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Abstract—Over the last decade, indistinguishability obfusca-
tion (iO) has emerged as a seemingly omnipotent primitive with
numerous applications to cryptography and beyond. Moreover,
recent breakthrough work has demonstrated that iO can be
realized from well-founded assumptions. A thorn to all this
remarkable progress is a limitation of all known constructions
of general-purpose iO: the security reduction incurs a loss that
is exponential in the input length of the function. This “input-
length barrier” to iO stems from the non-falsifiability of the iO
definition and is discussed in folklore as being possibly inherent.
It has many negative consequences; notably, constructing iO for
programs with inputs of unbounded length remains elusive due
to this barrier.

We present a new framework aimed towards overcoming the
input-length barrier. Our approach relies on short mathematical
proofs of functional equivalence of circuits (and Turing machines)
to avoid the brute-force “input-by-input” check employed in prior
works.

— We show how to obfuscate circuits that have efficient proofs
of equivalence in Propositional Logic with a security loss
independent of input length.

— Next, we show how to obfuscate Turing machines with
unbounded length inputs, whose functional equivalence can
be proven in Cook’s Theory PV.

— Finally, we demonstrate applications of our results to
succinct non-interactive arguments and witness encryption,
and provide guidance on using our techniques for building
new applications.

To realize our approach, we depart from prior work and
develop a new gate-by-gate obfuscation template that preserves
the topology of the input circuit.

Index Terms—cryptography, logic

I. INTRODUCTION

Program obfuscation is the technique of converting a com-
puter program into a new version that retains the functionality
of the original but is immune to reverse-engineering. While
a formal study of this notion was initiated at the turn of
this century [45], [8], the past decade has seen a renewed
push towards its study. The notion of indistinguishability
obfuscation (iO) [8] has emerged as the central figure, with
a long sequence of works aimed towards investigating its
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existence (see e.g., [33], [64], [43], [6], [14], [53], [58], [56],
(551, [71, [54], [571, [1], [48], [4], [201, [2], [41], [69], [42]).
This line of work recently led to the breakthrough result of [49]
who constructed iO for general functions from well-founded
assumptions.

A parallel line of research over the last decade has demon-
strated that most cryptographic primitives, including several
powerful ones such as witness encryption [35], multiparty non-
interactive key exchange [17], succinct non-interactive argu-
ments [67], [10], software watermarking [27], and deniable
encryption [67] can be built from iO. Moreover, iO has also
found appeal outside cryptography, such as for establishing
hardness of Nash equilibrium [13] and the hardness of certain
tasks in differential privacy [17], [21]. These results have
established iO as a “central hub” of theoretical cryptography.

Input-Length Barrier. A thorn to all this remarkable progress
is a limitation of all known constructions of iO: the security
reduction incurs a loss that is exponential in the input length
of the function. This has severe negative consequences on
the necessary assumptions and the efficiency of the scheme.
In particular, it requires the program input length to be a
priori bounded. This, in turn, prevents us from realizing iO
for efficient computing models such as Turing machines with
unbounded input length.!
This state of affairs motivates the following question:

Can we build iO with a loss in the security reduction
independent of the input length?

To answer the above question, it is first important to
understand whether the input-length barrier stems from tech-
nical limitations or something more fundamental. To develop
intuition, it is useful to recall a folklore argument that explains
the origin of the input-length barrier. Here, we sketch the
informal idea’ (adapted from [35], [59]) based on the meta-
reduction technique [15].

Let us first recall the security definition of iO: if two
programs P, and P, are functionally equivalent (i.e., for

'Some prior works overcome this barrier by relying on non-standard
assumptions; we discuss this later.

2We stress that this is not a formal proof. Turning this argument into a
formal proof runs into subtle technical challenges.
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any input x, Pi(x) = P,(z)), then their obfuscations must
be indistinguishable to any polynomial-time algorithm. Now,
suppose that there is a construction of iO whose security can
be based on some polynomial-time hardness assumption (say)
Y. That is, there is a polynomial-time reduction such that
given black-box access to an adversary for the iO scheme, it
can break the assumption Y. Consider the following “trivial”
polynomial-time adversary that chooses two programs P, P
that are functionally equivalent except that their outputs differ
at some input (say) z*. Such an adversary can easily distin-
guish between obfuscations of P; and P, by evaluating them
on x*; yet the reduction must seemingly work for such an
adversary as well. Then, combining the reduction with this
trivial adversary, we have found a polynomial-time algorithm
for Y, which is unlikely.

To prevent the above argument, it seems that the reduction
must check whether the two programs P;, P, are functionally
equivalent so as to not be “fooled” by the trivial adversary. But
how can the reduction check equivalence? One natural way is
to iterate through all the inputs one by one. Indeed, this is the
strategy implicit in the security proofs of all general-purpose
constructions of iO. This strategy, however, leads to a security
loss that is exponential in the input length.

Can we use an alternative strategy that does not incur
such a loss? A sequence of prior works [37], [39], [38],
[59] demonstrate that the exponential loss can be avoided in
some cases when functional equivalence can be decided in
polynomial time [59]. This naturally limits their applicability
(see Section I-D for discussion). Indeed, in general, functional
equivalence may not be efficiently checkable. We ask whether
it is possible to overcome the input-length barrier in such cases
as well.

A Broader Perspective. The seeming necessity of checking
functional equivalence and its consequences is in fact an ex-
ample of a broader phenomenon in cryptography. The security
definition of many cryptographic primitives is predicated on
a mathematical premise that is not decidable in N'P. For
example, the security of witness encryption [35] for a language
L requires that a ciphertext encrypted using an instance x ¢ L
must remain semantically secure. Similarly, the soundness
definition of a proof system for a language L requires that any
proof for an instance = ¢ L must be rejected by the verifier.
In both of these cases, “z ¢ L” is the mathematical premise,
and deciding its truthfulness is a coAP problem that might
require exponential time.

The difficulty of checking the mathematical premise can
be leveraged to employ a similar meta-reduction technique as
discussed above to establish barriers for other cryptographic
primitives. This is reflected in the case of witness encryption,
where all known constructions incur a security loss exponen-
tial in the witness length. In the regime of proof systems,
Gentry and Wichs [44] leverage this observation to rule
out adaptively-sound succinct non-interactive arguments [60]
based on falsifiable assumptions [61]. Moreover, even known
non-adaptively sound constructions (obtained by instantiating
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[67] with existing iO constructions) incur an exponential loss
in the witness length.’

