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SELF-BACKLUND CURVES IN CENTROAFFINE GEOMETRY AND LAME’S

EQUATION

MISHA BIALY, GIL BOR, AND SERGE TABACHNIKOV

ABSTRACT. Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries
equation can be realized as an evolution of curves in centroaffine geometry. Since
then, a number of authors interpreted various properties of KdV and its generaliza-
tions in terms of centroaffine geometry. In particular, the Biacklund transformation
of the Korteweg-de Vries equation can be viewed as a relation between centroaffine
curves.

Our paper concerns self-Bidcklund centroaffine curves. We describe general prop-
erties of these curves and provide a detailed description of them in terms of elliptic
functions. Our work is a centroaffine counterpart to the study done by F. Wegner of
a similar problem in Euclidean geometry, related to Ulam’s problem of describing the
(2-dimensional) bodies that float in equilibrium in all positions and to bicycle kine-
matics.

We also consider a discretization of the problem where curves are replaced by poly-
gons. This is related to discretization of KdV and the cross-ratio dynamics on ideal
polygons.
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1. INTRODUCTION

The motivation for this work is the interpretation of the Korteweg-de Vries equation
in terms of centroaffine geometry. This growing body of work started with U. Pinkall’s

paper [38]], see [[15,23,126, 46| for a sampler.

In [44]], the Backlund transformation of the KdV equation is interpreted as a relation
between centroaffine curves. We start with a very brief description of this approach to
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Let y(t) be a parametrized smooth curve in the affine plane with a fixed area form.
The curve is centroaffine if the Wronski determinant is constant: [y(t), y'(t)] = 1 for all
t € R. The group SL,(R) acts on centroaffine curves, and we shall also consider the
moduli space of such curves.

Unless specified otherwise, we assume that the curves are r-anti-periodic: y(t+7) =
—y(t) for all t. That is, the curve is closed, centrally symmetric and 27-periodic (the last
condition, if not satisfied by a centrally symmetric centroaffine curve, can be arranged
by an appropriate rescaling.)

The rationale for assuming that the curves are centrally symmetric is as follows. An
orientation preserving diffeomorphism of RP' admits a unique area preserving and
homogeneous of degree 1 lifting to a diffeomorphism of the punctured plane. The im-
age of the unit circle under such a diffeomorphism is a centrally symmetric star-shaped
curve, and projectively equivalent diffeomorphisms correspond to SL,(R)-equivalent
curves. See [36] for details.

Our results can be extended to non-centrally symmetric curves, but we do not dwell
on it in this paper.

Given a centroaffine curve, one has y”(t) = p(t)y(t) where p is a 7-periodic potential
function of the Hill operator —d?/dt? + p(t). In the language of centroaffine geometry,
p is the centroaffine curvature of the curve y (alternatively, some authors call —p the
centroaffine curvature, but we shall adopt the plus sign convention).

For example, y(t) = (cost,sint) has p(t) = —1. This unit circle and its SL,(R) im-
ages are trivial examples of centroaffine curves. We refer to these curves as centroaffine
conics.

A tangent vector to a centroaffine curve y(t), in the space of 7-anti-periodic cen-
troaffine curves, is given by a vector field along it of the form g(t)y(¢) + f(¢)y’(t), where
f, g are m-periodic. Taking the derivative of the centroaffine condition [y, '] = 1 with
respect to this vector field we obtain f’ + 2g = 0. Thus such a vector field has the form

W V= =31 Or0 + [0r o),

where f is a z-periodic function. Pinkall observed in [38] that the evolution of the
curves y(t) with the potential function p(¢) under the vector field 1 is a centroaffine
version of the Korteweg-de Vries equation: the potential evolves according to the equa-
tion

ua

p= —%p +3p'p
(where dot is the time derivative).

We say that two centroaffine curves, y(t) and 8(¢), are c-related if [y(t), 5(t)] = c for
all t. See Figure 1| It is shown in [44] that this relation is a geometric realization of the
Bicklund transformation for the KdV equation.

In this paper we are mostly interested in self-Bécklund centroaffine curves, the
curves y(t) for which there exist a € (0, 7) and a constant ¢ such that

) [y(®),y(t + a)] = c forallt.

For example, the centroaffine conics are self-Bédcklund for every choice of o with ¢ =
sina. To exclude trivial cases, we assume that ¢ # 0. We call a in equation @) the
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FIGURE 1. Bicklund transformation: As the end points of the line
segment AB trace the two curves, OA and OB sweep area with the
same rate and the area of the shaded triangle OAB remains constant

rotation number of a self-Biacklund curve. See Figure [2| for examples of self-Bicklund
curves.

FIGURE 2. Self-Bicklund curves (blue), with winding numbers 1
(left) and 3 (right). A line segment (green) moves with its end points
sliding along the curve, forming a constant area triangle with the ori-
gin, while the midpoint of the line segment traces a curve (red), al-
ways tangent to the line segment at its midpoint. The two curves
depicted here are members of an infinite family of self-Bicklund
curves described explicitly in Section f] in terms of the Weierstrass
go-function. For more images and animations, see [[12].

An analogous problem in Euclidean geometry was thoroughly studied relatively re-
cently. The problem is to describe the closed smooth arc length parametrized curves
y(t) ¢ R? for which there exist constants s and € such that |y(t + s) — y(t)| = ¢ for all
t. For example, a circle is a trivial solution to this problem.

Although the full solution of this problem is not available yet, there is a wealth of
results, including many non-trivial examples of such curves. See [11,41,43}/47-49] for
a sampler.

This problem originated in two seemingly unrelated theories. First, such curves are
the boundaries of 2-dimensional bodies that float in equilibrium in all positions - to
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describe such bodies (in all dimensions) is S. Ulam’s problem in flotation theory, see
[34, problem 19].

Second, an interesting problem in the study of bicycle kinematics is to describe the
pairs of front and rear bicycle tracks for which one cannot determine the direction of
the bicycle motion. The above mentioned curves appear in this problem as the front
tracks in such ambiguous pairs; they are referred to as bicycle curves. See [23] for a
survey of this approach to bicycle kinematics.

This geometric problem is intimately related to another completely integrable equa-
tion of soliton type, the filament - or binormal, or smoke ring, or local induction —
equation; more precisely, to the planar filament equation

1, dk
where y(s) is an arc length parameterized plane curve, dot means the time evolution,
k is the curvature, and T and N is a Frenet frame along y.

Two arc length parametrized curves, y(¢t) and §(t), are in bicycle correspondence if
the length of the segment y(¢)5(¢) is constant and the velocity of its midpoint is aligned
with the segment for all ¢. This correspondence is a geometric realization of the Bick-
lund transformation of the planar filament equation, and in this sense, bicycle curves
are self-Biacklund.

We must say more about the work of Franz Wegner, cited above. He discovered
a large variety of bicycle curves (or solutions to the 2-dimensional Ulam’s problem),
explicitly described in terms of elliptic functions. Wegner made his discovery by as-
suming that the desired solutions have a certain geometrical property, resulting in a
differential equation on their curvature that was solved in elliptic functions. Then he
proved that indeed, for a proper choice of parameters, these curves solved the problem.

It is shown in [11]] that Wegner’s curves are solutions to a variational problem: they
are buckled rings (the relative extrema of the elastic - or bending - energy, subject to
the length and area constraints), and they are solitons: under the planar filament flow,
they evolve by isometries.

Our main goal in this paper is to obtain centroaffine analogs of these results.

In the spirit of discrete differential geometry, we also consider centroaffine poly-
gons, a discretization of centroaffine curves. These are centrally symmetric 2n-gons
B,...,By, such that [P, P;;;] = 1 and P;,,, = —P; for all i (the index is understood
cyclically). A centroaffine 2n-gon is a self-Bdcklund (n, k)-gon if there exists a constant
csuch that [P;, P, ;| = cforalli. A trivial example is an affine-regular 2n-gon which is
aself-Bicklund (n, k)-gon for all k. The problem is to describe non-trivial self-Backlund
(n, k)-gons.

These polygons are centroaffine analogs of the discretization of the bicycle curves,
the bicycle polygons, studied in [41,45]]. Some of our results on self-Biacklund (n, k)-
gons were included in Section 7.3 of the original (but not the final) version of [6]], and
were motivated by the study of the cross-ratio dynamics on ideal polygons in the hy-
perbolic plane and hyperbolic space therein.

Centroaffine polygons are closely related to linear second-order difference equations
with periodic solutions and with Coxeter’s frieze patterns, see [35]]. In particular, given
a simple centroaffine 2n-gon, the determinants [P;, Pj] with |i — j| < n form the entries,
all positive, of a frieze pattern of width n — 3. In these terms, we are interested in
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frieze patterns that have a row consisting of the same numbers, but not every row being
constant.

A word about the terminology that we use. We call a closed smooth curve star-
shaped if every ray emanating from the origin intersects the curve transversely and
only once. A curve is locally star-shaped if the above property holds locally, near every
point. Equivalently, [y(t),y’'(¢)] # 0 for all ¢. Star-shaped curves have winding number
1, but locally star-shaped curves can go around the origin several times.

The contents of this paper are as follows.

Section P| concerns Bécklund transformations of centroaffine curves. We describe
a centroaffine analog of the rear track curve (in the above mentioned bicycle setting).
We also interpret the Miura transformation in terms of centroaffine geometry.

Section [2.4]is devoted to the following problem: given a centroaffine curve y, for
which c do c-related curves exist? We provide a complete answer to this question. This
result is a centroaffine analog of Menzin’s conjecture — now a theorem, originally for-
mulated for hatchet planimeters, but it also applies to the bicycle model, see [30] or
[23].

Section Bl comprises several results on self-Bicklund curves. In Theorem [J we prove
that a non-trivial infinitesimal deformation of a central conic as a self-Bécklund curve
exists if and only if either & = 7/2 or « satisfies the equation

tan(ka) = ktana

for some integer k > 4. A similar result is known for bicycle curves, see [41]].

We show that if « = 77/3 or « = /4 then only the central conics are self-Backlund.
In contrast, if « = 7/2, one has a family of self-Bécklund centroaffine curves with
functional parameters. Example provides families of analytic curves with rotation
number 77/2 and, at the same time, examples of analytic Radon curves.

Section 4 is the core part of the paper. We start by developing a centroaffine analog
of Wegner’s ansatz, that is, we guess what geometric properties self-Bicklund curves
may possess. This leads to the assumption that these curves correspond to the traveling
wave solutions of the KdV equation, that is, their centroaffine curvature is an elliptic
function.

Thus we assume that the coordinates of our self-Béacklund curves satisfy the Lamé
equation, the Hill equation whose potential is an elliptic function. In Section §.2 we
construct these curves and describe the conditions on the parameters for which the
curves are self-Bicklund. This work is analogous to the one done by F. Wegner. In
Section §.3 we show that central conics indeed admit a deformation into self-Bicklund
centroaffine curves for each a appearing in Theorem 3

Section [5| concerns self-Bécklund centroaffine polygons. We start by showing that
the c-relations on centroaffine curves satisfy the Bianchi permutability property (The-
orem[9).

We describe a discrete version of Bicklund transformation on centroaffine polygons
(this transformation is studied in detail in [2]). Theorem[1( presents some pairs (n, k)
for which non-trivial self-Bicklund polygons do not exist, and some pairs for which
they do. We also describe necessary and sufficient conditions for the existence of non-
trivial infinitesimal deformations of regular centroaffine n-gons in the class of self-
Biécklund polygons. Similar results were known for bicycle polygons, see [41]].
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In the appendix we connect centroaffine geometry with another geometry associ-
ated with the group SL,(R), two-dimensional hyperbolic geometry. We assign to a cen-
troaffine curve a curve in the hyperbolic plane, its dual. The centroaffine curvature p of
acurve and the curvature x of its dual in H? are related by the equation (1+p)(1+x) = 2.

We make extensive use of the formulas involving the Weierstrass elliptic function.
We refer to [39] for a compendium of such formulas. The arXiv preprint version of this
paper contains an appendix listing these formulas.

It was pointed out by a referee that it is more common to use Jacobi elliptic functions
in KdV theory, whereas we use the Weierstrass elliptic functions. In this regard, we
quote from [[1]:

The fact that the integral in Jacobi form or Riemann form contains
only one parameter, and not two like the Weierstrass integral, is very
convenient for various computations. The Weierstrass form is almost
always preferable for theoretical considerations.

2. BACKLUND TRANSFORMATIONS OF CENTROAFFINE CURVES

2.1. The middle curve. Let y(t) be a centroaffine curve satisfying y”(t) = p(t)y(t).
Construct a new centroaffine curve §(t) = f(t)y(t) + g(t)y'(t), where f(t) and g(t) are
w-periodic functions. Lemma .1 repeats Lemma 1.2 of [44].

Lemma 2.1. The curves y and § are c-related if and only if g(t) = c and
®3) cf'() = fA )+ p(t) +1=0.
Proof. One has

¢ = [y(1),6(0)] = gO[y(®),y' ()] = g,
and therefore g'(t) = 0. Next,

§'(0) = (f'(®) + p(OgO)y(®) + (f(6) + &' (O)y'(©),

hence

1= [8(t),8'(0)] = f2(t) — c(f'(t) + cp(t)).
This implies equation (3). O

Note that equation (B) is a Riccati equation on the unknown function f(t).

