictions with a controlled error.

The remainder of the paper is structured as follows:
In Section I I, we provide a brief overview of the clas-

sical density functional theory in the context of the 1-
dimensional (1D) hard-rod model used in this work. In
Section I I I A,  we introduce the parallel partial Gaussian
process for emulating physics-based calculations with
vectorized output on massive grid points, such as par-
ticle densities from c D F T  calculations. Then, in Section
I I I B,  we introduce our proposed method to control the
predictive error. The computationally scalable update of
the algorithm and its computational cost are discussed
in Sections I I I C  and I I I D,  respectively. The numeri-
cal comparison in Section I V  demonstrates that our ap-
proach outperforms the conventional G P  emulators with
random-sample designs and the active learning approach
with the D-optimality criterion. We conclude the paper
along with perspectives on some future research direc-
tions in Section V.

II.     C L A S S I C A L  D E N S I T Y  FUNCTIONAL T H E O R Y

Classical density functional theory ( c D F T )  is a
statistical-mechanical method that describes the thermo-
dynamic properties of equilibrium systems in terms of the
density profiles of individual particles24,25. In a nutshell,
c D F T  calculations are based on the minimization of a
grand potential functional that, for systems consisting of
only one type of particle, can be expressed as

Z

[] =  Fid [] +  Fex [] + dr(r)[V ex t (r)       ]; (1)

where (r)  denotes the particle density at position r, F
[] is the free-energy functional of an ideal gas, and Fex []
is called the excess free-energy functional, V ex t (r)  denotes
a one-body external potential, and  is the chem-ical
potential of the particles. The ideal-gas functional has
an exact form

Z
Fid [] = dr(r)fln[(r)3 ]      1g; (2)

where  is the thermal wavelength and  =  1=(kB T ) with
k B  being the Boltzmann constant and T the ab-solute
temperature. While T and  are thermodynamic variables
that define the equilibrium condition,  and Fex [] depend
on the intrinsic properties of the system such as the
particle mass and inter-particle potential. In this paper,
we set  =   =  1 as the units of energy and length.

One key premise of c D F T  calculations is that V ex t (r)
is uniquely determined by (r)  such that, given an ana-
lytical expression for Fex [], ( r )  can be solved by mini-
mizing
[] and, subsequently, all thermodynamic prop-erties of
the system can be derived.     The equilibrium density
profile minimizes
 and thus satisfies the Euler-Lagrange equation:

(r)  =  exp       Fex =      V ex t (r)  : (3)

Eq.(3) provides a functional map between the one-body
density (r)  and the one-body external potential V ext (r).
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F I G .  1. (a) Functional learning in the context of c D F T  for one-dimensional hard rods of uniform size a in an external field V
ex t (:) defined in a domain of size L .  (b)-(c) t-distributed stochastic neighbor embedding (t-SNE) for visualization of input
V ex t (:) (middle panel) and output (:) (right panel). For each group, 2000 density profiles are generated based on different
combinations of  and parameters in V ext (:).

Because in general F e x  is a complicated functional of (r),
solving (r)  from the Euler-Lagrange equation is often
computationally demanding. Besides, the formulation of
an accurate expression for F e x  is a formidable task for
complex molecular systems. In this work, we demon-
strate that statistical emulation will be helpful to solve
both problems.

For proof of concept, we consider a statistical emula-
tor of c D F T  for one-dimensional (1D) systems consist-
ing of identical hard rods (HR). For such systems, the
excess free-energy functional, thus the grand potential,
is exactly known26. The analytical results were derived
decades ago and are reproduced in Appendix A. Given
any external potential V ex t (r)  and chemical potential ,
the density profile of hard rods can be numerically solved
(e.g., by Picard iteration) from Eq. (3), and it is plugged
into Eqs. (3), (A2), and (A3) for computing the grand
potential and other thermodynamic quantities.

For a given system defined by  and V ext (r), statis-
tical emulation aims to predict the particle density and
free-energy functionals as in direct c D F T  calculations (il-
lustrated in Fig. 1(a)). Previous work in cDFT5,27,28

and Kohn-Sham density functional theory (KS-DFT)29 , 30

demonstrate the performance of ML models with a single
parametric form for the external potential with different
choices of parameters. In this work, we show that the ac-
tive learning procedure is applicable to multiple classes of
external potential similar to c D F T  calculations with the
same intrinsic Helmholtz energy functional. We demon-
strate that, when presented with a new class of external
potentials, the model can discern whether this new input
can be accurately predicted. As mentioned above, func-
tional mapping represents one of the biggest obstacles in
statistical emulation as well as machine learning. Filling
the entire functional input space directly with a limited
number of simulation runs, such as random sampling or
the LHS, is not generally possible. When the external
potential function is away from the training input set,
both statistical emulators and machine learning meth-
ods become inaccurate. In this work, we provide a so-

lution to this fundamental problem by integrating direct
c D F T  calculations with a Gaussian process ( G P )  emula-
tor through an active-learning framework. We derive a
probabilistic bound to control the overall prediction error
of the particle density based on the internal assessment of
the uncertainty from the statistical emulator, making our
approach applicable to functional learning in infinite di-
mensional spaces, as well as reducing the computational
costs for inputs that can be accurately predicted. Here
our algorithm can reliably learn multiple classes of ex-
ternal potentials, while earlier applications of ML meth-
ods in both K S - D F T  (e.g.30) and c D F T  (e.g.5,28) only
demonstrate the performance of their models on one par-
ticular class of the external potential. Besides, the active
learning scheme developed in this work enables the ML
approaches to discern whether outcomes of a test input
can be reliably predicted. This ability allows us to con-
trol predictive errors as well as substantially reduce the
computational cost.

In Fig. 1(b) and (c), the input    V ext (:) and out-put
(:) of the statistical emulator are projected onto two t-
distributed Stochastic Neighborhood Embedding (t-
SNE) factors as commonly used for visualizing high-
dimensional data31. It is evident that the inputs gener-
ated from different groups of input functions form dif-
ferent clusters. Similar patterns can be observed for the
corresponding particle densities.     In addition, group 1
forms a curve in Fig. 1(b) due to the fact that the only
change of the input in group 1 is , which only results in a
shift in the input space, making group 1 mapping the
simplest to learn for the statistical emulator, as to be
demonstrated later in the section on numerical results.
We noticed several points in groups 2 and 3 are close
to those in group 1. These points correspond to samples
whose input parameters are close to 0 and are thus nearly
equivalent to group 1’s inputs. These patterns demon-
strate the input-output relationship can be captured by
distance metrics, as the smaller distance between chemi-
cal potentials leads to the higher similarity between the
particle densities. This validates the use of kernels in
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F I G .  2. Illustration of Bayesian updating in a G P  emulator.
(a) Prior samples from 4 groups (indicated by different colors)
with constant mean and Matén kernel in (4). The different pa-
rameters are specified as  =  0:2;  =  2;  =  0 (black curves);  =
0:25;  =  1:5;  =  3 (red curves);  =  0:33;  =  1;  =   2 (green
curves);  =  1;  =  0:5;  =  0 (blue curves). (b) The truth (black
curve), the predictive mean (blue curve), the 95% predictive
credible interval (grey region), and 10 poste-rior predictive
samples (colored dashed lines) after observing 12 data points
(black circles).

the Gaussian process to map the distance between inputs
(chemical and external potentials) to the correlation be-
tween output (particle densities), as the smaller distance
in the input space indicates a larger correlation or simi-
larity between outputs. Unlike the dimension reduction
approach shown in Fig. 1, we will model the entire den-
sity profile jointly in a statistical emulator to encode all
information.

