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Abstract

Dan Reznik found, by computer experimentation, a number of conserved quantities
associated with periodic billiard trajectories in ellipses. We prove some of his obser-
vations using a non-standard generating function for the billiard ball map. In this way,
we also obtain some identities valid for all smooth convex billiard tables.
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1 Introduction

In this note we present an alternative approach to remarkable conservation laws for
families of billiard polygons in ellipses. They were discovered by Dan Reznik [7] in
his computer experiments and proved in [1]. Here we discuss a different method of
proofs based on a non-standard generating function for convex billiards discovered
in [2,3]. This approach gives some identities valid for the billiard inside any smooth
convex curve, see Theorem 2.2. We hope that this approach will be useful in the study
of other problems on billiards.

We also prove several other conservation laws found by Reznik in further abundant
computer experiments [8].
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2 Non-standard generating function and billiard polygons in convex
billiards

Consider the space of oriented lines in the plane R2 (x1, x2). A line can be written as
cos@-x1 +sing-x3 = p,

where ¢ is the direction of the right normal to the oriented line. Thus (p, ¢) are
coordinates in the space of oriented lines, see Fig. 1. The 2-form v = dp Adg is the
area (symplectic) form on the space of oriented lines used in geometrical optics and
integral geometry.

Consider a smooth strictly convex billiard curve y, and let h(¢) be its support
function, that is, the signed distance from the origin to the tangent line to y at the
point where the outer normal has direction ¢. The billiard transformation acts on the
sub-space of the oriented lines intersecting the curve y. This sub-space is a phase
space cylinder of the billiard map. Thus the billiard transformation

T (p1,¢1) = (P2, 92)
sends the incoming trajectory to the outgoing one. Let

_ 1t s

v 2 2

where 1 is the direction of the outer normal at the reflection point and § is the reflection
angle.

Proposition 2.1 The function

(g1, 2) = 2h<§0‘ ;q’z) sin 22 3 Pl oh(y)sins
5
0

Fig. 1 Coordinates in the space of oriented lines
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Fig.2 To Proposition 2.1

is a generating function of the billiard transformation, that is, T (p1, 1) = (p2, ¥2)
if and only if

951(p1, 92) 982 (91, v2)
-——=p, ———=pm
o1 02

Proof We refer to Fig. 2. One has

_98i(p1, 92)

— W (Y)sind + h(y) cos 8.
991

The position vector of the point of the curve y with the outer normal having direction
Y is
y (W) = h(¥)(cos ¥, sin ¥) + k' (Y)(— sin ¢, cos )

(this formula is well known in convex geometry). Then, using some trigonometry,

p1 =y (W) -(cos @y, sing)) = h(y)cos§ — b’ () sin 8,
as needed. The argument for p; is similar. O

LetM;,i =1,...,n, M,y1 = M be abilliard n-gon in y. Denote by ; the direction
of the outer normal to y at point M; and by §; the reflection angle at M;. Let L be the
perimeter of the n-gon.

Theorem 2.2 The following formulas hold:
(@) Y1 2h(Y;)sing; = L;
(b) X' W (Yi)siné; = 0.

Proof (a) We use the approach of [5].
The sum in (a) computes the action of the periodic orbit, that is, the sum of the
values of the generating function over the orbit. We claim that this sum equals L, the
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action of the periodic orbit with the standard generating function L, the length of a

segment of a billiard trajectory (see, e.g., [10]).

Indeed, consider the 1-forms A1 = pd¢ and A» = (cos§)ds (where s is the arc
length parameter on y), which are both primitives of the symplectic form w invariant

under the billiard transformation 7.

Furthermore, A1 and A, are cohomologous on the phase cylinder. This can be
verified by integrating both forms along the boundary of the phase cylinder. Indeed, in
the coordinates (s, §) or (¢, p), the boundary can be written as {§ = 0} or {p = h(p)},

respectively. We compute:

/}Q = /ds = Length(y),
/M :/hd(p:/(h”+h)d(p:/pd<p:/ds = Length(y),

where p is the radius of curvature of y.
Thus Ay — A1 = d F for some function F. Let @ = A» — A;. One has

T A — A1 =dS, T i — A =dL,
hence

dL—8S)=T*a —a=d(FoT — F).
This implies that

L—S=FoT — F + const.