A New Approach. We present a new framework aimed
towards overcoming the input-length barrier to iO. We then
leverage the power of iO to overcome analogous barriers for
other cryptographic primitives.

Our starting point is the following simple observation:
suppose we are given a secure indistinguishability obfuscator.
In order to leverage its security for a given pair of programs,
we first write a mathematical proof to convince ourselves
(and others) that the two programs are functionally equivalent.
Importantly, this proof is short so that anyone can verify it.
In particular, it is significantly shorter than the “brute-force”
proof that involves iterating over every input. Our key insight
is to rely on such (short) mathematical proofs of functional
equivalence for proving the security of the obfuscator.

This raises the following question: How can we use the
mathematical proof in proving security? Our approach in-
volves two principal steps:

— Incremental Proofs of Equivalence: We first rely on the
following local property of mathematical proofs: recall
that a mathematical proof consists of a series of true
propositions, one followed by another. The truthfulness
of each proposition is derived from only a constant num-
ber of previous propositions and an inference rule. We
leverage this property to show that a short mathematical
proof (of specific form) of “Ci(z) = Ca(x)” for two
circuits Cy and Cy can be translated to a small number
of incremental changes that transform the circuit C'y into
Cs. Crucially, each incremental change is of small size.
New Template for iO: Next, we provide a new con-
struction template for iO to leverage the above proofs of
equivalence. Our template involves obfuscating an input
circuit in a gate-by-gate manner to preserve its topology
in the obfuscated circuit. This allows us to devise a
security proof consisting of a polynomial number of
steps, where in each step we only switch an obfuscated
subcircuit corresponding to an incremental change. This
results in a security loss exponential only in the size of
the subcircuit but independent of the input length.

A. Our Results

We now proceed to describe our results.

I. iO for Circuits. We first consider the circuit model of
computation. Our results rely on proofs in Propositional Logic
[23] — a branch of logic that deals with propositions and
relations among them.

We define a notion of propositional proof of equivalence for
circuits. Roughly speaking, we say that two circuit families
{C}},en and {C?},.en have a propositional proof of equiv-
alence, if there exists a proof in propositional logic system to
establish that C} and C?2 are functionally equivalent. Further-
more, we say that the proof is efficient if it is polynomial-sized.

3We discuss more on this later in Section I-B.
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Our first result is an obfuscation scheme for any two
families of circuits with efficient propositional proofs of equiv-
alence, with security loss independent of input length.

Theorem 1 (iO for Circuits from Propositional Proofs
of Equivalence, Informal). There exist polynomials
p1(:),p2(-,+,-), such that assuming the hardness of the
following, there exists a construction of iO for any two
families  of circuits {C}}nen,{C2}nen with efficient
propositional proofs of equivalence:

— Polynomial-hardness of Learning with Errors (LWE),

— 271N _secure one-way functions,

— 21N _secure indistinguishability obfuscation for circuits

of size pa ()‘7 log ‘0717|> log |C7%|)’

where X is the security parameter of the iO scheme.

A few remarks are in order:

— Unlike prior works, we allow n, namely, the input length
of circuits C}, G2 (and their sizes) to arbitrarily depend
on A, and not be bounded by p1, ps.

— The above theorem only requires an underlying indistin-
guishability obfuscator for small circuits of size essen-
tially independent of C!, C2.

We obtain the above result in two steps: we first define a new
notion of A-equivalent circuits and show how A-equivalent
circuits can be constructed via Proofs in Propositional Logic
[23]. We then show how to construct iO for A-equivalent
circuits, with security loss independent of input length.

Step 1: A-Equivalent Circuits. Informally, we say that two
circuit families are A-equivalent, if there exist a polynomial
number of intermediate circuits such that each two adjacent
circuits only differ by a logarithmic number of gates, and
the two subcircuits formed by these gates are functionally
equivalent.

We demonstrate that efficient propositional proof of equiv-
alence implies A-equivalence for circuits.

Lemma 1 (A-Equivalence from Propositional Logic Proofs).
If there exist polynomial-size propositional proofs of equiv-
alence for the circuit families {C}},cn and {C2},en, then
{C}en and {C?}en are A-equivalent.

Given a pair of circuits (C},C?) and a propositional
proof of equivalence, we prove this lemma by embedding
the propositional formulas (in the proof of equivalence) inside
C} to gradually transform it into C2, while preserving the
functionality. We leverage the “local” property of the proof
as well as the truthfulness of each formula to establish A-

equivalence. See Section II-A for an overview of the proof.

Step I1: iO for A-Equivalent Circuits. We next provide a con-
struction of iO for A-equivalent circuits.

Lemma 2 (iO for A-Equivalent Circuits, Informal). There
exist polynomials p1(-), p2(+, -, ), such that assuming the same
hardness assumptions as in Theorem 1, there exists a con-
struction of iO for any two A-equivalent circuit families

{Cyll}nENv {CEL}VLEN-
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In order to prove the above lemma, we depart from prior
templates for iO [6], [14]. To leverage A-equivalence, we de-
velop a new (albeit, natural) gate-by-gate obfuscation template
that preserves the topology of the input circuit. Due to such
a design, a key challenge is to overcome various “mix-and-
match” attacks, and we develop several techniques towards that
end. A central component in our construction is a new notion
of somewhere extractable hash functions with consistency
proofs. We show how to build this object by combining
somewhere extractable hash functions [46] with (publicly-
verifiable) non-interactive batch arguments [25]. Both of these
objects, in turn, can be based on the LWE assumption. We
refer the reader to Section II for an overview of our technical
approach.

IL. iO for Turing Machines. We next tackle the challeng-
ing problem of constructing iO for Turing machines with
unbounded length inputs. All prior results can either handle
inputs of a priori bounded length [12], [24], [51], or require
very strong assumptions [18], [3], [47], [56] (some of which
are in fact known to be implausible in general [11], [34], [9],
[56]).

