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Abstract
Dan Reznik found, by computer experimentation, a number of conserved quantities
associated with periodic billiard trajectories in ellipses. We prove some of his obser-
vations using a non-standard generating function for the billiard ball map. In this way,
we also obtain some identities valid for all smooth convex billiard tables.
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1 Introduction

In this note we present an alternative approach to remarkable conservation laws for
families of billiard polygons in ellipses. They were discovered by Dan Reznik [7] in
his computer experiments and proved in [1]. Here we discuss a different method of
proofs based on a non-standard generating function for convex billiards discovered
in [2,3]. This approach gives some identities valid for the billiard inside any smooth
convex curve, see Theorem 2.2. We hope that this approach will be useful in the study
of other problems on billiards.

We also prove several other conservation laws found by Reznik in further abundant
computer experiments [8].
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2 Non-standard generating function and billiard polygons in convex
billiards

Consider the space of oriented lines in the plane R2(x1, x2). A line can be written as

cosϕ · x1 + sin ϕ · x2 = p,

where ϕ is the direction of the right normal to the oriented line. Thus (p, ϕ) are
coordinates in the space of oriented lines, see Fig. 1. The 2-form ω = dp∧dϕ is the
area (symplectic) form on the space of oriented lines used in geometrical optics and
integral geometry.

Consider a smooth strictly convex billiard curve γ , and let h(ϕ) be its support
function, that is, the signed distance from the origin to the tangent line to γ at the
point where the outer normal has direction ϕ. The billiard transformation acts on the
sub-space of the oriented lines intersecting the curve γ . This sub-space is a phase
space cylinder of the billiard map. Thus the billiard transformation

T : (p1, ϕ1) �→ (p2, ϕ2)

sends the incoming trajectory to the outgoing one. Let

ψ = ϕ1 + ϕ2

2
, δ = ϕ2 − ϕ1

2
,

whereψ is the direction of the outer normal at the reflection point and δ is the reflection
angle.

Proposition 2.1 The function

S(ϕ1, ϕ2) = 2h

(
ϕ1 + ϕ2

2

)
sin

ϕ2 − ϕ1

2
= 2h(ψ) sin δ

Fig. 1 Coordinates in the space of oriented lines

123



Dan Reznik’s identities and more 1343

Fig. 2 To Proposition 2.1

is a generating function of the billiard transformation, that is, T (p1, ϕ1) = (p2, ϕ2)

if and only if

− ∂S1(ϕ1, ϕ2)

∂ϕ1
= p1,

∂S2(ϕ1, ϕ2)

∂ϕ2
= p2.

Proof We refer to Fig. 2. One has

− ∂S1(ϕ1, ϕ2)

∂ϕ1
= − h′(ψ) sin δ + h(ψ) cos δ.

The position vector of the point of the curve γ with the outer normal having direction
ψ is

γ (ψ) = h(ψ)(cosψ, sinψ) + h′(ψ)(− sinψ, cosψ)

(this formula is well known in convex geometry). Then, using some trigonometry,

p1 = γ (ψ) ·(cosϕ1, sin ϕ1) = h(ψ) cos δ − h′(ψ) sin δ,

as needed. The argument for p2 is similar. ��
Let Mi , i = 1, . . . , n, Mn+1 = M1 be a billiard n-gon in γ . Denote byψi the direction
of the outer normal to γ at point Mi and by δi the reflection angle at Mi . Let L be the
perimeter of the n-gon.

Theorem 2.2 The following formulas hold:

(a)
∑n

i=1 2h(ψi ) sin δi = L;

(b)
∑n

i=1 h
′(ψi ) sin δi = 0.

Proof (a) We use the approach of [5].
The sum in (a) computes the action of the periodic orbit, that is, the sum of the

values of the generating function over the orbit. We claim that this sum equals L , the
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1344 M. Bialy, S. Tabachnikov

action of the periodic orbit with the standard generating function L, the length of a
segment of a billiard trajectory (see, e.g., [10]).

Indeed, consider the 1-forms λ1 = pdϕ and λ2 = (cos δ)ds (where s is the arc
length parameter on γ ), which are both primitives of the symplectic form ω invariant
under the billiard transformation T .