The constant in the right-hand side is zero since both £ and S vanish on the boundary.

It remains to note that the sums of F and of FoT over a periodic orbit are equal.

(b) Let the edges of a billiard polygon have coordinates (p;, ¢;), and let

Yi—1+ @i Vi — Qi—1
Vi = %, 8 = %
It then follows from Proposition 2.1 that
9S(pi-1.9) _ 9S(gi, @iv1)
99; d¢; ’

that is,
h(i) cos8; + h' (i) sind; = h(Yiy1) cos§iy1 — b (Yiq1) sin 1.

Summing up these equations fori = 1, 2, ..., n gives the second statement.
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3 Specializing to ellipses

Let y be the ellipse {xl2 /a]2 + x% /a% = 1}. We will need the support function of y,
with the origin at the center of the ellipse and the angles ¢y made with the positive
X1-axis.

Lemma 3.1 One has

h(y) = \/a% cos2y + a3 sin® .

Proof Consider a point (&1, &) of the ellipse. A normal vector is given by

N = (5_12’ %) = £(cos ¥, sin /),

ay a

and the tangent line at this point has the equation

§ix1 &xr
2 T2t
a4 a3

The distance from the origin to this line is

N
Jesarvgat ¢
On the other hand,
&1 = a%E cosy, & = a%ﬁ sin v,
and the equation of the ellipse implies that

2 1
a?cos?y +ajsin®y

Therefore h(y) = 1/ = \/a% coszyr + a% sin? ¥, as claimed. O

The billiard in ellipse is integrable, and the conserved quantity, called the Joachimsthal
integral, is, in the above notation, |N|sin§ (see [10] or [1]). This can be written as

_sind(y)
R

This means that, along an invariant curve of the billiard, the quantities 4 and sin § are
proportional.

Recall that periodic billiard orbits in ellipses come in 1-parameter families (Poncelet
Porism). Let o; = m — 2§; be the angles of a periodic billiard polygon. The next
statements are corollaries of Theorem 2.2; the second statement is case kg in [8].
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B1
Bs

B>
B4

B3

Fig.3 To Theorem 3.3
Corollary 3.2 For a family of billiard n-gons in ellipse, one has
n
ZZsinzéi =J-L,
i=1
and hence

n
Zcosai =J-L—n.
i=1

One also has
n
27> (i) = L.
i=1

Using the formula for the support function, one has

n
L
Zcos 2y = (7 — n(at + a%))/(a% —a3).
i=1
The second claim of Theorem 2.2 implies that y_;_, sin 2¢; = 0.

Finally, consider a periodic billiard trajectory in an ellipse. The tangent lines at the
impact points form a new polygon whose angles are denoted by f;, see Fig. 3.

Theorem 3.3 (Case k(2 in [8]) In a 1-parameter family of billiard n-gons in ellipse,
one has

n
1_[ cos B; = const.

i=1
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Proof Note that
Bi=m — i1 — Vi) =7 — (511 + ).

In the 1-parameter family of billiard n-gons circumscribing a confocal ellipse, the
reflection angle § is a function of the normal direction yr. Let us parameterize the
family of n-gons by | =: .

