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Abstract
We prove some recent experimental observations of Dan Reznik concerning periodic
billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic
billiard polygon remains constant in the 1-parameter family of such polygons (that
exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic
methods.
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1 Introduction

The billiard in an ellipse is a thoroughly studied completely integrable dynamical
system, see, e.g., [18]. In particular, a billiard trajectory that is tangent to a confocal
ellipse will remain tangent to it after each reflection. That is, the confocal ellipses are
the caustics of this billiard.
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Fig. 1 Angles of a billiard trajectory

One of the properties of this system, a consequence of its complete integrability,
is that a periodic billiard trajectory tangent to a confocal ellipse includes into a 1-
parameter family of periodic trajectories tangent to the same confocal ellipse and
having the same period and the same rotation number. This is the assertion of the
Poncelet porism for confocal ellipses. The Poncelet porism concerns the same kind of
1-parameter family of polygons that are simultaneously inscribed and circumscribed
in the same pair of conics, but in general the conics need not be confocal.

A classic result about a continuous 1-parameter family of billiard paths is that their
perimeters remain constant. (See [18], and also Lemma 2.3 below.) Recently Dan
Reznik conducted a large series of computer experiments with periodic orbits in elliptic
billiards and discovered numerous new properties of these polygons that are similar
in spirit to the constant-perimeter result. See [6,9—15]. In this paper we give proofs
which verify some of these observations. Essentially, we prove three main results. In
the body of the paper, we will also prove a number of variants and generalizations.

We would also like to mention that another proof of the first two results is presented
in [4]; it is based on a non-standard generating function for convex billiard discovered
by Misha Bialy.

First result
Letay, ..., a, be the angles associated to a periodic billiard path. Figure 1 shows the
casen = 5.

Theorem 1.1 The sum
n
Z COS o
i=1

remains constant as P varies in a 1-parameter family of periodic billiard paths on an
ellipse.

This result corresponds exactly to one of Reznik’s observations. We will give two
proofs. The first proof is based on the invariance of the perimeter, mentioned above,
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Fig.2 The angles involved in Theorem 1.2

and on the invariance of a quantity called the Joachimsthal integral. The second proof
is based on Liouville’s Theorem from complex analysis.

Second result

Let B1, ..., B, be the angles of the polygon formed by tangents to the ellipse at the
vertices of a periodic billiard trajectory, as shown in Fig. 2 for the case n = 5.

Theorem 1.2 The product

n
l_[ cos f;
i=1

remains constant as P varies in a 1-parameter family of periodic billiard paths on an
ellipse.

This result also corresponds exactly to one of Reznik’s observations. Our proof is the
same kind of complex analysis argument that we use for Theorem 1.1. We do not know
a proof along the lines of our first proof of Theorem 1.1 but see [4].

Third result

Figure 3 shows how we construct a polygon Q starting from a Poncelet polygon P.

Theorem 1.3 Let P be a Poncelet n-gon with odd n, inscribed into an ellipse and
circumscribed about a concentric ellipse. Let Q be the polygon formed by the tangent
lines to the outer ellipse at the vertices of P. The ratio of the areas of the two polygons
remains constant within the Poncelet family containing P.

This result is a mild generalization of an observation of Reznik. We will explain the
exact relationship after giving the proof. The proof itself is short. It follows readily
from a result called the Poncelet Grid Theorem [8,16].
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Fig.3 To Theorem 1.3

Fig.4 The billiard transformation: (x, u) — (y, v)

2 Proof of the first result

Consider an ellipse in R? given by the equation
S+ =1, )

or, in the matrix form, (Ax, x) = 1, where A = diag(l/a%, l/a%).
Recall the notion of polar duality: given a smooth convex closed planar curve y, to
a vector x € y there corresponds a unique covector x* satisfying the conditions

Kerx*= T,y and (x,x*)=1;

here the parentheses denote the pairing of vectors and covectors. The points x* com-
prise the dual curve y* in the dual plane. (In this definition, we assume that y contains
the origin in its interior, hence the tangent line to y never passes through the origin.)