Furthermore, λ1 and λ2 are cohomologous on the phase cylinder. This can be
verified by integrating both forms along the boundary of the phase cylinder. Indeed, in
the coordinates (s, δ) or (ϕ, p), the boundary can be written as {δ = 0} or {p = h(ϕ)},
respectively. We compute:

∫
λ2 =

∫
ds = Length(γ ),

∫
λ1 =

∫
h dϕ =

∫
(h′′+ h) dϕ =

∫
ρ dϕ =

∫
ds = Length(γ ),

where ρ is the radius of curvature of γ .
Thus λ2 − λ1 = dF for some function F . Let α = λ2 − λ1. One has

T ∗λ1 − λ1 = dS, T ∗λ2 − λ2 = dL,

hence

d(L − S) = T ∗α − α = d(F◦T − F).

This implies that

L − S = F◦T − F + const.

The constant in the right-hand side is zero since both L and S vanish on the boundary.
It remains to note that the sums of F and of F◦T over a periodic orbit are equal.

(b) Let the edges of a billiard polygon have coordinates (pi , ϕi ), and let

ψi = ϕi−1 + ϕi

2
, δi = ϕi − ϕi−1

2
.

It then follows from Proposition 2.1 that

∂S(ϕi−1, ϕi )

∂ϕi
= − ∂S(ϕi , ϕi+1)

∂ϕi
,

that is,

h(ψi ) cos δi + h′(ψi ) sin δi = h(ψi+1) cos δi+1 − h′(ψi+1) sin δi+1. (1)

Summing up these equations for i = 1, 2, . . . , n gives the second statement. ��
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3 Specializing to ellipses

Let γ be the ellipse {x21/a21 + x22/a
2
2 = 1}. We will need the support function of γ ,

with the origin at the center of the ellipse and the angles ψ made with the positive
x1-axis.

Lemma 3.1 One has

h(ψ) =
√
a21 cos

2 ψ + a22 sin
2 ψ.

Proof Consider a point (ξ1, ξ2) of the ellipse. A normal vector is given by

N =
(

ξ1

a21
,

ξ2

a22

)
= �(cosψ, sinψ),

and the tangent line at this point has the equation

ξ1x1
a21

+ ξ2x2
a22

= 1.

The distance from the origin to this line is

1√
ξ21 /a41 + ξ22 /a42

= 1

�
.

On the other hand,

ξ1 = a21� cosψ, ξ2 = a22� sinψ,

and the equation of the ellipse implies that

�2= 1

a21 cos
2 ψ + a22 sin

2 ψ
.

Therefore h(ψ) = 1/� =
√
a21 cos

2 ψ + a22 sin
2 ψ , as claimed. ��

The billiard in ellipse is integrable, and the conserved quantity, called the Joachimsthal
integral, is, in the above notation, |N | sin δ (see [10] or [1]). This can be written as

J = sin δ(ψ)

h(ψ)
.

This means that, along an invariant curve of the billiard, the quantities h and sin δ are
proportional.

Recall that periodic billiard orbits in ellipses come in 1-parameter families (Poncelet
Porism). Let αi = π − 2δi be the angles of a periodic billiard polygon. The next
statements are corollaries of Theorem 2.2; the second statement is case k101 in [8].
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Fig. 3 To Theorem 3.3

Corollary 3.2 For a family of billiard n-gons in ellipse, one has

2
n∑

i=1

sin2 δi = J · L,

and hence

n∑
i=1

cosαi = J · L − n.

One also has

2J
n∑

i=1

h2(ψi ) = L.

Using the formula for the support function, one has

n∑
i=1

cos 2ψi =
(
L

J
− n(a21 + a22)

)/
(a21 − a22).

The second claim of Theorem 2.2 implies that
∑n

i=1 sin 2ψi = 0.

Finally, consider a periodic billiard trajectory in an ellipse. The tangent lines at the
impact points form a new polygon whose angles are denoted by βi , see Fig. 3.

Theorem 3.3 (Case k102 in [8]) In a 1-parameter family of billiard n-gons in ellipse,
one has

n∏
i=1

cosβi = const.
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Proof Note that

βi = π − (ψi+1 − ψi ) = π − (δi+1 + δi ).

In the 1-parameter family of billiard n-gons circumscribing a confocal ellipse, the
reflection angle δ is a function of the normal direction ψ . Let us parameterize the
family of n-gons by ψ1 =.. ψ .

Differentiating the relation ψi+1 − ψi = δi+1 + δi , we obtain

dψi+1

dψi
= 1 + δ′(ψi )

1 − δ′(ψi+1)
.