Lemma 2.2. Let y and § be c-related and let T(t) be the midpoint of the segment y(t)3(¢).
Then the velocity of T is aligned with this segment:

() ~ 6(1) — y(1)
forallt. In addition, T is locally star-shaped, that is, [T'(¢),T'(t)] # 0 forall t.
Proof. Since [y,y'] =[6,8"] = 1and [y, 8] = ¢, one has
[y +8.6—yl=1[y.8]1-1[8.yI=1[r.é]' =0,

as needed.
For the second statement, if [['(t), ['(¢)] = 0 then the line connecting y(t) and 5(¢)
passes through the origin, and then ¢ = 0. g

Remark 2.3. The locus of midpoints in Lemma [2.2] plays the role of the rear bicycle
track in the analogous problem mentioned in Section [l This middle curve may have
cusps.
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We describe a method of constructing pairs of c-related curves. Start with a locally
star shaped curve I', with a centroaffine parameter s and curvature p(s), so that [T, I;] =
1, Tyy = pI. Lety, =T % (¢/2)I;. The condition [y_, y,] = c is immediate; however,
in general, s is not a centroaffine parameter for y...

Proposition 2.4. If c>p # 4 along T (for example, if T is locally convex, that is, p <
0), then y,. can be simultaneously reparametrized by a centroaffine parameter t, so that

[Ve, (r2)e] = 1.

Proof. We calculate that [y, (74)s] = 1 — (c?/4)p. If this does not vanish, then the
desired parameter ¢ is defined by

e _,_¢p@s)
ds 4
With this new parameter one has [y4, (¥4):] = 1, as needed. |

Remark2.5. Aswe mentioned, and asis seen from illustrations in this paper, the middle
curve I' may have cusps. The above construction of the curves y, from I' extends to the
case when I'" has cusps and the curves y, remain smooth. Without going into details,
we illustrate this with an example.
Let T'(x) = (x?, x> + 1) be a cusp, and let s be a centroaffine parameter. Then I}, =
(2x,3x?) and
ds

= [[,I] = x* —2x.

It follows that

_ c., _(_¢c _3c 5
yi—Fi EE_(+§,1)+<O’+Z)X+O(X ),

which, for ¢ # 0 and x close to zero, are smooth curves.

Remark 2.6. Consider an oriented smooth closed strictly convex plane curve I'. The
outer billiard transformation T is a map of its exterior, defined as follows: given a point
x, draw the oriented tangent line from x to I, and reflect x in the tangency point to
obtain the point T(x). See [20] for a survey.

The relation of our topic to outer billiards is as follows: if y is a self-Bécklund curve
and the respective middle curve I is convex, then y is an invariant curve of the outer
billiard map about I'.

2.2. Curves c-related to centroaffine conics. In this section we consider the curves
that are c-related to centroaffine conics and identify self-Béacklund curves among them.
These curves will have points at infinity.

Let y(t) = (cost,sin t), and let us construct a c-related curve as in Lemma[.1} §(t) =
f@®y(t) + cy'(t). The respective Riccati equation for the function f is

4) cf'(t) = f2(t) + 2 — 1.
Assume that ¢ > 1. This differential equation is easily solved:
5) f@) = atan(%), where a =Vc2 -1

and a choice of the constant of integration has been made so that f(0) = 0 (any other
solution is obtained by a parameter shift).

The function f has poles (the same is true for the solutions with ¢ < 1 and ¢ = 1),
and the respective centroaffine curve goes to infinity, having there an inflection point.
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For example, let c = 5/3,a = 4/3, see Figure B This curve is periodic with period
107.

.,
/N

=

4

FIGURE 3. The curve §(t) = (5 tan(

4t
5

)cost - gsin t, g tan(%)sint + gcos t)

Let us look for self-Backlund curves among the above curves &.

Lemma 2.7. Let & be the centroaffine curve c-related to the unit circle y(t) = (cost, sin t),
where ¢ > 1. Then § is self-Bdcklund with rotation number a, that is, [8(t),5(t + o)]
=const, if and only if a satisfies

-1

(6) tan(ua) = utana, where u = z

Furthermore, given such an a, one has [8(t), (¢t + a)] = sina.

Proof. The statement is invariant under parameter shift so it is enough to consider
8 = fy+cy’, where f is given by formula (5). Next, by a straightforward calculation, the
derivative of [8(¢), 6(t + )] with respect to t is some non-zero function times tan (ua) —
utan a. It follows that [6(t), 8(t + «)] is constant if and only if tan (uar) = utan a. Using
this equation for a, we calculate that [5(t), 5(t + a)] = sina. O

In general, for a fixed u € (0,1), equation (p)) has infinitely many solutions. See
Figure [l If u is rational then & is periodic and there are finitely many solutions o
within a period.

A solution of equation (@) for ¢ < 1 is similar:

ft) = —atanh(a?t) ,

where a? = 1 — 2. The associated c-related curve § = fy + ¢y’ is non-periodic and
stays bounded; it is self-Backlund with a parameter shift « satisfying

tanh(ua) = utana, where u = ,
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FIGURE 4. Solutions to equation @), utana = tan(ua), u € (0,1),
are given by the intersection points of the (red) graph of the 7-periodic
function y = tan " (utana) — a + 7n, 7n — % <a<mn+ %, nez,
and any of the (blue) lines y = (u — 1)a + nxw, n € Z. If u is rational
then f = atan(ut) is periodic and § is closed, self-Bicklund with
rotation numbers a given by the intersection points within a period
of f. In the figure above, u = 2/7, f is 7m-periodic, & is 147z-periodic,
and there are 8 solutions « € (0, 147) with sina # 0.

N\

/1N

FIGURE 5. The curve §(t) = (—% tanh(%) cost — % sint, —% tanh(%) sint + % cos t)

and the constant determinant is sin a. This equation admits infinitely many solutions
+a,, *a,,..., with a,, € (nm,nm + 7/2). For t — *o0, the curve approaches the unit
circle, see Figure[§

Another solution of @) for ¢ < 11is

ft)=—-a coth(a?t) ,

with the respective value of  given by

coth(ua) = utana, where u =

V1-—¢2
c

and the constant determinant is sin a. There are infinitely many solutions here as well,
+ay, +ay,..., with a,, € (nz, nr + 7/2). This curve approaches the unit circle as t —
+oo and goes to infinity as t — 0. See Figure [f}

If ¢ = 1, a solution of equation (@) is f(t) = —1/t. This curve is self-Bicklund with
a parameter shift o satisfying tan ¢ = o and the constant determinant is sin a. There
are infinitely many solutions +o,, a5, ..., with a,, € (nz, nw + 7/2). Its asymptotic
behavior is the same as in the previous example, see Figure 7}

For completeness, consider the case of a straight line y(t) = (¢,—1). This cen-
troaffine curve is self-Béacklund for an arbitrary parameter shift. A c-related curve
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B S
Vo

FIGURE 6. The curve 8(t) = (—% coth(%) cost — % sint, —% coth(%) sint + % Ccos t)

\

)

N
—{ )

FIGURE 7. The curve §(t) = (—% cost —sint, —% sint + cos t)

fy + ¢y’ has f(t) = —tanh(t/c), see Figure[§. This curve is not self-Bicklund: the
respective equation on the parameter shifts b is

tanh(é> = é,
c c

and the only solution is b = 0.

FIGURE 8. The curve 6(t) = (1 — ttanht¢,tanht) (red), a Bicklund
transform of the line y = —1 (black)

2.3. c-Related curves and Miura transformation. The Miura transformation con-
nects the Korteweg-de Vries equation 2 = u” + 6uu’ and the modified Korteweg-de

Vries equation 0 = v” — 60?0': if v satisfies mKdV then u = —v’ — v? satisfies KdV.
More generally, if
@) u=—-v —v2+1,

and v satisfies

(8) 0 =0v" —6v* — 6V,
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then u satisfies KdV. See [24].

Given u, equation (7)) is a Riccati equation on v, just like equation (B]) on the function
f(t) that describes the curves, c-related to a centroaffine curve with curvature p(t).
This provides a geometrical interpretation of the Miura transformation in centroaffine
geometry.

The details are described by Theorem [i}

Theorem 1. Let y be a centroaffine curve, and § = fy + cy’ be a c-related curve. Let
the curves y and & evolve by the KAV flow. Then they remain c-related, and the function
f evolves according to a version of mKdV:

f 1 m i 2 ’
f==3"+ 5 -0f"
Proof. Let q be the centroaffine curvature of 6, that is, 6”(t) = q(¢t)6(¢). Theny = 1},
6= V;, where we use the notation as in equation ([I)).

We start with the observation that y = f§ —cd’, and then we express the curvatures
p and q from equation (B) as follows

© p= 5 =1-cf q= 52~ 1+cf)

(compare with Lemma 3.1 in [44]]). It follows that

4

2 ! ! ! !
(10) q—p=gf,p+q=c—2ff-

Thaty and é remain c-related under the KdV flow follows from the fact the c-relation

commutes with the KdV flow, see [44]]. Here is an independent verification.
We have: §' = (f' + cp)y + fy', and

1 ’ ’ 1 ’ ’
[v.8] = [V, 81 + v, Vgl =[=5 Py + PV, 61 + 1. =54’ + q8'] =

— 30 + @)+ fla- ) =0,

the last equality .due to equation (fLO).
To calculate f, note that f = [§,y’]. Then

o S A, ./ ’ ' 1 ’ ) 1 ’ N\
f=10y1+18.71= 1%y 1+18. =[50+ a8y +[8,(=5py + pr')']-
After substituting the values of p and g and their derivatives in terms of f from equation
(B and collecting terms we obtain the stated equality. ]

One can expand a periodic solution of equation () in a power series in c:

CZ C3 ’ C4 " 2 CS " ’
f=1+5p+ 7P +5 (" =p)+ 1 (p" —8pp)

n

6
c " !
+3—2[p —10pp” —9(p')* +2p3] +....

Given the relation of f with the Miura transformation, one has the next statement; see

Section 1.1 of [24]].

Corollary 2.8. The integrals of the odd terms of this series vanish, and the integrals of
the even terms are integrals of the KdV equation:

T T T 1
/ pdt, / p? dt, / <p3 + —(p’)z) dt,....
0 0 0 2



SELF-BACKLUND CURVES AND LAME’S EQUATION 243

See [[11, Section 3.3] for a similar statement about the bicycle transformation and
the filament equation.

2.4. Range of the parameter c. The aim of this section is to describe, for a given
centroaffine closed 7-anti-periodic curve y(t), the range of the parameter c for which y
admits closed centroaffine c-related curves. The main result is Theorem [g, describing
this range (a closed interval) in terms of the lowest eigenvalue of a Hill equation asso-
ciated with y. For a convex y we obtain as a corollary an upper bound on c in terms of
the area enclosed by its dual curve y*. This result can be viewed as a centroaffine ana-
log of Menzin’s conjecture for hatchet planimeters (equivalently, bicycle monodromy),
discussed and proved in [30].

As we saw in Lemma 2.1, finding a centroaffine curve c-related to a given curve y
amounts to finding a solution f(¢) to the Riccati equation

(11) cf —fP+cpt)+1=0,

where p = [y”,y’] (the centroaffine curvature of y). The corresponding c-related cen-
troaffine curve is 6 = fy + cy’. If y is mw-anti-periodic then p in equation (1)) is 7-
periodic and we are looking for the values of the parameter c for which the equation
admits a 7r-periodic solution, so that § is -anti-periodic as well. Note that for ¢ = 0
the equation admits the trivial solution f = 1.

Our study of the Riccati equation is based on its relation with the Hill equation

(12) Y +(@A—=p()y=0.

To state this relation we recall first that a solution y(¢) of (12) is called 7-quasi-
periodicif y(t+m) = uy(t) for all t and some u € R, u # 0, called the Floquet multiplier
of y(¢t). If u = 1 then the solution is 7z-periodic and if u = —1 it is r-anti-periodic.

Proposition 2.9. The Riccati equation with a m-periodic p(t) admits a 7-periodic
solution f(t) for a parameter value ¢ # 0 if and only if the Hill equation (12) admits a
positive rT-quasi-periodic solution y(t) for 1 = —1/c2.

Proof. Indeed, if there exists such y(t), then f := —cy’/y is a periodic solution of equa-
tion ([L1)). In the opposite direction: if f is a periodic solution of equation (1)) and F is
a primitive of f then y := e~F/¢ is the required solution of equation (12). O

We now borrow a well-known result from the general theory of the Hill equation,
due to Lyapunov and Haupt (ca. 1910, see Theorem 2.1 on page 11 of [31]]).

Theorem (Spectrum of the Hill operator). Consider equation ([12)),
Y'+(@—p)y=0,

where y(t) is an unknown real function, p(t) is a real 7-periodic function and 2 a real
parameter. Then there exist two unbounded sequences of real numbers

Ao <A <A <3< <.,

Mo S My <Hp SHz3 <fg=...,
satisfying
(13) Ao <po Sy < S <py Spu3<A3 <Ay <.,
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such that equation (12) has a non-trivial 7-periodic solution if and only if 1 = A, and
a m-anti-periodic non-trivial solution if and only if A = u, k = 0,1, .... The number
of zeros on [0, 7) of a solution corresponding to Ay_, or Ay is 2k. In particular, if a
m-periodic solution has no zeros, then 1 = A,. Similarly, the number of zeros on [0, )
of a non-trivial solution corresponding to U,y or Uyky1 is 2k + 1. Moreover, a solution to
equation (12) is unstable (that is, unbounded) if and only if 2 belongs to one of the intervals
(—o0,0), (Ug> 1), (A1,4,), ... (called instability intervals, or ‘gaps’). See Figure 9}

Ao Mo [T R V% Ay M3 g
OO om0 O

stability interval e instability interval (gap)

FIGURE 9. The spectrum of Hill’s equation (12)), stability and insta-
bility intervals

Concerning the lowest eigenvalue 4, we have the following.