Identifying vectors and covectors via the Euclidean metric, we see that, for the
ellipse (1), x* = Ax. The polar dual curve is the ellipse given by the matrix A~

The phase space of the billiard is 2-dimensional; it consists of the inward unit
vectors u with the foot point x on the ellipse. The billiard transformation is shown in
Fig. 4.

Here is the key fact needed for our first result. The quantity J in this result is known
as the Joachimsthal integral.
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Proposition 2.1 The function J (x, u) := —(u, x*) is invariant under the billiard trans-
formation: J(x,u) = J(y, v).

Proof We claim that (u, x*) = —(u, y*) = (v, y*). For the first equality, it is enough
to show that (y — x, x*) = —(y — x, y*), because y — x is parallel to u. Since A is
self-adjoint operator, one has (y, x*) = (y, Ax) = (Ay,x) = (x, y*). Subtracting
from it the equality (x,x*) = (y, y*) = 1 we obtain the required one. Since u is
collinear with y — x, one has (A(x + y), u) = 0, as needed. The second equality holds
for billiards of every shape. By the law of billiard reflection, the vector u + v is tangent
to the ellipse at point y, hence (y* u + v) = 0. This completes the proof. O

To each billiard trajectory P we can associate the quantity J(P) = J(x, u), where
(x, u) is the first point-vector pair associated to P.

Corollary 2.2 J is constant as P varies in a 1-parameter family of periodic billiard
paths in an ellipse.

Proof Let E be a given ellipse. For the generic choice of caustic E’—i.e., a choice
of ellipse confocal with E—the billiard map is aperiodic and has dense orbits. By
the preceding result, J is constant on a dense set of billiard paths tangent to E’. By
continuity, J is constant on the space of all billiard paths tangent to almost any caustic
E’. By continuity, the same result holds for every caustic. Finally, note that the polygons
in a I-parameter family of periodic billiard paths are tangent to the same caustic. O

Here is the perimeter-invariance result mentioned in the introduction.

Lemma 2.3 The perimiter of P is constant as P varies in a 1-parameter family of
periodic billiard paths in an ellipse.

Proof An n-periodic billiard path extremizes the perimeter among the n-gons inscribed
in the billiard table. The 1-parameter family of periodic polygons is a curve in the space
of inscribed polygons consisting of critical points of the perimeter function. A function
has a constant value on a curve of its critical points. See [18] for more details. O

The following identity, also noticed experimentally by Reznik, immediately implies
Theorem 1.1. The reason is that both the quantities J and L are constant for 1-parameter
families of periodic billiard paths in ellipses.

Theorem 2.4 For an n-periodic billiard trajectory P in an ellipse, one has

n
Z cosa; = JL —n,
i=1

where L and J are the perimeter and the value of the Joachimsthal integral of P.

Proof We compute

L= (pix1 —piouid =Y _(pirti1) = (pirwi) = Y (pi, i1 — ui)

i i
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(this is a discrete version of integration by parts). By the law of billiard reflection,

=2cos .
2 1pjl 2 1pjl

* *
. T — o P o Pp;
uj_] —u; =2sin —— — =2cos —

Also one has
o

o
J = —(ui, pf) = —|p;’<|cosn—3’ = |pflcos 5

Since (p;, p}) = 1, it follows that

JL = Z 20052% = Z(l + cos ;) :n—i—Z cos «;,
- - -

1 1

as needed. O

3 Dual Minkowski billiards

Before we get to our complex analysis-based proofs, it is useful to discuss billiards in
Minkowski metrics. This is used to construct dual billiards, which offer new general-
izations and help proving the main results.