We show how to obfuscate Turing machines with arbi-
trary length inputs based on similar assumptions as used for
obfuscating circuits. Our approach is applicable to Turing
machines whose functional equivalence can be proven in
Cook’s theory PV [30]. Cook introduced the theory PV in
1975 to formalize the intuition of polynomial-time reasoning.
PV is a fundamental theory in the area of proof complexity
[62], [30], [22], and is useful for translating theorems to
propositional logic proofs.

We say that two Turing machines M; and M5 have a PV -
proof of equivalence if the functional equivalence of M; and
My, is provable in PV. We prove the following result:

Theorem 2 (iO for Turing Machines, Informal). Assuming
quasi-polynomial hardness of Learning with Errors, sub-
exponentially secure one-way functions, and sub-exponentially
secure indistinguishable obfuscation for circuits, there exists a
construction of iO for Turing machines with unbounded-length
inputs and PV -proofs of equivalence.

On the use of Sub-exponential Assumptions. Although
we rely on the sub-exponential security of the underlying
primitives in our results, the hardness requirement for the
underlying primitives is independent of the input length of
the input circuits.

To our understanding, there is no obvious barrier to avoid-
ing these sub-exponential assumptions due to the following
observation: given a series of intermediate circuits, verifying
A-equivalence only takes polynomial time, since checking
whether two subcircuits of size O(logn) are functionally
equivalent or not only takes 2°(°8™) = poly(n) time. Hence,
constructing AiO for A-equivalent circuits from polynomial
hardness is not ruled out by the input-length barrier. We
therefore view our use of sub-exponential assumptions as a
technical limitation that we can hope to overcome in the future.
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B. Applications

We now discuss applications of our results towards building
witness encryption and succinct non-interactive arguments
(SNARGs) with properties that were not known to be achiev-
able earlier. Our results for these primitives apply for a
subclass of NP N coN'P languages whose disjointness with
its complement can be proven in some logic system.

We start by characterizing this class of languages.

Mathematical Proof of Disjointness. Intuitively, we say a
language L € NP N coN'P has proof of disjointness, if “L N
L = ¢” can be proven in some mathematical logic system,
where L = {0,1}*\ L is the complement of L and both L, L
are represented by circuits or Turing machines.

Specifically, let {M,}nen and {M,},en be the circuit
families that define the A/P-relation of L and L respectively.
We say that L has propositional proof of disjointness, if
“My,(z,w) 1 = M,(x,w) # 1” has polynomial-size
proofs in the extended Frege system. This intuitively requires
that the statement

“For any z, if M, (z,-) is satisfiable, then M, (z,") is not.”

can be proven in propositional logic sytem. Similarly, let
M, M be the Turing machines that defines L, L respectively.
We say L has PV proof of disjointness, if M(z,w) =1 —
M(z,w) # 1 can be proven in Cook’s theory PV. Since
propositional translation [30] can translate a PV proof to
polynomial-size propositional proofs, PV proof of disjoint-
ness implies propositional proof of disjointness.

What languages have proofs of disjointness? We expect that
for most NP N coNP languages that we are interested in, we
can write a mathematical proof of disjointness. Indeed, other-
wise it is hard to convince ourselves that the language is in
NPNcoN'P. We give a concrete example below, namely, the
language TAUT in computational complexity. Furthermore, we
will show in Section I-C that for cryptographic applications,
a large part of such mathematical proofs can be formalized in
theory PV.

Example. TAUT is the language that contains all tautologies.
Recall that a tautology is a formula that always evaluates to
true for any truth assignment. TAUT is known to be coNP-
complete and hence is an important language in complexity
theory.

By the completeness theorem of propositional logic [23],
any tautology has a proof in propositional logic. However,
such a proof may not have a polynomial size. Hence, to
ensure the honest prover/encryptor runs in the polynomial-
time in the setting of SNARGs/WE, we consider a slight
variant of TAUT, which is the following promise language
Ltaut = (Lves, Lno)- Lyes contains all tautologies with a
polynomial-bounded propositional logic proof, whereas Lyo
contains all non-tautologies. Then PV proof of disjointness
can be extended naturally to promise languages: we require
“Lyes N Lnyo = ¢7 can be proven in theory PV. Cook [30]
showed that the soundness of propositional logic system is
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provable in PV, which implies that Ltayt has PV proof of
disjointness.

We now proceed to discuss applications to witness encryp-
tion and SNARGs.

I. Witness Encryption. A witness encryption (WE) scheme
allows an encryptor to use an instance x from a language L to
encrypt a message m such that anyone who knows a witness
w for z can retrieve the message m. Security requires that
if © ¢ L, then the ciphertext hides m. As discussed earlier,
all prior constructions of WE only support bounded witness
lengths due to the input-length barrier.

As a generic application of Theorem 1, we build a WE
scheme for any language L € NP NcoNP with propositional
proof of disjointness, with security loss independent of the
witness length. Furthermore, as an application of Theorem 2,
we build a WE scheme for Turing machines for any language
L in NP N coNP with PV proof of disjointness. The
latter scheme can support witnesses of unbounded length. The
ciphertext size is independent of the witness length, but grows
with the running time of the Turing machine M.

I1. Succinct Non-Interactive Arguments. A non-interactive
argument system for an NP language L is said to be succinct
if the proof size is much smaller than the witness size. Gentry
and Wichs (GW) [44] proved that such argument systems
cannot be constructed with a black-box proof of adaptive®
soundness to falsifiable assumptions. On the other hand, a non-
adaptively sound construction based on iO was given by Sahai
and Waters (SW) [67].

While iO is not a falsifiable assumption, one can instantiate
the SW construction with a recent iO scheme (such as [49])
to obtain a scheme based on falsifiable assumptions. This
resulting scheme, however, incurs a security loss exponential
in the witness length due to the input-length barrier to iO.
This has two consequences: first, this means that the scheme
bypasses the GW lower bound due to the fact that the security
reduction is able to decide the language.> Second, the scheme
can only handle witnesses of a priori bounded length, and
in particular, the size of the common reference string (which
contains the obfuscation) grows with the size of the witness.

We show how to overcome these limitations by constructing
SNARGS that can support witnesses of unbounded length for
any language L € N"PNcoNP with PV proof of disjointness.
The CRS size is independent of the witness length and only
depends on the running time of the Turing machine M that
defines L. Our base scheme is non-adaptively sound, but by
standard complexity leveraging over the instances, it can also
achieve adaptive soundness.

