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a b s t r a c t

Two de Rham complex sequences of the finite element spaces are introduced for weak

finite element functions and weak derivatives developed in the weak Galerkin (WG)

finite element methods on general polyhedral elements. One of the sequences uses

polynomials of equal order for all the finite element spaces involved in the sequence

and the other one uses polynomials of naturally descending orders. It is shown that the

diagrams in both de Rham complexes commute for general polyhedral elements. The

exactness of one of the complexes is established for the lowest order element.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Finite element exterior calculus is a framework that explores the structural properties of finite element approximating

spaces and their connection with basic differential operators such as gradient, curl, and divergence operators in differential

calculus. Such differential operators usually form the basis of mathematical models for physical, engineering, and biological

problems. The classical conforming finite element exterior calculus has provided good guidance in the design and analysis

of various finite element methods for solving partial differential equations (PDE). In particular, the framework has proved

to be powerful in analyzing well-posedness of finite element discretizations and revealing new finite elements for solving

various PDE modeling problems arising from science and engineering. Finite element exterior calculus has been well

developed for conforming finite element methods on simplicial elements, and they often appear in the form of de Rham

complexes in the application of numerical solutions for PDEs [1–14].

In the last two decades, an extensive research effort has been made by the computational mathematics community

in the development of finite element methods with discontinuous approximating functions. The weak Galerkin (WG)

finite element method, first introduced in [15], is one of the recently developed finite element techniques based on

discontinuous finite element functions. The essence of weak Galerkin finite element methods is the use of weak finite
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Fig. 1.1. The WG de Rham Complex 1.

Fig. 1.2. The WG de Rham Complex 2.

element functions and their weak derivatives defined as discrete distributions in polynomial subspaces. In general,

weak Galerkin finite element formulations for partial differential equations can be derived naturally by replacing usual

derivatives by discrete weak derivatives in the corresponding variational forms, with the option of adding stabilization

term(s) to enforce a weak continuity of the approximating functions. Like most discontinuous finite element methods,

WG method is applicable for finite element partitions with arbitrary shape of polygons/polyhedra.

The purpose of this paper is to present two de Rham diagrams for weak Galerkin finite element spaces with weakly

defined differential operators. In particular, two finite element differential complexes are developed in the WG context on

polyhedral elements. It is proved that the diagrams in the two de Rham complexes commute with simple, yet powerful

L2 projection operators from the continuous functional spaces to the corresponding WG finite element ‘‘subspaces’’.

WG de Rham Complex 1: Polynomials of Equal Order k ≥ 0

In the de Rham complex 1 (see Fig. 1.1), the degree of polynomials in all four WG finite element spaces V
(i)

k , i = 1, . . . , 4,

is of the same value k ≥ 0, and C∞(T ) is the space of infinitely smooth functions in the closed region T . This special

feature of using polynomials of equal order in all the finite element spaces is possible only for weakly defined differential

operators, as the weak derivative of a kth order polynomial can be polynomials of any degree in the WG context.

Polynomials in the finite element spaces in the WG de Rham Complex 2 (see Fig. 1.2) are in a naturally descending order.

Details about these finite element spaces and the weak differential operators can be found in forthcoming sections.

WG de Rham Complex 2: Polynomials of Descending Order k ≥ 3

The above two WG de Rham complexes have some unique features: (1) they both work for discontinuous approxima-

tion on general polyhedral elements; (2) all the cochain projections Q
(i)

h in Fig. 1.1 and R
(i)

h in Fig. 1.2 are the standard L2

projections; and (3) weakly defined differential operators are employed first time in finite element differential complexes.

It should be noted that the weak gradient ∇w , weak curl ∇w× and weak divergence ∇w· in the WG de Rham complexes 1

and 2 have been employed for solving various partial differential equations in many existing literatures, including [16–18].

The WG de Rham complexes 1 and 2 additionally provide discrete weak differential operators defined on surfaces, which

is of great interest to the development of numerical methods for PDEs on surfaces or manifolds in general.

2. WG de Rham complexes

Let T be a shape-regular polyhedron in the sense of [18]. Denote by F (T ), E(T ) and V (T ) the set of faces, edges, and

vertices of T , respectively. For any face f ∈ F (T ), let n be a unit normal vector to f and t be a unit tangential vector on

e ⊂ ∂ f which obey the right-hand rule. Throughout this paper, we adopt the notation of (·, ·)D for the L2 inner product

in L2(D), where D could be a volume, a surface, or a curve.