A Minkowski metric is a norm on a vector space; we always assume the unit ball in
this norm is smooth and strictly convex. Let U be an n-dimensional vector space and
V = U* be its dual. Assume that U and V are equipped with Minkowski metrics, not
necessarily centrally-symmetric or dual to each other. Let M C U be the unit co-ball
of the metric in V (that is, the unit ball in the dual norm) and N C V be the unit
co-ball of the metric in U. One has two billiards: M in normed space U, and N in
normed space V.

Lemma 3.1 The two billiards systems are isomorphic.

Proof This is proved in [7, Section 7]. Here we sketch the ideas. Abusing notation,
denote by D the polar duality that identifies the unit spheres and co-spheres of the
metrics. The phase space of the billiard in M consists of the pairs (¢, u) whereg € oM
and u is a (Minkowski) unit inward vector at g. Assign to it the pair (g, p) € IM x N
where p = D(u). Likewise, the phase space of the billiard in N consists of the pairs
(p, v) where p € ON and v is a (Minkowski) unit inward vector at p. Assign to it the
pair (p, q) € 9N x M where g = D(v).

The assertionis thatasequence (. . ., gi, pi, gi+1, - - .) corresponds to a billiard orbit
in M if and only if the sequence (..., pi, gi+1, Pi+1, - - .) corresponds to a billiard
orbitin N. If M is an ellipse with half-axes a; and a3 in the Euclidean plane U, then
N is the Euclidean unit disc in the plane V whose unit ball is polar to M, i.e., is an
ellipse with half-axes 1/a; and 1/as. O

Remark 3.2 The affine map (x1, x2) — (ajxy, apxy) isometrically maps the Min-
kowski plane V to the Euclidean plane, taking N back to the ellipse with half-axes a
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Fig.5 To Theorems 4.1 and 5.1

and a, that is, to M. One obtains a symmetry of the billiard in an ellipse, called the
skew hodograph transformation and discovered by Veselov [19,20].

Remark 3.3 It was noticed in [3] that minimal action of a billiard in Minkowski metric
is related to the Ekeland—Hofer—Zehnder capacity, which made it possible to apply
symplectic geometry to convex geometry problems. In particular it was shown that
the famous Mabhler conjecture followed from the Viterbo conjecture [1,2].

4 Another proof of the first result

As before, let uy, ..., u, be the unit vectors along the sides of P. These vectors
are points of the unit circle w centered at the origin O, and they form an n-periodic
trajectory of the Minkowski billiard in @ with the Minkowski metric defined by the
ellipse dual to the original one. Therefore, u1, ..., u, are the vertices of a Poncelet
n-gon, inscribed in w and circumscribed about some ellipse & centered at O.

The angles of P satisfy o«; = w1 — Zu;_1 Ou;, thus the next result is equivalent to
Theorem 1.1.

Theorem 4.1 Letuy, ..., u, be a Poncelet polygon inscribed in a circle w with center
O and circumscribed about an ellipse & with the same center. Then

n
Z cos Zu; Oujqq
i=1

is constant in the 1-parameter family of Poncelet n-gons.

Proof Following the approach of [17], we will complexify the situation, that is, extend
the setting to Poncelet polygons on the conics given by the same equations in the
complex plane. We show that the function in question is bounded, and then the Liouville
theorem implies that this function is constant. To extend our function to the complex
plane, we need to represent the function cos Zu; Ou;4+1 in a more convenient way.
Since |Ou;| = 1 for all i, we have

CoséuiOuiH = (I/l,', u,-+1).
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In other words, for the proof of the first statement, we need to show that the sum
(ui, ui4+1) is constant. Let us emphasize that here we consider the usual dot product,
not the Hermitian one.

Consider the standard rational parametrization of the circle w:

2t 12—1
P = <t2+1’t2+1>'
The points at infinity correspond to the value of the parameter t = +/. Here I =
/—1. Tt is clear that the only possibility for the Poncelet polygon to have an infinite
> (uj, ujy1) is to have one of its vertex at infinity.