Lemma 2.10. Let A, be the first eigenvalue of the spectrum of the Hill equation (12)
associated with a m-anti-periodic centroaffine curve y. Then
Ao <0, A9 < -—P,

where
1 T
(14) Pi=—— fo p(t) dt.

Proof. Each of the two coordinate components of y is a non-trivial zz-anti-periodic so-
lution of equation (I2)) for A = 0. This implies that u; = 0 for some k > 1, hence
Ay < 0.

The inequality g < —P is due to Borg (see Theorem 3.3.1 of [22]). The following
argument is due to Ungar: Take a positive periodic solution y(t) of equation ([12) cor-
responding to 1. Then h(t) = y'(¢)/y(t) is a periodic solution of the Riccati equation
h' + h? + (1 — p(t)) = 0. Integrating this equation over the period gives:

f (1o — p(t))dt < .
0

This yields the result. O

Remark 2.11. If y is locally convex, so that p(t) is strictly negative, then P > 0 and we
have 15 < —P < 0. The geometric meaning of P is the area bounded by the dual curve
y* (we refer to [28]] and [42] for this and related facts).

Theorem 2. Let y be a centroaffine m-anti-periodic curve and 1, < 0 the lowest 7-
periodic eigenvalue of the associated Hill equation ([12). Then y admits a c-related closed

curve if and only if |c| < 1/4/—2¢-

An immediate consequence of Theorem [2 and Lemma is the following.

Corollary 2.12. Suppose P > 0 (for example y is locally convex) and y admits a c-related
m-anti-periodic closed curve. Then |c| < 1/ \P.
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Proof of Theorem [} By Proposition R.9, we need to show that equation (12) admits a
m-quasi-periodic positive solution if and only if 1 < A,.

Consider first the “if” part. If 1 = 1, then equation (I2)) has a positive periodic
solution, hence quasi-periodic. So we shall assume now that 1 < A,. In this case
equation (I2) has no conjugate points, that is, a non-trivial solution vanishing at two
distinct points ¢, t, because, by the Sturm Comparison Theorem, any solution for every
larger 1 must have a zero between t;,t,. However for 1, there is a positive periodic
solution. To complete the proof of the “if” part we make use of Lemma[2.13.

Lemma 2.13. The equation y" + q(t)y = 0, where q(t + m) = q(t), has no conjugate
points if and only if it admits a positive r-quasi-periodic solution.

As far as we know, Lemma is due to E. Hopf [29]]. For completeness, we give
its proof below.

Now we prove Theorem P]in the opposite direction. We need to show that equation
(1) admits no positive 7-quasi-periodic solution for 4 > 1,. Assume y(¢) is such a
solution, y(t + 7) = u y(t), where u > 0. There are two cases:

« If u = 1 then y(¢) is a positive periodic solution. But this is possible only for
A = Ay, a contradiction.

» If u # 1 then the solution y(¢) is unbounded, and hence 1 belongs to one of the
instability zones. In particular, A > u,. But then, by the Sturm Comparison
Theorem, y(t) cannot be positive since solutions for 1, have zeroes.

This completes the proof of Theorem . O

Proof of Lemma.13 (after E. Hopf). If a Hill equation y” + q(t)y = 0 has no conju-
gate points then for every two distinct a, b € R there exists a unique solution y(t; a, b)
satisfying

y(a;a,b) =1, y(b;a,b) = 0.

By uniqueness, one has the relation for distinct a, a':
(15) ¥(t;a,b) = y(a';a,b)y(t;a’, b).

Using disconjugacy, one can show that a limiting solution exists and is positive every-
where:

y(t;a) == lim y(t;a,b).
b—>+o

These positive solutions are 7-quasi-periodic. Indeed, settinga’ » a+ 7w, t — t+ 7
in equation ([L3))) and passing to the limit b — +oo, we get

(16) Yt +ma)=yla+ma)ylt +ma+m)=yla+ ma)y(ta),

where the last equality is due to the 7-periodicity of q(t). Thus, y(¢t;a) is 7-quasi-
periodic with multiplier u = y(a + 7; a), as needed.

In the opposite direction the claim is obvious: if y” +q(t)y = 0 admits a positive solu-
tion then, by the Sturm Oscillation Theorem, any non-trivial solution has no conjugate
points. (]
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3. SELF-BACKLUND CURVES: FIRST STUDY

3.1. Infinitesimal deformations of centroaffine conics. In this section we study
infinitesimal deformations of centroaffine conics in the class of self-Bicklund cen-
troaffine curves. (This includes, as we recall from Section m the requirement for -anti-
periodicity). We describe the values of the parameter a for which centroaffine conics
admit non-trivial infinitesimal deformations. Later, in Section @, we shall show that
these values of « are realized by actual deformations, see Corollary §.20,

Here is a brief reminder about deformations. Let y(t) be a self-Biacklund centroaffine
curve, satisfying

a7) ., 71=1, [y, yt+ )] =c,

for some constants a, c. A deformation of such a curve, within the class of self-Biacklund
centroaffine curves, is a function (¢, ¢) defined on R X (—¢,, ;) for some ¢, > 0, and
functions &(¢), é(¢) defined on (—¢y, €y), satisfying equation ([L7)) for each fixed £, namely

(18) |7 27| = 1 750 + ace. 001 = e

and such that y = #(-,0), « = &0) and ¢ = ¢(0).

An infinitesimal deformation of y is a formal expression 7 = y(t) + ey, (t), satisfying
equation (T8) for each ¢, modulo &2, for some & = a + ea;, ¢ = ¢ + £c,. Clearly, if 7 is
a deformation of y, then its first jet, y + ¢ % L_O 7, is an infinitesimal deformation of y.
However, the converse is not necessarily true, that is, given an infinitesimal deforma-
tion y + €y;, it is not clear a priori that there exists an ‘actual’ deformation 7 of y such
thaty, = %Lzo 7.

An infinitesimal deformation is trivial if it is induced by a shift of the argument,
7(t,€) = y(t + ag), or by the action of SL,(R), j(t,€) = e*Ay(t), A € 81,(R).

Theorem 3. Let y(t) = (cost,sint). Then

(1) A non-trivial infinitesimal deformation of y within the class of self-Bdcklund 7-
anti-periodic centroaffine curves exists if and only if & = o + ect; where o = 7/2,
or a # /2 and a satisfies the equation

(19) tan(ka) = ktan o

for some integer k > 4.
(2) Fork > 2, there are exactly k — 2 solutions of equation (L9) in the interval (0, ),
counting also o« = 7/2 as a solution for k odd.

Proof. (1) We make calculations mod ¢2. The first equation of means that y; is
a vector field along y, hence y; = —(1/2)f'y + fy' for a z-periodic function f(t), see
equation ([I)). The second equation of (18) implies
(20) [ (®, 7t + ] + [y(O), n(t + O] + e [y, ¥t + )] = ¢;.
For y(t) = (cost,sin t) we have
[y(®),y(t + o)l =sina, [y'(t),y(t +a)] = —cosa,

@D [y(6),y'(t + @)] = cosa,
hence becomes

[ @), y(t + )] + [y(8), y1(t + a)] = ¢; + ot; cosa = const.
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Tt follows that
(=31 @®) + FOF O, + )]
+[y(0), —% Pt + )yt +a) + ft + @)y (¢t + )] = const.
In view of equation (21)), this implies
22) SIF© + £+ @lsina = [f(t +a) = f(B)] cosa = const.

Since the integral of the left hand side over the period is zero, the constant on the right
hand side is also zero.
Recall that f is a 7-periodic function and let

f)= i e’

k=—c0

be its Fourier expansion, with a_; = @,. Then

o oo
f'(@) = 2i Z kakeZikt, f(t+a)= Z akeZik“eZikt,

k=—o0 k=—c0

(s
fle+a)=2i ) kage?k=eikt,

k=—c

Substitute this in equation (22) to conclude that
ay [ik (1 + 2k sinor — (e — 1) cosa| = 0
for each k. Hence a; = 0, unless
ik(1 + e***)sin a = (e?** — 1) cosq,
or
eikcx + e—ikcx eikoc _ e—ikcx
k——sina=————cosqa,
2 2i
that is, k tan o = tan(ka).
Conversely, if equation ([L9) holds, then one can choose f(¢) to be a pure harmonic of
order 2k, and then equation ) holds modulo £2. Likewise, if & = 77/2, one can choose
g(t) to be a pure harmonic of order 2k with odd k > 3 or a linear combination of such
harmonics.
Note that equation (19) holds trivially for k = 0and k = 1. The former case corresponds
to f(t) being constant, a shift of the argument of y(¢). The latter case corresponds to
the action of 31(2, R), a stretching of the unit circle to an ellipse bounding area 7.
For k = 2 there are no solutions « € (0, ) to equation (I9) and for k = 3 the only
solution is o = 7/2 (see next item).
(2) See Proposition 2 of [27]], or Lemma 4.8 of [11].
O

Remark 3.1. Equation (1Y) appeared in the context of bicycle kinematics in [11,41]] and
in the papers by Wegner, summarized in [47)]. It also appeared in [27] in the context
of billiards and flotation problems, and in [§], [9], [10] for magnetic, outer and wire
billiards. This ubiquitous equation has a countable number of solutions but, except for
7/2, there are no 7r-rational solutions [[1§].
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3.2. Periods 3 and 4.

Theorem 4. Let y(t) be a m-anti-periodic self-Bicklund centroaffine curve, that is,
[y(®),y(t + )] = c# 0. Ifa = /3 or a = /4 then y is a centroaffine ellipse.

Proof. Consider the case of a = 7r/3. Let us use the shorthand notation

T 27
¥(®) = Yo, 7(t+ 5) =", 7<t+ T) =7,
Then
[Yo- 1] = [n-72] = v2:—vol = ¢,

hence [y, 7] = [¥0, 711, and the vector y; — y, is collinear with y,. Likewise, y, + v, is
collinear with y;, and y; — y, with y,. We write

Y1 =72 =®oY0: 72+ Yo = P171:71 — Yo = P27

Since [¥,71] # 0, the linear map R® — R?, (x¢, X1, X,) = 2., X;¥;, has rank 2, hence
nullity 1. It follows that the matrix

—®o 1 -1
1 - 1
-1 1 -,

hasrank 1, hence ¢y = ¢; = ¢, = 1. Thus y, = y; — ¥o-
It follows that ¥, = y; — ¥4, and hence

1=[r.7l=In-r7rn-rl=2-Irnl+rnl
Since [y, 1] = ¢, one has [y, 1] + [70, 71] = 0. This implies that
/ 1 /
[vo, 71l = 3’ [ro. 71l = 3
and hence y; = (1/2)yy + cyp-

It follows that in equation (B]) one has f = 1/2, and hence, by Lemma c’p =
—3/4. That is, p is constant, which implies p = —1 and ¢ = \/5/2, and therefore the
curve is a centroaffine conic.

The case o = /4 is similar. In analogous notations, one has

Yo.nl = [ 72] = [r2o 73l = r3 =l = ¢,

hence

Yo~V1— V371 ~Yot Y Y2~V1t7V3Y3~ Vo t7a
This implies
(23) n =8 +7) v3=8r— )

for some function g(t).
Since [y1,71] = [73, 73] = 1, equation implies
28 =1, [ro. sl + 1270l = 0.
But [yo,72] = ¢, hence [y5,72] + [¥0,72] = 0, and therefore [y, 72] = [r0,72] = 0. In
particular, y, ~ ¥,.
It follows that y; = (1/\/5))/0 + ¢yy. Then, in equation (B)), one has f = 142,

and hence, by LemmaR.1}, ¢?p = —1/2. Thus p = —1,¢c = 1/4/2, and the curve is a
centroaffine conic. O
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Remark 3.2. An analogous result, rigidity for periods 3 and 4, holds for bicycle curves,
see [[13,144141]].

3.3. Period two: Flexibility and Radon curves. In this section we show that self-
Bécklund curves of period two, that is, « = 7/2, exhibit a substantial flexibility. A
similar result, for the value of the density 1/2, was known for a long time for Ulam’s
flotation in equilibrium problem [[7,/50].

Let us construct a self-Bicklund curve of period two as a closed trajectory of a vector
field V on the space of origin-centered parallelograms. Let the verticesbe B, B, —B, —B,
and let the vector field have the values V, V;, =V}, =V, at these vertices, respectively.

We want the trajectories of the points B, B, —B, —B, to coincide and to form a self-
Bécklund curve with o = 7/2. Let (B(t), B(t)) be an integral curve of such a vector
field. Then B(t) = B(t + m/2). The centroaffine conditions [P;, '] = 1 and the c-
relation [B, B] = ¢ amount to

(24) (R, V]=[B,V2]=1, [W,B]+I[R,V2]=0.
Note that the area of the parallelogram (B, B, —F, —B) remains constant.

Lemma 3.3. Equation (R4) is satisfied if and only if

1 1
Vi=fR+-B. Vy= -2k - fB,

where f(B, B) is an odd function, in the sense that f(B,—PB) = —f(B, B).

Proof. Write V; = fPB, + gB,V, = fB + gB and substitute into equation (24), using
[B,B] = ¢, to obtain f + § = 0,g = —f = 1/c. That f is odd follows from the central
symmetry of the parallelogram. O

Thus one has a functional parameter f to play with. The boundary conditions
Ve T
(25 RO =10 K(3)=BO =00, B(F)=-R0)=(-1,0)

impose a finite-dimensional restriction on the function f. As a result, we obtain a
functional space of self-Backlund curves of period two.

For example, if f is identically zero and ¢ = 1, then B” = B = —B, and the curve is
a centroaffine ellipse. See Figure [10|for a non-trivial example. In Example (Figure
we construct explicitly many analytic curves.