2.1. WG de Rham complex for polynomials of equal order

For a given non-negative integer k ≥ 0, we introduce four vector spaces V
(1)

k (T ), V
(2)

k (T ), V
(3)

k (T ) and V
(4)

k (T ) that allow

the operator operations shown as in Fig. 1.1. The first space V
(1)

k (T ) is defined by

V
(1)

k (T ) = {v = {v0, vf , ve, vn} : v0 ∈ Pk(T ), vf ∈ Pk(f ), ve ∈ Pk(e),

vn ∈ R, f ∈ F (T ), e ∈ E(T ), n ∈ V (T )}. (2.1)
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The second space V
(2)

k (T ) is given by

V
(2)

k (T ) = {u = {u0, uf , ue} : u0 ∈ V
(2)

k,0(T ), uf ∈ V
(2)

k,f (f ),

ue ∈ V
(2)

k,e (e), f ∈ F (T ), e ∈ E(T )}, (2.2)

where

V
(2)

k,0(T ) = [Pk(T )]
3, (2.3)

V
(2)

k,f (f ) = {uf = u1t f ,1 + u2t f ,2 : u1, u2 ∈ Pk(f )}, (2.4)

V
(2)

k,e (e) = {ue = ute : u ∈ Pk(e)}, (2.5)

t f ,1 and t f ,2 in (2.4) are two orthogonal unit vectors tangential to f , te in (2.5) is a tangent vector on e. The third space

V
(3)

k (T ) is defined as

V
(3)

k (T ) = {w = {w0, wf } : w0 ∈ V
(3)

k,0(T ), wf ∈ V
(3)

k,f (f ), f ∈ F (T )}, (2.6)

where

V
(3)

k,0(T ) = [Pk(T )]
3, (2.7)

V
(3)

k,f (f ) = {wf = wf nf : wf ∈ Pk(f )}, (2.8)

with nf being a unit normal vector to the surface f . The three unit vectors t f ,1, t f ,2, and nf are assumed to form an

orthogonal right-hand system, though this assumption is not necessary. Our fourth space V
(4)

k (T ) is given by

V
(4)

k (T ) = Pk(T ). (2.9)

Next we define three weak gradient operators: (1) the regular weak gradient ∇w,0 on volume T , (2) the surface
weak gradient ∇w,f on face f , and (3) the edge weak gradient or directional derivative ∇w,e on e. More precisely, for

v = {v0, vf , ve, vn} ∈ V
(1)

k (T ), the weak gradient on volume T , denoted by ∇w,0v ∈ V
(2)

k,0(T ), is defined on T by

(∇w,0v, ϕ)T = −(v0, ∇ · ϕ)T + (vf , ϕ · n)∂T ∀ϕ ∈ V
(2)

k,0(T ). (2.10)

The surface weak gradient on the face f ∈ F (T ), denoted by ∇w,f v ∈ V
(2)

k,f (f ), is defined as follows:

(∇w,f v, θ × nf )f = −(vf , ∇ × θ · nf )f + (ve, θ · t∂ f )∂ f ∀θ ∈ V
(2)

k,f (f ), (2.11)

where t∂ f is chosen such that t∂ f and nf obey the right-hand rule. Analogously, the edge weak gradient or directional

derivative on edge e, denoted as ∇w,ev ∈ V
(2)

k,e (e), is defined on e such that

(∇w,ev, ϕte)e = −(ve, ∇ϕ · te)e + (vn, ϕte · n∂e)∂e ∀ϕte ∈ V
(2)

k,e (e), (2.12)

where n∂e is the unit outward direction at the two end points of e. It is clear that (vn, ϕte · n∂e)∂e is in fact the difference
of the value of vnϕ at two end points of e with sign determined by te.

With the help of these weak gradient operators, we may define a composite weak gradient operator ∇w : V
(1)

k (T ) ↦→

V
(2)

k (T ) as follows:

∇wv := {∇w,0v, ∇w,f v, ∇w,ev} ∈ V
(2)

k (T ) (2.13)

for all v ∈ V
(1)

k (T ).
Next, we shall introduce two weak curl operators, denoted as ∇w,0× and ∇w,f ×, on T and f respectively. For any

u = {u0, uf , ue} ∈ V
(2)

k (T ), the weak curl ∇w,0 × u ∈ V
(3)

k,0(T ) is defined on T by

(∇w,0 × u, θ )T = (u0, ∇ × θ )T + (uf , θ × n)∂T ∀θ ∈ V
(3)

k,0(T ). (2.14)

The surface weak curl on each face f ∈ F (T ), denoted as ∇w,f × u ∈ V
(3)

k,f (f ), is defined on f satisfying

(∇w,f × u, τnf )f = (uf , ∇τ × nf )f + (ue, τ t)∂ f ∀τnf ∈ V
(3)

k,f (f ). (2.15)

The composite weak curl operator ∇w× : V
(2)

k (T ) ↦→ V
(3)

k (T ) is then given by setting

∇w × u = {∇w,0 × u, ∇w,f × u}. (2.16)

Finally, for any w = {w0, wf } ∈ V
(3)

k (T ), we define its weak divergence ∇w · w ∈ V
(4)

k (T ) by the following equation:

(∇w · w, τ )T = −(w0, ∇τ )T + (wf , τn)∂T ∀τ ∈ V
(4)

k (T ). (2.17)

It is clear that the weak divergence operator ∇w· maps V
(3)

k (T ) to V
(4)

k (T ).
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2.2. WG de Rham complex for polynomials of descending order

For a given integer k ≥ 3, we introduce four polynomial spaces with descending orders for the diagram in Fig. 1.2:

W
(1)

k (T ), W
(2)

k−1(T ), W
(3)

k−2(T ) and W
(4)

k−3(T ). The first polynomial space W
(1)

k (T ) is given by

W
(1)

k (T ) ={v = {v0, vf , ve, vn} : v0 ∈ Pk(T ), vf ∈ Pk−1(f ), ve ∈ Pk−2(e),

vn ∈ R, f ∈ F (T ), e ∈ E(T ), n ∈ V (T )}.
(2.18)

The second space W
(2)

k (T ) is given by

W
(2)

k−1(T ) ={u = {u0, uf , ue} : u0 ∈ W
(2)

k−1,0(T ), uf ∈ W
(2)

k−2,f (f ),

ue ∈ W
(2)

k−3,e(e), f ∈ F (T ), e ∈ E(T )},
(2.19)

where

W
(2)

k−1,0(T ) = [Pk−1(T )]
3, (2.20)

W
(2)

k−2,f (f ) = {uf = u1t f ,1 + u2t f ,2 : u1, u2 ∈ Pk−2(f )}, (2.21)

W
(2)

k−3,e(e) = {ue = ute : u ∈ Pk−3(e)}. (2.22)

The third space W
(3)

k (T ) is defined as

W
(3)

k (T ) = {w = {w0, wf } : w0 ∈ W
(3)

k−2,0(T ), wf ∈ W
(3)

k−3,f (f )}, (2.23)

where

W
(3)

k−2,0(T ) = [Pk−2(T )]
3, (2.24)

W
(3)

k−3,f (f ) = {wf = wf nf : wf ∈ Pk−3(f )}, (2.25)

with nf a unit normal vector to the face f . The fourth polynomial space W
(4)

k (T ) is defined as follows:

W
(4)

k−3(T ) = Pk−3(T ). (2.26)

Analogously, we define three weak gradient operators ∇w,0, ∇w,f and ∇w,e on T , f and e accordingly. More precisely,

for v = {v0, vf , ve, vn} ∈ W
(1)

k (T ), the weak gradient operator on volume T , denoted as ∇w,0v ∈ W
(2)

k−1,0(T ), is defined by

(∇w,0v, ϕ)T = −(v0, ∇ · ϕ)T + (vf , ϕ · n)∂T ∀ϕ ∈ W
(2)

k−1,0(T ). (2.27)

The surface weak gradient operator on face f ∈ F (T ), denoted as ∇w,f v ∈ W
(2)

k−2,f (f ), is defined on f satisfying

(∇w,f v, θ × nf )f = −(vf , ∇ × θ · nf )f + (ve, θ · t∂ f )∂ f ∀θ ∈ W
(2)

k−2,f (f ). (2.28)

The edge weak gradient or directional derivative on edge e ∈ E(T ), denoted as ∇w,ev ∈ W
(2)

k−3,e(e), is defined on e such
that

(∇w,ev, ϕte)e = −(ve, ∇ϕ · te)e + (vn, ϕte · n∂e)∂e ∀ϕte ∈ W
(2)

k−3,e(e). (2.29)

Collectively, we define a weak gradient mapping ∇w : W
(1)

k (T ) ↦→ W
(2)

k−1(T ) as follows:

∇wv := {∇w,0v, ∇w,f v, ∇w,ev}. (2.30)

Next, we define two weak curl operators ∇w,0× and ∇w,f × on T and f respectively. For any u = {u0, uf } ∈ W
(2)

k−1(T ),

the weak curl on volume T , denoted as ∇w,0 × u ∈ W
(3)

k−2,0(T ), is defined on T by

(∇w,0 × u, θ )T = (u0, ∇ × θ )T + (uf , θ × n)∂T ∀θ ∈ W
(3)

k−2,0(T ). (2.31)

The surface weak curl on face f ∈ F (T ), denoted as ∇w,f × u ∈ W
(3)

k−3,f (f ), is defined on f by

(∇w,f × u, τnf )f = (uf , ∇τ × nf )f + ⟨ue, τ t⟩∂ f ∀τn ∈ W
(3)

k−3,f (f ). (2.32)

The composite weak curl mapping ∇w× : W
(2)

k−1(T ) ↦→ W
(3)

k−2(T ) is then defined by

∇w × u := {∇w,0 × u, ∇w,f × u}. (2.33)

Finally, the weak divergence ∇w ·w ∈ W
(4)

k−3(T ) for any w = {w0, wf } ∈ W
(3)

k−2 is defined on T by the following equation

(∇w · w, τ )T = −(w0, ∇τ )T + (wf , τn)∂T ∀τ ∈ W 4
k−3(T ). (2.34)

4
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3. Complex sequences

The goal of this section is to show that the WG sequences in Figs. 1.1 and 1.2 are complexes in the sense that the
composition of any two consecutive operations is zero.

Lemma 3.1. For the weak gradient operator ∇w and the weak curl operator ∇w× defined in (2.13) and (2.16) or in (2.30)

and (2.33), the following identity holds true

∇w × (∇wv) = 0 (3.1)

for all v in V
(1)

k (T ) or W
(1)

k (T ).

