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Abstract—Over the last decade, indistinguishability obfusca-
tion (iO) has emerged as a seemingly omnipotent primitive with
numerous applications to cryptography and beyond. Moreover,
recent breakthrough work has demonstrated that iO can be
realized from well-founded assumptions. A thorn to all this
remarkable progress is a limitation of all known constructions
of general-purpose iO: the security reduction incurs a loss that
is exponential in the input length of the function. This “input-
length barrier” to iO stems from the non-falsifiability of the iO
definition and is discussed in folklore as being possibly inherent.
It has many negative consequences; notably, constructing iO for
programs with inputs of unbounded length remains elusive due
to this barrier.

We present a new framework aimed towards overcoming the
input-length barrier. Our approach relies on short mathematical
proofs of functional equivalence of circuits (and Turing machines)
to avoid the brute-force “input-by-input” check employed in prior
works.

– We show how to obfuscate circuits that have efficient proofs
of equivalence in Propositional Logic with a security loss
independent of input length.

– Next, we show how to obfuscate Turing machines with
unbounded length inputs, whose functional equivalence can
be proven in Cook’s Theory PV .

– Finally, we demonstrate applications of our results to
succinct non-interactive arguments and witness encryption,
and provide guidance on using our techniques for building
new applications.

To realize our approach, we depart from prior work and
develop a new gate-by-gate obfuscation template that preserves
the topology of the input circuit.

Index Terms—cryptography, logic

I. INTRODUCTION

Program obfuscation is the technique of converting a com-

puter program into a new version that retains the functionality

of the original but is immune to reverse-engineering. While

a formal study of this notion was initiated at the turn of

this century [45], [8], the past decade has seen a renewed

push towards its study. The notion of indistinguishability

obfuscation (iO) [8] has emerged as the central figure, with

a long sequence of works aimed towards investigating its
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existence (see e.g., [33], [64], [43], [6], [14], [53], [58], [56],

[55], [7], [54], [57], [1], [48], [4], [20], [2], [41], [69], [42]).

This line of work recently led to the breakthrough result of [49]

who constructed iO for general functions from well-founded

assumptions.

A parallel line of research over the last decade has demon-

strated that most cryptographic primitives, including several

powerful ones such as witness encryption [35], multiparty non-

interactive key exchange [17], succinct non-interactive argu-

ments [67], [10], software watermarking [27], and deniable

encryption [67] can be built from iO. Moreover, iO has also

found appeal outside cryptography, such as for establishing

hardness of Nash equilibrium [13] and the hardness of certain

tasks in differential privacy [17], [21]. These results have

established iO as a “central hub” of theoretical cryptography.

Input-Length Barrier. A thorn to all this remarkable progress

is a limitation of all known constructions of iO: the security

reduction incurs a loss that is exponential in the input length
of the function. This has severe negative consequences on

the necessary assumptions and the efficiency of the scheme.

In particular, it requires the program input length to be a

priori bounded. This, in turn, prevents us from realizing iO
for efficient computing models such as Turing machines with

unbounded input length.1

This state of affairs motivates the following question:

Can we build iO with a loss in the security reduction
independent of the input length?

To answer the above question, it is first important to

understand whether the input-length barrier stems from tech-

nical limitations or something more fundamental. To develop

intuition, it is useful to recall a folklore argument that explains

the origin of the input-length barrier. Here, we sketch the

informal idea2 (adapted from [35], [59]) based on the meta-

reduction technique [15].

Let us first recall the security definition of iO: if two

programs P1 and P2 are functionally equivalent (i.e., for

1Some prior works overcome this barrier by relying on non-standard
assumptions; we discuss this later.

2We stress that this is not a formal proof. Turning this argument into a
formal proof runs into subtle technical challenges.
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any input x, P1(x) = P2(x)), then their obfuscations must

be indistinguishable to any polynomial-time algorithm. Now,

suppose that there is a construction of iO whose security can

be based on some polynomial-time hardness assumption (say)

Y . That is, there is a polynomial-time reduction such that

given black-box access to an adversary for the iO scheme, it

can break the assumption Y . Consider the following “trivial”

polynomial-time adversary that chooses two programs P1, P2

that are functionally equivalent except that their outputs differ

at some input (say) x∗. Such an adversary can easily distin-

guish between obfuscations of P1 and P2 by evaluating them

on x∗; yet the reduction must seemingly work for such an

adversary as well. Then, combining the reduction with this

trivial adversary, we have found a polynomial-time algorithm

for Y , which is unlikely.