Remark 3.4. The space of origin-centered parallelograms of a fixed area is identified
with SL,(R). If P = (p;, p2), Q = (q1, q2), then the first equation (24), [P, U] = [Q, V],
means that the curve under consideration is tangent to the kernel of the 1-form p;dp,—
p2dp; + q,dq; — q1dq,. This form defines a contact structure on SL,(R), and the curve
is Legendrian.

Let I" be a smooth closed convex curve, symmetric with respect to the origin. Let
x,y € I'. One says that y is Birkhoff orthogonal to x if y is parallel to the tangent line
to I at x. This relation is not necessarily symmetric; if it is symmetric, then I' is called
a Radon curve. Radon curves comprise a functional space, with ellipses providing a
trivial example.

Radon curves have been thoroughly studied since their introduction more than 100
years ago; see [32] for a modern treatment.
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FIGURE 10. A self-Bdcklund curve with rotation angle ¢ = /2
and ¢ = 1, using Lemma [3.3|and equation (25), where f(B,B) =
u(B)u(B,) and u(x, y) = 1.2x — 4x> — 4x> (approximately)

LetI"be a Radon curve, x € I"be a point, and y € I" be its Birkhoff orthogonal. Then
the tangent lines at points x, y, —x, —y form a parallelogram circumscribed about I'. As
x traverses T, the vertices of the parallelogram describe a curve y. The latter curve is
an invariant curve of the outer billiard transformation about T, see Remark

The relation of self-Biacklund curves with Radon curves is as follows. Let y be a
self-Backlund curve with rotation number 7/2, then the points y(¢), y(t + 7/2), y(t +
1), y(t + 37/2) form a parallelogram. Therefore the middle curve T is a Radon curve.
Example provides analytic families of Radon curves.

4. SELF-BACKLUND CURVES AND THE LAME EQUATION

4.1. Traveling wave solutions of KdV and Wegner’s ansatz. The first two in the
hierarchy of integrals of the Korteweg-de Vries equation are the functionals

(26) / p(t) dt, / pA(t) dt

on centroaffine curves. In particular, KdV is the Hamiltonian flow of the former func-
tional with respect to the symplectic form f[V ¢, ;] dt, where we use formula ([I)) for
tangent vector fields [38].

Consider a centroaffine curve that is a relative extremum of the second functional
(26) subject to the constraint given by the first one. Lemma [.1]is well known and we
do not present its proof, see [21]].

Lemma 4.1. These relative extrema are characterized by the differential equation on the
centroaffine curvature

@7 p" = 6pp" +ap’,
where a is a Lagrange multiplier.

Equation (27) describes traveling wave solutions of KdV, see [21]]. For the cen-
troaffine curves satisfying equation (27), the KdV evolution is described by the equa-
tion p = ap’, that is, by a parameter shift of the curvature p(t). Two centroaffine
curves with the same curvature function differ by an element of SL,(R). Therefore
these curves evolve in time by special linear transformations.
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Equation (27) can be integrated to
(28) (p')? =2p® +ap?+2bp +c,
where a, b, ¢ are constants.

Lemma 4.2. The curves described in Section 2.2]satisfy equation 27).

Proof. Let q(t) be the centroaffine curvature of the curve fy + ¢y’ where y is a unit
circle and f satisfies equation (). Then

2
q= (P -D-1,
see Lemma 3.1 in [44] for this calculation. Hence
,_ A _Af(f? 1
="z _cz<c+c ¢l
One needs to check that (¢')? = 2¢* + ag? + 2bq + ¢ for some constants a, b, c. One has

(@) = ifz(f—zw—%)

c4 c

2

a cubic polynomial in f2 with the leading coefficient 16/c®. The same holds for 2¢> +
aq2 + 2bq + ¢, so one can choose the coefficients a, b, c as needed. O

Now we develop a centroaffine analog of F. Wegner’s approach to 2-dimensional
bodies that float in equilibrium in all positions (or bicycle curves) [47-49].

Consider a centroaffine curve y(¢t) = (r(t) cos a(t), r(t) sin a(t)). The centroaffine
condition [y,y’] = 1is satisfied if «’ = r~2. We use prime to denote the derivative with
respect to ¢; the derivative with respect to « is denoted as r,.

Emulating Wegner’s approach and using material of Section 2.1, fix a small ¢ and
consider the curves I, = y = ¢y’. These curves are 2¢-related. We want them to be ob-
tained from the same curve, I, by rotating it through small angles +6. The assumption
is that & is of order &3; all the calculations below are mod ¢*. We use the notations in

Figure

Lemma 4.3. One has:

P = tan_l(

Fo— ), o =Vr2+2err + 202 +r2).

Proof. Onehas|y’| = r~14/1 +r2r'2, hence |AB, | = er~\/1 + r2r'2. Next, 1 = [y, 7] =
ly|lY'| sin, hence

siny) = ;, cosyp = _r—r’.
Then
tang = |AB, |siny €

|OA| — |AB, | cosy T~ 2xer
Finally, by the cosine rule,

|OB,|*> = |OA|*> + |AB,|* — 2|OA||AB, | cos ) = r? + 2err’ + e*(r™2 +r'?),

as claimed. O
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FIGURE 11. Notation for Lemma f.3} r = |OA|, p = |OB_| = |OB| =
|OB,|, ¢ = 2AOB,,® = £OAB,,5 = «BOB, = £B_OB. yand T
are given in polar coordinates by r(«) and p(f3) (respectively).

Thus we have an equation for I' in polar coordinates:

(29) 0(B) = p(a+ @ —8) =12 + 2err' + 2(r-2 + r'2),

where ¢ is given in Lemma [t.3, and where § = ce? with ¢ being a constant.
To solve equation (29), consider the cubic Taylor polynomials of both sides and
equate the even and odd parts separately (since the equation holds for +¢). One has

1
p=e2—er3r+ ¢ (;"“r’2 - gr_6),

@? = 2r 4 — 26375, % = 376,

2 3
€ €
V24 2err + 22 +r2) =r+er + Er_3 - Er_‘lr,'
To expand the left hand side of equation ([29), we calculate p, 0o and pyqq, using
o =r72:
Pa =120 Pae = 231 0 + 1*0", paaa = 61420 +2r°r" 0" + 6r°r'p” + r8p"”.

Now we have for the left hand side of equation
1 1
pa+¢—8)=p+9pa+ 5¢°Pac + ¢ Paca — OPa
1 1
=p+eo + Eszp” + 653(1*‘2,9”’ +2r "o —2r~*p") — ce3r?p’.

Thus

1 N 1 2,.—3
—gp" =1+ z€r,
praEP =T+5
1 1
P+ gsz(p’” +2r7"p" = 2rtp’ —6er?p’) =1 — Eszr_“r’.
Differentiate the first equation and subtract from the second one, setting, following
Wegner, p = r (since ¢ is infinitesimal), to obtain

r" —r "+ 4r 4 4+ 3er?r’ = 0.
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Multiply this by r~! and write it as

’

3
r iy — - —cr2) =0,
( ;

or

3
r—r3 4 zcr3 —br=0,

where b is a constant. Multiply this by 2r' and write it as
3 !/
(r’2 +r2 4+ ‘—‘cr4 - brz) =0.
Hence
3
r?=—r2—- ‘—lcr4 +br +a,
where a is another constant. Multiply by 4r? to obtain
4r2r'2 = —4 — 3¢r% + 4br* + ar?.
Finally, setting R = r? and renaming the constants, we obtain the differential equation
(30) R'? = aR3®+ bR? + cR — 4.
Thus R(t) is an elliptic function. The curve is given by a parametric equation
(31) I[(t) = (R(H)'2 cos a(t), R(t)"? sin a(t))
with R as in equation (30) and «’ = R™%.
Remark 4.4. If the curve is a centroaffine ellipse, one has a = 0 in equation (30).
Concerning the centroaffine curvature of this curve, it is also an elliptic function.
Lemma 4.5. One has
1 1
t) = —aR(t =b.

p(t) = SaR(®) + 7
Proof. Differentiating equation twice, we find that

1 1

p=—-R2R?+4)+ =R7'R".

4 2

Differentiating equation (), we obtain

w3 s 1
R —2aR +bR+ZC'

Substitute this and equation (B0) in the above formula for p to obtain the result. [
Renaming the constants again, we obtain from equation (B0)
p?=2p*+ap*+bp+ec,

which coincides with equation (28)).
Let us also calculate the (Euclidean) curvature k of a curve satisfying equation (30).

Lemma 4.6. One has
4aR + 2b

k=————mmm.
(aRZ+ bR +0¢)2
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Proof. Since t is the centroaffine parameter, we have for the curvature

_ Wy _ =p@®
VK Iy
We have
|/|_\/r’2+r2(x'2— R_,2+l_ R’2+4_vaR2+bR+c
ri= “V4r "R ™ 4R 2 :
Hence
—8p() __ 4aR +2b

k= =

3 5
VaR2 4+ bR + ¢ (aR? + bR + ¢)?

O

Thus the curvature is a function of the distance from the origin. This is a special
class of curves, studied in [[16,40]. One can think of these curves as the trajectories
of a charge in a rotationally symmetric magnetic field whose strength is a function of
the distance from the origin. Note that Wegner’s curves also have this property: their
curvature satisfies k = ar? + b, where a, b are constants.

Likewise one can interpret equation y” = py as Newton’s Second Law, that is, y(t)
is the trajectory of a point-mass in a central force field whose potential V' is rotationally
symmetric. By Lemma [.3, and renaming the constants, one has V(r) = ar* + br? + c.
Using conservation of energy and momentum, one can solve the equation of motion
in quadratures.

Remark 4.7. Consider a particular case when V' is a pure 4th power of the distance, that
is, the force is proportional to r3. According to a corollary of the Bohlin theorem, see
Theorem 5, Appendix 1 in [4], some trajectories in this field are the images of straight
lines under the conformal transformation w = z/3. These are cubic curves, see Figure

12

-2

FIGURE 12. The curve 2(x* —3xy?) — 5(3x2y —y*)+1 = 0, the image
of the line 2a — 5b + 1 = 0 under the conformal transformation w =
173
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4.2. Self-Bicklund curves as solutions of the Lamé equation. In this section we
give an explicit construction of a large family of self-Bicklund curves, given by the
Wegner ansatz of Section f.1. We shall make frequent use of standard facts about the
Weierstrass elliptic functions ¢, {, o, such as: the addition formulas [[l, pages 40-41],
quasi-periodicity properties [[1, pages 35-37], reality conditions [37, pages 29-32], de-
generate cases of Weierstrass functions [[1, pages 201]. We shall also use applications
of elliptic functions to the Lamé equation which can be found in [37, pages 48-54].

4.2.1. Constructing the curves. Our starting point is equation (28),
(p')?* =2p®+ap*+2bp+c,

for the curvature p(t) of the self-Bidcklund curves suggested by the Wegner’s ansatz.
Comparing this equation to the equation satisfied by the Weierstrass g function,

(32) (') =4¢° — 2,0 — g3,
we conclude that p(¢) is given, in terms of go, by
(33) p(t) =2¢p(t+w')+C.

Here ¢ is the Weierstrass function with half periods w, @', where the first one is real
and the second one is pure imaginary, see Figure [13, Since p(t) needs to be periodic,
we are in the case of three real roots e; > e, > e3 of the right hand side of equation
(B2). In formula the shift of the argument by w’ is performed in order to get a real,
smooth, 2w-periodic potential p(¢).

2w’ »
o) O 0
’ w+a)V p
) >O . >
€; e, €
0 w 20
(a) (b)

FIGURE 13. The Weierstrass function go(z) with real invariants and
fundamental half periods w € R, " € iR. (a) The fundamental rec-
tangle in the z plane. The boundary of the rectangle (0, »’, w + @', )
is mapped by g onto the extended real axis R U {oo}. (b) The phase
plane of (g')? = 4(go—e;) (g —e,)(go—e3). (¢) The line {t +'|t € R}
is mapped, 2w-periodically, onto the segment [es, e, ].
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The constant C can be written as C = ¢(a) for some a € C. Thus

(34) p(t) = 2¢(t + ') + g(a).
We write our curve in complex form X(¢) = x(t) + iy(t), satisfying
(35) X" + (—go(a) — 29t + @)X =0,

which is precisely the Lamé equation (equation (6) of [[1, page 186]).
In order to construct a centroaffine 7-anti-periodic curve, we shall require the fol-
lowing:

(1) The Wronskian [X,X’] = 1. This can be achieved by rescaling of any solution
of equation (B9) satisfying [X, X'] = const > 0 (see item [(4) of Proposition [4.8§)).

(2) w = 7/2k for some integer k > 2, so that p is 7/k-periodic.

(3) The solution X is rotated over the period 2w by mn/k, where 0 < n < k is odd
and co-prime to k, so that after k periods we have X(t + 7) = —X(t). In other
words, we require X(t) to be a complex 2w-quasi-periodic solution of equation
(B3), with Floquet multiplier u = e!™/k:

X(t + 2w) = X(t)ei™/k,
Abasis X, ,X_ for the solutions of the Lamé equation can be written in the follow-
ing form (see [|1, page 37]):
—t¢(+a) 9(Fa + £ + w')o(w")
o(xa+ w)o(t + ')’
where ¢, o are the Weierstrass zeta and sigma functions, respectively.

The construction of the self-Bicklund curves in this section boils down to a careful
choice of the parameter a in equation (35).

(36) X, (t)=e

Proposition 4.8. Foreverya € (0,0") U (w,w + '),
(1) @(a) is real, hence the potential 2g(t + w') + go(a) in the Lamé equation (B3) is real
as well.
(2) X, (¢t)is aregular curve, that is, X, (t) # 0 for all t.
(3) X,(0) =1and X\ .(0) = ib forsomeb € R, b > 0.
(4) X, (t)is locally star-shaped and positively oriented:
[X, (), X (t)] = const > 0.
(5) X, (t + 2w) = X, (1)e*/ @, where

(37) f(@) = af(w) — w{(a).