III.     A  R E L I A B L E  GAUSSIAN PROC E S S  EMULATOR B Y
AC T I V E  LEARNING WITH ERROR CONTROL

A.     Parallel partial Gaussian process emulation for vectorized
outputs

For demonstration purposes, our statistical emulator is
built upon a parallel partial Gaussian Process ( P P-G P )
emulation approach32 for representing the map between
the particle density, a vectorized output on massive grid
points, and the input function from the chemical and ex-
ternal potentials. Other emulators that produce uncer-
tainty quantification for predictions can be used as well.
The G P  emulator is one of the most commonly used sur-
rogate models for expensive physics-based calculations,
and it has been widely used for emulating molecular sim-

ulation, the potential energy surface, and atomic force
fields1,7,33–35. In combination with the dimension reduc-
tion technique, the G P  emulator has also been used as a
surrogate model for approximating the K S - D F T  calcula-
tion of electron density30.

Fig. 2 illustrates the Bayesian updating formulation
in G P  from prior to posterior with one-dimensional in-
puts and outputs. As shown in Fig. 2(a), the G P
prior is a very flexible class of functions, that include
smooth or wiggly functions with large or small fluctu-
ation, using different choices of parameters. After as-
suming 12 Latin hypercube samples from a function
f ( x )  =  sin(2x=10) +  0:2 sin(2x=2:5), in Fig. 2(b), we plot
the predictive mean from G P  (blue curve) and the actual
value of f ( x )  (black curve), as well as 10 predic-tive
posterior samples that fit the data points with opti-mized
parameters and the 95% predictive interval (gray area),
using a G P  emulator implemented in36, where the
parameters are estimated by the posterior mode. First,
we found a small number of samples can constrain the
predictive mean and posterior samples to be around the
truth. Second, the truth are almost all covered by the
95% predictive interval, indicating appropriate quantifi-
cation of the predictive uncertainty. This internal uncer-
tainty assessment by the G P  emulator enables us to de-
velop the criterion to control the predictive error for em-
ulating functions with high-dimensional inputs in a prob-
abilistic way, which will be illustrated in section I I I B.

We use the P P - G P  emulator to model the particle den-
sity in cD F T .  To  highlight the salient feature of the P P -
G P  emulator, let x  =     V ext (:) denote the functional
input discretized at p spatial grid points. For any in-
put x,  the particle density is defined at k grid points,
written as (x )  =  [1 (x); 2 (x); :::; k (x)]. The number of
spatial grid points used in discretizing external poten-tial
and density can be different but, for simplicity, here we
let p =  k. Given any n c D F T  calculations with in-puts
fx1 ; :::; xn g, the density vector at any spatial grid point
is assumed to follow a multivariate normal distribu-tion j

=  [ j (x1 ); j (x2 ); :::; j (xn )]T   M N ( j ; 2 R ) ;  where j  =
[j (x1 ); :::; j (xn )]T is the mean vector, 2 is a variance
parameter, and R  is an n  n correlation matrix between
density at any grid point over n input sce-narios, with ( i ; j )
entry parameterized by a kernel func-tion K ( x i ; x j ) .

At any input x,  the mean of the output is commonly
modelled as j ( x )  =  h(x) j ,  where j  is a q-dimensional
vector, and h(x )  =  [h1(x); :::; hq (x)] is a row vector of
mean basis function. Here we only use the intercept, i.e.
h(x) =  1 and q =  1. Note that the mean parameter
and variance parameter are distinct for each spatial grid
point of the particle density. Having different mean and
variance parameters makes the model more flexible to
capture the variability of particle densities at different
grid points.

We assume that the kernel function is isotropic, i.e., it
is a function of the Euclidean distance between any pair
of inputs. The correlation is commonly modeled by the
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power exponential kernel functions or the Matérn ker-
nel functions37. In this work, we use the Matérn kernel
function with roughness parameter 5=2 to model the cor-
relation between input x a  and xb :

2 
K ( x a ; x b )  =      1 +      5

 
+  

32       exp   5
     

; (4)

where d =  jjxa   xbjj, with jj  jj denoting the Euclidean
distance, and  is a range parameter that can be esti-
mated by the training data.     The sample path of the
G P  with the Matérn kernel function in (4) is twice mean
differentiable37, assuring good predictive performance in
emulating smooth functions.

Assume we have run c D F T  calculations at n differ-
ent input scenarios fx1 ; :::; xn g, leading to a k  n par-ticle
density matrix  =  [1; :::; n]. We compute the predictive
distribution after integrating out the mean and variance
parameters for making predictions with the reference
prior of the mean and variance parameters38, (j ; 2 ) /
1=2, for spatial grid point j  =  1; :::; k. Con-ditional on
estimated range parameter ^ and output den-sity at the
j th coordinate  , the predictive distribution of j ( x )  at any
new x  and coordinate j ,  follows a non-centered scaled
Student’s t-distribution with n q degrees of freedom:

j (x)j^ ; j   T (^ (x); ^ 2 K ; n      q); (5)

where

^ (x )  =  h ( x ) j  +  r T  ( x ) R  1      
j       H j       ;          (6) K  =  K

+  h ( x ) T   
H T  R  1 H  1 h(x);        (7)

with h(x )  =  h (x )       H T  R  1 r(x), and

j  =  
 

H T  R  1 H  1 H T  R  1
j ;                              (8) ^2

=  ( j       H j )
T  

R  1 ( j       H j )=(n      q):        (9)

Here     the     n  q input     mean     basis     matrix     fol-
lows H = [hT  ( x  ); :::; hT ( x  )]T  , and K =
K ( x ; x )       r T  ( x ) R  1 r(x)  denotes the correlation be-tween
test input and training input, with r ( x )  =
[K (x; x1 ); : : : ; K (x; xn )]T  . The derivation of Eq. (5) can
be found in the supplement materials. In PP-GP,  the
distribution of the output is assumed to be indepen-dent
at two grid points, and thus we have p( (x )  j ^; ) =
p( j (x)  j ^; j ), for any j  and x,  which allows us to use Eq.
(5) for computing the posterior predictive distribution.
For further justification of the assumption, see Theorem
6.1 in32.     The P P - G P  emulator was im-plemented in
the "RobustGaSP" package36, where the marginal
posterior mode estimator is used as a default method to
estimate the range parameter 32.

In comparison with alternative methods, the P P - G P
emulator discussed above has advantages in terms of
computational scalability and internal uncertainty assess-
ment. First, constructing the covariance matrix requires

F I G .  3. An overview of the active learning with error control
framework.

O(n2p) operations, while computing the predictive mean
in Eq. (6) only takes O(nk) + O(n3 ) operations, where n,
p, and k denote the number of training simulation runs,
the number of discretization points in the input func-
tions and particle densities, respectively. The O(n3) op-
erations come from the Cholesky decomposition for com-
puting the inversion and determinant of the covariance
matrix. In contrast, building a separate emulator inde-
pendently of particle densities at each grid point takes
O(n3k) operations for computing the predictive mean,
due to the inversion of the distinct covariance matri-
ces at each spatial grid point. Approaches that model
the spatial covariance matrix generally take O(k3) oper-
ations, which is even slower as the number of spatial grid
points k of the density is large. Second, the uncertainty
in predictions can be directly assessed as any quantiles
and percentiles of the predictive distributions in (5) have
closed-form expressions. The assessed uncertainty allows
us to control the predictive error through integrating a
numerical solver and an emulator into the algorithm, dis-
cussed below.

B.     ALEC:  active learning with error control approach

Active learning is a sequential design approach in
statistics. In an “on-the-fly” online prediction scenario,
there is no information regarding the future input to be
predicted. If a configuration is new to the current train-
ing set, i.e., it is located in a sparsely sampled region, we
may not be able to accurately predict this sample by the
emulator. For a large functional input space, it is almost
inevitable to extrapolate the sampled input space, as the
number of simulated runs that populate this input space
is sparse. Therefore, it is necessary to establish a crite-
rion for determining whether an upcoming configuration
can be reliably predicted.