An important step towards this obtaining this result is to
build puncturable pseudorandom functions (PRFs) [16], [19],
[50] with a PV -proof of functionality preservation. We show

4Adaptive (resp., non-adaptive) soundness refers to the setting where the
adversary can choose the challenge instance after (resp., before) viewing the
common reference string.

SIndeed, this scheme can also achieve adaptive security by standard com-
plexity leveraging (over the instances) without further security degradation.
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that puncturable PRFs based on the GGM PRFs [16], [19],
[50], [67] satisfy this property (see Section I-C for further
discussion).

C. How to Use iO with Proofs of Equivalence

We provide some general guidance for building new ap-
plications using our results. We consider some tools that are
commonly used within iO-based applications and demonstrate
how one can formalize properties about such tools in propo-
sitional logic or theory PV. Such proofs can then be used
to build proofs of equivalence of circuits or Turing machines
involved in the desired application.

In Section I-C1, we consider puncturable PRFs that are used
ubiquitously in constructions involving iO [67]. Specifically,
we show that the functionality preservation property of GGM
PRFs [16], [19], [50], [67] can be proven in theory PV. Next,
in Section I-C2, we provide general guidance on proving
properties of tools in group-based cryptography and lattice-
based cryptography. As concrete examples, we demonstrate
that the correctness of ElGamal encryption [32] and Regev’s
encryption [66] can be proven in theory PV .

1) Puncturable PRFs: A puncturable PRF [16], [19], [50],
[67] PRFunc is a pseudorandom function with the additional
property that allows one to puncture the PRF key k at any
point z* to obtain a punctured key k \ {z*}. For each
x # x*, the functionality preservation property guarantees that
PRF(k,z) = PRF,unc(k\ {z*}, z).

iO-based constructions that involve the use of puncturable
PRFs require the functionality preservation property to estab-
lish the functional equivalence of the two programs being ob-
fuscated. Since our constructions require proofs of equivalence
in theory PV, this translates to requiring that the functionality
preservation property of PRF,,,. can be proven in theory
PV. Formally, we say that a puncturable PRF PRF,,,,. has
a PV proof of functionality preservation if the algorithms
PRFpunc, PRF and the puncturing algorithm can be defined
in PV as function symbols and there exists a proof in PV
for z # x* — PRF(k,z) = PRFpunc(k \ {z*}, z).

We observe that the GGM-based construction of puncturable
PRFs has a PV proof of functionality preservation. We empha-
size that we do not need to modify the GGM construction nor
its natural mathematical proof of functionality preservation.
All we need to do is formalize the existing mathematical proof
of functionality preservation in theory PV. It is important to
note that theory PV does not allow general proof-by-induction
rules. Instead, it only allows the following “polynomial-time
induction” rule.

If ®(0) holds and ®(z) — (®(2z) A P(2z + 1))
holds for every z, then ®(z) holds for all x,

where ®(z) is a formula in PV.

Fortunately, the binary tree structure of the GGM con-
struction is naturally compatible with the polynomial-time
induction rule. Hence, the functionality preservation property
can be naturally formalized in PV.
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2) Proving Arithmetic Properties in PV : In addition to
puncturable PRFs, iO-based applications often involve the use
of cryptographic primitives such as commitment schemes and
encryption schemes. In such cases, key properties of these
primitives such as perfect binding or correctness of decryption
are essential for establishing the functional equivalence of
the programs being obfuscated. We now discuss how such
properties can be proven in theory PV when the cryptographic
primitives are instantiated using group-based cryptography and
lattice-based cryptography.

The general principle involves the following two steps:

— First, write a mathematical proof of such property in

natural language.

— Second, examine the basic theorems and axioms used

in the mathematical proof to ensure that they can be
formalized in theory PV.

For illustration purposes, we demonstrate how to prove
correctness of group-based and lattice-based public key en-
cryption schemes in theory PV.

Instantiation from Groups. As an example in group-
based cryptography, we show how to prove the correctness
of ElGamal encryption [32] in theory PV.

Recall that the public key of ElGamal encryption is of the
form (g, g®) where s is the secret key, and g € G is a group
element. To encrypt a message m € G with random coins r
under the public key, the ciphertext is (¢", (¢%)" - m).

Following the general principle described above, we can

prove the correctness in PV as follows:

— We first write down the mathematical proof of correctness
of ElGamal in natural language, as follows. If (¢1, o) is
the ciphertext, then ¢; = g",ca = (¢°)" - m. Hence, the
decryption algorithm Dec computes

Dec((c1,¢2),8) = ca/cr® = (g°)" -m/(g")*
=(9°)" -m/(g°)" =m-((9°)" - /(¢g°)") = m.

Formalization in PV: The above mathematical proof
only relies on some basic theorems in arithmetic such as
commutative law and associative law of modular multi-
plication and (g*)" = (¢")*. All such basic theorems can
be formalized and proven in PV [30], [22]. Therefore,
the above mathematical proof can be formalized in PV

Instantiation from Lattices. Using the above ideas, one can
also prove the correctness of Regev’s public key encryption
scheme [66] in PV. The main point is that the proof of cor-
rectness in natural language only uses some basic arithmetic
theorems such as commutative law, distributive law, and some
basic properties about inequalities to reason about rounding
operations. By Buss’s work [22], all such theorems can be
proven in PV.

D. Discussion and Future Directions

On Propositional Logic and Theory PV. Since proofs in
propositional logic are central to our results, it is important to
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understand their expressiveness. If one does not care about the
proof length, propositional logic is quite expressive due to the
completeness theorem [23] which says that any semantically
true formula® in propositional logic has a proof. Furthermore,
we expect that most theorems proven in mathematical logic
systems other than propositional logic (e.g. Peano Arithmetic)
can also be represented in propositional logic if we set a
bound on the number of digits in the natural numbers, and use
truth variables in propositional logic to represent the digits of
natural numbers.

Propositional logic is expressive enough for proving the
equivalence of two Turing machines: for any two functionality
equivalent polynomial-time Turing machines, we can set an
upper bound on the input length that is super-polynomial in
the security parameter. Then, by the completeness theorem of
propositional logic, there always exists a propositional logic
proof of equivalence for the two Turing machines under the
given input bound. However, there is no guarantee that such
proofs in propositional logic have polynomial size.