Thatis, X (t) is a 2w-quasi-periodic solution of equation with a Floquet multiplier
— »2f(a)
u=e .

(6) The function f of the previous item satisfies the identities
f(=a) = —f(a), fla+2w)= f(a), fla+2) = f(a) +im.

Proof. (1) See pages 31-32 of [37].

(2) Differentiating equation (B6)), and using { = o’/ and the addition formula for ¢,
we compute:

g'(a) —@'(t+ ')

@) =X, OS(a+t+a) = (a) =<+ o] = X (D302 = T
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Notice that the numerator in the last fraction cannot vanish, since ¢'(t + ') is real
and ¢’(a) is purely imaginary, both non-vanishing (¢’ vanishes in the fundamental
rectangle only at 0, w, w’, w + w"). It follows that X/, (t) does not vanish.
(3) Substituting ¢ = 0 into equation (36) gives X, (0) = 1. From the previous item we
have

' (a)
2(g(a) —e3)
For a € (0,w") U (w, w + ") the numerator g’(a) is purely imaginary and the denom-
inator is real, both non-vanishing. Hence we can write X\ (0) = ib, b € R, b # 0.
Moreover, go(a) < e; and Im[g’(a)] < 0for a € (0,w’). When a € (w, w + w’) we have
that go(a) > ej is positive and Im[g’(a)] > 0. (All this is evident in Figure[I3.) Hence,
in both cases, b > 0.
(4) Since X, is a solution of the Lamé equation , which has no X’ term, one has

Wronskian = [X, (t), X ()] = const.

The constant must be positive, due to item [[2)
(5) See [37, page 52].
(6) See [37, page 86].

X4(0) =

O

Remark 4.9. Following Proposition 4.8 (item and the proof of item [3), we can
normalize the solutions of the Lamé equation (B3] given by formula (36) by the constant
factor

__p@

2i(go(a) —e3)’

so that the normalized solutions Y, (¢) := %Xi(t) satisfy the centroaffine condition
[Y(6),Y' ()] =1.

N =/ IX4(0)] =

Next, due to requirement [3) and Proposition .8 (item[(5)), we need to solve 2f(a) =
irn/k (mod 27i), or
(38) ﬂ@:%%+mm
for some integers m, n € Z, where n is odd, relatively prime to k, and 0 < n < k.

To solve equation (B8]), it is enough to restrict a to the fundamental rectangle. In-
deed, if a; and a, are two congruent solutions of equation (B8), then the corresponding
potentials of the Lamé equation are equal, and the curves constructed by formula
(Bg) are equivalent under the action of SL,(R).

One may further restrict to solutions of equation (38) where a belongs to one of the
segments (0, ") or (w,w + w’), and m > 0. This follows from the properties of f listed
in Proposition {.§ and the monotonicity property of f on the segments [0, 2«'] and
[, w4+ 2w']. On the segment [0, 2w’] the function f varies monotonically from +ico to
—ico. On the segment [w, w + 2w’] it varies from 0 to iz.

Theorem 5. Consider equation for fixed integers k,n, where k > 2 and n is odd,
relative prime to k, and 0 < n < k. Then

(1) For each integer m > 0 there is a unique solution a,, € (0,w") U (w,w + o’).

(2) Form >0, a,, € (0,w").

(3) Form=0,ay € (w,w+ w").



258 MISHA BIALY, GIL BOR, AND SERGE TABACHNIKOV

(4) The sequence A,,(u) := —go(a,,) is strictly monotone increasing and, in particu-
lar, the value Ao(1) = —go(ay) is the smallest one.

Proof. The proof of items (1)—(3) uses the behavior of the function f. Since % < g,
for m = 0 there is a unique solution a, in the segment [w, w + @'], because f is pure
imaginary on [w, w + w'] and varies monotonically from 0 at w to im/2 at w + w’.

For m > 0, one can find a unique a,, in the segment [0, w’] since there f is pure
imaginary, varying monotonically from +ico at 0 to izr/2 at w’. Moreover, the sequence
a,, is monotone decreasing on [0, w'].

In order to prove (4), notice that on the segment [0, '] the function g is real-valued
and monotone increasing from —oo to e;. Hence —¢(a,,) is monotone increasing for
m > 1. Moreover, —go(qa,,,) > —e; for every m > 1. As form = 0,

_@(ao) € (—61, _62)1

because on the interval [w,w + w'] the function g is monotonically decreasing and
takes the values e, e, at the end points, respectively. Since e; < e, < ey, this proves
item (4) (see Figure[I3). O

Moreover we have the following result.

Theorem 6. For each k, m,n as in Theorem 5} consider the curve X determined by the
value a,y,.

(1) X, is locally star-shaped m-anti-periodic curve, with the winding number
m
w =2k [E] + n.
(2) X, isembedded (simple) if and onlyifm = 0,n = 1.

Proof. 1t follows from Theorem [§ that the sequence 4,,(1) := —go(a,,) is the sequence
of Floquet eigenvalues for the problem

X" + (A= 2¢(t + @)X = 0, X(t + 2w) = uX(t), u := ™k,

and that 4,,(«) is monotone increasing.

It follows from Proposition {.§ that the curve is locally star-shaped and positively
oriented.

In order to compute the winding number of the curve, we need first to see what
happens over one period [0, 2w]. Denote by y,,(t) the imaginary part of the solution
X, corresponding to a,,. We know by Proposition i.§ (claim (2)) that at the end points
of the period one has

Ym(0) =0, y,,(0) > 0, y,,(2w) = sin(%) > 0.
This implies that the number of zeroes of y,,, on (0, 2w] is even for every m.

In order to find the number of zeroes of y,,, on the interval (0, 2w) we use Sturm the-
ory, comparing y,, with the Dirichlet eigenfunctions of the Lamé equation, as follows.

Let us denote by A,,,, ¥,,,, m > 0, the eigenvalues and eigenfunctions corresponding
to Dirichlet boundary conditions of the equation

(39) P+ (A—2¢(t+ " )¥ = 0.

Thus the eigenfunctions ¥, vanish at the end points of the interval [0, 2w] and have
exactly m zeros in (0, 2w).
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We claim that the number of zeroes of y,, in (0, 2w) is given by the formula:

(40) #{t € (0,20) : y,(t) = 0} = 2[%]

To prove this, we shall consider two cases (see Figure [14)):

(1) If m = 2l then Ay_; < Ay(u) < Ay. In this case, the zeroes of ¥,;_; divide the
interval into 2I subsegments. In each of them, y,; must vanish somewhere (by Sturm
theory). Hence there are at least 2I zeroes. In fact, this number must be exactly 2I,
because otherwise it would be at least 21 + 2 zeros (y,, has an even number of zeroes).
But then ¥,; would have more than 2I zeroes.

FIGURE 14. Graph of the function A(1) := y;(4,2w) + y5(4,2w),
where y;(4,1),y,(4,t) are the basic solutions of equation (39) with
y1(4,0) = y5(4,0) = 1, y1(4,0) = y,(4,0) = 0; the positions of the
periodic (4,,), anti-periodic (u,,), Dirichlet (A,), and Floquet (4,,(x))
eigenvalues are indicated

(2) f m = 21 + 1 then Ay < Ay,1(4) < Ay41. The zeroes of W,; divide the interval
into 21 + 1 subintervals, in each of which y,;,; must vanish somewhere (by Sturm
theory), implying that y,;,; has at least 2] + 1 zeroes. But then this number is at least
21+ 2, because it is even. Hence, the number of zeroes of y,;,  is exactly 21+ 2, because
otherwise ¥,;,; would have more than 21 + 1 zeroes. This completes the proof of the
claim.

As a consequence of formula (@0), we see that for a = a,, the solution X, makes [%]
full turns over the period [0, 2w], plus an angle of %, which is a % fraction of a full
turn. Altogether, after 2k periods, the number of turns is

wek([3]+ )=

This proves the first claim of Theorem [}
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The last formula implies that the curve is simple, that is, w = 1, if and only if m =

0,n = 1, proving the second claim. This completes the proof.

4.2.2. Establishing the self-Bdcklund property.

d

Proposition 4.10. The curve X, of equation (B6)) satisfies the self-Bicklund property

[X,(8), X, (t + a)] = const for a value of the parameter o € (0, 7r) if and only if
(41) o(a + a) = 2% Dg(a — a).
Proof. Set 8 = a/2. Then equation (2) can be rewritten as
Im (X, (c+ HX, (= §) = ¢,
where overline denotes the complex conjugation. We can rewrite this equation as
X, (¢ + BX_(t = B) = X_(t + P)X, (¢ — ) = 2c.
Next we substitute in the last equation the expressions for X, from equation (36):

26 —o—HHH@ ola+t+p+ w’)a(cu’)e(t_ﬁ)g(a) o(—a+t—p+w)o(w)

ola+w)o(t+ B +w) o(—a+w)o(t -+ w')
_ B @ ol—a+t+p+ w’)a(w’)e_(t_ﬁ)g(a) gla+t—f+w)o(w)
o(—a+w)o(t+  + w') ola+w)o(t—B+w)

This can be simplified, using the identity

(z—w)o(z + w)
02(z)o2(w)

(42) (2) - po(w) = ==
(see [37, page 25]). We get
re —e-268@) Pt + @) — pla+ B)lo?(a+ B)o*(w)
[go(t + @) — go(B)] 0%(B)o(a + w')o(—a + ')
_ 26t@__ (@t + ) —gola— p))o*(a — B)o*(w')
[$o(t + @) — g(B)] o2(B)o(a + w)o(—a + w')’

Multiplying by the common denominator and renaming the constant,

¢ = 2ca*(B)o(a + w')o(—a + w')/c*(w’),
we get
et + @) — go(B)] =e D [po(t + ') — go(a + B)] o*(a + )
— 2@ [t + ') — go(a — B)] o*(a — P).
Thus we must have
¢=e D52 4+ B) — 2B (D g2(gq — B),
P(B)E = e D go(a + B)a*(a + ) — e Dgp(a— B)o*(a — f).
Substituting & from the first identity into the second and simplifying, we get
o*(a+ B [p(a+B) — p(B)] = e**Da(a - f) [p(a— ) - p(B)].
Now, using equation (42) again, we obtain o(a + a) = ezo‘g(a)o(a — a), as needed.

Theorem [7]states the self-Backlund property of the curves X, .

O



SELF-BACKLUND CURVES AND LAME’S EQUATION 261

Theorem 7. For each k, m, n as in Theorem | the associated curve X, satisfies the self-
Bdcklund property [X, (), X, (t + @)] = const for k — 2 values of a € (0, 7).

Example 4.11. Let us look for solutions of equation (fI]) of the form a = lw, where [ is
an integer. Using the quasi-periodicity property of o (see [[I, page 37], [37, page 20]),
we write

o(a+a) = o(a + lw) = o(a — a + 2lw) = (—1)le2E@a-atlo)g(g _ q)

= (-1)le2lal@)g(q — a).

Comparing with equation (1)), we require (—1)le?las(@) = 2a¢(a@) e choose I to be
odd and require

2al(a) = 2lwé(a) = 2lad(w) — in.

Hence f(a) = al(w)—w¢(a) = in/2l. But, according to equation (B§), f(a) = izn/2k+
imm. Therefore, choosing m = 0,n = 1 implies I = k, and so o = lw = k7/2k = 7/2.
In this way, we construct an infinite family of self-Bicklund simple closed curves with
rotation number a = 7/2, as discussed in Section but now we have an analytical
example. See Figure [[3.

k=3 k=5 k=17

FIGURE 15. Example [i.11]. Self-Bicklund centroaffine simple curves
X, (t) of Wegner type (blue) with 2k-fold symmetry, k = 3, 5,7, with
rotation number a = 7/2 (one quarter of a turn). The red curve is
traced by the midpoint of the line segment X (£)X, (¢t + 7/2) (black)
and is tangent to it. For large enough w’, the midpoint curve is smooth
and convex (top); as @’ becomes smaller, cusps appear (bottom).

4.2.3. Proof of the self-Béicklund property (Theorem [7). We shall distinguish between
two cases. In both cases we shall rewrite equation ({1]) in a more tractable form.
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Case 1. Letus start with the most important case m = 0 (the curve is simple if and only

if n = 1). For m = 0 we have from equation (BY) that f(a) = i;—kn,

where
a=w+ib € w,w+aw'], bER.
We have from equation (41]) that

_U(C( +w+ lb) _ eZO{{(w+ib)
o(a —w —ib) ’
Using the quasi-periodicity of o, one has
—o(a + w + ib) = o(a — w + ib)e(@(@+ib),

Substituting into equation (#3), we get

(43)

o=@ +ib) _ at(wrib)-2(@)a+ib) — L2alf(@+ib)~¢@)]|-2i¢(@)b
o(a — w — ib) ’

or, equivalently,

_o@=—w+ib) _ oagriv)-¢@)-2i¢ @b
o(—a + w + ib) ’
Taking log, we obtain

2wl + f ¢(ib + t)dt = i + 2a[¢(w + ib) — {(w)] — 2i¢(w)b.