To prevent the above argument, it seems that the reduction

must check whether the two programs P1, P2 are functionally

equivalent so as to not be “fooled” by the trivial adversary. But

how can the reduction check equivalence? One natural way is

to iterate through all the inputs one by one. Indeed, this is the

strategy implicit in the security proofs of all general-purpose

constructions of iO. This strategy, however, leads to a security

loss that is exponential in the input length.

Can we use an alternative strategy that does not incur

such a loss? A sequence of prior works [37], [39], [38],

[59] demonstrate that the exponential loss can be avoided in

some cases when functional equivalence can be decided in

polynomial time [59]. This naturally limits their applicability

(see Section I-D for discussion). Indeed, in general, functional

equivalence may not be efficiently checkable. We ask whether

it is possible to overcome the input-length barrier in such cases

as well.

A Broader Perspective. The seeming necessity of checking

functional equivalence and its consequences is in fact an ex-

ample of a broader phenomenon in cryptography. The security

definition of many cryptographic primitives is predicated on

a mathematical premise that is not decidable in NP . For

example, the security of witness encryption [35] for a language

L requires that a ciphertext encrypted using an instance x /∈ L
must remain semantically secure. Similarly, the soundness

definition of a proof system for a language L requires that any

proof for an instance x /∈ L must be rejected by the verifier.

In both of these cases, “x /∈ L” is the mathematical premise,

and deciding its truthfulness is a coNP problem that might

require exponential time.

The difficulty of checking the mathematical premise can

be leveraged to employ a similar meta-reduction technique as

discussed above to establish barriers for other cryptographic

primitives. This is reflected in the case of witness encryption,

where all known constructions incur a security loss exponen-

tial in the witness length. In the regime of proof systems,

Gentry and Wichs [44] leverage this observation to rule

out adaptively-sound succinct non-interactive arguments [60]

based on falsifiable assumptions [61]. Moreover, even known

non-adaptively sound constructions (obtained by instantiating

[67] with existing iO constructions) incur an exponential loss

in the witness length.3

A New Approach. We present a new framework aimed

towards overcoming the input-length barrier to iO. We then

leverage the power of iO to overcome analogous barriers for

other cryptographic primitives.

Our starting point is the following simple observation:

suppose we are given a secure indistinguishability obfuscator.

In order to leverage its security for a given pair of programs,

we first write a mathematical proof to convince ourselves

(and others) that the two programs are functionally equivalent.

Importantly, this proof is short so that anyone can verify it.

In particular, it is significantly shorter than the “brute-force”

proof that involves iterating over every input. Our key insight

is to rely on such (short) mathematical proofs of functional

equivalence for proving the security of the obfuscator.

This raises the following question: How can we use the
mathematical proof in proving security? Our approach in-

volves two principal steps:

– Incremental Proofs of Equivalence: We first rely on the

following local property of mathematical proofs: recall

that a mathematical proof consists of a series of true

propositions, one followed by another. The truthfulness

of each proposition is derived from only a constant num-

ber of previous propositions and an inference rule. We

leverage this property to show that a short mathematical

proof (of specific form) of “C1(x) = C2(x)” for two

circuits C1 and C2 can be translated to a small number

of incremental changes that transform the circuit C1 into

C2. Crucially, each incremental change is of small size.

– New Template for iO: Next, we provide a new con-

struction template for iO to leverage the above proofs of

equivalence. Our template involves obfuscating an input

circuit in a gate-by-gate manner to preserve its topology
in the obfuscated circuit. This allows us to devise a

security proof consisting of a polynomial number of

steps, where in each step we only switch an obfuscated

subcircuit corresponding to an incremental change. This

results in a security loss exponential only in the size of

the subcircuit but independent of the input length.

A. Our Results

We now proceed to describe our results.