Differentiating the relation ;1 — ¥; = §;+1 + §;, we obtain

driv1 _ 1+ 8" (Yi)
di 1 =68 Wit1)

On the other hand, substituting J& = sin§, Jh' = cos§ -8’ in equation (1), we arrive
at the identity

dyivr _ 1+8Wi)  _ sin26i4
dr; 1 =8 iv1) sin28;

Multiplying these equations implies

dw,' _ sin28,~
dyj  sin2s;

@)

for not necessarily consecutive i and j.
Next we compute the derivative using (2),

dcos B; . dg; dv; . sin28;41\ sin24;
= —sinfj — — = —sinf;i| 1 — — "
dy dyri diyn sin 26; sin 268
= s.m bi (sin28;4+1 — sin 26;)
sin 231
sin ,31' .
= — 2cos(8j4+1 + 8;) sin(8; 41 — ;)
sin 231
_ S0P s Bsin(Sies — 81).
sin 241

Now we are ready to compute the derivative of the product:

d & _ " ‘ " dcosB; 1
wgcosﬂi—gcosﬂl(z v —cos,B,')

i=1
2

n n
- ]1 cos Bi (; sin B; sin(8i+1 — 5,-)) — Tk
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1348 M. Bialy, S. Tabachnikov

It remains to notice that the sum in the parentheses equals zero:

n n
2Zsinﬂ,» sin(8j41 — &) = ZZsin(éiH +8;) sin(8i41 — &)

i=1 i=1

n
- Z (cos 28; — cos28; 1) = 0.
i=1

This completes the proof. O

Unlike Theorem 2.2, we do not know the value of the constant in Theorem 3.3.

4 Further conservation laws

LetM;,i =1,...,n, M,+1 = M be abilliard n-gon in an ellipse y, and let £; be the
tangent line to y at M;. Choose a point P, and let Q; be the foot of the perpendicular
dropped from P in ¢;.

Theorem 4.1 (Cases k306 and k3gp in [8]) The center of mass of points Q; and sum
Yl IPO; |2 remain fixed as M varies in the 1-parameter family of n-periodic billiard
orbits.

Proof The proof consists of two parts: first, we show that the statement holds when P
is the center of the ellipse, and then we show that it holds for any other point.

We continue to use the notation i () for the support function of y and § for the
reflection angle. The foot point of the perpendicular from the center to the tangent
line with the normal direction ¥ is (h(y) cos ¥, h(y) sin ¥r). As we know, up to a
multiplicative constant, () = sin §.

For the first statement, we show that

n n
Z sin §; cos Y¥; = Z sin §; sin y; = 0,

i=1 i=1
that is, the center of mass is at the origin. Using trigonometry, this is equivalent to

n n

D lsin(yi — &) —sin(¥i + 8)1 =Y _ [cos (¥ — &) — cos(¥; + 8:)] = 0.

i=1 i=1

But ; £ §; are the normal directions to the consecutive sides of a billiard n-gon M.
Therefore both cyclic sums indeed vanish.

For the second statement, Y | P Q; |2 => h2(¢f,-), and this is constant by the first
statement of Theorem 2.2.
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Dan Reznik’s identities and more 1349

Next, if point P is translated from the origin to a point (a, b), then the support
numbers | P Q;| are changed by a cos ¥; + b sin ¥;, and

n n

D IPQiIF =) [h(¥i) — (acos Y + bsinyr)]?

i=1 i=1

=Y KW =2 h(i(acosyi +bsin ) + ) (acos yi + bsin ;)

i=1 i=1 i=1

Therefore to show that this sum is constant in the 1-parameter family of n-periodic
orbits, it suffices to show that constant are the individual sums

Zh(lﬁi)costﬂi, Zh(l/fi)sinwi, Zcoszwi, Zcosw,'sinwi, Zsinzlp,'.

i=1 i=1 i=1 i=1 i=1

As we showed above, the first two sums vanish, and the the remaining three, using
some trigonometry, are constant by Corollary 3.2.

Likewise, when point P is translated from the origin to a point (a, b), the feet of
the perpendiculars Q; are translated by the vectors

[(a, D) - (sin yr;, — cos ¥r;)[(sin v, — cos ;).

Therefore to show that the center of mass remains constant in the 1-parameter family
of n-periodic orbits, it suffices to show that constant are the individual sums

n n n
Z cos® Vi, Z cos V; sin v, Z sin’ vi.
i=1

i=1 i=1
This we already know, and this completes the proof. O

As a preparation to the proof of the next theorem, we describe another integral of the
billiard inside an ellipse. This integral is known to specialists, but we do not know a
reference.