In this work, we develop the active learning with error
control ( A L E C )  emulator that can automatically control
predictive error for simulations with high or infinite di-
mensional input space. A  few criteria were studied be-
fore to detect the test case hard to be predicted, such as
the D-optimality criterion15 and the predictive variance
criterion17. Yet, the threshold of these strategies often
requires to be chosen empirically, as they may not be di-
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rectly related to the predictive error. In our automatic
approach, a new criterion has been established such that
the threshold can be chosen automatically for any given
predictive error bound and probability tolerance bound,
based on the internal uncertainty assessment of the em-
ulator. Fig. 3 shows an overview of our strategy. For a
given testing input x,  if the criterion that controls the
predictive error is satisfied as shown in the yellow box,
the particle density profile will be predicted; otherwise, a
numerical solver will be called for computing the particle
density corresponding to x,  and this new information
will be added to the training set and used to update the
P P - G P  emulator.

Let us first consider controlling the predictive error for
particle density at a fixed coordinate j  based on the P P -
G P  algorithm. Given a prespecified error bound j  >  0,
we aim to have the predictive error of a test input x
smaller than j  >  0 for more than 1  of the predictions,
where  is a small value (e.g.  =  0:05). This means

P
 
j j (x )       ̂  (x)j  >  j

 
 ; (10)

i.e., the probability that the absolute error between the
predicted and true densities at the j th coordinate exceeds
j  is less than . Since small predictive variance from the
emulator indicates high-fidelity in prediction, we predict
the test input x  if

q

^

2 K   
t=2(n      q)

; (11)

where t=2(n q) is the upper =2 quantile of a Student’s t-
distribution with n      q degrees of freedom, K  and ^2 are
given in Eqs. (7) and (9), respectively. Otherwise, we
will compute this particle density directly from c D F T
using a numerical solver, as the assessed uncertainty for
predicting this test input is large. This strategy satisfies
the probabilistic error control outlined in Eq. (10), as
shown in Appendix C.

We have a few remarks regarding this strategy. First,
the error bound j      and probability tolerance  have
interpretations. Suppose, for instance, one expects to
see the predictive error in more than 95% of predic-
tions smaller than 0:01, one can then let  =  0:01 and
=  0:05. Second, in the active learning strategy, one
reduces the sample space from the original space X  to
X F ; j  =  f x  : ^ j  K   j =t=2(n      q)g, where the sub-script
F  denotes the input set that can be reliably pre-dicted.
A  numerical solver for c D F T  needs to be called for any
input x  that does not satisfy Eq. (11). Though selecting
a smaller  or  leads to a smaller predictive er-ror, more
evaluations from the numerical solver would be required,
which increases the computational cost. Thus, a balance
between the size of the cut-off value and com-putational
time is needed in practice.     Third, the de-gree of
freedom of the Student’s t-distribution increases with the
sample size. When the sample size is sufficiently large, the
t-distribution can be accurately approximated by a
standard normal distribution. For instance, when

n q =  300 and  =  0:05, t=2(n q)  1:968 and the up-per =2
quantile of a normal distribution Z=2  1:960, which only
differs from that of a t-distribution by around 0:5%. Thus
one can use the normal approximation if the sample size
is large. Finally, the error control from Eq. (11) means
that if the statistical emulator is a correct rep-resentation
of the reality, and the number of test samples is infinitely
large, we have at least 1       probability such that the
absolute predictive error is less than . This does not
preclude the cases where in slightly more than 1  of the
predictions, the predictive error is larger than , due to
model misspecification or the limited number of test
samples. Fortunately, the predictive error at these
inputs is typically close to , as the assessed uncertainty of
these inputs is smaller than the threshold.

We can extend the strategy for controlling the error of
the density at a fixed coordinate j  to the overall error of
density prediction. Consider that we use a uniform cutoff
value , and that we make predictions for a test input x  if
each coordinate satisfies Eq. (11), i.e.,

r
maxf^ 2 K g  

t=2(n      q)
: (12)

We call the criterion in Eq. (12) the maximum variance
selection criterion. Under this criterion, we are able to
derive the probabilistic bound to control the predictive
error of particle density at each coordinate,

P
 
j j (x )       ̂  (x)j  >  

 
 ; for j  =  1; :::; k; (13)

and the root of mean squared error (RMSE),  defined as

RMS E  = j = 1 ( j ( x )       ̂  (x))2 =k, follows
P

 
RM S E  >  

 
 : (14)

The detailed derivation of Eq. (13) and (14) is given in
Appendix C.  Eqs. (13) and (14) imply that the overall
predictive error can be controlled in a probabilistic way
under the maximum variance selection criterion in Eq.
(12).

In practice, the cut-off in (12) is too conservative,
and we rarely see more than  samples larger than the
claimed threshold. A  less restrictive criterion to control
the predictive error is by predicting any input set x  such
that

s

 : = j = 1

k  
j  K  

 
t=2(n      q)

: (15)

We call the criterion in (15) the average variance selection
criterion. Eq. (15) controls the predictive error of vec-
torized outputs (particle densities) in the average sense,
while it does not guarantee the error control as in Eq.
(12). In practice, one may select a large number of points
for numerical solvers to run using criterion (12), thereby
requiring a larger computational cost, while the predic-
tive error control can be achieved using criterion (15)
with much less training samples.
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F I G .  4. Empirical C D F  of absolute error of particle densities j j ( x i  )      ̂  ( x i  )j for 4 classes of input functions at all grid points using
the criterion (15) with different error bounds  and probability tolerance thresholds . The horizontal line and the vertical line are 1
and , respectively. On the x-axis, the 1       percentiles of the absolute errors are recorded, all of which are less than .

To  quantify whether the error is indeed controlled
based on our threshold, we plot the empirical cumula-
tive distribution function ( C D F )  of the absolute errors
in Fig. 4 using the criterion (15) with different error
bounds and probability tolerance thresholds  for all 4
classes of input functions considered herein. In the upper
middle panel, for instance, the vertical solid line marks
the chosen threshold  =  0:01 and the purple dashed line
labels the percentile corresponding to 1    =  0:95. On the
x-axis, we mark the values of the 95th percentile of the
absolute errors for each group of input, all of which are
less than 0.01. In the remaining panels of Fig. 4, the
empirical C D Fs  of the absolute errors for various  and
values are illustrated. In general, the smaller error bound
or probability tolerance threshold, the smaller the
predictive error is, while more samples are required for
achieving this accuracy level. Thus, a balance between
the computational cost and accuracy level is generally
required.

C.     Sequential update of the A L E C  emulator

When calculating the predictive mean and predictive
correlation in Eqs.     (6)-(7), one needs to solve R  1z,
for an n-dimensional real-valued vector z  2  R n .  In the
P P - G P  emulator32, we implement the Cholesky decom-
position of the correlation matrix R  =  L L T  , and use the
forward and backward substitution algorithms to com-
pute R  1z. In the A L E C  emulator, whenever a sample
x  2  Rp  is added to the previous training set with n sam-
ples, the P P - G P  model needs to be updated accordingly.
Directly applying this approach will require O(n3) oper-

ations for computing the Cholesky decomposition each
time when the sample size is n. To  reduce the computa-
tional cost, we introduce a new approach that takes only
O(n2) operations in performing the Cholesky decompo-
sition.