I. iO for Circuits. We first consider the circuit model of

computation. Our results rely on proofs in Propositional Logic

[23] — a branch of logic that deals with propositions and

relations among them.

We define a notion of propositional proof of equivalence for

circuits. Roughly speaking, we say that two circuit families

{C1
n}n∈N and {C2

n}n∈N have a propositional proof of equiv-

alence, if there exists a proof in propositional logic system to

establish that C1
n and C2

n are functionally equivalent. Further-

more, we say that the proof is efficient if it is polynomial-sized.

3We discuss more on this later in Section I-B.
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Our first result is an obfuscation scheme for any two

families of circuits with efficient propositional proofs of equiv-

alence, with security loss independent of input length.

Theorem 1 (iO for Circuits from Propositional Proofs

of Equivalence, Informal). There exist polynomials
p1(·), p2(·, ·, ·), such that assuming the hardness of the
following, there exists a construction of iO for any two
families of circuits {C1

n}n∈N, {C2
n}n∈N with efficient

propositional proofs of equivalence:
– Polynomial-hardness of Learning with Errors (LWE),
– 2p1(λ)-secure one-way functions,
– 2p1(λ)-secure indistinguishability obfuscation for circuits

of size p2(λ, log |C1
n|, log |C2

n|),
where λ is the security parameter of the iO scheme.

A few remarks are in order:

– Unlike prior works, we allow n, namely, the input length

of circuits C1
n, C

2
n (and their sizes) to arbitrarily depend

on λ, and not be bounded by p1, p2.

– The above theorem only requires an underlying indistin-

guishability obfuscator for small circuits of size essen-

tially independent of C1
n, C

2
n.

We obtain the above result in two steps: we first define a new

notion of Δ-equivalent circuits and show how Δ-equivalent

circuits can be constructed via Proofs in Propositional Logic

[23]. We then show how to construct iO for Δ-equivalent

circuits, with security loss independent of input length.

Step 1: Δ-Equivalent Circuits. Informally, we say that two

circuit families are Δ-equivalent, if there exist a polynomial

number of intermediate circuits such that each two adjacent

circuits only differ by a logarithmic number of gates, and

the two subcircuits formed by these gates are functionally

equivalent.

We demonstrate that efficient propositional proof of equiv-

alence implies Δ-equivalence for circuits.

Lemma 1 (Δ-Equivalence from Propositional Logic Proofs).
If there exist polynomial-size propositional proofs of equiv-
alence for the circuit families {C1

n}n∈N and {C2
n}n∈N, then

{C1
n}n∈N and {C2

n}n∈N are Δ-equivalent.

Given a pair of circuits (C1
n, C

2
n) and a propositional

proof of equivalence, we prove this lemma by embedding

the propositional formulas (in the proof of equivalence) inside

C1
n to gradually transform it into C2

n, while preserving the

functionality. We leverage the “local” property of the proof

as well as the truthfulness of each formula to establish Δ-

equivalence. See Section II-A for an overview of the proof.

Step II: iO for Δ-Equivalent Circuits. We next provide a con-

struction of iO for Δ-equivalent circuits.

Lemma 2 (iO for Δ-Equivalent Circuits, Informal). There
exist polynomials p1(·), p2(·, ·, ·), such that assuming the same
hardness assumptions as in Theorem 1, there exists a con-
struction of iO for any two Δ-equivalent circuit families
{C1

n}n∈N, {C2
n}n∈N.

In order to prove the above lemma, we depart from prior

templates for iO [6], [14]. To leverage Δ-equivalence, we de-

velop a new (albeit, natural) gate-by-gate obfuscation template

that preserves the topology of the input circuit. Due to such

a design, a key challenge is to overcome various “mix-and-

match” attacks, and we develop several techniques towards that

end. A central component in our construction is a new notion

of somewhere extractable hash functions with consistency
proofs. We show how to build this object by combining

somewhere extractable hash functions [46] with (publicly-

verifiable) non-interactive batch arguments [25]. Both of these

objects, in turn, can be based on the LWE assumption. We

refer the reader to Section II for an overview of our technical

approach.