Proof. By the definition of ∇w× in (2.16) or (2.33), we need to show ∇w,0 × (∇wv) = 0 and ∇w,f × (∇wv) = 0.

For any v in V
(1)

k (T ) or W
(1)

k (T ), we have ∇wv = {∇w,0v, ∇w,f v, ∇w,ev}. By letting u = ∇wv in (2.14) or (2.31) and using

(2.10), (2.11), (2.27) and (2.28), we have for any θ in V
(3)

k,0(T ) or W
(3)

k−2,0(T ) that

(∇w,0 × (∇wv), θ )T

=(∇w,0 v, ∇ × θ )T + (∇w,f v, θ × n)∂T

= − (v0, ∇ · (∇ × θ ))T + (vf , (∇ × θ ) · n)∂T + (∇w,f v, θ × n)∂T

=(vf , (∇ × θ ) · n)∂T − (vf , (∇ × θ ) · n)∂T +
∑

f∈F (T )

⟨ve, θ · t⟩∂ f

=0,

where we have used the fact that
∑

f∈F (T )(ve, θ · t)∂ f = 0, as each edge is shared by two adjacent faces with tangential
vector t of opposite directions.

Next we show that ∇w,f × (∇wv) = 0 on each face f ∈ F (T ). To this end, on any given face f ∈ F (T ), by letting u = ∇wv

in (2.15) or (2.32) and using (2.11), (2.12), (2.28) and (2.29), we have for any τ in V
(3)

k,f (f ) or W
(3)

k−3,f (f ),

(∇w,f × (∇wv), τnf )f = (∇w,f v, ∇τ × nf )f + (∇w,ev, τ t∂ f )∂ f

= −(vf , ∇ × (∇τ ) · nf )f + (ve, ∇τ · t∂ f )∂ f + (∇w,ev, τ t∂ f )∂ f

= (ve, ∇τ · t∂ f )∂ f − (ve, ∇τ · t∂ f )∂ f +
∑

e∈∂ f

(vn, τ t∂ f · n∂(∂ f ))∂e

=
∑

e∈∂ f

(vn, τ t∂ f · n∂(∂ f ))∂e = 0.

This completes the proof of the lemma. □

Lemma 3.2. For the weak curl and the weak divergence operator ∇w× and ∇w· defined in (2.16) and (2.17) or (2.33) and
(2.34) respectively, the following identity holds true

∇w · (∇w × u) = 0 (3.2)

for all u in V
(2)

k (T ) or W
(2)

k−1(T ).

Proof. Recall that for u = {u0, uf , ue} in V
(2)

k (T ) or W
(2)

k−1(T ), we have ∇w ×u = {∇w,0×u, ∇w,f ×u}. By letting w = ∇w ×u

in (2.17) or (2.34) and using (2.14) and (2.15) or (2.31) and (2.32), we have for any τ in V
(4)

k (T ) or W
(4)

k−3(T ) that

(∇w · (∇w × u), τ )T = −(∇w,0 × u, ∇τ )T + (∇w,f × u, τn)∂T

= −(u0, ∇ × ∇τ )T − (uf , ∇τ × n)∂T

+ (uf , ∇τ × n)∂T +
∑

f⊂∂T

(ue, τ t)∂ f

= 0

which implies (3.2) and thus completes the proof of the lemma. □

4. Commutative properties for the WG de Rham complex 1

Denote by Q
(1)

0 , Q
(1)

f and Q
(1)
e the L2 projection operators onto Pk(T ), Pk(f ), and Pk(e) respectively. For any v ∈

H1(T ) ∩ C(T ), define Q
(1)

h v by

Q
(1)

h v = {Q
(1)

0 v,Q
(1)

f v|f ,Q
(1)
e v|e, v|n} ∈ V

(1)

k (T ). (4.1)

5
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Next, let Q
(2)

0 , Q
(2)

f and Q
(2)
e be the L2 projection operators onto V

(2)

k,0(T ), V
(2)

k,f (f ), and V
(2)

k,e (e) respectively. For u ∈ H(curl; T )∩

[C(T )]3, define Q
(2)

h u by

Q
(2)

h u = {Q
(2)

0 u,Q
(2)

f (nf × (u|f ×nf )),Q
(2)
e (u|e·te)te} ∈ V

(2)

k (T ). (4.2)

Analogously, with Q
(3)

0 and Q
(3)

f being the L2 projection operators onto V
(3)

k,0(T ) and V
(3)

k,f (f ) we define

Q
(3)

h w = {Q
(3)

0 w,Q
(3)

f (w|f ·nf )nf } ∈ V
(3)

k (T ) (4.3)

for any w ∈ H(div; T ) ∩ [C(T )]3. Denote by Q
(4)

h the L2 projection operator from L2(T ) to V
(4)

k (T ).