To  update L  with the addition of x,  we denote the
correlation matrix of previous n design elements as R  =
L n L T  , with L n  being the Cholesky decomposition of R n .
Next, we write the updated correlation matrix R n + 1 : 

R r  (x )
n + 1 r T  ( x )  K ( x ; x )

where r n ( x )  =  [K (x; x1 ); :: : ; K (x; xn )]T  . In evaluat-ing
R n + 1  =  L n + 1 L , it is clear that the first n rows of
the lower triangular part of L n + 1  is identical to the lower
triangular part of L n

L n + 1  =  v
n      

l
n      :

Therefore, only the last row of L n + 1  needs to be com-
puted:

j  1

vn ( j )  =  
L n ( j ; j )  

r n ( j )       
m = 1  

vn (m)Ln (j ; m) ; (16)

u n

ln  =  t K ( x ; x )   vn(m)2; (17)
m = 1

with vn ( j )  and r n ( j )  denoting the j th element of v n  and
r n ( x  ), respectively, and L n ( i ; j )  denoting the ( i ; j )  entry
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of L n .  Eqs. (16) and (17) indicate that updating L n + 1  re-
quires O(n )  computational operations, for i ; j  =  1; :::; n.
After obtaining the Cholesky decomposition L n + 1  we can
update other terms required in computing the predictive
mean and variance.

D.     Algorithm and the computational cost

We summarize the A L E C  emulator in Algorithm 1.
Given the initial P P - G P  emulator, predictive error bound
, and probability tolerance threshold , the A L E C  emu-
lator determines whether the particle densities can be re-
liably predicted for a new test input. The output contains
the predictive particle densities for all test inputs and
they are plugged into the energy functionals to compute
the energy. Note that the range parameter in the kernel
needs to be numerically estimated, which has the largest
computational cost in the algorithm. When more train-
ing samples are added, the previously estimated range
parameter ^ may no longer be accurate if our initial
model has a small training sample size. To  compromise
the computational cost and accuracy in predictions, the
range parameter in the A L E C  emulator is re-estimated
for every 50 training samples, if the training size is less
than 350. When the training size is large, the estimated
range parameter does not change much. In general, the
frequency of re-estimating the kernel parameter depends
on the computational budget.

Denote the initial training size as ni n i  and the number
of augmented samples as naug . The computational cost
of constructing the Cholesky decomposition of the initial
A L E C  emulator is O(n3     ), and the total computational
order for updating the Cholesky decomposition is then
O( n

i n i + n a u g  n2). For computing the predictive mean
and predictive variance, it takes O( n

i n i  
i n i

a u g  nk) and
O( n

i n i  
i n i

a u g  n2k), respectively.

The computational complexity of the online updating
approach reduces the cost compared to directing comput-
ing the Cholesky decomposition at each iteration, which
costs O( n i n i + n a u g  n3). The computational complexity
is significantly faster than the time required to calculate
the density using a numerical solver for computing the
particle density at each test input. Indeed, the largest
computational cost of our approach comes from the nu-
merical solver for the training input set, as will be seen
in Fig. 8. Since only a small fraction of samples are used
as the initial training and augmented sample, the com-
putational cost of the A L E C  emulator is much smaller
than running numerical solvers for each density.

Algor i thm 1 A L E C  emulator
I n p u t :  The number of test samples nt, testing inputs X ,

Cholesky factor L  of R  in the initial P P - G P  model, es-
timated variance parameters 2 =  [^2; :::; ^2] and mean
parameters 2 =  [2; :::; 2] in the initial P P - G P  model,
probability level  and threshold  chosen by the user.

1: na u g 0;
2: for i  =  1 to n do
3: Set ith test sample in X  as x  and calculate ^ 2 K  for

j  =  1; :::; k and  via (7) and (15), respectively;
4: if  <  =t=2 (n   q) then
5: Predict for the predictive distribution in (5) for this

x,  and record predictive mean ( x )  and scale 2 K ;
6: else
7: na u g na u g  +  1;
8: Using the numerical solver to compute the corre-

sponding output (x) ;
9: if the training size is a multiple of 50 and the

training size  350 then
10: Rebuild the P P - G P  emulator with retrained

the range parameter  in Matérn kernel;
11: else
12: Update P P - G P  emulator with the added input

x;
13: Update parameters 2 and 2; 14:
end if
15: end if
16: end for
O u t p u t :  The number of augmented size naug , predicted

mean, and variance of particle densities for remaining
nt   na u g  samples.

IV.     NUMERICAL R E S U LT S

Here we evaluate the predictive performance of our sur-
rogate model based on particle densities generated from
four classes of external potentials (closed-forms shown in
Appendix B )  with the length of hard rods a =  1 and
the domain size L  =  9. The values of chemical exter-nal
input and parameters in each external potential are
changed when generating the data. We assume the exter-
nal potential functions and chemical potentials are used
as inputs, while the parametric forms of the external po-
tential functions are not known. We will test the pre-
dictive performance separately for each class of external
potential functions, and jointly by combining all classes
of external potential functions, in Section I V A  and Sec-
tion IV B ,  respectively. Section I V C  gives the predictive
performance of our approach for predicting a new class
of densities.

We record the out-of-sample root mean squared error
(RMSE)  of particle density and the grand potential of
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the test samples from

R M S E  =  

s P
i = 1  

P
j = 1 ( j ( x i  )       ̂  ( x i  ))2 

; 
s

R M S E

 =        i = 1 (

( x i  )
( x i  ))  ;

where ^ ( x i  )  is the predicted density of ith hold out sam-
ple at j th coordinate, and
( x )  and
(x )  are the pre-dicted and true grand potential for ith
hold out sample, respectively. Other criteria, such as
the proportion of the test samples covered in the 95%
predictive intervals and the average length of the
predictive intervals, are provided in supplementary
materials. Note that we only compute the predictive error
on those inputs we predict, not including those initial
samples or the augmented sam-ples computed by the
numerical solver.

We generate 2000 samples for each group with LHS,
and compare our surrogate model with three other com-
monly used approaches. The first two approaches use
conventional random sample (R S )  designs, where we ran-
domly draw nt r a i n  samples from the LHS samples as the
training dataset and use the remaining samples as testing
data. We have two distinct training sample sizes for R S
samples. The sample size in the first R S  sample (RS1) is
specified as the initial training size in A L E C ,  while the
sample size in the second R S  sample (RS2) is specified
as the final training size in A L E C .  For predicting any
test input, the training sample size in active learning is
neither smaller than the training sample size in RS1 nor
larger than the training sample size in RS1. We have
also implemented the active learning algorithm with D-
optimality15, where the details are given in Appendix D.

A.     Particle density and grand potential prediction for each
group of external potential field separately

We first test different approaches for four families of
functional inputs separately. The density profiles are ini-
tially trained using P P - G P  with ni n i  =  20 inputs per
group. Then following our A L E C  algorithm, the surro-
gate model is sequentially updated by augmenting the
train data with samples selected by the average variance
selection criterion in Eq. (15). After obtaining the pre-
dicted density ^ for the remaining test samples, we pre-
dict the grand potential
 by plugging ^ into the energy functional in Eq. (A2) in
Appendix A.

Figure 5 displays the overall performance of different
surrogate models (more detailed results can be found
in the table in the supplementary materials). Here the
threshold in the A L E C  algorithm is set as  =  0:01 and
=  0:05, representing a strategy for having less than 5%
of the coordinate to have an absolute error of density
prediction larger than 0:01. The first group of external
potentials has the least flexibility, as the only change in
the input is . Thus, predicting the density profile for

F I G .  5. The bar plots and line plots show the out-of-sample
R M S E  of density , and R M S E  of grand potential
, respec-tively. The A L E C  emulator is compared with other
meth-ods with three other designs: RS1, RS2, and D-opt
(Active learning with D-optimality). For the A L E C  emulator,
we use  =  0:01 and  =  0:05 as the threshold, and the
augmented sizes for groups 1-4 are 0, 7, 21, and 504,
respectively. In D-opt, the augmented sizes for groups 1-4 are
0, 7, 21, and 582, respectively. The number of training sample
sizes from RS1 and RS2 are the same as the initial sample size
and terminal sample size in A L E C .

the first group of functions is the easiest. Models with
only 20 inputs in the conventional R S  design can predict
particle densities relatively well, and no augmented sam-
ple is needed in the A L E C  emulator. For the other three
functional groups, the active learning algorithm has the
smallest predictive R MS E  on density  and grand poten-
tial
 among all four designs. It is worth noting that the
number of training inputs from active learning is always
not larger than that in the RS2 design, but the predictive
error by active learning is much smaller than the one by
RS2. This is because the active learning strategy accu-
rately identifies test samples hard to be predicted, and
a numerical solver is called for computing these samples.
Thus the computing budget is more efficiently spent with
respect to the accuracy of predictions.