Our results crucially require the proof size to be a poly-
nomial. Thus, it is important to understand what can be
proven with polynomial-size propositional proofs. This ques-
tion has been extensively studied in proof complexity. In [30],
Cook introduced a theory PV to formalize the intuition of
“polynomial-time reasoning” and showed that any proof in
PV can be translated to a polynomial-size propositional logic
proof. Later, a series of works [63], [22], [52] proposed other
propositional translations. In this work, we use PV since
it is conceptually the simplest. PV allows the definition of
new function symbols using Cobham’s characterization of
polynomial time functions [26]. Basic arithmetic operations
can be introduced in this way, and their related properties can
be proved in PV.

On the positive side, Cook [30] suggested that a good
part of elementary number theory can be formalized in PV
if the theorems are stated carefully. In the region of linear
algebra, [68] showed that the Cayley—Hamilton theorem, basic
properties of determinants, and basic matrix properties can be
proven in PV. For theorems in complexity, it is known that
the Cook-Levin theorem and PCP theorem can be formalized
and proven in PV [29], [65]. Indeed, Cook observed that the
correctness of “natural” polynomial-time algorithms usually
can be proven in PV [28]. In this work, we show that a
large part of the cryptographic algorithms fall in this category.
They include functionality preservation of puncturable PRFs
and the correctness of ElGamal Encryption [32] and Regev’s
encryption [66] (See Section [-C).

On the negative side, it is known that Fermat’s little theorem
is unlikely to be provable in PV unless factoring can be
solved in polynomial time, due to the witnessing theorem
[22]. Because of the same reason, the correctness of any
polynomial-time algorithm that decides primes is unlikely
to be proven in PV. Moreover, assuming NP # coNP,

A propositional formula is semantically true if it always evaluates to true
under any truth assignments.

1028

there are tautologies that can not be proven with polynomial-
size proofs in propositional logic, because TAUT is coNP-
complete [31].

Beyond Theory PV. As discussed earlier, our approach
relies on polynomial-size proofs in propositional logic. To
increase the scope of our approach, a future direction is to
either handle super-polynomial size propositional proofs, or
use more expressive logic systems. In the former direction, the
main challenge is that in our present approach, the sizes of the
intermediate circuits grows with the size of the propositional
proofs, and thus the obfuscated program will be super-poly
size if we naively rely on super-polynomial size propositional
proofs. We hypothesize that a potential solution could be to
restrict the logic system to “bounded-space reasoning” theo-
ries, and finding a more clever way to build the intermediate
circuits from propositional logic proofs.

An alternate future direction is to generalize our idea to
leverage the “local” property of proofs in more powerful
logic systems such as Buss’s theories S, T4 [22] since more
theorems can be proven in them. Ultimately, one might ask if
we can build iO for programs whose equivalence is provable in
Zermelo—Fraenkel set theory with the axiom of choice (ZFC).
Since ZFC is the most common foundation of mathematics,
such a result might be sufficient for most applications of iO.
The main seeming difficulty towards this goal is that our
current method crucially relies on the property that each line of
the propositional proof is also a circuit, whereas a line in ZFC
is naturally a Turing machine that evaluates the truthfulness
of that line. Hence, an interesting future direction is to extend
our “gate-by-gate” framework to ‘“Turing-machine-by-Turing-
machine” framework to support ZFC.

Towards NP N coN'P. Our method of leveraging mathe-
matical proofs limits us to the circuits whose equivalence can
be verified in polynomial time. Since circuit equivalence is
trivially in coNP, ideally, we could hope to bypass the input-
length barrier for the language of circuit pairs in NP N coNP
[59].

Our work makes an important attempt in this direction. We
note, however, that not all pairs of circuits whose functionally
equivalence is in NP N coN'P necessarily have short mathe-
matical proofs. Therefore, fully realizing the above vision is
an important goal for future work.

Comparison with Decomposable iO. Liu and Zhandry [59]
introduced the notion of decomposable iO to unify prior works
[37], [39], [38] that attempt to avoid the use of sub-exponential
hardness assumptions in some specific applications of iO. In
the same work [59], Liu and Zhandry proved that deciding
whether two circuits are “decomposing-equivalent” is in P.
This naturally limits the applicability of their framework. For
example, it cannot support the Sahai-Waters construction of
public-key encryption from iO and pseudorandom generators
[67]. This is because the security of the pseudorandom genera-
tor implies that the two circuits of consideration in the security
proof cannot be “decomposing-equivalent” since the latter is
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in P. Indeed, a similar issue arises in many other applications
and for this reason, decomposable iO is only applicable when
it is easy to check equivalence. (See Section 1.5 in [59] for
more discussion.)

Our work does not suffer from this limitation since we do
not require circuit equivalence to be decidable in P. Instead,
we only require the existence of a witness that allows us
to verify the equivalence of two circuits, where the witness
is a polynomial-size propositional logic proof. In general,
deciding whether the equivalence of two circuits has a short
propositional logic proof is not known to be in P.

On Our Gate-by-Gate Template for iO. In this work, we
develop a new “gate-by-gate” template for building iO for
general circuits from 1O for “small” circuits. In our template,
the topology of the input circuit is preserved in the obfuscated
circuit.

While this approach is crucial towards obtaining our re-
sults, we observe that it also yields some additional features
that might be beneficial in specific use cases. Suppose after
distributing an obfuscated circuit, one wishes to modify some
gates in the underlying circuit [5], [36]. Instead of obfuscating
the modified circuit from scratch (which might be costly), our
“gate-by-gate” template allows for easy replacement of the
relevant gates in the obfuscated circuit. We defer a formal
treatment of this property to future work.

II. OVERVIEW OF OUR RESULTS

We now provide an overview of our results. In Section II-A,
we discuss how to establish A-Equivalence starting from
propositional proofs of equivalence of two circuits. In Sec-
tion II-B, we describe our construction of iO for A-equivalent
circuits. We defer the technical overview of iO for unbounded
input length Turing machines with PV proofs of equivalence
to the full version of the paper.