Let us show that when a vertex goes to infinity, the inner products in which this
vertex participates cancel each other.

Consider a point at infinity, say, p(/). We claim that its two neighboring vertices of
the Poncelet polygon, denoted by a(/) and b([/), are opposite points of w. Indeed, the
lines p(I)a(I) and p(I)b(I) are tangent to & and are parallel, therefore the tangency
points of these lines with & are symmetric with respectto O, and hence their intersection
points with w are also symmetric (the point p(/) is invariant under the reflection in O,
givenby ¢t +— —1/t). Thus, for any finite point ¢ on w, we have (g, a(1))+{(q, b(1)) =
0.

Now, consider the point p(t + I') with ¢ tending to zero and its neighboring vertices
a(l +1t) and b(I +1t) of the Poncelet polygon. Notice that p(¢ + I') tends to infinity as
O(1/t), while a(t + I), b(t + I) tend to their limits a(1), b(I) linearly. Furthermore,
due to the symmetry, as ¢ goes to zero, the linear in ¢ terms are vectors with the same
absolute value and opposite directions:

at+D=all)+k-14+0@?), bt+1)= —al) —k-t+0(>).
Now we can bound above the sum for r small:

(pt+D,at+ D)+ {(pt+1D),b(t+D)=(pt+1),a(t+1)+b(t+1))
= (0(1/1), 0(1%)) = O(1).

That is, the sum tends to zero as ¢ goes to 0, and therefore it is bounded. O

5 Proof of the second result

Referring to the construction in the previous section, the angles §; in Fig. 2 are given
by the formula

_ Zui—10ujy

Bi=m >

=Zuj_1uiiy1.
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Fig.6 The behavior of the polygon at infinity

Theorem 5.1 Letuy, ..., u, be a Poncelet polygon inscribed in a circle o with center
O and circumscribed about an ellipse & with the same center. Then

n
1_[ cos £ Ui 1Ujij+1
i=1

is constant in the 1-parameter family of Poncelet n-gons.

Proof Since the product of cosines changes continuously, if the absolute value of this
product is constant in the family, then its sign is fixed as well. Therefore, instead of
the product of cosines, we may consider the product of their squares:

o Zui—10ujyy

2
I 4cosZuj—1Oujyy T+ (ui—y, uiy1)
- 2 N 2

cos’/ Wj_1UjUjy] = COS

Thus we need to prove that the product [ [(1 4+ (#;—1, u;+1)) is bounded as a function
of complex variable. Again the only possibility for this product to be infinite is when
one of the vertices goes to infinity.

Similarly to the previous proof, and using the same parameterization of the circle,
we assume that p(r 4 I) is the vertex that goes to infinity, a(¢ + ) and b(z + I) are
its neighboring vertices, and a’(z + I') and b’ (¢ + I') are its second removed neighbors
(which are also centrally symmetric, but it plays no role here).

Let us show that the corresponding product is bounded:

I+ (p(t+D.d' (t + DA+ (p(t + D, B/ (t + DA + (a(t + 1), b(t + 1))
=00 H- 0™ -0+ @) + k-t +0(+3), —a(l) — k-t + O(t%)))
=0t - (14 (a(l), —a(D)) — 2(a(I), k-1) + O(t?))
=0(t7%) - (2(a(l). k-1) + O(t?) = O(t72) - (=2(a(I), k- 1)) + O(1).

It is left to notice that k is tangent to w at a([), therefore (a(l), k-¢) = 0. Thus the
product is bounded.
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If n is odd, then only one vertex can go to infinity: if p(%/) is a vertex of the
Poncelet polygon, then p(F1) is not its vertex.