On the other hand, substituting Jh = sin δ, Jh′ = cos δ ·δ′ in equation (1), we arrive
at the identity

dψi+1

dψi
= 1 + δ′(ψi )

1 − δ′(ψi+1)
= sin 2δi+1

sin 2δi
.

Multiplying these equations implies

dψi

dψ j
= sin 2δi

sin 2δ j
(2)

for not necessarily consecutive i and j .
Next we compute the derivative using (2),

dcosβi

dψ
= − sin βi

dβi

dψi

dψi

dψ1
= − sin βi

(
1 − sin 2δi+1

sin 2δi

)
sin 2δi
sin 2δ1

= sin βi

sin 2δ1
(sin 2δi+1 − sin 2δi )

= sin βi

sin 2δ1
2 cos(δi+1 + δi ) sin(δi+1 − δi )

= − sin βi

sin 2δ1
2 cosβi sin(δi+1 − δi ).

Now we are ready to compute the derivative of the product:

d

dψ

n∏
i=1

cosβi =
n∏

i=1

cosβi

( n∑
i=1

d cosβi

dψ

1

cosβi

)

=
n∏

i=1

cosβi

( n∑
i=1

sin βi sin(δi+1 − δi )

)
2

sin 2δ1
.
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It remains to notice that the sum in the parentheses equals zero:

2
n∑

i=1

sin βi sin(δi+1 − δi ) = 2
n∑

i=1

sin(δi+1 + δi ) sin(δi+1 − δi )

=
n∑

i=1

(cos 2δi − cos 2δi+1) = 0.

This completes the proof. ��

Unlike Theorem 2.2, we do not know the value of the constant in Theorem 3.3.

4 Further conservation laws

Let Mi , i = 1, . . . , n, Mn+1 = M1 be a billiard n-gon in an ellipse γ , and let �i be the
tangent line to γ at Mi . Choose a point P , and let Qi be the foot of the perpendicular
dropped from P in �i .

Theorem 4.1 (Cases k306 and k302 in [8]) The center of mass of points Qi and sum∑n
i=1 |PQi |2 remain fixed as M varies in the 1-parameter family of n-periodic billiard

orbits.

Proof The proof consists of two parts: first, we show that the statement holds when P
is the center of the ellipse, and then we show that it holds for any other point.

We continue to use the notation h(ψ) for the support function of γ and δ for the
reflection angle. The foot point of the perpendicular from the center to the tangent
line with the normal direction ψ is (h(ψ) cosψ, h(ψ) sinψ). As we know, up to a
multiplicative constant, h(ψ) = sin δ.

For the first statement, we show that

n∑
i=1

sin δi cosψi =
n∑

i=1

sin δi sinψi = 0,

that is, the center of mass is at the origin. Using trigonometry, this is equivalent to

n∑
i=1

[sin(ψi − δi ) − sin(ψi + δi )] =
n∑

i=1

[cos(ψi − δi ) − cos(ψi + δi )] = 0.

But ψi ± δi are the normal directions to the consecutive sides of a billiard n-gon M .
Therefore both cyclic sums indeed vanish.

For the second statement,
∑ |PQi |2 = ∑

h2(ψi ), and this is constant by the first
statement of Theorem 2.2.
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Next, if point P is translated from the origin to a point (a, b), then the support
numbers |PQi | are changed by a cosψi + b sinψi , and

n∑
i=1

|PQi |2 =
n∑

i=1

[h(ψi ) − (a cosψi + b sinψi )]2

=
n∑

i=1

h2(ψi ) − 2
n∑

i=1

h(ψi )(a cosψi + b sinψi ) +
n∑

i=1

(a cosψi + b sinψi )
2.

Therefore to show that this sum is constant in the 1-parameter family of n-periodic
orbits, it suffices to show that constant are the individual sums

n∑
i=1

h(ψi ) cosψi ,

n∑
i=1

h(ψi ) sinψi ,

n∑
i=1

cos2 ψi ,

n∑
i=1

cosψi sinψi ,

n∑
i=1

sin2 ψi .

As we showed above, the first two sums vanish, and the the remaining three, using
some trigonometry, are constant by Corollary 3.2.

Likewise, when point P is translated from the origin to a point (a, b), the feet of
the perpendiculars Qi are translated by the vectors

[(a, b) · (sinψi ,− cosψi )](sinψi ,− cosψi ).

Therefore to show that the center of mass remains constant in the 1-parameter family
of n-periodic orbits, it suffices to show that constant are the individual sums

n∑
i=1

cos2 ψi ,

n∑
i=1

cosψi sinψi ,

n∑
i=1

sin2 ψi .