Figure 6 presents more detailed prediction results of
the particle densities and grand potentials for the fourth
class of external potentials. The boxplot in Fig. 6(a)
gives the out-of-sample RM S E  for predicting the parti-
cle densities. Many densities are inaccurately predicted
based on the samples from RS1, RS2, or D-opt, result-
ing in large errors in predicting the grand potential (Fig.
6(b)). In comparison, the A L E C  emulator identifies the
samples that are difficult to be predicted and it uses them
to enhance the emulator, thus providing accurate predic-
tions for the remaining test samples. Although the total
computational cost of the A L E C  is similar to the meth-
ods with RS2 and D-opt schemes, the A L E C  emulator
results in better predictive accuracy.
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F I G .  6. A  comparison of four surrogate models for predicting the group 4 functions: Active learning with error control ( A L E C ) ,
random sampling with the number of training points as the initial number of training points in A L E C  (RS1)  and with the
number of training points as the final number of training points in A L E C  (RS2), and active learning with D-optimality (D-opt). (a)
Boxplots of predictive R M S E  of each predicted density in the testing dataset. (b) Predicted grand potential
 vs. the truth
. (c)-(d) True and predicted densities for two selected density profiles.

B.     Predicting particle densities and grand potentials for all
groups of external potentials

In this subsection, we describe a more challenging sce-
nario, where we aim to predict four groups of samples
together. We assume that only the chemical potential
and the external potential are used as input, while the
parametric forms of the external potential are not known.
The density profile and grand potential are harder to be
predicted accurately in this case, as the input contains
more degrees of freedom, leading to larger variability of
the density and energy functionals, compared to the ones
from any single class of input function alone. Since the
inputs are a random sample from four classes of external
potentials, we use the first ni n i  =  80 samples as initial
inputs to build the A L E C  emulator. When a test sample
comes, we use the criterion from Eq. (15) to determine
whether the test sample can be accurately predicted by
the A L E C  emulator or a numerical solver will be needed
for solving the system directly.

We show the emulator’s overall performance in the left-
most group (named as all groups) in Fig. 7 (detailed
results are displayed in the supplementary materials).
On average, the A L E C  emulator performs much better,
where the predictive RM S E  of both particle densities and
grand potentials is at least one magnitude smaller than
all other approaches. A  total of 873 training samples
are added through the active learning algorithm, which
is more than the total number of training samples added
for building the emulator separately. This is because hav-
ing a larger input space containing all 4 classes of exter-
nal potentials increases the difficulty of learning densi-
ties, requiring more samples given the same threshold of
the error. Note that the good predictive performance by
A L E C  is achieved using a similar or smaller sample size
in training the emulator compared to the D-opt and RS2
approaches, by efficiently allocating the computing bud-
get on computing particle densities hard to be predicted,

F I G .  7. Out-of-sample R M S E  of particle density  (bar plots)
and grand potential
 (line plots) for active learning with er-ror control, RS1  design,
RS2 design and active learning with D-optimality.     The
overall R M S E  for combined all groups (solid bars and dots)
and the R M S E  of each individual group (shadow bars and
dots) are both recorded. A L E C  contains 80 inputs as initial
training size, and the total number of aug-mented samples in
the A L E C  emulator (  =  0:01,  =  0:05) is 873, with 0, 1, 58, and
814 augmented samples in groups 1 to 4, respectively. In D-
opt, the total number of augmented samples is 935, and the
augmented sizes for groups 1-4 are 59, 73, 393, and 410,
respectively. RS1  contains a total of the first 80 training
samples after uniformly mixing all four groups of density
together. RS2  contains the first 953 training inputs, with 245,
221, 238, and 249 for groups 1-4, respectively. Since the A L E C
emulator identifies the hardest region (group 4) to be
predicted, thereby augmenting most samples from group 4, it
has the smallest predictive error overall and predictive errors
of all groups are controlled.

and accurately predicting the rest of the densities with a
negligible computational cost.

When examining the performance of different ap-
proaches in each function group, we found that the
RMS E  of particle densities from A L E C  is homogenous
across groups, while RS2 and D-opt approaches have
smaller predictive errors for the first two groups, but
have much worse performance for the fourth group. This
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is because RS2 and D-opt select more points from the
first two groups to train the emulator, thereby yielding a
similar or better result than A L E C  in these two groups.
However, the error from the first two groups can be con-
trolled below the threshold of 0:01 for more than 95% of
the test samples with no augmented samples or only a
small number of augmented samples. In the A L E C  em-
ulator, for instance, the augmented samples from groups
1 and 2 are 0 and 1, respectively. On the contrary, the
particle densities and grand potential energy from group
4 are the hardest to be predicted. This is automatically
identified by A L E C ,  and the most computing budget (814
augmented samples) is spent on the fourth group to en-
sure the predictive errors of most samples are controlled
below the threshold. This is exactly what we intend to
accomplish. The A L E C  can identify input regions that
are difficult to predict, and then put more computing re-
sources on those regions to control the predictive error.
Consequently, the predictive error is controlled below the
threshold for all subclasses, even if we do not know the
labels of subclasses from the test samples, as all input
classes are combined for predictions.

Another interesting finding is that the additional train-
ing samples from other input functional classes do not
substantially improve the predictive performance for a
specific input class. This is because the inputs from
one class are distant from another class, as shown in
Fig. 1(b), and thus the correlation between different in-
put classes is small. It may be of interest to automat-
ically identify the cluster in the training and split the
training sample when constructing the emulator. This
is useful as splitting the samples can reduce the com-
putational complexity of the emulator. To  explore this
idea, we utilized a simple input decomposition technique.
When the size of a cluster reaches 400, we divide it into
two sub-clusters using the K-nearest neighbors (KNN)
algorithm39. In this approach, the number of augmented
samples and predictive RM S E  of particle densities are
779 and 9:73  10 4, respectively. It achieves similar ac-
curacy with 94 fewer training samples than the A L E C
algorithm without input decomposition. Developing a
more comprehensive way for input decomposition ap-
proach can further enhance the efficiency and accuracy
of the surrogate model.

Fig. 8 compares the computational time required in
the A L E C  approach and in calling a numerical solver
(NS) each time. The largest computational cost in the
A L E C  algorithm comes from calling the NS for comput-
ing the particle densities of the initial and augmented
training samples, while the time in constructing the
A L E C  emulator and making predictions is negligible, as
the training sample size is not large. Since the A L E C
emulator only requires a fraction of the samples to be
numerically solved, it is much faster than running a nu-
merical solver for each test sample. Note that RS2 and
D-opt compared herein have a similar computational cost
as the A L E C  emulator, as the number of density profiles
to be solved by NS is similar, yet the predictive error was

F I G .  8. The running time for each function group using the
A L E C  algorithm and using numerical solver (NS). As the run-
ning time for building the G P  model in A L E C  is very small,
the bars for G P  are nearly invisible. Other approaches, such
as RS2 and D-opt, have similar computational costs as A L E C
as the training and augmented sample sizes are similar.

not controlled in those approaches.