Hence

(44) 7rl+Im<f i §(ib+t)dt> = % + %[{(a)+ib)—§’(w)] — ¢(w)b.
0

Let us denote o
g(a) :=Im (/ ¢(ib + t)dt) )
0

Lemma 4.12. Foranyr € N U {0}, we have

2wr—w -
Im (/ ¢(ib + t)dt) = (2r — 1)b¢(w) — wr + >
0
Proof. Apply the Cauchy residue formula to the rectangular path
—w(r—1)+ib - w(2r—1)+ib - w(2r—1)—ib » —w(2r—1)—ib - —w(2r—1)+ib
to obtain the result. O

Using the quasi-periodicity of { and Lemma .12, we have
2wr+w
gla+2w) =Im (./ ¢(@ib + t)dt)

2cur 4]

¢(ib + t)dt +Im f {(zb+t)dt)

2wr 4}

=Im ¢(ib + t)dt | + 2b¢(w) — 7 = g(a) + 2b¢(w) —

( 2cur 4} )
Im( ¢(ib + t)dt) + 21m f ¢(ib + t)dt)
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Therefore we can write g in the form

3) g = (=T

where h is a 2w-periodic function. Moreover, by Lemma (with r = 0),
T
h(0) = g(0) = —b{(@) + .

It is convenient to use h instead of h:

) a+ h(a),

T
ho(a) = h(a) — h(0) = h(a) + b{(w) = 5,
so that hy, is 2w-periodic with hy(0) = 0. Thus
2b{(w) — 7 T
(46) g(@) = (“2—0))) @+ ho(@) — bg(@) + 5.
Substituting equation (#d) into equation (44)), we obtain the equation:
2b¢(w) — 7 Vs
7l + (T) @+ ho(@) — bg(@) + 5

= 3 + 7@+ ib) ~{(@)] ¢ (@)b.

This is the same as

o) = o ZELET, Glo+0) = (o))

2w
_ 7 2wl(w + ib) — 2wl(w) — 2ib¢(w)
47) = O((ﬁ + i )
_ 7 2f(w+ib)\ _ T 2f(a)
_“(%_T)_“(ﬂ_ 2iw )

Taking into account that f(a) = % and 2wk = 7, we come to the final form of the

equation:
(48) 7wl + ho(a) = alk — n).

We claim that equation (48) has at least k — n — 1 solutions for « in the open interval
(0, 7).

Indeed, since hy(0) = ho(r) = 0, the end points a = 0,a = 7 of the open interval
are solutions of equation (#8) for [ = 0 and | = k —n, respectively. (These two solutions
are geometrically trivial, corresponding to « = 28 = 0 and a = 2 = 7« for the initial
geometric problem.) Therefore, for all intermediate levels of [, that is, for [ € [1,k —
n — 1], there exists a solution of equation (4§). This proves the claim.

We shall prove now that the number of solutions of equation (§§) in the interval
(0, ) is exactly equal to (k — n — 1). For equation (@4)), it suffices to show that the
function

a—w
Im ( f ¢(ib + t)dt) - %[g(w +ib) — {(w)]
0
has non-vanishing derivative with respect to a. Arguing by contradiction, suppose that

Im (¢(ib + o« — ) — [¢(w + ib) — ¢(w)]) = 0.
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Notice that {(w) is real, and {(w + @ + ib) and {(—w + a + ib) have the same imaginary
part. Hence

(49) Im (¢(ib + o + ) — {(w + ib)) = 0.

Using the addition formula, we have

' (ib + w) — p'(a)
2(go(ib + w) — go(a))

((ib+w+a)=¢(@{b+w)+ () +

It then follows from equation that
§'(ib + w) — ' (@)

T AT — @) <
Moreover, the values {(a), go(ib+w), go(at), g’ () are all real. We conclude that g’ (ib+
w) € R.
On the other hand,

ib+we(ww)=>e <gp(b+w)<e.
Thus the equation (go')? = 4(g — e;)(g — e,)(go — e3) implies that ¢’ (ib + w) € iR, a
contradiction. This completes the proof of Theorem|[7 in Case

/!
Case2. Inthiscasem > 0,a =ib € [0,o'],b € R. Using % = {, we write

a(z) = a(zy) exp (f g’(t)dt).

0

Taking log, we rewrite equation (#1)) in the form

(o4

¢(ib + t)dt + 27il = 2a¢(ib), | € Z.

-

Using that ¢ is odd, rewrite this as

27il + f [¢(ib + ) — {(=ib + O)]dt = 2al(ib).
0

Notice that both sides of this equation are purely imaginary, and hence

(50) 7l +Im ( / ¢(ib + t)dt) - %ocg’(ib).
0

On the right hand side we have a linear function of . Let us denote the integral on the
left hand side of equation (50) by

g(a) ==Im (fa ¢(ib+ t)dt) .
0

Lemma 4.13. Foranyr € N, we have

2wr
Im (f [S@b + t)dt) = —7r + 2r{(w)b.
0

Proof. This follows from the residue formula for the rectangular path
ib - 2wr +ib —» 2wr — ib - —ib — ib,

avoiding the singular points of { at 0 and 2wr by small half circles. O
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In particular, using Lemmafd.13for r = 1 and the quasi-periodicity of {, we compute

2w
gl +2w) = g(a) + % f ¢(ib + t)dt = g(a) — 7w + 2¢(w)b.
0

Using this, one can express g as the sum of a linear and a 2w-periodic function as fol-

lows: 5 b
8@ = (T2 )k @, g0 = ) =0,

where h is 2w-periodic. Therefore, equation (50) takes the form

4 (e = = (TR s e
hence 2 b
7l + h(a) = a(%g’(ib) - %)

Thus we arrive at the following equation

wl+ h(a) = a(% + 20 (ib) —?{(w)ib) = oc(£ — M)

2wi 2w 2wi
Next, taking into account that f(ib) = f(a) = % and 2wk = 7, we obtain the
simplest possible form:
(51) 7wl + h(a) = a(k — n).

Also in this case we claim that equation (51)) has at least k —n — 1 solutions for « in the
open interval (0, 7).

Indeed, since h(0) = h(r) = 0, the end points « = 0,a = 7 of the open interval
are solutions of equation for I = 0 and | = k — n, respectively. Therefore, for all
intermediate levels of [, that is, for [ € [1, k — n — 1], there exists a solution of equation
(B1). This proves the claim.

We shall prove now that the number of solutions of equation (F1) in the interval
(0, ) equals exactly k—n—1. Consider equation (50). We shall check that the function

Im (/ ¢(ib + t)dt — ag”(ib))
0

has everywhere non-vanishing derivative with respect to « when ib € (0, w’).
Suppose, on the contrary, that the derivative vanishes for some a:

(52) Im ({(ib + a) — ¢(ib)) = 0.
Using the addition formula for ¢, we have
'(ib) — @' ()

§b + ) = (i) + () + 5 s @)

Taking the imaginary part and using equation (52), we obtain
' (ib) — g’ ()
a + N LN 7 NN
SO+ i) — @)
Also we know that ¢(a), g(ib), go(a), g’ (a) are all real. Therefore we conclude that
%' (ib) € R. But, on the other hand, g satisfies the equation (g')?* = 4(g0 — e1)(go —
e,)(g — e3). Moreover,

ib € (0,w") = ¢(ib) < e; = ¢'(ib) € iR.

eR.
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This contradiction completes the proof in Case[2.

Theorem [/ has Corollary f.14.

Corollary 4.14. All the solutions of equation (B1)) are transversal and hence change
smoothly as one varies the parameter w' of the elliptic functions involved.

4.3. Self-Bicklund curves as deformations of conics. In this section we use the
self-Backlund curves of Section in order to construct genuine non-trivial
self-Backlund deformations of a central conic, as was promised in Section , see
Corollary @.20.

To state the result, we recall briefly from Section [4.2]our construction of simple self-
Bicklund centroaffine 7-anti-periodic curves. For every integer k > 3 and o’ € iR,
one considers the Weierstrass g-function with half periods w = 7/2k, ', the associ-
ated o- and ¢-functions and the (unique) solution a € (w, ") to

(53) af(w) - wi(a) = iw,
then set

(54) Y(t) = X(t)/N,
where

ola+t+ co’)cr(co’)e

—t¢(a) = ’
ola+ w)o(t +w') » N X" (0)]

(55) X(1) =

Remark 4.15. The normalization factor N = 4/|X"(0)| in equations (54)-(53) is intro-
duced so as to render the normalized curve Y centroaffine and 7-anti-periodic (enclos-
ing area 7). See Remark [.9 for an explicit expression for N.

The deformations of the unit circle we are seeking are obtained by fixing k and
letting @’ — oo in the above construction. To examine this limit we let o’ = i/s,
s € (0,1], and use henceforth the subscript s to denote all associated objects, such as
s, 5, G55 A, Xy, Ny and Yy (suppressing the dependence on k, which is fixed through-
out the section). Our goal in this section is to prove Theorem [8, illustrated in Figure

o6
Theorem 8. For each integer k > 3,

(1) The family of curves Y(t), s € (0, 1], given by equations (53)-(53) with w = 7/2k,
w' = i/s, extends smoothly to s € [0, 1] by setting Y,(t) := €.

(2) Each curve Yy(t) is a centroaffine m-anti-periodic simple curve with 2k-fold sym-
metry, Yy(t + mw/k) = Yy(t)e™X, self-Biicklund for s > 0 with respect to k — 2
rotation numbers o € (0, ), varying smoothly in s € [0,1] and converging as
s — 0 to the k — 2 solutions of equation (L9), tan(ka) = k tan c.

(3) The deformation Yy, s € [0,1], is analytic away from s = 0 but not at s = 0.
In fact, one has (as)"|S= o Yy(t) = 0, n > 1, so the associated infinitesimal de-
formation of the unit circle vanishes to all orders, yet the deformation itself is
non-trivial.
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(4) The change of parameter,
(56) g:=

gives a deformation Y, of the unit circle Yo, analyticin € € [0,e~2K].
(5) Theinfinitesimal deformation associated with the analytic deformation Y is non-
trivial. That is,

Y(t) = €' + Y;(t)e + O(e?),

where Y] is non-vanishing.

FIGURE 16. Theorem B] Three families of deformations of the circle
(black) through a 1-parameter family of centroaffine self-Bicklund
curves Yy (blue) with 2k-fold symmetry, k = 3,4, 5.

Proof. The main idea of the proof of this theorem is to write the functions X, s € [0, 1],
as suitably normalized Floquet eigenfunctions of a Hill operator depending smoothly
on s, and use a general argument of smooth dependence of the eigenfunctions of a Hill
operator depending on the smooth parameter. Similarly, when replacing s with ¢ the
Hill operator depends analytically on ¢ and so do its eigenfunctions.

In more detail, we recall from Section that X, s € (0, 1], is precisely the eigen-
function corresponding to the smallest eigenvalue A, ¢ for the Floquet problem

(57) X" 4+ (A =2q,)X =0, X(t + 7w/k) = uX(t), u = e’k

where q,(t) = go(i/s + t) and X satisfy the normalization condition X;(0) = 1. More-
over, we showed that 1oy = —go,(ay), where a; € (w,w") is the (unique) solution to
equation (53).

Following this idea, we begin by extending g, smoothly to s = 0.

Lemma 4.16.
(A) The function
Gos(t +i/s), s#0,

QS(t) =
—k2/3, s=0

depends smoothly on (s, t) € [0,1] X R.
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(B) The change of parameter s — ¢ of equation (56) transforms the deformation qs
to q, which is real analytic in € € [0, e~2¥], with Taylor series

2
(58) q: = —k? — 8k? cos(2kt)e + O(e?).

We postpone the proof of Lemma [4.16, as well as Lemmas {.17H4.19} to the end of
this section.

Lemma 4.17. The eigenfunctions X,(t), s € [0, 1], corresponding to the first eigenvalue
Ao s of the Floquet problem (57), are uniquely determined by the condition X;(0) = 1 and
are smooth (analytic) in s if the potential q, is smooth (analytic) in s.

Lemma 4.18. For every s € [0, 1] the curves Y; are self-Bdcklund for k — 2 values of
ay € (0, ), satisfying

(59) —Gs(as + aS) = ezasgs(as).

os(as — o)
All k — 2 solutions ag depend smoothly on s € [0,1]. For s = 0 this equation reduces to
equation (19) of Theorem B} k tan(cr) = tan(kc). Moreover, with respect to the parameter
¢ of equation the k — 2 families a, are analytic in ¢ € [0,e~2K].

Lemma 4.19. X, has a Taylor series in g,
X,(t) = e + X;(t)e + O(?),
where X, is non-vanishing.

With Lemmas the proof of the 5 items of Theorem [ is straightforward:
by Lemma[4.16] the Hill operator of equation is smooth in s € [0,1] and analytic
in ¢ € [0,e~2¥]. This implies, by Lemma that X, is smooth in s and X, is analytic
in g, therefore the same holds for Y; and Y;. This proves items (1) and (4) of Theorem
B. Lemma proves item (2). Item (3) follows from the well-known fact that £(s) of
formula (56) is “flat” at s = 0 (all derivatives exist and vanish). Lemma gives item
(5). O

Corollary 4.20. For every value of a € (0, ) for which the unit circle admits a non-
trivial infinitesimal self-Bdcklund deformation (solution of tan(ka) = ktan a for some
k > 3) there is a genuine analytic self-Bdcklund deformation realizing it.

We now proceed to the promised proofs of Lemmas appearing in the above
proof of Theorem [§|

4.3.1. Proofof Lemma By the definition of g, we have the following series repre-
senting g, for s > 0:

q5(t) = gos(t +i/s) = (t +i/s) ">

( n .2m+1>_2 (n'n .2m>_2
t+ — +i —=+i— .
k s k S

(60)
+

(m,n)#(0,0)

Let z :=t + i/s, Q,,, = mn/k + 2mi/s, m,n € Z, s > 0. We break the double sum in
the series (p() as a sum Zm Q,,, where each Q,, is a series in n:
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-2 -2
Znez [(Z - Qnm) - (Qnm) ] ’ m#0,
Qnm = 5 5
Yeznzo |Z—Qno) T — Qo) 7], m=o0.
We have for Q,, the exact expressions (see [[1], page 197, Table I):
kz[sin_2 (k(z — isz)) —sin~2 (lszm)]’ m 0,
Qm =
1, =
kz[— 3 +sin 2(kz)], m = 0.
Substituting into these formulas z = ¢ + i/s, we get
kz[sin‘2 (k(t — i#)) —sin~2 (leTm)]’ m#0,
Qm = )
k2 [—% + sin™? (k(t + é))] m=0.