II. iO for Turing Machines. We next tackle the challeng-

ing problem of constructing iO for Turing machines with

unbounded length inputs. All prior results can either handle

inputs of a priori bounded length [12], [24], [51], or require

very strong assumptions [18], [3], [47], [56] (some of which

are in fact known to be implausible in general [11], [34], [9],

[56]).

We show how to obfuscate Turing machines with arbi-

trary length inputs based on similar assumptions as used for

obfuscating circuits. Our approach is applicable to Turing

machines whose functional equivalence can be proven in

Cook’s theory PV [30]. Cook introduced the theory PV in

1975 to formalize the intuition of polynomial-time reasoning.

PV is a fundamental theory in the area of proof complexity

[62], [30], [22], and is useful for translating theorems to

propositional logic proofs.

We say that two Turing machines M1 and M2 have a PV -
proof of equivalence if the functional equivalence of M1 and

M2 is provable in PV . We prove the following result:

Theorem 2 (iO for Turing Machines, Informal). Assuming
quasi-polynomial hardness of Learning with Errors, sub-
exponentially secure one-way functions, and sub-exponentially
secure indistinguishable obfuscation for circuits, there exists a
construction of iO for Turing machines with unbounded-length
inputs and PV -proofs of equivalence.

On the use of Sub-exponential Assumptions. Although

we rely on the sub-exponential security of the underlying

primitives in our results, the hardness requirement for the

underlying primitives is independent of the input length of

the input circuits.

To our understanding, there is no obvious barrier to avoid-

ing these sub-exponential assumptions due to the following

observation: given a series of intermediate circuits, verifying

Δ-equivalence only takes polynomial time, since checking

whether two subcircuits of size O(log n) are functionally

equivalent or not only takes 2O(logn) = poly(n) time. Hence,

constructing ΔiO for Δ-equivalent circuits from polynomial

hardness is not ruled out by the input-length barrier. We

therefore view our use of sub-exponential assumptions as a

technical limitation that we can hope to overcome in the future.
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B. Applications

We now discuss applications of our results towards building

witness encryption and succinct non-interactive arguments

(SNARGs) with properties that were not known to be achiev-

able earlier. Our results for these primitives apply for a

subclass of NP ∩ coNP languages whose disjointness with

its complement can be proven in some logic system.

We start by characterizing this class of languages.

Mathematical Proof of Disjointness. Intuitively, we say a

language L ∈ NP ∩ coNP has proof of disjointness, if “L∩
L = φ” can be proven in some mathematical logic system,

where L = {0, 1}∗ \L is the complement of L and both L,L
are represented by circuits or Turing machines.

Specifically, let {Mn}n∈N and {Mn}n∈N be the circuit

families that define the NP-relation of L and L respectively.

We say that L has propositional proof of disjointness, if

“Mn(x,w) = 1 → Mn(x,w) �= 1” has polynomial-size

proofs in the extended Frege system. This intuitively requires

that the statement

“For any x, if Mn(x, ·) is satisfiable, then Mn(x, ·) is not.”

can be proven in propositional logic sytem. Similarly, let

M,M be the Turing machines that defines L,L respectively.

We say L has PV proof of disjointness, if M(x,w) = 1 →
M(x,w) �= 1 can be proven in Cook’s theory PV . Since

propositional translation [30] can translate a PV proof to

polynomial-size propositional proofs, PV proof of disjoint-

ness implies propositional proof of disjointness.

What languages have proofs of disjointness? We expect that

for most NP ∩ coNP languages that we are interested in, we

can write a mathematical proof of disjointness. Indeed, other-

wise it is hard to convince ourselves that the language is in

NP ∩ coNP . We give a concrete example below, namely, the

language TAUT in computational complexity. Furthermore, we

will show in Section I-C that for cryptographic applications,

a large part of such mathematical proofs can be formalized in

theory PV .

Example. TAUT is the language that contains all tautologies.

Recall that a tautology is a formula that always evaluates to

true for any truth assignment. TAUT is known to be coNP-

complete and hence is an important language in complexity

theory.