Lemma 4.2 The product of the distances from the foci of an ellipse to the segments of
a billiard trajectory is an integral of the billiard map. This product equals the square
of the small semi-axis of the confocal ellipse tangent to the segments of the trajectory.

Proof We present two arguments, an analytic and a geometric ones (the geometric
argument proves the constancy, but does not give the exact value of the constant).
Consider a segment of the billiard trajectory tangent to a confocal ellipse y with the
semi-axes b < a. Letd, d; be the distances from the foci to the segment and « be the
direction of its normal. Then

dy = h(x) —ccosa, dr =h(a)+ccosa,
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1350 M. Bialy, S. Tabachnikov

Fig.4 To Lemma 4.2

where £ is the support function of y and ¢?> = a®> — b% From here, using the formula
for the support function from Lemma 3.1, we get

IM1:=ddy = hz(a) —c?cos’a = a®cos® a + b2 sin> o — ¢? cos® o = b>

For the geometric argument, consider Fig. 4. The distance from F; to AC is
|F1C|sin(£ F1CA), and from F> to AC is |F,C|sin(£F,CA). The product of the
two is

|F1C||F2Csin(£ F1CA)sin(£ F,CA).
Likewise, the product of the distances to BC is
|F1C||F>C|sin(£ FiCB) sin(£ F,CB).

It remains to notice that £/ F{CA = / F,CB and £ F,CA = / F|CB. O

The next results are also among the ones experimentally discovered in [8].

LetM;,i =1,...,n, M,4+1 = M be abilliard n-gon in an ellipse, circumscribing
the confocal ellipse y with the semi-axes b < a, and let R; be the foot of the per-
pendicular dropped from its center O on the line M; M; 1. Let F] > be the foci of the
ellipse.

Theorem 4.3 (Cases k2., and k202 5 in [8])

(@) If n is even, then [ |'_, |Fi1R;| and []_, | F2R;| are constant and equal to b" as
M varies in the 1-parameter family of n-periodic billiard orbits.

(b) If n is divisible by 4, then H?:l |OR;| is constant and equal (ab)"'* as M varies
in the 1-parameter family of n-periodic billiard orbits.

Proof We start from the well-known fact that an even-periodic billiard polygon is
symmetric with respect to the center of the ellipse.

For the first statement, let n = 2k. Then, by symmetry, |F|R;| = |F2R;+| for all
i. Therefore []/_, |Fi1R;| = [1/_, | F2R;|. Furthermore, by Lemma 4.2, this product
equals ™.
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For the second statement, let n = 4k. We claim that it suffices to prove the statement
in the case k = 1.

Indeed, consider the ith, (i 4+ k)th, (i + 2k)th, and (i + 3k)th sides of the periodic
n-gon. According to the Poncelet Grid Theorem [6,9], the quadrilateral (in fact, a
parallelogram) made by these sides is a 4-periodic billiard trajectory in a confocal
ellipse. If we know that the product in question is invariant for n = 4, then this
product for n = 4k is the kth power of the one for n = 4, and hence invariant as well.

Itremains to prove the statement for periodic quadrilaterals. For want of a geometric
argument, we present two analytic proofs.

The first proof. A pair of confocal ellipses possessing a Poncelet quadrilateral are given
by the formulas

S}

x2 )’2

y
el

2
+_2:17

. =1 3)

Qlk
S}

with A2 = a2 + ab, B2 = b? + ab. These relations become evident if one considers
a rectangle that circumscribes the first ellipse and whose sides are parallel to its axes.

Let P and Q be adjacent vertices of a billiard quadrilateral. Then the tangent lines
at P and Q are orthogonal and their intersection point lies on the orthoptic circle
centered at O, see [4]. This is illustrated in Fig. 5.

The distance from O to P Q equals [P, Q]/|P — Q|, where [-, -] stands for the
standard vector product. The next vertex after Q is — P, therefore we need to show
the invariance of

[P, 0

_ 4
[P — QI[P + Q] @

as point P varies.