Thus we have

N N

k? [(sin(kt) cosh(k22=2) — i cos (kt) sinh (k22=))

Qu={  —sinh”(FM)], m#0,

k2 [—% + (sin(kt) cosh(’;‘) + icos(kt) sinh(%))_z], m = 0.

Next introduce the change of parameter, s — 7 = e ks o<t < Ty = e~k ieg =172 In
terms of 7, we have

4k? [ (sin(kt)(z' 2™ + 2m=1)
— icos(kt)(r!72m — ‘L'Z’"_l))_2
Qm = A
—(z7¥m — 22|, 7>0,m#0,
(61) 0, T=0,m#0,
K2[—3 +4(sin(kt)(z ™! +7)
Qp = +icos(kt) (t7 — T))_Z], >0,
1
—Ekz, 7=0.

From formulas one can conclude the following facts:
(1) The series
q= Z Qm

mezZ
converges as 7 — 0, uniformly in (z,t) € [0, 7] X R, to the constant function
qo = —%kz. This follows from the estimate

4 4m-2
Q| < Clro)(zg™ + 75
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for some constant C(t,) > 0. Since 7, = e~¥ < 1 this implies uniform conver-
gence in [0, 75] X R.

(2) Every term Q,, in equation (61)) is analytic in 7 at 7 = 0 with radius of con-
vergence R, = 1 > t15. To see this, one represents each term in the square
brackets of (1)) as a rational function of 7 and finds that its poles all lie on the
unit circle in the complex 7 plane. Hence R,,, = 1.

(3) It follows from items [I) and [2), by Weierstrass theorem, that the sum of the
series ) Q,,, which equals exactly q.(t), is analytic in 7 € [0, 7).

(4) Each Q,, in equation is clearly even in 7, hence so is q. Thus, with the
change of variable ¢ = 72, g, becomes analytic in €.

(5) The following 1st order Taylor expansions at 7 = 0 hold:

2
(62) Qo = —% — 4k2e%iktr2 4 Q = —4kPe 2kiz2 4
and Q,,, is of order 74"~ for m > 0, which implies equation (58).

4.3.2. Proofof Lemmald.17] Notice that, for a given periodic potential g(¢), the problem
(57) of Floquet eigenvalues has the following properties (see [22} page 32]):

(1) The eigenvalues 4,,(u) are solutions of the equation

(63) AQd) = Zcos(%).

Here and below, A(4) = trM(4) is the trace of the monodromy matrix of equa-
tion (57). It is defined as follows. Fix a basis of solutions {y;(4, t), y,(4,t)} of
the second order differential equation

X"+ (A —-2q(t)X =0,
such that
yl(/L O) = y/2(17 0) = 1’ yll(/L 0) = yZ(/L 0) =0.

Then the monodromy matrix is

_(mu mp\ _ (y1Qw,4)  y,(2w,1) _
M(t’l)_(mzl mzz)_<y’1(2w,ﬂ.) 5w, 1))’ det(M) = 1.

(2) The graph of the function A(1) (see Figure [14) is such that all the solutions of
equation (b3) are transversal. Hence all eigenvalues 1,, ;(u) of equation (57),
and, in particular, A, ;(u), depend smoothly on the parameter s.

(3) All Floquet eigenvalues A, (1) of equation (57) have multiplicity 1, because if

X is an eigenfunction for some non-real Floquet exponent y, then X is not.

In our situation, we have a smooth family of potentials g4(t). So we have the standard
basis {y;(4, s, t), y,(4, s, t)}, where

¥1(4,5,0) = y53(4,5,0) = 1, ¥1(4,5,0) = y2(4,5,0) = 0,

and the monodromy matrix M(4, s) which is smooth in 4,s. We can write the eigen-
function corresponding to 4,, ;(«) in the form

X = Ay, + By,,



SELF-BACKLUND CURVES AND LAME’S EQUATION 271

for some complex A, B. Then the Floquet boundary conditions in terms of A, B reads

(64) @ﬂ&@—ymy<g)=0

Moreover, it follows from properties (2) and (3) above that, for A = 4,, 5, the matrix
(M — uId) has rank 1 and that M(4,, s, s) depends smoothly on s. The normalization
X(0) = 1 implies that A = 1 and hence B can be found uniquely from (64),

B = —(my; — w)/my,.

It is important that the denominator m,, in this formula cannot vanish, because other-
wise the matrix M would be triangular having real eigenvalues, which is not the case,

. : . [A . .
since u is not real. Thus we conclude that the solution ) of equation (64) is smooth

B
in s € [0,1]. An analogous proof applies when the potential q, depends analytically
on ¢ € [0,e2¥]. This completes the proof of our Lemma.

4.3.3. Proof of Lemma .18 The functions g, oy, {; depend analytically on s € (0, 1]
and can be shown to converge, as s — 0, to the limiting functions (see [/, page 201])

%o(2) = —k— + k%sin2(kz), ¢o(z) = —z + kcot(kz),
(65)
oo(z) = k ek ZZ/ 6 sin(kz).

Using the above formula for {,, we compute that equation (53) for s = 0 is equivalent
to

T b 1
(66) a= ﬁ+lb, tanh( > ) %
Consider equation (59) on a for s = 0:
%@+ @) _ ato),
opla—a)
where a is the solution of equation (53) for s = 0. Set
= 000+ D) aaty@
FO= @
Using the explicit formulas (b5)-(b6), we have:
i . 1-— l— tan (ko
F(o) = sin(k(a + a)) o2 _ ( )
sin(k(a — a)) 1+ l— tan (ka)

This immediately implies that the equation F = 1 is equivalent to the familiar equation

@9

ktan(a) = tan(ka).
This means that, for s = 0, equation (]5__9]) has precisely k — 2 solutions for a € (0, 7).
Moreover, differentiating F at a point « where F(a) = 1 we have:
Fi(@) = 21'(1 %) tazn2 ka
k2 + tan” ka
Applying the implicit function theorem, we conclude that all k—2 solutions of equation
(B9 can be smoothly extended from s = 0 to s > 0. This, together with Theorem [ and

# 0.
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Corollary implies the existence of k — 2 solutions for every s € [0, 1], smoothly
depending on s. An analogous proof applies for analytic dependence on ¢ € [0, e~2¥].

4.3.4. Proof of Lemma[.19. We calculate mod &*. Use the Taylor expansion (58)),
2
Qe = —% — 8k?cos(2kt)e + ...,
andletX, = e +Xje+..., Ao = Ag+A,€+.... Substitute these into X" +(1—2¢)X = 0
and solve for successive powers of €. The ° term gives

Ao =1—2k?/3
and the ¢! term gives
X{/ +X 4 8k2 (ei(1+2k)t + ei(l—Zk)t) + lleit =0.

The general solution is
X, = A, el0+2Kt L g pl(1=200t 4 B it L B =it 4 4 telt
- - 2i 7

where A, = 2k/(k £1) # 0and B, € C are arbitrary. Since X; is periodic we must
have 1; = 0 and what remains is non-vanishing.

5. SELF-BACKLUND POLYGONS

5.1. Centroaffine butterflies, Bianchi permutability. The central projection R? \
{0} - RP' takes a centroaffine curve to a curve in the projective line. Conversely, a
projective curve admits a unique lift to a centroaffine curve. Bianchi permutability for
c-relation was established for projective curves, in [44]. Here we do it for centroaffine
curves.

Let us say that a quadrilateral BPB,PBPF, forms a centroaffine butterfly if

(67) [R,B] = [B,B] and [B,B] = [R, K]
Note that a centroaffine butterfly is not necessarily a centroaffine polygon.

Lemma 5.1. A generic quadrilateral F,BRP, is a centroaffine butterfly if and only if
any of the following equivalent conditions are satisfied:

(1) There is a linear involution I € GL,(R) interchanging BB, and BPE,. That is,
I(B) =B, 1(B) =B, I(B) = B, I(B) = B.

(2) The line segments BB, BE, are parallel and their midpoints are collinear. See
Figure[[}

(3) B,P,E.P; is a centroaffine butterfly, where abcd is any of the 8 permutations of
1234 generated by (1234), (24), (12)(34).

Proof. (1) By applying a linear transformation, we can assume that B = (1,0), B =
(0,1). Let B = (¢, d). Then equation (7)) implies B, = (d,¢). Thus I : (x,y) — (y,x)is
the required symmetry.
(2) Note that the said segments are parallel and their midpoints are collinear if and
only if [R = B, B = B ] = 0 (“—’ for the 1st statement, ‘+’ for the 2nd). By expanding
these expressions we see that they are equivalent to [B, B] = [B, B], [B,B] = [B, B].
(3) This is a simple verification (omitted).

O
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0o

FIGURE 17. A centroaffine butterfly

It follows from Lemma that, given a generic triple of points B, B, B, there is
a unique fourth point P, such that BFBBPE, form a centroaffine butterfly. Namely, by
property (1), B, = IB where I is defined by IR = B, IR = K. More geometrically, by
property (2), one constructs the line ¢ through B, and parallel to B B, intersects ¢ with
the line through the origin O and the midpoint of B B, then finds the unique point B,
on ¢ such that this intersection point is the midpoint of BE,.

Theorem 9 (Bianchi permutability). Consider three centroaffine curvesy, 8, and T such
that T and & are b- and c-related to y (respectively). Then there exists a fourth centroaffine
curve A that is b-related to § and c-related to T. In fact, A(t) is the unique point such that
8(t)y()T(t)A(t) form a centroaffine butterfly.

Proof. The idea of the proof is that if y(¢), §(¢) and I'(¢) are considered as three vertices
of time-evolving centroaffine butterfly, then A(t) is its fourth vertex.
Specifically, we have

[v,6] =, Al =c, [y,I] =1[6,A] = b,
and need to check that A(t) is a centroaffine curve, that is, [A, A'] = 1.

Using the above relations, one can write A as a linear combination of § and T,

_ [7,9] [y,T] . ¢d—bT
A=ra’ el T el

Then

[AA] = [c6 —bI',cd' —bI"] b® +c2 — be([6,T'] + [T, 5'])

T [T, 5] - [T, 5] ’
Thus we want to show that
(68) b +c2 —be([8,I'] +[[,8']) = [T, 5]
‘We have
d=fy+cy, T =gy+by,

hence

' =(f"+cpy+fr,T'=(g +bpy+gy.
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It follows that
[T',6] =cg—bf, [6,I"] = fg—cg —bep, [T,8'] = fg—bf" — bep.
In addition, one has by equation (B):
cf =f*—c*p—1,bg =g*-b’p—1.
Substitute these formulas into equation to obtain a true identity. O

5.2. Rigidity results and flexible examples of self-Biicklund polygons. Bicklund
transformation can be defined on centroaffine polygons. Similarly to its continuous
version, it is a completely integrable dynamical system. We refer to [2] for a detailed
study; see also [33]].

For the purpose of this paper, we recall, from Section [I that an origin-symmetric

2n-gon P in R? with vertices P;,i = 1,...,2n, is called a self-Bicklund (n, k)-gon if

[P, Pyl =1, [P, Pyl =c
foralliand 2 < k < n— 2. Such polygons are acted upon by SL,(R). Since P;,,, = —P,,
we can assume, without loss of generality, that k < n/2.

A regular 2n-gon is a self-Béacklund (n, k)-gon for all 2 < k < n/2. We call these self-
Bécklund (n, k)-gons and their SL,(R) images trivial. The problem is to find non-trivial
self-Bicklund (n, k)-gons.

The next result is analogous to Theorem 9 of [41].

Theorem 10. In the following cases every self-Backlund (n, k)-gon is trivial:
(1) nisarbitrary, k = 2;
(2) nisodd, k = 3;
(3) kisarbitrary, n = 2k + 1.
(4) n =3k
On the other hand, there exist non-trivial self-Bdcklund (n, k)-gons in the following cases:

(1) niseven and k is odd;
(2) n =2k

Proof. Eachnextvertexis alinear combination of the preceding two: P, = a;P;,1—P;.
Letk = 2. Then [P;, P;,,] = ¢, hence a; = c for all i. Let A be the linear map defined

by
AR) =B, A(B) =B.

We claim that A is area preserving and A(P;) = P, for all i. This would imply that the
polygon P is centroaffine regular, that is, trivial.
That A is area preserving follows from [B, B| = [B, B]. Next,
B =—-B +cB, hence A(B)=—-B +cB =DFh,.

Repeating this argument, we obtain A(P;) = P;; for all i.
Now let n be odd and k = 3. Consider four consecutive vertices of P; they satisfy the
Ptolemy-Pliicker relation

[P, Piy11[Pis2, Pips] + [Pig1, Pip2l[Py Pigs] = [Py, Pig2 ][ Piy1s Pigsl:
Therefore
1+c = [P, Piyo][Piy1s Prysl-
It follows that [P;, P, 5] = [Pi42, Pi14] for all i.
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Recall that n is odd and that P, ,, = —P; for all i. This implies that

[P;, Piy2] = [Bitis Buviva] = [Pig1s Pigsls

and hence [P, P;, ] has the same value for all i. Thus P is a self-Bdcklund (n, 2)-gon,
the already considered case.
Next, let n = 2k + 1. First we notice that [P;, P, ;] = c¢. Indeed,

[P;, Piyic] = [Pitk415 Piynl = [Pis Piyicsr]-

Now consider the quadruple of vertices P;, P; 1, Pk, Pi+k+1- The Ptolemy-Pliicker re-
lation implies that

2-1

[Piy1, Pkl =

for all i. That s, [P;, P;,,_1] is independent of i.