Lemma 4.1. For the projection operators Q
(1)

h and Q
(2)

h defined in (4.1) and (4.2) respectively and the weak gradient ∇w defined

in (2.13), we have

∇w(Q
(1)

h v) = Q
(2)

h ∇v ∀v ∈ H1(T ) ∩ C1(T ). (4.4)

Proof. By (2.13), one has ∇wQ
(1)

h v = {∇w,0Q
(1)

h v, ∇w,fQ
(1)

h v, ∇w,eQ
(1)

h v}. From (4.2), we have Q
(2)

h ∇v = {Q
(2)

0 ∇v,Q
(2)

f (nf ×

(∇v|f ×nf )),Q
(2)
e (∇v|e·te)te}. Thus it suffices to prove

∇w,0Q
(1)

h v = Q
(2)

0 ∇v, in T , (4.5)

∇w,fQ
(1)

h v = Q
(2)

f (nf × (∇v × nf )), on f ∈ F (T ), (4.6)

∇w,eQ
(1)

h v = Q (2)
e (∇v · te)te, on e ∈ E(T ). (4.7)

To prove (4.5), we have from (2.10) that for v ∈ H1(T ) ∩ C1(T ) and any ϕ ∈ V
(2)

k,0(T ),

(∇w,0Q
(1)

h v, ϕ)T = −(Q
(1)

0 v, ∇ · ϕ)T + (Q
(1)

f v, ϕ · n)∂T

= −(v, ∇ · ϕ)T + (v, ϕ · n)∂T

= (∇v, ϕ)T = (Q
(2)

0 ∇v, ϕ)T ,

which leads to ∇w,0Q
(1)

h v = Q
(2)

0 ∇v in T , and thus proves (4.5).

Next, from (2.11) we have for any θ ∈ V
(2)

k,f (f )

(∇w,fQ
(1)

h v, θ × nf )f = −(Q
(1)

f v, ∇ × θ · nf )f + (Q (1)
e v, θ · t)∂ f

= −(v, ∇ × θ · nf )f + (v, θ · t)∂ f

= (∇v, θ × n)f = (nf × (∇v × nf ), θ × nf )f

= (Q
(2)

f (nf × (∇v × nf )), θ × n)f ,

which verifies the identity (4.6).

To derive (4.7), from (2.12) we have for v ∈ H1(T ) ∩ C1(T ) and any ϕ ∈ V
(2)

k,e (e) that

(∇w,eQ
(1)

h v, ϕte)e = −(Q (1)
e v, ∇ϕ · te)e + (v, ϕte · n∂e)∂e

= −(v, ∇ϕ · te)e + (v, ϕte · n∂e)∂e

= (∇v, ϕte)e = (Q (2)
e (∇v · te)te, ϕte)e

which verifies (4.7). This completes the proof of the lemma. □

Lemma 4.2. For the projections Q
(2)

h and Q
(3)

h defined in (4.2) and (4.3) respectively and the weak curl ∇w× defined in (2.16),

we have

∇w × (Q
(2)

h u) = Q
(3)

h ∇ × u ∀u ∈ H(curl, T ) ∩ [C1(T )]3. (4.8)

Proof. By (2.16), one has ∇w ×Q
(2)

h u = {∇w,0 ×Q
(2)

h u, ∇w,f ×Q
(2)

h u}. By (4.3), Q
(3)

h ∇ ×u = {Q
(3)

0 ∇ ×u,Q
(3)

f (∇ ×u ·nf )nf }.

Thus, if suffices to prove

∇w,0 × Q
(2)

h u = Q
(3)

0 ∇ × u, (4.9)

∇w,f × Q
(2)

h u = Q
(3)

f (∇ × u · nf )nf . (4.10)

6
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It follows from (2.14) that for u ∈ H(curl, T ) ∩ [C1(T )]3 and any θ ∈ V
(3)

k,0(T ),

(∇w,0 × Q
(2)

h u, θ )T = (Q
(2)

0 u, ∇ × θ )T + (Q
(2)

f (n × (u × n)), θ × n)∂T

= (u, ∇ × θ )T + (n × (u × n), θ × n)∂T

= (u, ∇ × θ )T + (u, θ × n)∂T

= (∇ × u, θ )T = (Q
(3)

0 ∇ × u, θ )T

which verifies (4.9). Next, from (2.15) we have for any τnf ∈ V
(3)

k,f (f ),

(∇w,f × Q
(2)

h u, τnf )f = (Q
(2)

f (nf × (u × nf )), ∇τ × nf )f + (Q (2)
e (u · t)t, τ t)∂ f

= (nf × (u × nf ), ∇τ × nf )f + ((u · t)t, τ t)∂ f

= (u, ∇τ × nf )f + (u, τ t)∂ f

= (∇ × u · nf , τ )f = (Q
(3)

f (∇ × u · nf )nf , τnf )f ,

which leads to (4.10). This completes the proof of the lemma. □

Lemma 4.3. For the operator Q
(3)

h defined in (4.3), the L2 projection operator Q
(4)

h from L2(T ) to V
(4)

k (T ), and the weak
divergence operator ∇w· defined in (2.17), the following identity holds true

∇w · (Q
(3)

h w) = Q
(4)

h ∇ · w ∀w ∈ H(div; T ) ∩ [C(T )]3. (4.11)

Proof. It follows from (2.17) that for w ∈ H(div, T ) ∩ [C(T )]3 and any τ ∈ V
(4)

k (T ),

(∇w · Q
(3)

h w, τ )T = −(Q
(3)

0 w, ∇τ )T + (Q
(3)

f (w · n)n, τn)∂T

= −(w, ∇τ )T + (w, τn)∂T

= (∇ · w, τ )T = (Q
(4)

h ∇ · w, τ )T ,

which completes the proof of the lemma. □

5. Commutative properties for the WG de Rham complex 2

In this section, we show that the diagram in Fig. 1.2 commutes with properly defined operators R
(1)

h , R
(2)

h , R
(3)

h and R
(4)

h .