For even n, a vertex u; goes to infinity simultaneously with u;4,/,>. A simple
combinatorial analysis of the configurations shows that the only case when the above
considered factors coincide is when n = 4. In that case the polygon is always a
rectangle, and the statement is obvious. O

6 Variants and generalizations
Here we list some variants and generalizations of the results we have proved so far.

Multi-dimensional version: The billiard inside an ellipsoid in R"*! is also com-
pletely integrable: the phase space is 2n-dimensional, the trajectories are confined to
n-dimensional tori, and the motion on these tori is quasi-periodic, see [5]. In particular,
if a point is periodic, then all points of the torus are periodic with the same period,
and the respective polygons have the same perimeters. The billiard map still has the
Joachimsthal integral, constant on the orbits confined to an invariant torus, and the
above arguments go through, proving a multi-dimensional version of Theorem 1.1.

Sizes of the angles: Concerning Theorem 1.2, it was pointed out to us by Bialy that
this theorem implies that the sign of the quantity 8; — 7 /2 remains fixed during the
rotation of the polygon. This is consistent with the fact that all vertices of Q lie on an
ellipse polar dual to the inner ellipse (the caustic) with respect to the outer one. If we
fix this outer ellipse and vary the caustic, then these polar dual ellipses, into which the
polygons Q are inscribed, form a pencil of conics. This pencil contains the orthoptic
circle, the locus of points from which an ellipse is seen under the right angle. This
orthoptic circle separates the two cases: when all angles §; are obtuse and when they
are all acute.

Additional invariants: The following theorem is a generalization of Theorem 1.1,
which is its k = 1 case. We explain how to deduce this theorem from Theorem 1.1.

Theorem 6.1 Foreachk = 1,..., n, the quantity

n
Cr = Z cos(a; + it + -+ Aitk—1)

i=1

remains constant as P varies in a 1-parameter family of periodic billiard paths on an
ellipse.

Proof To line up our proof with a previously published result that we use, we state
things in terms of Poncelet polygons and the Poncelet porism. Label the lines con-
taining the sides of a Poncelet n-gon cyclically. Fix k and consider the intersections
of ith and (i 4 k)th lines, where i = 1, 2, ..., n. This set of points lies on a confocal
ellipse and comprises several polygons, each a periodic billiard trajectory (the number
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Billiards in ellipses revisited 1323

Fig.7 Five 13-periodic billiard orbits in confocal ellipses tangent to the same caustic

of polygons equals gcd(n, k)). This statement is a part of the Poncelet Grid Theorem
[8,16]. Figure 7 illustrates the case of n = 13. The angles of these new polygons are
expressed via the angles of the original one. Namely, the new angles are equal to

o + i) + o+ dipp—1 — (K — D

Therefore Theorem 1.1, applied to the new polygons, implies that Cy remains constant
in their Poncelet family. O

Theorem 6.1 has a reformulation, generalizing Theorem 4.1, which is the k = 1 case.

Theorem 6.2 Letuy, ..., u, be a Poncelet polygon inscribed in a circle w with center
O and circumscribed about an ellipse & with the same center. Then, for each k,

n
Z cos Zui Oujyk
i=1

are constant in the 1-parameter family of Poncelet n-gons.

Sums of squared lengths: Here is a corollary of Theorem 6.2. Note that
|u,‘+k — u,‘|2 =2- 2COSZu,’0u,’+k.
This implies
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1324 A. Akopyan et al.

Corollary 6.3 Consider a Poncelet polygon inscribed in a circle and circumscribed
about a concentric ellipse. Then the sum of the squared lengths of its k-diagonals
remains constant in the 1-parameter family of Poncelet polygons.

Product of sines of half-angles: Notice that the angles of polygons formed by the
tangents can be represented through angles of the billiard trajectory

o+ iyl

Bi = >

Therefore, the statement of Theorem 1.2 can be formulated in terms of the angles of the
billiard trajectory and then can be extended for the angles of lines in the corresponded
Poncelet grid as in Theorem 6.1. Doing this for odd n and the polygon formed by sides
of our trajectory with step k = (n — 1)/2, we find that the corresponding angle of the
tangential polygon S/ equals

L X% mn—2) —a
Pi=—%—= 2 '

Since n is odd we get

, nn —2) —a; T - .
cosﬁizcosf:icos ::i:sm?.