Continuing in the same way, we reduce k until we get to the case k = 2, considered
above, and we conclude that P is centroaffine regular.

Now let n = 3k. Let us scale the polygon so that [P;, P, ;] = \/3/2 for all i (as for a
regular 6k-gon inscribed in a unit circle). Then [P;, P, ] = t, a constant.

Each hexagon P; := (P, Piix, Piyok, Piysk> Piraks Piysk) is affine-regular, and they
are all equivalent under SL,(R). Hence we assume, without loss of generality, that
the vertices of P, are the sixth roots of unity. Let A € SL,(R) take P, to P;. A quick
calculation, using the equations

[Ry, B] = [P> Pis1] = [Bis Bics1] = [Bis Bis1] = [Biks Biks1] = [Bies Bresr]l = £

reveals that A is a rotation

[cos a —sina

. , t =sina.
sina cosa

The same argument, applied to the linear map that takes P; to P,, shows that this
map is the same rotation, A. And so on, showing that the polygon is regular.

Let us construct non-trivial self-Bécklund (n, k)-gons for even n and odd k. Start
with a regular 2n-gon, and consider the midpoints of its sides. These points are the
vertices of another regular 2n-gon. Dilate the latter 2n-gon with the center of dilation
at its center. We obtain a centrally symmetric 4n-gon having a dihedral symmetry,
and this symmetry implies [P;, P;.x] = [Pi41, Pitk+1]- See Figure [1§ on the left. (The
projection of this polygon to RP'isa regular n-gon therein.)

The construction of a non-trivial self-Backlund (2k + 4,k + 2)-gon is presented in
Figure [L§ on the right (where k = 2)X This polygon has two axes of symmetry. In the
general case, one has points (a,1),(a + 1,1),...,(a + k, 1) on a horizontal line with

Vk2+8—k VkZ+8+k

, C= .
4 2

One checks that [P;, P, 1] = 1 and [P;, P j4,] = cfor alli. |

1We are grateful to Michael Cuntz for suggesting this construction.
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0,0

@1
(a+1,1) “(a+2,1)

e

c=1/3+1,ac=1

FIGURE 18. Left: a self-Bicklund (8, 3)-gon. Right: a self-Biacklund
(8,4)-gon.

5.3. Infinitesimal deformations of regular polygons. Here we consider the lin-
earized problem, that is, infinitesimal deformations of regular polygons as
self-Bicklund (n, k)-gons; this is a discrete analog of the material in Section B.1.

Call a regular polygon infinitesimally rigid as a self-Bicklund (n, k)-gon if each of its
infinitesimal deformations in the class of self-Bicklund (n, k)-gons is induced by the
action of 3[(2, R).

Theorem 11. A regular 2n-gon is infinitesimally rigid as a self-Bdcklund (n, k)-gon un-
less one of the following holds:
(1) niseven andk is odd;
(2) n =2k with even k > 2;
(3) there exists an integer jwith 2 < j < n — 2 such that n = 2(k + j) and n divides
(k=1 - D.

Corollary 5.2. A regular 2n-gon is infinitesimally rigid as a self-Backlund (n, k)-gon if
nis odd, or if both n and k are even, k < n/2, and gcd (n, k) > 2.

Proof. The first statement of the corollary follows immediately from Theorem [11]

For the second statement, assume that a non-trivial infinitesimal deformation exists.
We claim that k and j are coprime. Indeed, if (j, k) = p, then n = 2(j + k) = 0 mod p,
but (j — 1)(k — 1) = 1 mod p. This contradicts the fact that n divides (j — 1)(k — 1). It
follows that

(n, k) =+ k), k) =2(j,k) =2,
proving the second statement. ]

Now we prove Theorem [11]

Pj = (cos(ﬂ),sin<ﬂ>>, j=1,...,2n,
n n

be the vertices of a regular 2n-gon. We have

L (T . (7k
[Pj’Pj+1] = Sln(z) =a, [Pj’Pj+k] = sm<7> =b.

Proof. Let
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(One can rescale to have a = 1, but it is not really needed for the argument.)
We also have the respective second-order linear recurrence

T
(69) Py = Zcos<E)Pj —Pj_;.

Consider an infinitesimal deformation P +eV, where V j is an n-anti-periodic se-
quence of vectors, thatis, V;,, = —V; for all j, and assume that the resulting polygon
is a self-Bicklund (n, k)-gon. By applying a dilation, we may assume that the constant
a does not change. Then, calculating modulo 2, we obtain two systems of equations

(70) [I’j,Vj+1]+[Vj,Pj+1]=O,j=1,...,n,
and
(71) [Pj,Vj+k]+[Vj,Pj+k]=C,j=1,...,n,

where C is a constant.
Consider the system ([70). Let

Vj =P+ bjPjy = Py +d;Pjy.
Then the recurrence (f9) implies that

S ;_aj = 2cos(%), Z—j = —1.

j
Substitute vectors V' ; into equation (70) to obtain

Cj+Cj+1 Cj+Cj+1

a; = —c¢C;j 5b':—5 i~ T 5 N
J I 517 2 cos(z/n)’ Y 2 cos(7t/n)

where c; is an n-periodic sequence to be determined.

Now consider the system (71). Substituting vectors V' ;, using equation (72)), and
collecting terms yields the linear system

(72)

(73) Mk—1Cj = Mk+1Cj+1 + Hi41Cj 4k — Mk—1Cj+k+1 = C, j=1,...,1,

where uy = sin(zwk/n).

First, we note that C must be zero. Indeed, add equation (: the left hand side
vanishes, and so must the right hand side.

Second, system has a 3-dimensional space of trivial solutions that correspond
to the action of the Lie algebra 1,(R). These solutions are given by the formulas

2ji—1 2i—1
cj =1 ¢j =COS<M); Cj =sin<M).
n n

We need to find out when there are no other solutions.
To this end, consider the eigenvalues of the matrix defining the system (73). This is
a circulant matrix, and its eigenvalues are given by the formula

k k+1
Aj = Mg—1 = R4 19; + U419 —Mk—le+ »J=0,...,n—1,
j2m
where w; = €', see [19].
We are interested in zero eigenvalues. One has 4; = 0 if and only if
Wk = HMi—1 = Hk+19j
/ Mk—1 — Mk 419;



278 MISHA BIALY, GIL BOR, AND SERGE TABACHNIKOV

Let 2a be the argument of the unit complex number on the right. A direct calculation
yields

sin(@)sin(%)
sin(@) - sin(@)cos(ﬂ).

n

tana = —

k+1
J

“in <7r j(kn+ 1)) sin(”(kn_ 1)) —in (71' j(kn— 1)) “in (n(kn+ 1))’

or, equivalently,

(74) tan(lJ)tan(n—k) = tan(ﬂ{>tan(z).
n n n n

Note the trivial solutions j = 0,1, n — 1, corresponding to the action of 8,(R). Let us
assume that2 < j <n-—2.

One also has other trivial solutions, when both sides of equation ) are infinite:
n = 2jand k odd, and n = 2k and j odd. Note that, in the latter case, k > 2. Indeed, if
k =2,then n =4, and since 2 < j < n — 2, we have j = 2, contradicting that j is odd.

Equation (74)) appeared in [41] and in [3], and it was solved in [17]. This equation
has non-trivial solutions if and only if n = 2(j + k) and n divides (j — 1)(k — 1). This
completes the proof. O

The argument of w3 ™" is 27 j(k + 1)/n, hence (after cleaning up the formulas)

Remark 5.3. As we know from Theorem [0}, if n is even and k is odd, or if n = 2k, non-
trivial self-Bicklund (n, k)-gons indeed exist. The smallest values in case 3) of Theorem
are k = 4,n = 30. Does there exist a non-trivial self-Bécklund (30, 4)-gon?

Remark 5.4. One wonders whether the symmetry between k and j in the formulation
of Theorem [L1] corresponds to some kind of duality between self-Béicklund (n, k)- and

(n, j)-gons.

6. APPENDIX: FROM THE CENTROAFFINE PLANE TO THE HYPERBOLIC PLANE

In this appendix we connect two geometries associated with the group SL,(R), the
centroaffine and the hyperbolic ones.

Consider the 3-dimensional space of quadratic forms ax? + 2bxy + cy? with the
pseudo-Euclidean metric given by quadratic form b? — ac, the negative of the determi-
nant of the quadratic form. The projectivization of the subspace of the positive-definite
forms is the hyperbolic plane H?; the degenerate forms comprise the circle at infinity.
In the modern literature, this approach to hyperbolic geometry was developed in [5].

In the coordinates (u, v, w), such that

a=u+v,b=w,c=u-vo,

one has the standard Minkowski metric v? + w? — u?. The unit-determinant quadratic
forms comprise the hyperboloid of two sheets, and the condition a + ¢ > 0 describes
its upper half, the pseudo-sphere.

A “unit” central ellipse of area 7 is an SL,(R) image of the unit circle, given by an
equation of the form ax? + 2bxy + cy? = 1 with ac—b? = 1 and a+c > 0. This defines
a point of the hyperbolic plane H? in the pseudo-sphere model.
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Likewise, a central hyperbola, which is an SL,(R) image of the “unit” hyperbola
xy = 1, is given by an equation of the form ax? + 2bxy + cy? = 1 with ac — b*> = —1.
It defines a point of the hyperboloid of one sheet.

Lemma 6.1. Let a unit central ellipse ax? +2bxy +cy? = 1 and a unit central hyperbola
a'x?+2b'xy+c'y? = 1 be tangent at point (x, y). Then the vectors (a, b, c) and (a’,b’,¢)
are orthogonal.

Proof. The group SL,(R) acts transitively on the space of contact elements of the punc-
tured plane whose line does not pass through the origin. And it acts by isometries on
the space of quadratic forms. Therefore it suffices to consider the point (1,0) and the
vertical direction. In this case the two conics are x* + y?> = 1 and x> — y? = 1, and the
vectors (1,0, 1) and (1,0, —1) are indeed orthogonal. O

To a point (x, y) of the punctured plane there corresponds the affine plane ax? +
2bxy + cy? = 1 in the 3-dimensional space of quadratic forms. The normal vector of
this plane is isotropic, and this plane lies above the origin. Hence its intersection with
the pseudo-sphere is a horocycle in H2. The symmetric point (—x, —y) yields the same
horocycle.

To summarize, a point of the centroaffine plane is a horocycle in H?, and a unit
central ellipse is a point of H?.

Let y(t) be a centroaffine curve. The osculating ellipse at a point (x, y) = y(t) is a unit
central ellipse tangent to y at this point. As t varies, one obtains a curve y*(t) C H?, the
dual curve of y. Due to the central symmetry of y, this curve closes up after ¢ is increased
by 7. Equivalently, the curve y* is the envelope of the horocycles corresponding to the
points of the curve y.

Lemma 6.2. If[y(t),y' (t)] = 1, then |y*(¢)'| = |1 + p(t)].

Proof. Let y(t) = (x(t),y(t)). Thenxy’ —x'y = 1.
The osculating ellipse at a point (x, y) satisfies the equations

ax? +2bxy + cy? = 1, (ax + by,bx +cy) - (x',y') = 0.
Taking ac — b? = 1 into account, one solves these equations to obtain
a=y’+y% b=—(xy+x'y), c=x*>+x".

This is the equation of y*.
Next, x" = px,y"” = py. Then

") =1+ p)2yy,—(X'y + xy'), 2xx"),
and |(¥*)'| = |1 + p|, as claimed. 0
Let k be curvature of the curve y*.

Lemma 6.3. One has

_1-p —
k= TTp or 1+ p)(1+k)=2.

For example, when y is a unit central ellipse with p = —1, the dual curve is a point,
and the formula accordingly gives k = co. If y is a unit central hyperbola with p = 1,
then the formula gives k = 0. Indeed, Lemma @ implies that y* is a straight line, the
intersection of the pseudo-sphere with the 2-dimensional subspace orthogonal to the
vector corresponding to this hyperbola.
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Proof. Let 7 be the arc length parameter on y*. Then dt/dt = 1/(1 + p).

The curvature is the magnitude of the projection of the vector d?y*/dt? on the pseudo-
sphere. If u is a position vector of a point of the pseudo-sphere and v is a vector with
foot point u, then the projection of u is given by u + (u - v)v.

From Lemma 6.3, we know that

d * ! !’ ! !
dyT = 2yy’,—(x'y + xy'), 2xx"),

hence
d2 - 1 ’ !’ ’ AV 2 ’ 14,/ ’
L = T3 p @Y~y +xy) 2xx') = o (py? + %, —pxy — XY pa o+ x7).
Next,
dr* o4 Loyt dyt Ayt
aw V=02 a2 "t @ T A =-L
therefore the projection of d?y*/dz? on the pseudo-sphere is
dzy* % 2 2 12 14,1 2 12
g2 V= Tp(py + Y%, —pxy —x'y', px* + x"%)—
1-—
02+ Y% =y + Xy X2+ x?) = g(y’2 —y%xy —x'y, x? - x?),

and it remains to notice that the vector in the parentheses is unit. O

Remark 6.4. According to a theorem of E. Ghys, see [36]], the potential p(t) of the curve
y assumes the value -1 at least four times on the period [0, 7). It follows that the curve
y* has at least four cusps; in particular, it cannot be smooth.
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