To this end, denote by R
(1)

0 , R
(1)

f and R
(1)
e the L2 projection operators onto Pk(T ), Pk−1(f ), and Pk−2(e) respectively. For any

v ∈ H1(T ) ∩ C1(T ), we define R
(1)

h v as follows

R
(1)

h v = {R
(1)

0 v, R
(1)

f v|f , R
(1)
e v|e, v|n} ∈ W

(1)

k (T ). (5.1)

Next, denote by R
(2)

0 , R
(2)

f and R
(2)
e the L2 projection operators onto W

(2)

k−1,0(T ), W
(2)

k−2,f (f ), and W
(2)

k−3,e(e) respectively. For

u ∈ H(curl; T ) ∩ [C(T )]3, we define R
(2)

h u as follows

R
(2)

h u = {R
(2)

0 u, R
(2)

f (nf × (u|f × nf )), R
(2)
e (u|e · te)te} ∈ W

(2)

k−1(T ). (5.2)

Analogously, with R
(3)

0 and R
(3)

f being the L2 projection operators onto W
(3)

k−2,0(T ) and W
(3)

k−3,f (f ), we may define R
(3)

h w by

R
(3)

h w = {R
(3)

0 w, R
(3)

f (w · nf )nf } ∈ W
(3)

k−2(T ) (5.3)

for all w ∈ H(div; T ) ∩ [C(T )]3. Our fourth operator R
(4)

h is given as the L2 projection operator from L2(T ) to W
(4)

k−3(T ).

Lemma 5.1. For the linear operators R
(1)

h and R
(2)

h defined in (5.1) and (5.2) respectively and the weak gradient ∇w defined
in (2.30), the following identity holds true

∇w(R
(1)

h v) = R
(2)

h ∇v (5.4)

for all v ∈ H1(T ) ∩ C1(T ),

Proof. It follows from (2.30) that ∇wR
(1)

h v = {∇w,0R
(1)

h v, ∇w,f R
(1)

h v, ∇w,eR
(1)

h v}. By (5.2), we have

R
(2)

h ∇v = {R
(2)

0 ∇v, R
(2)

f (nf × (∇v × nf )), R
(2)
e (∇v · te)te}.

Thus we need to prove

∇w,0R
(1)

h v = R
(2)

0 ∇v, in T , (5.5)

∇w,f R
(1)

h v = R
(2)

f (nf × (∇v × nf )), on f ∈ F (T ), (5.6)

∇w,eR
(1)

h v = R(2)
e (∇v · te)te, on e ∈ E(T ). (5.7)

7
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From (2.27), we have for any ϕ ∈ W
(2)

k−1,0(T )

(∇w,0R
(1)

h v, ϕ)T = −(R
(1)

0 v, ∇ · ϕ)T + (R
(1)

f v, ϕ · n)∂T

= −(v, ∇ · ϕ)T + (v, ϕ · n)∂T

= (∇v, ϕ)T = (R
(2)

0 ∇v, ϕ)T ,

which proves (5.5).

Next, from (2.28) we have for any θ ∈ W
(2)

k−2,f (f )

(∇w,f R
(1)

h v, θ × nf )f = −(R
(1)

f v, ∇ × θ · nf )f + (R(1)
e v, θ · t)∂ f

= −(v, ∇ × θ · nf )f + (v, θ · t)∂ f

= (∇v, θ × nf )f

= (nf × (∇v × nf ), θ × nf )f

= (R
(2)

f (nf × (∇v × nf )), θ × nf )f ,

which verifies (5.6).

Finally, from (2.29), we have for any ϕ ∈ W
(2)

k−3,e(e)

(∇w,eR
(1)

h v, ϕte)e = −(R(1)
e v, ∇ϕ · te)e + (v, ϕte · n∂e)∂e

= −(v, ∇ϕ · te)e + (v, ϕte · n∂e)∂e

= (∇v · te, ϕ)e = (R(2)
e (∇v · te)te, ϕte)e,

which proves (5.7). This completes the proof of the lemma. □

Lemma 5.2. For the linear operators R
(2)

h and R
(3)

h defined in (5.2) and (5.3) and the weak curl ∇w× defined in (2.33), the

following identity holds true:

∇w × (R
(2)

h u) = R
(3)

h ∇ × u (5.8)

for all u ∈ H(curl; T ) ∩ [C(T )]3.