By the completeness theorem of propositional logic [23],

any tautology has a proof in propositional logic. However,

such a proof may not have a polynomial size. Hence, to

ensure the honest prover/encryptor runs in the polynomial-

time in the setting of SNARGs/WE, we consider a slight

variant of TAUT, which is the following promise language

LTAUT = (LYES, LNO). LYES contains all tautologies with a

polynomial-bounded propositional logic proof, whereas LNO

contains all non-tautologies. Then PV proof of disjointness

can be extended naturally to promise languages: we require

“LYES ∩ LNO = φ” can be proven in theory PV . Cook [30]

showed that the soundness of propositional logic system is

provable in PV , which implies that LTAUT has PV proof of

disjointness.

We now proceed to discuss applications to witness encryp-

tion and SNARGs.

I. Witness Encryption. A witness encryption (WE) scheme

allows an encryptor to use an instance x from a language L to

encrypt a message m such that anyone who knows a witness

w for x can retrieve the message m. Security requires that

if x /∈ L, then the ciphertext hides m. As discussed earlier,

all prior constructions of WE only support bounded witness

lengths due to the input-length barrier.

As a generic application of Theorem 1, we build a WE

scheme for any language L ∈ NP∩coNP with propositional

proof of disjointness, with security loss independent of the

witness length. Furthermore, as an application of Theorem 2,

we build a WE scheme for Turing machines for any language

L in NP ∩ coNP with PV proof of disjointness. The

latter scheme can support witnesses of unbounded length. The

ciphertext size is independent of the witness length, but grows

with the running time of the Turing machine M .

II. Succinct Non-Interactive Arguments. A non-interactive

argument system for an NP language L is said to be succinct
if the proof size is much smaller than the witness size. Gentry

and Wichs (GW) [44] proved that such argument systems

cannot be constructed with a black-box proof of adaptive4

soundness to falsifiable assumptions. On the other hand, a non-
adaptively sound construction based on iO was given by Sahai

and Waters (SW) [67].

While iO is not a falsifiable assumption, one can instantiate

the SW construction with a recent iO scheme (such as [49])

to obtain a scheme based on falsifiable assumptions. This

resulting scheme, however, incurs a security loss exponential

in the witness length due to the input-length barrier to iO.

This has two consequences: first, this means that the scheme

bypasses the GW lower bound due to the fact that the security

reduction is able to decide the language.5 Second, the scheme

can only handle witnesses of a priori bounded length, and

in particular, the size of the common reference string (which

contains the obfuscation) grows with the size of the witness.

We show how to overcome these limitations by constructing

SNARGs that can support witnesses of unbounded length for

any language L ∈ NP∩coNP with PV proof of disjointness.

The CRS size is independent of the witness length and only

depends on the running time of the Turing machine M that

defines L. Our base scheme is non-adaptively sound, but by

standard complexity leveraging over the instances, it can also

achieve adaptive soundness.

An important step towards this obtaining this result is to

build puncturable pseudorandom functions (PRFs) [16], [19],

[50] with a PV -proof of functionality preservation. We show

4Adaptive (resp., non-adaptive) soundness refers to the setting where the
adversary can choose the challenge instance after (resp., before) viewing the
common reference string.

5Indeed, this scheme can also achieve adaptive security by standard com-
plexity leveraging (over the instances) without further security degradation.
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that puncturable PRFs based on the GGM PRFs [16], [19],

[50], [67] satisfy this property (see Section I-C for further

discussion).

C. How to Use iO with Proofs of Equivalence

We provide some general guidance for building new ap-

plications using our results. We consider some tools that are

commonly used within iO-based applications and demonstrate

how one can formalize properties about such tools in propo-

sitional logic or theory PV . Such proofs can then be used

to build proofs of equivalence of circuits or Turing machines

involved in the desired application.

In Section I-C1, we consider puncturable PRFs that are used

ubiquitously in constructions involving iO [67]. Specifically,

we show that the functionality preservation property of GGM

PRFs [16], [19], [50], [67] can be proven in theory PV. Next,

in Section I-C2, we provide general guidance on proving

properties of tools in group-based cryptography and lattice-

based cryptography. As concrete examples, we demonstrate

that the correctness of ElGamal encryption [32] and Regev’s

encryption [66] can be proven in theory PV .