A. A-Equivalence from Propositional Proofs

We show that given two circuits C, Cy, if the proposition
“Ci(x) = Cy(x)” can be proven in a propositional logic
system with extension axioms such as extended Frege system
(EF), then C7, Cy are A-equivalent up to some padding. That
is, we can find a series of intermediate circuits C', C5, ..., C}
with the same topology such that every two adjacent circuits
Cj, Ci ., only differ in a logarithmic number of gates, and the
subcircuits formed by these gates in C, Cj_; are functionality
equivalent. Furthermore, the initial circuit C{ and the final
circuit C} are obtained by padding C4, Co, respectively, with
some dummy gates.

Background. We first recall the definition of propositional
proof systems with extension axioms. Such logic systems can
be described as a set of variables and connectives including
“=7, U7 A7, V7, and ‘=7, which refers to “imply”,
“equal”, “and”, “or”, and ‘“negation”, respectively. A proof
in the propositional proof system is a series of propositional
formulas, where each formula is derived from either of the
following cases.
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— Axiom: The formula is in one of the following forms:
P—=(Q —=P),(P—(Q—R)—((P—Q) —
(P — R)), or =—P — P where P,(Q, R are formulas.

— Modus Ponens: The formula is in the form (), and there
are two previous formulas P, P — () derived before the
current formula.

— Extension: The formula is in the form e <> @), where e is
a new variable that does not appear in () and all previous
formulas. This rule is used to introduce intermediate
variables and hence can shorten the proof size.

For any circuit, we can treat each of its wires as a variable
in propositional logic, whose truth value represents the wire
value. Then the mathematical statement “Cy (z) = Ca(x)” can
be formalized in £F as a formula.
Assuming there exists a proof 7 = (01,02,...,0;) in
propositional logic for Cy(z) = Cs(x), we now prove that
C1, Cy are A-equivalent. Equivalently, we only need to show
that we can transform from C; to C5 via a series of incremen-
tal changes, where each change replaces a logarithmic size
subcircuit with a functionally equivalent new subcircuit. To
illustrate our high-level ideas, we firstly ignore the topology
of the circuits, and hence we can add gates and delete
gates arbitrarily. Since we can always treat extension rules
as introducing a new wire in the circuit, we also assume there
are no extension rules for simplicity.
Our transformation is based on the following key observa-
tions.
— The proof 7 is “local”, i.e., the truthfulness of each 6;
follows from a constant number of previous formulas in
91, ceey 01'_1.

— The propositional formulas 6;,6s,...,0; can also be
regarded as boolean circuits, since the connectives includ-
ing “—” can be expressed as the combination of A,V,
and — gates.

A Sketch of the Transformation. Based on these obser-
vations, our transformation from Cy to Cy proceeds in the
following phases. We start with a circuit C'(z) that is the same
as C (). After the following incremental changes to C, C(x)
will become Cy(z).

— Grow C5. We add the circuit Co(x) to C in a gate-by-
gate manner. Specifically, we add each gate of Cs in the
topological order to C, while the output wire of C is still
set to be the output wire of Cy(x).

We only change the circuit C' for a constant number of
gates when we add a gate, since we can always assume
such a gate has a constant arity without loss of generality.

— Grow the Proof. We add the formulas 6;,6s,...60; in

the proof 7 one by one to C' as follows. Note that each
formula 6; can be regarded as a circuit that computes the
truth values of 6; from its variables.
Firstly, we add 6; to C' by modifying the output of C
as C1(x) A ;. Similarly, to add 62, we further modify
the output of C' to be Cy(x) A 61 A 6. We continue this
process until all 1,605, ..., 0 are added. Then the output
of C becomes C1(x) NGy AbOs A ... A b
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We now show that we only change a small subcircuit in
each step of the above process. There are three cases for
each 4, depending on how 6; is derived.

— Axiom: In this case 6; is one of the axioms, for
example, 6, is in the foom P — (@ — P). We
can assume without loss of generality that P, Q) are
constant size formulas, as we can always reduce the
size of P, () by assigning their subformulas to new
variables using the extension rule.

In this case the change from Cy(z) A 61 A ... A
0;—1 to Ci(x) NOL A...NBO;_1 AN0O; can be regarded
as replacing a subcircuit that always outputs 1 with
a new subcircuit ;. The functionality equivalence
between the two subcircuits follows from the fact
that axioms must be tautologies.

Modus Ponens: For this case, there exists some P, ()
such that P, P — (@) are the formulas derived in the
first (¢ — 1) formulas, and the current formula 6; is
(). Similar to the case of axioms, we can assume
P, Q are constant-size formulas.

In this case the change from Cy(z)A...APA...A
(P — Q)/\ NG to Cl($)A. .APA.. /\(P —>
Q)A...ANB;—1 A Q can be regarded as replacing a
subcircuit P A (P — @) with a new subcircuit P A
(P — Q) A Q. The functionality equivalence can be
proved by enumerating all possible truth assignment
to P and Q.

— Change the Output. Let 01,05 be the output wires of
C1, Cy respectively. Then a proof of “Cy(z) = Ca(z)”
ends with 01 <> 0y. Namely, 60 is the formula o; <>
02. Hence, we can replace the output of C, which is
01 NOL A ... N\Ok, with 0o AO1 A ... A6 This step is an
incremental change, since it can be regarded as replacing
the subcircuit 01 A (01 > 02) with 05 A (01 ¢ 02).
Shrink the Proof. This phase deletes 01,05, ..., 6 in the
circuit C'. Specifically, we remove 6y, 05_1, ... 601 one by
one in the reversing order that they are added.

This process is a series of incremental changes for the
same reason as the “Grow the Proof” phase.

Shrink C;. At the beginning of this phase, the circuit
C outputs o0z, which is the output wire of Cs(z). The
circuit C is still in C, but its output wire o; is not used
anywhere. Then we delete the gates of C; in C' one by
one in the reverse topological order. Finally, we obtain
the circuit C' = Cs.

Deleting a gate of C; in this phase is an incremental
change for the same reason as the “Grow C5” phase.

The reader may already notice that the above sketch over-
simplifies many details. For example, the output of the circuit
C' is computed as a series of A-gates, i.e. C(x) = 01 A1 A
05 ... in the “Grow the Proof” phase, and we argue that we
change the subcircuit P A (P — Q) to PA (P — Q) A Q.
However, in the reality, we need to use the arity-2 A-gates to
implement the series of A-gates in C'(x). Then P A (P — Q)
and P A (P — @) A Q may not be subcircuits, since the
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positions of P, ) may not be consecutive in the circuit.