Proof. By (2.33), one has ∇w×R
(2)

h u = {∇w,0×R
(2)

h u, ∇w,f ×R
(2)

h u}. By (5.3), we have R
(3)

h ∇×u = {R
(3)

0 ∇×u, R
(3)

f (∇×u·nf )nf }.

Thus it suffices to prove

∇w,0 × R
(2)

h u = R
(3)

0 ∇ × u, ∇w,f × R
(2)

h u = R
(3)

f (∇ × u · nf )nf . (5.9)

First, it follows from (2.31) that for u ∈ H(curl; T ) ∩ [C(T )]3 and any θ ∈ W
(3)

k−2,0(T ),

(∇w,0 × R
(2)

h u, θ )T = (R
(2)

0 u, ∇ × θ )T + (R
(2)

f (n × (u × n)), θ × n)∂T

= (u, ∇ × θ )T + (n × (u × n), θ × n)∂T

= (u, ∇ × θ )T + (u, θ × n)∂T

= (∇ × u, θ )T = (R
(3)

0 ∇ × u, θ )T ,

which implies that ∇w,0 × R
(2)

h u = R
(3)

0 ∇ × u.

Next, from (2.32) we have for any τn ∈ W
(3)

k−3,f (f )

(∇w,f × R
(2)

h u, τnf )f = (R
(2)

f (nf × (u × nf )), ∇τ × nf )f + (R(2)
e (u · t)t, τ t)∂ f

= (nf × (u × nf ), ∇τ × nf )f + ((u · t)t, τ t)∂ f

= (u, ∇τ × nf )f + (u, τ t)∂ f

= (∇ × u · nf , τ )f = (R
(3)

f (∇ × u · nf )nf , τnf )f ,

which implies ∇w,f × R
(2)

h u = R
(3)

f (∇ × u · nf )nf on face f ∈ F (T ). This completes the proof of the lemma. □

Lemma 5.3. For the linear operator R
(3)

h defined in (5.3), the L2 projection R
(4)

h from L2(T ) to W
(4)

k−3(T ), and the weak

divergence ∇w· defined in (2.34), the following identity holds true

∇w · (R
(3)

h w) = R
(4)

h ∇ · w (5.10)

for all w ∈ H(div, T ) ∩ [C(T )]3.

8
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Proof. It follows from (2.34) that for w ∈ H(div, T ) ∩ [C(T )]3 and any τ ∈ W
(4)

k−3(T ), we have

(∇w · R
(3)

h w, τ )T = −(R
(3)

0 w, ∇τ )T + (R
(3)

f (w · n)n, τn)∂T

= −(w, ∇τ )T + (w · n, τ )∂T

= (∇ · w, τ )T = (R
(4)

h ∇ · w, τ )T ,

which proves the lemma. □

6. Exactness for de Rham complex 1

We show that the weak Galerkin de Rham complex 1 is exact for k = 0 on tetrahedra and hexahedra.

Theorem 6.1. Let T be a tetrahedron. The following de Rham complex is exact for k = 0

R
1 C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R
4 V

(1)

k (T ) V
(2)

k (T ) V
(3)

k (T ) V
(4)

k (T ) 0

I ∇ ∇× ∇· N

Iw ∇w ∇w× ∇w·

Q
(1)

h Q
(2)

h Q
(3)

h
Q

(4)

h

N

(6.1)

Here Iw is the inclusion map that assigns constant value to v0, vf , ve, and vn; N stands for the null operator.

Proof. A necessary condition for exactness is zero difference of dimensions; i.e.,

4∑

i=0

(−1)i dim V
(i)

k (T )

= 4

−
(k + 1)(k + 2)(k + 3)

6
− 4

(k + 1)(k + 2)

2
− 6(k + 1) − 4

+ 3
(k + 1)(k + 2)(k + 3)

6
+ 2 · 4

(k + 1)(k + 2)

2
+ 6(k + 1)

− 3
(k + 1)(k + 2)(k + 3)

6
− 4

(k + 1)(k + 2)

2

+
(k + 1)(k + 2)(k + 3)

6

= 0,

(6.2)

where we have set V
(0)

k (T ) = R
4.

We claim that the kernel of the operator ∇w has dimension 4. To this end, let v ∈ V
(1)

0 (T ) ∈ Ker(∇w); i.e.

0 = ∇wv = {∇w,0v, ∇w,f v, ∇w,ev}.

From the definition (2.12) for ∇w,ev, we have vn = α4 with a constant α4 at all the vertices of T . On each face (triangle)
f ∈ F (T ), one may construct a linear function P1,f v so that P1,f v = ve at the center of each edge e ∈ ∂ f . From the
definition (2.11) we have

∇w,f v = ∇f P1,f v ∀f ∈ F (T ),

where ∇f is the surface gradient operator on the face f . It follows from ∇w,f v = 0 that ∇f P1,f v = 0 so that P1,f v = α3

for a constant α3. This shows that ve = α3 on all edges. Analogously, we may obtain vf = α2 on all faces for a
constant α2. Finally, v0 = α1 is already a constant that does not enter into the calculation of the weak derivatives for
the case of k = 0. This shows that the dimension of Ker(∇w) is 4 so that

Range(Iw) = Ker(∇w).