C.     Predicting a new class of external potential

In this section, we examine the performance of the
A L E C  approach to predict inputs from a new functional
form that is not in the training data set. To  test this
case, in addition to the existing 8000 samples, we gen-
erated 2000 new samples based on the weighted inputs
between groups 2 and 3 as explained in Appendix B. We
test the performance of the A L E C  emulator for predicting
the new input class, starting with the final G P  emulator
developed for groups 1-4 and all groups combined.

The left panel of Fig. 9 displays empirical C D F  plots
of the absolute errors of the A L E C  emulator using the
average variance selection criterion in Eq. (15). First,
the predictive error of most of the test samples in the
new group is small, for any initial emulator built upon
other groups. Less than  =  5% of the absolute errors are
greater than the chosen error bound  =  0:01 for models
using groups 1-3 and all groups combined. When we start
from the initial emulator built from group 4 in-put, 11:2%
of predictive errors are greater than  =  0:01, which is
larger than the probability tolerance threshold  =  5%. A
close examination reveals that the percent-age of the
absolute error greater than  is typically large for
coordinates at the tail of the particle densities (Fig. 9
middle panel), because of a rapid change in density at
both ends, making it distinct from existing densities in
group 4. The difference in the particle densities in the
new class and group 4 increases the model discrep-ancy
and makes the uncertainty in predictions harder to be
quantified. Among the 11% of the test samples with
RMS E  larger than the threshold, however, most RMSEs
are still very close to the threshold value, making this
criterion ideal if the computational budget is not large.

On the other hand, the right panel of Fig. 9 shows
the C D F  of the RMSEs based on the maximum variance
selection criterion in Eq. (12). Much less than  proba-
bility of the predictive error exceeds the threshold  for
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F I G .  9. Prediction results from the A L E C  emulator on a new class of external potentials where A L E C  models are trained by the
previous four functional groups separately and by all functional groups together.  =  0:01 and  =  0:05 are used. Left panel:
the empirical C D F  of absolute error using the average variance selection criterion in Eq. (15). The number of augmented
samples using the model for groups 1-4 and all groups combined are 92, 122, 67, 48, and 15, respectively. Middle panel: the
percentage that the absolute difference is greater than  for each coordinate, i.e. n      1 f j ( x )       ̂  ( x i  )  >  g=n; j =  1; :::; k. Right
panel: the empirical C D F  of absolute error using the maximum variance selection criterion in Eq. (12). The number of
augmented samples using the model for groups 1-4 and all groups combined are 408, 395, 384, 362, and 263, respectively.

all the cases shown here, as the maximum variance selec-
tion criterion is conservative, yielding more augmented
samples and higher predictive accuracy. When the model
discrepancy is large, one may use the maximum variance
selection criterion to achieve a higher level of accuracy in
predictions.

V.     CONCLUSION

In this work, we propose the A L E C  emulator, an active
learning framework for controlling the predictive error
of approximating computationally expensive functionals,
based on the internal uncertainty assessment of the statis-
tical surrogate model. This result has a probabilistic in-
terpretation and it is fully automatic. We test the A L E C
emulator on c D F T  calculations of one-dimensional hard
rods with different chemical potentials and external po-
tentials. Through the numerical simulations of the den-
sity profiles and grand potentials for different groups of
functions, we show that A L E C  outperforms the conven-
tional random sample designs, as well as the active learn-
ing approach with the D-optimality criterion in terms of
prediction accuracy. With a fraction of the computa-
tional cost of running a numerical solver for each test
input, we are able to predict functionals accurately with
a controlled predictive error using the A L E C  emulator.
The A L E C  emulator is designed as a reliable building
block to be integrated for solving challenging simulation
tasks, such as predicting expensive c D F T  calculations on
functional input, since the predictive error of the A L E C
emulator is controlled for the test samples.

There are several future research directions. First, the
A L E C  emulator was built upon the P P - G P  surrogate
model for predicting vectorized output, while the ap-
proach can be generalized to using other surrogate mod-
els with uncertainty assessment in predictions. Physical
symmetries, for instance, can be incorporated to define
a new descriptor and distance metric to constrain the
surrogate model. For instance, a common way to ensure

translational invariance is to use pairwise distances of
input, instead of the input function itself. Existing func-
tionals found in physics40 may be integrated as the mean
of the emulator to improve its accuracy. Furthermore, di-
mension reduction of the input space through orthogonal
representation can be helpful for reducing computational
costs and improving the accuracy of predicting systems
on 3D coordinates. Potential approaches include basis
representation for reducing the dimensionality of the out-
put space30 and orthogonal projection of the inputs by
maintaining large gradients of outcomes for reducing the
dimensionality of the input space41. Finally, one may
jointly model the grand potential energy and densities
for predicting both quantities. This is particularly useful
for applications with complex molecular systems, where
computing the potential energies from particle densities
is expensive.

SUP P L E MENTA R Y  MAT E R I A L S

The supplementary materials contain the derivation of
predictive t-distribution in Eq. (5), and additional pre-
diction results of particle density and grand potential.
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D ATA  AVA I L A B I L I T Y  S TAT E M E NT

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

Appendix A: Analytical forms in cD F T

The closed-form expressions of F  =,
, and F for
1D HR26,42 are summarized here:

Fex []
Z x + a (z)

x 1   z  a  (y)dy
ln 1  (y)dy (A1)

x  a

[] =    
 1  1  

( x  
(y)dy

dx;

(A2) x

Fex [] =   (x) ln 1  (y)dy dx; (A3)
x  a

where a is the length of each hard rod.

Appendix B: External potentials and chemical potentials

Let L  be the distance between two hard walls, and
a is the length of the hard rods (HR). We consider the
following four parametric forms of the external potential
in this paper.

The first functional form applies to uniform hard rods
confined between hard walls43:

ext
 
1 ;  s <  a=2; s >  L       a=2;

0; a=2 <  s <  L       a=2:

In the second functional form, the hard rods experience
a van der Waals-like attraction from the hard walls

>  1 ; s <  a=2; s >  L       a=2;

V ext (s) =  f ( s + a = 2 ) 3 +  ( L + a = 2  s )3g;
a=2 <  s <  L       a=2:

(B2)
Eq.(B2) is adopted from43. With fixed a and L ,   is a
parameter in the range of  2  (0:1; 2:2). Note that when
=  0, we have the same potential as the first one.

The third functional form consists of hard-wall poten-
tials and a repulsion linearly proportional to the distance

ext
 
1 ; s <  a=2; s >  L       a=2;

mgs; a=2 <  s <  L       a=2:

Intuitively, the linear form mimics the gravitational
potential.44 This is the only asymmetric potential con-
sidered in this work. In training the machine-learning
models, the range of mg is chosen to be (0:1; 3).

The power-law external potential44 is the fourth func-
tional class considereed in this work. This external po-
tential has more flexibility as it has three parameters,
u0; x0, and a0 that can be used to modify the range of
interactions:

 
1 ; s <  a=2; s >  L       a=2;

u0
s L=2 a 0  ; a=2 <  s <  L       a=2;

where a0 >  0. In this work, we use u0 2  (1; 3); x0 2  (1; 3)
and a0 2  (2; 5). Fig. 10 shows five examples of generated
densities for each external potential.

In section IV B ,  the performance of our strategy is eval-
uated on a new set of densities. The external potential
of these densities is generated from the weighted average
of (B2) and (B3):

<  
1 ; s <  a=2; s >  L       a=2;

V ext (s) =  w f( s + a = 2 )3 +  ( L + a = 2  s )3g +  (1      w)mgs;
a=2 <  s <  L       a=2;

(B5)
where w 2  (0; 1).