This we already know, and this completes the proof. ��
As a preparation to the proof of the next theorem, we describe another integral of the
billiard inside an ellipse. This integral is known to specialists, but we do not know a
reference.

Lemma 4.2 The product of the distances from the foci of an ellipse to the segments of
a billiard trajectory is an integral of the billiard map. This product equals the square
of the small semi-axis of the confocal ellipse tangent to the segments of the trajectory.

Proof We present two arguments, an analytic and a geometric ones (the geometric
argument proves the constancy, but does not give the exact value of the constant).
Consider a segment of the billiard trajectory tangent to a confocal ellipse γ with the
semi-axes b < a. Let d1, d2 be the distances from the foci to the segment and α be the
direction of its normal. Then

d1 = h(α) − c cosα, d2 = h(α) + c cosα,
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Fig. 4 To Lemma 4.2

where h is the support function of γ and c2 = a2 − b2. From here, using the formula
for the support function from Lemma 3.1, we get

� ..= d1d2 = h2(α) − c2 cos2 α = a2 cos2 α + b2 sin2 α − c2 cos2 α = b2.

For the geometric argument, consider Fig. 4. The distance from F1 to AC is
|F1C | sin(∠ F1CA), and from F2 to AC is |F2C | sin(∠F2CA). The product of the
two is

|F1C ||F2C | sin(∠ F1CA) sin(∠ F2CA).

Likewise, the product of the distances to BC is

|F1C ||F2C | sin(∠ F1CB) sin(∠ F2CB).

It remains to notice that ∠ F1CA = ∠ F2CB and ∠ F2CA = ∠ F1CB. ��
The next results are also among the ones experimentally discovered in [8].
Let Mi , i = 1, . . . , n, Mn+1 = M1 be a billiard n-gon in an ellipse, circumscribing

the confocal ellipse γ with the semi-axes b < a, and let Ri be the foot of the per-
pendicular dropped from its center O on the line MiMi+1. Let F1,2 be the foci of the
ellipse.

Theorem 4.3 (Cases k202,a and k202,b in [8])

(a) If n is even, then
∏n

i=1 |F1Ri | and ∏n
i=1 |F2Ri | are constant and equal to bn as

M varies in the 1-parameter family of n-periodic billiard orbits.
(b) If n is divisible by 4, then

∏n
i=1 |ORi | is constant and equal (ab)n/2 as M varies

in the 1-parameter family of n-periodic billiard orbits.

Proof We start from the well-known fact that an even-periodic billiard polygon is
symmetric with respect to the center of the ellipse.

For the first statement, let n = 2k. Then, by symmetry, |F1Ri | = |F2Ri+k | for all
i . Therefore

∏n
i=1 |F1Ri | = ∏n

i=1 |F2Ri |. Furthermore, by Lemma 4.2, this product
equals bn.
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For the second statement, let n = 4k.We claim that it suffices to prove the statement
in the case k = 1.

Indeed, consider the i th, (i + k)th, (i + 2k)th, and (i + 3k)th sides of the periodic
n-gon. According to the Poncelet Grid Theorem [6,9], the quadrilateral (in fact, a
parallelogram) made by these sides is a 4-periodic billiard trajectory in a confocal
ellipse. If we know that the product in question is invariant for n = 4, then this
product for n = 4k is the kth power of the one for n = 4, and hence invariant as well.

It remains to prove the statement for periodic quadrilaterals. Forwant of a geometric
argument, we present two analytic proofs.

The first proof.Apair of confocal ellipses possessing a Poncelet quadrilateral are given
by the formulas

x2

a2
+ y2

b2
= 1,

x2

A2 + y2

B2 = 1 (3)

with A2 = a2 + ab, B2 = b2 + ab. These relations become evident if one considers
a rectangle that circumscribes the first ellipse and whose sides are parallel to its axes.

Let P and Q be adjacent vertices of a billiard quadrilateral. Then the tangent lines
at P and Q are orthogonal and their intersection point lies on the orthoptic circle
centered at O , see [4]. This is illustrated in Fig. 5.

The distance from O to PQ equals [P, Q]/|P − Q|, where [ · , · ] stands for the
standard vector product. The next vertex after Q is −P , therefore we need to show
the invariance of

[P, Q]2
|P − Q||P + Q| (4)

as point P varies.
Let P = (A cosα, B sin α), Q = (A cosβ, B sin β). Then the normals at points

P and Q are given by (cosα/A, sin α/B) and (cosβ/A, sin β/B). As we mentioned,
these normals are orthogonal, hence

cosα cosβ

A2 + sin α sin β

B2 = 0.