Building An AND Tree. We resolve this issue by imple-
menting the series of A-gates as a binary tree of A-gates.
Initially, on every leaves there is a gate that always outputs
1. Then in the “Grow the Proof” phase, we replace the leaves
with 6;’s one by one. Now, for each 6; = () obtained from
modus ponens, the subcircuit consists of the root-to-leaf paths
of P,P — () and ;. This subcircuit contains only O(log k)
gates, which is logarithmic.

Handling Extension Rules. Another issue is how to handle
the extension rules. Indeed, there is an additional phase “Grow
the Extension” between the “Grow Cs” phase and the “Grow
the Proof” phase, where we handle all the extensions by
introducing new wires in the circuit. Specifically, for any
extension of the form e < (), we add a new wire e and
set it as the output wire of a circuit that computes ). Here we
can also assume () is only constant size for the same reason
as the “Grow the Proof” phase. Also, between the “Shrink
the Proof” phase and the “Shrink C” phase, we add a phase
“Shrink the Extension” to delete the wires in the reverse order
that they are introduced.

More technical issues raise when we build iO leveraging
the series of incremental changes above. As we will show
later, our construction of iO for A-equivalent circuits does
not hide the fopology of the input circuit. As a result, in our
A-equivalence definition, we require the circuits C,C5y and
their intermediate circuits C, .. ., C}, have the same topology.
To further preserve the topology of the circuit, we pad them
to the same topology. We defer the details to the full version
of the paper.

B. Construction of iO for A-equivalent Circuits

We now describe our construction of iO for A-equivalent
circuits. Our high-level strategy is as follows:

— We first consider a notion of §iO, namely, iO for circuits
that only differ by a small subcircuit. Specifically, we
build §iO for any two circuits that only differ by two
logarithmic-size functionally equivalent subcircuits.
Next, we use 0iO to obfuscate A-equivalent circuits
as follows. Recall that for any A-equivalent circuits
C1,Cs, there is a polynomial number of intermediate
circuits Gy = C1,C%,...,C, = C,, and each two
adjacent circuits C;, C;_ ; only differ by two functionality
equivalent logarithmic subcircuits. From the first step, it
follows that for every 4, 6i0(Cj) and §iO(Cj, ) are indis-
tinguishable. By a hybrid argument, we can now establish
the indistinguishability of 4iO(C4) and 0i0(C?).

Let us explain why this approach overcomes the input-
length barrier. Whether two circuits only differ by two func-
tionality equivalent subcircuits of logarithmic size can be
decided in polynomial-time, since we only need to check
all inputs to the subcircuit instead of all inputs to the entire
circuit. Hence, the input-length barrier does not apply to 4iO.
Therefore, we can hope to build §iO without a security loss
that is exponential in the input length.
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Thus, the main task towards our goal is to build diO.
Towards this end, we present a new template for obfuscation
that preserves the fopology of the input circuit. This feature is
crucial to proving security without incurring a loss exponential
in the input length. In particular, it allows us to make “local”
changes to leverage the fact the input pair of circuits only
differ by a logarithmic-size functionally equivalent subcircuit.
To the best of our understanding, this property is not satisfied
by prior templates for obfuscation (see, e.g., [6], [14], [24],
[12], [51], [40D).

Our Gate-by-Gate iO Template. Our first attempt is to
mimic the gate-by-gate construction of garbled circuits [70]
that preserves the structure of the input circuit. Specifically,
for each gate ¢ in an input circuit C, we use a “small”
iO to obfuscate the gate functionality. Note that the input
and output wires need to be encrypted since otherwise, an
adversary can run the obfuscated program on arbitrary inputs
and observe the truth table of the gate g. Towards this end, we
associate a puncturable PRF key to each wire of the circuit,
and use it to encrypt the wire value. Then, for each gate g, we
obfuscate the following circuit Gateg(+, -): it takes as input two
ciphertexts that correspond to encryptions of g’s input wires.
It first decrypts the ciphertexts, computes the functionality of
the gate g, and then encrypts the output wire value. In order to
perform the decryption and encryption steps, Gate, contains
the puncturable PRF keys for the input and output wires of
¢ hardwired in its description. The obfuscated circuit consists
of the obfuscation of iO(Gate,)’s for every gate g in C.

In order to prove security, the main idea is to only modify
the obfuscation of the gates that correspond to the logarithmic-
size subcircuit where the input circuits differ. Note that our use
of existing iO schemes (that incur security loss exponential in
the input length) does not pose a problem towards bypassing
the input-length barrier because the input length of each Gate,
is much smaller than the input length of the entire circuit C.

Mix-and-Match Attacks. This initial attempt, unfortunately,
suffers from “mix-and-match” attacks. An adversary can run
the obfuscated program for several different inputs, and keep
the ciphertexts of the intermediate wires. Later, the adversary
can provide the “mixed” input ciphertexts sourced from differ-
ent inputs to some gate iO(Gatey). Then the adversary might
learn more input-output pairs of Gate, than the functionality
of the circuit Gate, should have provided, and thus we have
no hope to prove the security of the above construction.

To prevent such attacks, we can modify the construction
as follows: let ct;,ct, denote the “left” and “right” input
ciphertexts to Gate,. The modified Gate, additionally takes
the entire inputs x;, x, to C' that lead to the input ciphertexts
ct;, ct, and checks whether x; z,. In order to “tie” the
entire input with a ciphertext, we use another puncturable PRF
to compute a message-authenticate code (MAC) over the pair
(cty, ;) and similarly (ct,,z,)

It is not difficult to see that this modified construction pre-
vents mix-and-match’ attacks. Intuitively, only the ciphertexts
generated by Gate, can have a valid MAC, and hence the mix-
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and-match attacks can be caught by the consistency check over
the inputs x;, z,.. Unfortunately, however, the input length of
Gate, is now as large as the input length of C. This means
that this construction will incur a security loss exponential in
the input length of C.

An Intermediate Step. Towards overcoming this problem,
we first describe a modified construction that improves upon
the above but only for specific circuits, namely, ones in NCO.
As we will see shortly, it serves as a useful basis towards our
final solution for general circuits.