Since the dimension of V
(1)

0 (T ) = 15, thus the dimension of Range(∇w) = 15 − 4 = 11.
Next, we claim that

dim(Range(∇w×)) = 6. (6.3)

Since dim(V
(4)

0 ) = 1 and dim(V
(3)

0 ) = 7, we have dim(Range(∇w·)) = 1 and dim(Ker(∇w·)) = 6. It follows that

Range(∇w×) = Ker(∇w·)

provided that (6.3) holds true.

9
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From dim(V
(2)

0 ) = dim(Range(∇w×)) + dim(Ker(∇w×)) and (6.3), we have

dim(Ker(∇w×)) = dim(V
(2)

0 ) − 6 = 17 − 6 = 11 = dim(Range(∇w)).

Hence, we have from (3.1) that

Ker(∇w×) = Range(∇w).

It remains to prove (6.3). Note that by (3.2), we have dim(Range(∇w×)) ≤ dim(Ker(∇w·)) = 6. Consider the following

orthogonal decomposition of V
(3)

0 (T ):

V
(3)

0 (T ) = Range(∇w×) ⊕ W .

It is clear that (6.3) is equivalent to dim(W ) = 1. For any w = {w0, wf nf } ∈ W , we have

(w, ∇w × v)T = 0 ∀v ∈ V
(2)

0 ,

which implies

(w0, ∇w,0 × v)T = 0, (6.4)

(wf nf , ∇w,f × v)f = 0 on each face f . (6.5)

Using the definition of ∇w,0 in (2.14) and (6.4), we have
∑

f

(w0, nf × vf )f = 0 ∀v = {v0, vf } ∈ V
(2)

0,0 × V
(2)

0,f ,

which implies w0 × nf = 0 on each face f so that w0 = 0. Next, it follows from (6.5) that
∑

f

(wf nf , ∇w,f × v)f =
∑

e

([wf ], ve)e = 0,

which implies the jump [wf ]e = 0 on all edges. Thus, wf assumes a constant value at all faces f ∈ F (T ). This shows that

the function w ∈ W have the form w = {0, cnf } with c = const so that dim(W ) = 1. This verifies the claim (6.3). □

Theorem 6.2. For k = 0, the following de Rham complex is exact on cubic element T :

R
1 C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R
8 V

(1)

k (T ) V
(2)

k (T ) V
(3)

k (T ) V
(4)

k (T ) 0

I ∇ ∇× ∇· N

Iw ∇w ∇w× ∇w·

Q
(1)

h Q
(2)

h Q
(3)

h
Q

(4)

h

N

(6.6)

Proof. Again, the necessary condition of zero difference of dimensions for exactness holds true, as it can be easily seen

that

4∑

i=0

(−1)i−1 dim V
(i)

k (T )

= −8

+
(k + 1)(k + 2)(k + 3)

6
+ 6

(k + 1)(k + 2)

2
+ 12(k + 1) + 8

− 3
(k + 1)(k + 2)(k + 3)

6
− 2 · 6

(k + 1)(k + 2)

2
− 12(k + 1)

+ 3
(k + 1)(k + 2)(k + 3)

6
+ 6

(k + 1)(k + 2)

2

−
(k + 1)(k + 2)(k + 3)

6
= 0,

where we have set V
(0)

k (T ) = R
8.

Let us show that the kernel of the operator ∇w has dimension 8. In fact, for any v ∈ V
(1)

0 (T ) ∈ Ker(∇w), we have

0 = ∇wv = {∇w,0v, ∇w,f v, ∇w,ev}.

From the definition (2.12) for ∇w,ev, we see that vn = α8 with a constant α8 at all eight vertices of T . On each face

(rectangle) f ∈ F (T ), the condition of ∇w,f v = 0 implies ve has the same value on any parallel edges so that ve has a

10
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total of 3 independent unknowns. Analogously, the condition of ∇w,0v = 0 implies that vf has the same value on any

parallel faces so that vf has a total of 3 independent unknowns. With the one free unknown for v0, we have a total of

8 independent unknowns for functions in Ker(∇w) so that

dim(Ker(∇w)) = 8, (6.7)

which leads to

Range(Iw) = Ker(∇w).

Since the dimension of V
(1)

0 (T ) = 27, thus the dimension of Range(∇w) = 27 − 8 = 19.

Observe that the proof of (6.3) can be adopted without any modification to yield the following result:

dim(Range(∇w×)) = 8. (6.8)

Since dim(V
(4)

0 ) = 1 and dim(V
(3)

0 ) = 9, we then have dim(Range(∇w·)) = 1 and dim(Ker(∇w·)) = 8. It follows from

(6.8) that

Range(∇w×) = Ker(∇w·).

Next, from dim(V
(2)

0 ) = dim(Range(∇w×)) + dim(Ker(∇w×)) and (6.8), we have

dim(Ker(∇w×)) = dim(V
(2)

0 ) − 8 = 27 − 8 = 19 = dim(Range(∇w)).

Hence, we have from (3.1) that

Ker(∇w×) = Range(∇w). □
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