This gives us the following result, also noticed by Reznik.

Corollary 6.4 For odd n, the quantity

remains constant as P varies in a 1-parameter family of periodic billiard paths on an
ellipse.

Hyperbolic interpretation: One can interpret Theorems 6.1 and 5.1 in terms of hyper-
bolic geometry. Consider w as the absolute of the Klein model of the hyperbolic plane,
and & as an ellipse in it. The hyperbolic and Euclidean measures of the angles u; Ouy
coincide. We obtain the following corollary.

Corollary 6.5 Let uy, ..., u, be an ideal n-gon in the hyperbolic plane whose sides
are tangent to an ellipse with center O. Then, for each k,

" " Zui_10u;
Z cos Zu;Ouj4i and l_[ cos<$>
i=1 i=1 2

are constant in the 1-parameter family of ideal Poncelet n-gons.
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Billiards in ellipses revisited 1325

Fig.8 To Corollary 6.6

A dual version: Under the duality transform with respect to the circle w, the inner
ellipse & goes to a concentric ellipse £ and we again obtain a Poncelet polygon, this
time inscribed in £&* and circumscribed about w. The angles between the unit vectors
u; become the angles between the sides of the Poncelet polygon, and the consecutive
sides of the initial polygon are mapped to the consecutive vertices of the dual one.
Thus we obtain the following corollary of Theorems 4.1 and 5.1 (Fig. 8).

Corollary 6.6 (Ellipse-Circle version) Let vy, ..., v, be a Poncelet polygon circum-
scribed about a circle and inscribed in a concentric ellipse. Denote its angles by «;.
Then

n n
Z cosca; and l—[ cos Zv; Ovj4

i=1 i=1

are constant in the 1-parameter family of Poncelet n-gons.

7 Proof of the third result

Theorem 1.3 is closely related to the experimental observation of Reznik illustrated
in Fig. 9. Consider an n-periodic billiard trajectory in an ellipse with odd n (the
pentagon Q in Fig. 9). The tangent lines to the ellipse at these n points form a new
n-gon (the pentagon P in Fig. 9). The observation is that the ratio of the areas of
these two polygons remains constant as the n-periodic billiard trajectory varies in its
1-parameter family.

There exists an affine transformation that makes the two ellipses confocal: first turn
one of the ellipses into a circle by an affine transformation, and then stretch along the
axes of the other ellipse to make the two confocal. Since an affine transformation does
not affect the ratio of the areas, it remains to prove the claim for a Poncelet polygon
on confocal ellipses, see Fig. 9. This is the case observed by Reznik.

Now we deal with the confocal case. The Poncelet grid theorem [8] implies that the
affine transformation that takes the inner ellipse to the outer one by scaling its main
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1326 A. Akopyan et al.

Fig.9 The ratio of the areas of the polygons P and Q remains constant in the 1-parameter family of Poncelet
polygons

axes and reflecting in the origin takes the inner polygon to the outer one as well (it
maps each vertex to the “opposite one”, see the labelling in Fig. 9).

Let us provide more detail. As stated at the beginning of the proof of Theorem 6.1,
for every k, the intersections of ith and (i + k)th lines containing the sides of a Poncelet
n-gon, i = 1,...,n, lie on a confocal conic. Another statement of the Poncelet grid
theorem is that, for different values of k, these “‘concentric” sets are affinely equivalent
to each other, the equivalence being given by stretching the axes of the ellipses and
the reflection in the origin, if the difference of the respective values of k is odd.

In particular, this holds for the pair of concentric sets corresponding to k = 0
and k = 1, the case depicted in Fig. 9 (points labelled g and p, respectively). This
completes the proof.
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