Our starting idea is to leverage the fact that each gate
in C might not depend on the entire input of C. Hence,
we can modify Gate, such that it only takes as input the
input wire values of C that g depends upon. To characterize
dependency, we introduce the notation dep(w) to denote the
set containing all the intermediate wires that a wire w depends
upon, excluding itself. Note that dep(w) includes not only the
input wires but also the internal wires of C.

The security loss incurred by this modified construction is
exponential in the input length of Gate,. This loss is small
when C' is in NC” since any output bit of an NC° circuit
only depends on a constant number of input bits. However,
for general circuits, dep(l) and dep(r) may contain the entire
input in the worst case. In such a scenario, the security loss
is still exponential in the input length of C.

Shrinking Input Length via Hashing. To resolve this issue,
we observe that in the above security proof, GategIrECt does
not even need to know every ciphertext in dep(l) U dep(r) to
compute the wire value of o. Instead, the wire o only depends
on the wires in dep(o) that are also the input wires of the
subcircuit S. For ease of representation, we use inp(S) to
denote the input to S. Since the size of dep(o) N inp(S) is
only logarithmic, if we modify Gate, to take as input the
ciphertexts in dep(o) N inp(S) instead, then we significantly
shorten the input length of Gate,.

However, we can not provide the above set as an explicit
input to Gate, since S is not known in the construction of
0i0; instead, it is only available in the security reduction.
If we hardwire .S in (the public description of) Gate; in an
intermediate hybrid of the security proof, then we can not hope
to argue indistinguishability. Hence, we need to hide the set S
and at the same time also provide the above set of ciphertexts
in dep(o) Ninp(S) as an input to Gate,.

To achieve these two properties simultaneously, we use
a somewhere extractable hash function (SEH) [46] to hash
the ciphertexts in dep(l) and the ciphertexts in dep(r). We
set the hash function to be extractable for the ciphertexts in
dep(l) Ninp(S) and dep(r) Ninp(S). The key indistinguisha-
bility property of SEH guarantees that the extraction locations
are hidden in the hash key. Moreover, the size of the SEH
hash value grows linearly in |S|.

Next, we modify the circuit Gate, to take
Hash(CT;),Hash(CT,) as additional inputs, where CT;
(resp. C'T}.) contains all ciphertexts that the wire [ (resp.
r) depends on. Then in the security proof, for each two
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adjacent intermediate circuits C/, C/ we first switch the
set S to be the subcircuit that C and Cj,; differ on. Then,

. B /
we replace Gate, with a new Gate?™ that extracts the sets

of ciphertexts in dep(o) N inp(S) from the hash values and
computes the output wires o directly from them.

However, an issue arises in arguing security since we need
to enforce the consistency check of the ciphertexts in dep(l)
and the ciphertexts in dep(r) given only their hash values. A
natural idea is to further attach a succinct non-interactive proof
that proves that the two hash values are consistent. Note that
we seemingly need such a proof to be statistically sound; such
proofs, however, are unlikely to exist.

Our key observation is that we in fact do not need a succinct
proof with full statistical soundness. Instead, we only suc-
cinct non-interactive arguments (SNARGs) with the following
somewhere statistical soundness property: for two hash values
computed as above, the extracted ciphertexts are consistent.
Namely, given the hash values hy;, h,, h, with respect to
dep(l), dep(r), dep(0), respectively, if the extracted ciphertexts
in dep(l) Ninp(S) and dep(o) Ninp(.S) are inconsistent, or the
extracted ciphertexts in dep(r) Ninp(S) and dep(o) Ninp(S)
are inconsistent, then any proof computed by an unbounded
cheating prover must be rejected.

We build such somewhere statistically sound SNARGs with
only poly-logarithmic size proof and verification time from
the polynomial hardness of learning with errors (LWE) by
relying on the techniques in the recent work of [25]. In [25],
the authors constructed SNARGs for the so-called batch index
language with (semi-adaptive) somewhere extraction property
from LWE, where an index language is an NP language
where the instances are treated as indices that can be described
in a logarithmic number of bits. We observe that a minor
modification of their construction achieves (semi-adaptive)
somewhere statistical soundness.

Armed with somewhere statistically sound SNARGs for the
batch index language, we show how to build an SEH with
consistency proofs. We start with the somewhere statistical
binding hash construction of [46]. Their construction also
allows extraction of the binding positions, and hence is also an
SEH. Moreover, their construction has a Merkle tree structure,
and thus supports succinct local openings. Namely, one can
use a root-to-leaf in the Merkle tree to serve as a small-size
opening for each bit in the string being hashed. To hash the
index set C'T;, we first assign a unique integer to each wire.
Then we arrange the elements in C'I; as an array. At the index
w, if w index is non-empty in C'T; then we put ct,, at the w-
th index. Otherwise, we put a special symbol L at the w-th
index. To generate a consistency proof for h; and h,, we use
a SNARG for batch-index language to prove that for each
wire w, there exists valid local openings to h; and h, at the
index w, and if C'T; has a non-empty element at the index w,
then CT, also has the same element at the index w. Then the
somewhere statistical soundness of SNARGs for batch-index
implies the property we want from the consistency proof.

It looks like we have bypassed the input-length barrier, since
the input length to Gate, seems to be independent of the input
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length of C'. However, a careful examination reveals that this
is not the case. Specifically, the bit-length of the hash value
h, is at least the size of one ciphertext plus a poly()) term,
and the size of one ciphertext is at least the size of h; or h,..
Hence, we have |h,| > |h;| + poly()). Therefore, the size of
the hash value h, grows at least linearly in the depth of the
circuit. This leads to a linear dependence on the depth of the
circuit in the input length of Gate,.

Removing the Depth Dependence. To overcome this issue,
we need to further shrink the hash values. Towards this end,
our key observation is that we only require a weaker extraction
property from SEH: instead of extracting the ciphertexts, we
only need to extract the underlying messages. Hence, we use
a fully homomorphic encryption scheme to encrypt the SEH
extraction trapdoor together with the puncturable PRF keys for
the wires whose values we wish to extract from SEH. Then
we homomorphically extract the underlying messages.

Full Version. A formal presentation of all our results is
deferred to the full version of the paper.
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