Using some trigonometry, we rewrite this as (A2 + B2) cos(α − β) = (A2 − B2)

cos(α + β), or as

(a + b) cos(α − β) = (a − b) cos(α + β). (5)

This equation describes the relation between points P and Q.
Now consider (4). Since [P, Q] = AB sin(α − β), the numerator equals A2B2

· sin2(α − β). To compute the denominator, use the formula

|P − Q||P + Q| = 1

2
(|P − Q| + |P + Q|)2 − |P|2 − |Q|2.
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Fig. 5 To Theorem 4.3

The sum |P −Q|+ |P +Q| is the semi-perimeter of the billiard polygon, a conserved
quantity equal, in our case, to 2(a + b). Hence, again using trigonometry and (5),

|P − Q||P + Q| = 2(a + b)2 − A2 cos2α − B2 sin2α − A2 cos2β − B2 sin2β

= (a + b)2 + (b2 − a2) cos(α + β) cos(α − β)

= (a + b)2[1 − cos2(α − β)]
= (a + b)2 sin2(α − β).

It follows that (4) equals ab which implies the statement of the theorem.

The second proof. We make use of support functions, in accordance with our approach
to billiards in this paper.

As before, consider two ellipses (3), and let H be the support function of the outer
one. Let ψi be the angles of the normal at the vertices of the parallelograms and δ(ψ)

the function of reflective angle of the family of the Poncelet parallelograms.
For a fixed parallelogram, the angles of the normals are

ψ1, ψ2, ψ1 + π, ψ2 + π.

Denote by p1, p2 the distances from the origin to the sides of the parallelogram. By
Corollary 3.2, we have in our case

sin(2ψ1) = − sin(2ψ2).

This implies ψ2 = ψ1 + π/2. This means that the tangents to E at the vertices of the
parallelogram form a rectangle, reproving the observation made in [4], see Fig. 5. In
addition,

δ(ψ2) + δ(ψ1) = π

2
.
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Moreover it follows from Eq. (1) that

p1 = H(ψ1) cos δ(ψ1) + H ′(ψ1) sin δ(ψ1) = H(ψ2) cos δ(ψ2) − H ′(ψ2) sin δ(ψ2),

p2 = H(ψ1) cos δ(ψ1) − H ′(ψ1) sin δ(ψ1) = H(ψ2) cos δ(ψ2) + H ′(ψ2) sin δ(ψ2).

This leads to

H(ψ2) cos δ(ψ2) = H(ψ1) cos δ(ψ1).

Hence

cot δ(ψ1) = H(ψ1 + π
2 )

H(ψ1)
=

(
A2 sin2ψ1 + B2 cos2ψ1

A2 cos2ψ1 + B2 sin2ψ1

)1/2
=

(
1 + ky

k + y

)1/2
, (6)

where k ..= A2/B2 = a/b, y ..= tan2 ψ1. From the explicit expressions for p1, p2 we
get

p1 p2 = H(ψ1)
2 cos2 δ(ψ1) − H ′(ψ1)

2 sin2 δ(ψ1).

Using the Joachimsthal integral, we can substitute in the last formula

H = 1

J
sin δ, H ′ = 1

J
δ′ cos δ.

We get

p1 p2 = 1

J 2
(sin2 δ cos2 δ − (δ′ sin δ cos δ)2) = 1

J 2

(
z(1 − z) −

[
z

2

′]2)
,

where we abbreviate z ..= sin2δ.
Next we compute z via y using formula (6):

z = k + y

(1 + k)(1 + y)
.

Also,

z′ = − k − 1

(k + 1)(1 + y)2
· dy
dψ

= − k − 1

(k + 1)(1 + y)2
·2√y(1 + y) = k − 1

(k + 1)(1 + y)
·2√y.

We substitute and get

p1 p2 = 1

J 2

[
(1 + ky)(k + y)

(1 + k)2(1 + y)2
− (k − 1)2y

(k + 1)2(1 + y)2

]
= k

J 2(k + 1)2
.
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To finish the proof, we note that J = 1/(a+ b) (which is again clear by considering a
rectangle that circumscribes the inner ellipse and whose sides are parallel to its axes).
This yields p1 p2 = ab. ��
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