Let P = (Acosa, Bsina), Q = (Acos B, Bsin 8). Then the normals at points
P and Q are given by (cosa /A, sina/B) and (cos 8/A, sin 8/B). As we mentioned,
these normals are orthogonal, hence

cosxcosB sinasinf
2 e

Using some trigonometry, we rewrite this as (A% 4+ B cos(a — B) = (A2 — B?)
cos(a + B), or as

(a + b)cos(a — B) = (a — b) cos(x + B). 5)

This equation describes the relation between points P and Q.
Now consider (4). Since [P, Q] = ABsin(x — B), the numerator equals A2B?
. sin? (o — B). To compute the denominator, use the formula

1 2 2 2
[P —QlIP+ Q=2 (P—Ql+|P+ QD" —[PI"— Q"
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Fig.5 To Theorem 4.3

The sum | P — Q| + | P + Q] is the semi-perimeter of the billiard polygon, a conserved
quantity equal, in our case, to 2(a + b). Hence, again using trigonometry and (5),

|P — Q||P + Q| =2(a + b)> — A% cos’a — B? sina — A% cos’B — B?sin’B
= (a +b)> + (b*> — a®) cos(a + B) cos(a — f)
= (a + b)*[1 — cos*(c — B)]
= (a + b)’sin’ (@ — B).

It follows that (4) equals ab which implies the statement of the theorem.

The second proof. We make use of support functions, in accordance with our approach
to billiards in this paper.

As before, consider two ellipses (3), and let H be the support function of the outer
one. Let ¥; be the angles of the normal at the vertices of the parallelograms and § ()
the function of reflective angle of the family of the Poncelet parallelograms.

For a fixed parallelogram, the angles of the normals are

Y1, Yo, Yi+m, Yo+

Denote by p1, p> the distances from the origin to the sides of the parallelogram. By
Corollary 3.2, we have in our case

sin(2y1) = — sin(2y).

This implies ¥» = ¥ + 7 /2. This means that the tangents to E at the vertices of the
parallelogram form a rectangle, reproving the observation made in [4], see Fig. 5. In
addition,

T
S(W2) +o() = 7.
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Moreover it follows from Eq. (1) that

p1 = H@)cos8(W1) + H' (Y1) sin8(y1) = H(Y2) cos8(y2) — H' (Y2) sin 8 (y2),
p2 = H®)cos(Y) — H' (Y1) sind (Y1) = H(Y) cos 8(y2) + H'(¥2) sin 8(¥2).

This leads to

H(yr2) cos 8(Yp) = H (Y1) cos ().
Hence

A?sin’yr + B? cos’yr; )1/2_ (1 + ky)l/2 ©)
A2 cos2y + B2 sin?y k+y )’

where k := A?/B? = a/b, y := tan® ;. From the explicit expressions for p, ps we
get

pip2 = H(W)? cos? 8(yr1) — H' (Y1)? sin® 8(yy).

Using the Joachimsthal integral, we can substitute in the last formula
. Co1,
H = —sind, H'= —4§"cosé.
J J
We get
L i scos?s — (8 sinscoss)) — - (21 2
p1p2 = 5 (sin” §cos™ — (¥'sindcos§)) = 5 (21 -2 = | 5 | ).

where we abbreviate z := sin’3.
Next we compute z via y using formula (6):

Z_—k+y
A4+ 4y)
Also,
ikl dy
ST TR0+ 4y
__k;l.zf(1+ )_k;l.zf
T kA2 YT TG na ey Y
We substitute and get
_L[(1+ky)(k+y)_ (k=1 }_ k
PIR2= T | 05020+ 92~ k+ D20+ 2]~ 72+ )2
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To finish the proof, we note that J = 1/(a + b) (which is again clear by considering a
rectangle that circumscribes the inner ellipse and whose sides are parallel to its axes).

This yields pj p> = ab. O
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