Appendix C: Derivation of probabilistic upper bounds

First, we derive the probabilistic upper bound for the
absolute difference of densities. For a fixed coordinate
j ,  based on the predictive distribution in (5), we have

P j j (x )       ̂  (x)j  > ^2K t=2 (n      q)     =
 
.
 

Since
j ( x )  is predicted for sample x  only if ^ 2 K
j =t=2(n   q), the probability of predictive error larger
than error bound j  follows

P (j j (x)       ̂  (x)j  >  j )

=P j j ( x )       ̂  (x)j  >  
t=2(n

 
     q)

t=2(n      q)
P j j (x )       ̂  (x)j  > ^ j  K t=2 (n      q) =  :

Next, let us consider controlling the grid-level pre-
dictive error using the maximum variance selection cri-
terion in (12), where (x )  is predicted for x  only

if maxj f^ j  K g   =t=2(n   q).     Then for any j ,  j  =
1; :::; k,

P (j j (x)       ̂  (x)j  >  )
r

P     j j (x )       ̂  (x)j  > max ^j K t=2 (n      q)

q
P j j (x )       ̂  (x)j  > ^2K t=2 (n      q) =  ;

from which equation (13) is proved.
Third, let us derive the probabilistic bound for root

mean squared error (RMSE)  under the maximum vari-
ance selection criterion in Eq.     (12), where RM S E  =



k
j

0
k

j

k

j
j

j
j j j

j
j j

j j
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=
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F I G .  10. Each plot gives 5 examples of generated densities from external potential in B1-B4.

q P
j = 1 ( j ( x )       ̂  (x))2 =k. For j  =  1; :::; k, we have

P(RMSE >  )                                  
1

= P @
X  ( j ( x )       ̂  (x))2  

>  2 A
j

=
1

 P

max( j (x)       ̂  (x))2  >  2

 P
max( j (x)       ̂  (x))2  >  max ^2Kt2

=2(n      q) ;

where the third inequality follows from the condition in
Eq. (12). Supposing the left hand side inside the proba-
bility is maximized when j  =  j ,  then we have

P(RMSE >  )
 
P

( j  ( x )       ̂   (x))2  >  max ^2Kt2
=2(n      q) ;

P ( j  ( x )       ̂   (x))2  >  ^2
 K t=2 (n      q) =  ;

from which equation (14) is proved.
Lastly, we give the upper bound for the expectation of

mean squared error, MSE =        j = 1 ( j ( x )    ^ (x))2=k,
under the average variance selection criterion (Eq. (15)),

2 3

E ( x ) (MSE)  =  E ( x )  4
X  ( j ( x )       ̂  (x))2  

5
j = 1

k       ^ 2 K n      q

j = 1
k       n      q      2

2 n      q
t=2(n      q) n      q      2

For moderately large n, and small , we have
E ( x ) (MSE)   2. For instance, for any n  20 and constant
mean basis (q =  1), E ( x ) (MSE)   2 for any   0:2.

Appendix D: Details of the D-optimality criterion

Here we discuss the details of the D-optimality cri-
terion. Consider the correlation function K ( x ; x i ) ; i  =

1; :::; n; with each training set sample serving as a set of
basis functions. Then, by definition, these basis func-
tions of the training dataset form the correlation matrix
R ,  and the basis functions with any testing sample x
gives r T  (x).      Define the row vector c =  r T  ( x ) R  1 for
each sample x.  Set the threshold cth  1 for the
maximum absolute value in c. If the uncertainty esti-
mate cm a x  : =  max jcij >  cth, a numerical solver will be
called to solve the system and the outcomes at x  will be
added to the training set. Otherwise, the emulator will be
used to predict the test input x.  Since the D-optimality
criterion is not directly related to the predictive error,
selecting threshold cth may be performed in a case-by-
case manner. In order to make a comparison with our
method, the threshold is adjusted to make the number of
augmented samples selected from D-optimality at least
as large as the one in our strategy. For more discussion
about the D-optimality criterion in emulating molecular
simulations, we refer the readers to15 and section 15.2.3
in14.
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Supplementary Materials

1. DERIVATION OF THE PREDICTIVE T-DISTRIBUTION
Here we present the derivation of the predictive t-distribution of r j (x )  at jth grid point with a
new input x in Eq. (5). Conditional on (r j ,  qj, s2 , g), we have

r j (x) jr j , qj, s2 , g  MN(m j (x), s2 K(x, x)), (S1)

where mj(x) =  h(x)qj +  r(x) T R 1 (r j       Hq j )  and K(x, x) =  K(x, x)      r(x) T R 1r(x). Denote the
precision parameter f j  =  1/ s j  and the prior becomes p (q j , f j )  µ  1/ f j .  The

posterior distribution of mean and variance parameters (qj , f j )  follow

p(qj , f j j r ,  g) µ p(qj , f j ) p ( r j ,  g j qj, f j )
!

µ
f j  

f n / 2  exp       
2 

( r j       Hq j ) T R  1 (r j       Hq j )

!

µ f n / 2  1 exp       j ( r T R  1 r j       2 r T R  1 Hq j +  qT H T R  1 Hq j )

!

µ  f q / 2  exp       
2 

(qj      q j ) T (H T R 1 H)(q j       qj )
| {z }

p(q j jr j ,f j ,g)
!

f n / 2  q/2 1 exp       
2 

( r j       Hq j ) T R  1 (r j       Hq j )  ,
| {z }

p( f j jr j ,g )

where qj =  ( H T R  1 H )  1 H T R  1 r j  and the last step follows from adding and subtracting
qT H T R  1 Hq j in the exponent. Thus, (qj j r j ,  f j ,  g) and ( f j  j r j ,  g) are distributed as a mul-
tivariate normal distribution and a gamma distribution, respectively,

qj j r j ,  f j ,  g  MN qj, ( f j H T R  1 H )  1
 
, (S2)

f j  j r j ,  g  Gamma
n      q

, 
( r j       Hq j ) T R  1 (r j       Hq j )

. (S3)

Third, we marginalize out qj in Eq. (S1). Since both Eqs. (S1) and (S2) are normal distributions,
we have

r j (x) j r j ,  s2 , g  N(r j (x ) ,  f  1 K(x, x)), (S4)

where the mean and variance can be obtained by the law of total expectation and variance:

E[r j (x) jr j , s2 , g]

=E[E[r j (x) jr j , qj, s2 , g]]

=E[h(x)q j +  r(x) T R 1 (r j       Hq j ) jr j ,  s2 , g]

=h(x)q j  +  r(x) T R 1 (r j       Hq j )  : =  r j (x)

Var[r j (x) jr j , s2 , g]

=E[Var[r j (x) jr j , qj, s2 , g]] +  Var[E[r j (x)jr j , qj, s2 , g]]

= E [ f  1 K(x, x)jr j , s2 , g] +  Var[h(x)qj +  r(x) T R 1 (r j       Hq j ) jr j ,  s2 , g]

= f  1 K(x, x) +  (h(x)      r(x) T R 1 H ) ( H T R  1 H )  1 (h(x)      r(x) T R 1 H ) T      
 : =  f  1 K(x, x).
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Lastly, we marginalize out f j  using lemma 1 shown at the end of this section with D  =  1, m =
r j (x), S  =  K(x, x), n =  n      q and s 2  =  (n      q) 1 (r j       Hq j ) T R 1 (r j       Hq j )  to get the results shown in
Eq. (5).

Lemma 1. Let g j f   MN(m, S / f )  (D-variate normal) and f   Gamma(n/2, ns2 /2). Then g has a D
dimensional multivariate t distribution

g  t(m, s 2 S ,  n),

with density
D + n

p(g) µ  1 +  
n 

(g      m) S
2     

 (g      m) 2      

.

Proof. The joint density of g and f  is

p(g, f )  µ  f D / 2  exp(     
2 

(g      m ) T S  1 (g      m))  f n / 2  1 exp( n s 2 f / 2 )  µ

f ( D + v ) / 2  1 exp(     
2 

((g      m ) T S  1 (g      m) +  ns2 )),

which is a Gamma((D +  v)/2, ((g      m ) T S  1 (g      m) +  ns2 )/2. Then the distribution of g follows
from marginalizing out f :

Z
p(g) µ p(g, f ) d f

µ ((g      m ) T S  1 (g      m) +  ns2 )  ( n
+

D ) / 2

µ  (1 +  (g      m ) T ( s 2 S )  1 (g      m) / n )  ( n
+

D ) / 2 ,

which gives the D  dimensional multivariate t distribution t(m, s 2 S ,  n).

2. OUT OF SAM P L E  PREDICTION R E S U LT S  OF PART I C L E  DENSITY AND GRAND
POTENTIAL

The performance of the A L E C  emulator is compared to the performance with three other designs:
random sampling using the same number of training size as the initial training size in A L E C
(RS1), random sampling using the same number of training size as the final training size in A L E C
(RS2), and active learning algorithm with D-optimality criterion. Suppose we have a total of n
testing samples remaining after running the model. The performance is compared based on root
mean squared error (RMSE) of density and energy, and 95% interval coverage and length.
Suppose we have a total of n testing samples remaining after running the model, then the criteria we
adopt are:

s

R M S E r  =
å i = 1  å j = 1 ( r j (x )       r j (x))2 

,

coverager =      
1     å  å  1f r j (x i  )  2  C Ii, j (95%)g,

i = 1  j = 1

lengthr =      
1     å  å  lengthfC Ii, j (95%)g,

s      
i = 1  j = 1

R MSEW 
= å i = 1 ( W (x i  )       W(xi ) )2 

,

where r j (x) is the predicted density of ith hold out sample at jth coordinate, and C Ii, j (95%) is
the 95% confidence interval of r j (x i  )  based on the predictive distribution.

2



Group 1

RS1 Group 2

Group 3

Group 4

Group 1

A L E C Group 2

Group 3

Group 4

Group 1

RS2 Group 2

Group 3

Group 4

Group 1

D-opt Group 2

Group 3

Group 4

training n

20

20

20

20

nini +  naug

20+0

20+7

20+21

20+504

training n

20

27

41

524

nini +  naug

20+0

20+7

20+21

20+582

R M S E r

6.97  10 6

3.62  10 3

2.00  10 2

8.81  10 2

R M S E r

6.97  10 6

1.02  10 3

2.12  10 3

3.79  10 3

R M S E r

6.97  10 6

1.71  10 3

6.89  10 3

1.14  10 1

R M S E r

6.97  10 6

1.44  10 3

3.00  10 3

1.37  10 1

coverager

87.7%

93.9%

92.0%

91.2%

coverager

87.7%

95.6%

94.2%

85.1%

coverager

87.7%

96.3%

94.9%

96.6%

coverager

87.7%

94.9%

93.6%

98.1%

lengthr

2.47  10 5

6.79  10 3

8.81  10 2

3.69  10 1

lengthr

2.47  10 5

1.97  10 3

4.25  10 3

6.61  10 3

lengthr

2.47  10 5

2.53  10 3

8.97  10 3

3.94  10 1

lengthr

2.47  10 5

2.27  10 3

4.53  10 3

3.73  10 1

R MSEW

2.60  10 5

1.27  10 2

7.07  10 1

1.24

R MSEW

2.60  10 5

3.73  10 3

1.43  10 2

1.62  10 2

R MSEW

2.60  10 5

5.05  10 3

2.16  10 1

4.20  10 1

R MSEW

2.60  10 5

4.32  10 3

1.43  10 2

5.64  10 1

Table S1. The prediction results for building models on four groups separately. In A L E C  emu-
lator, we ues d =  0.01 and a =  0.05 as threshold. In D-opt, we adjust the threshold cth such that it
has the similar number of augmented samples in A L ,  and cth for group 1-4 are, 30, 3.4, 2.4 and 1.03,
respectively.
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RS1 Al l

Group 1

Group 2

Group 3

Group 4

A L E C Al l

Group 1

Group 2

Group 3

Group 4

RS2 Al l

Group 1

Group 2

Group 3

Group 4

D-opt Al l

Group 1

Group 2

Group 3

Group 4

training n

80

24

15

23

18

nini +  naug

80+873

24+0

15+1

23+58

18+814

training n

953

245

221

238

249

nini +  naug

80+935

24+59

15+73

23+393

18+410

R M S E r

1.02  10 1

1.45  10 4

2.18  10 3

7.92  10 3

2.04  10 1

R M S E r

8.76  10 4

1.30  10 4

1.13  10 3

5.12  10 4

1.42  10 3

R M S E r

3.25  10 2

8.29  10 6

6.50  10 5

3.76  10 3

6.51  10 2

R M S E r

8.91  10 2

2.11  10 5

1.37  10 4

2.23  10 4

1.88  10 1

coverager

94.7%

94.9%

93.0%

99.5%

91.4%

coverager

91.1%

90.6%

80.3%

99.1%

97.0%

coverager

93.3%

74.3%

100%

100%

98.7%

coverager

98.3%

92.8%

98.0%

99.9%

97.1%

lengthr

3.44  10 1

2.66  10 4

1.94  10 3

7.07  10 2

1.30

lengthr

1.70  10 3

1.25  10 4

7.11  10 4

2.84  10 3

4.17  10 3

lengthr

8.42  10 2

1.16  10 5

7.25  10 4

2.92  10 2

3.09  10 1

lengthr

7.60  10 2

1.42  10 4

2.29  10 4

1.05  10 3

3.36  10 1

R MSEW

4.70  10 1

4.13  10 4

8.57  10 3

5.37  10 2

9.38  10 1

R MSEW

4.14  10 3

3.49  10 4

6.93  10 3

2.46  10 3

3.39  10 3

R MSEW

4.64  10 1

1.01  10 5

1.78  10 3

2.67  10 2

9.31  10 1

R MSEW

3.31  10 1

3.77  10 5

4.90  10 4

7.53  10 4

6.98  10 1

Table S2. The prediction results for building models on four groups together. We use d =  0.01
and a =  0.05 in the A L E C  emulator. In D-opt, the threshold cth =  1.12. For each strategy, we
evaluate the overall performance, as well as the performance for each subgroup.
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A L E C

average

maximum

Group 1

Group 2

Group 3

Group 4

Al l  groups

Group 1

Group 2

Group 3

Group 4

Al l  groups

nini +  naug

20+90

27+120

41+66

524+47

953+15

20+408

27+395

41+384

524+361

953+268

R M S E r

5.04  10 3

2.05  10 3

4.47  10 3

1.48  10 2

4.68  10 3

4.34  10 4

4.69  10 4

4.39  10 4

5.73  10 4

5.18  10 4

coverager

83.9%

92.2%

87.7%

69.7%

77.7%

94.9%

95.0%

95.1%

90.5%

92.5%

lengthr

4.87  10 3

4.02  10 3

4.91  10 3

6.11  10 3

3.42  10 3

4.87  10 3

4.02  10 3

4.91  10 3

6.11  10 3

3.42  10 3

R MSEW

1.96  10 2

6.08  10 3

1.47  10 2

6.46  10 2

1.83  10 2

7.89  10 4

7.85  10 4

7.70  10 4

7.15  10 4

7.24  10 4

Table S3. The prediction results of the A L E C  approach, using average-sense criterion and
maximum-sense criterion, on a new functional form that is not in the training data set, starting
with the final GP emulator developed for groups 1-4 and all groups combined. d =  0.01 and
a =  0.05 are used.
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