1) Puncturable PRFs: A puncturable PRF [16], [19], [50],

[67] PRFpunc is a pseudorandom function with the additional

property that allows one to puncture the PRF key k at any

point x∗ to obtain a punctured key k \ {x∗}. For each

x �= x∗, the functionality preservation property guarantees that

PRF(k, x) = PRFpunc(k \ {x∗}, x).
iO-based constructions that involve the use of puncturable

PRFs require the functionality preservation property to estab-

lish the functional equivalence of the two programs being ob-

fuscated. Since our constructions require proofs of equivalence

in theory PV , this translates to requiring that the functionality

preservation property of PRFpunc can be proven in theory

PV . Formally, we say that a puncturable PRF PRFpunc has

a PV proof of functionality preservation if the algorithms

PRFpunc,PRF and the puncturing algorithm can be defined

in PV as function symbols and there exists a proof in PV
for x �= x∗ → PRF(k, x) = PRFpunc(k \ {x∗}, x).

We observe that the GGM-based construction of puncturable

PRFs has a PV proof of functionality preservation. We empha-

size that we do not need to modify the GGM construction nor

its natural mathematical proof of functionality preservation.

All we need to do is formalize the existing mathematical proof

of functionality preservation in theory PV . It is important to

note that theory PV does not allow general proof-by-induction

rules. Instead, it only allows the following “polynomial-time

induction” rule.

If Φ(0) holds and Φ(x) → (Φ(2x) ∧ Φ(2x+ 1))

holds for every x, then Φ(x) holds for all x,

where Φ(x) is a formula in PV .

Fortunately, the binary tree structure of the GGM con-

struction is naturally compatible with the polynomial-time

induction rule. Hence, the functionality preservation property

can be naturally formalized in PV .

2) Proving Arithmetic Properties in PV : In addition to

puncturable PRFs, iO-based applications often involve the use

of cryptographic primitives such as commitment schemes and

encryption schemes. In such cases, key properties of these

primitives such as perfect binding or correctness of decryption

are essential for establishing the functional equivalence of

the programs being obfuscated. We now discuss how such

properties can be proven in theory PV when the cryptographic

primitives are instantiated using group-based cryptography and

lattice-based cryptography.

The general principle involves the following two steps:

– First, write a mathematical proof of such property in

natural language.

– Second, examine the basic theorems and axioms used

in the mathematical proof to ensure that they can be

formalized in theory PV .

For illustration purposes, we demonstrate how to prove

correctness of group-based and lattice-based public key en-

cryption schemes in theory PV .

Instantiation from Groups. As an example in group-

based cryptography, we show how to prove the correctness

of ElGamal encryption [32] in theory PV .

Recall that the public key of ElGamal encryption is of the

form (g, gs) where s is the secret key, and g ∈ G is a group

element. To encrypt a message m ∈ G with random coins r
under the public key, the ciphertext is (gr, (gs)r ·m).

Following the general principle described above, we can

prove the correctness in PV as follows:

– We first write down the mathematical proof of correctness

of ElGamal in natural language, as follows. If (c1, c2) is

the ciphertext, then c1 = gr, c2 = (gs)r ·m. Hence, the

decryption algorithm Dec computes

Dec((c1, c2), s) = c2/c1
s = (gs)r ·m/(gr)s

= (gs)r ·m/(gs)r = m · ((gs)r · /(gs)r) = m.

– Formalization in PV : The above mathematical proof

only relies on some basic theorems in arithmetic such as

commutative law and associative law of modular multi-

plication and (gs)r = (gr)s. All such basic theorems can

be formalized and proven in PV [30], [22]. Therefore,

the above mathematical proof can be formalized in PV .

Instantiation from Lattices. Using the above ideas, one can

also prove the correctness of Regev’s public key encryption

scheme [66] in PV . The main point is that the proof of cor-

rectness in natural language only uses some basic arithmetic

theorems such as commutative law, distributive law, and some

basic properties about inequalities to reason about rounding

operations. By Buss’s work [22], all such theorems can be

proven in PV .

D. Discussion and Future Directions

On Propositional Logic and Theory PV . Since proofs in

propositional logic are central to our results, it is important to
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understand their expressiveness. If one does not care about the

proof length, propositional logic is quite expressive due to the

completeness theorem [23] which says that any semantically

true formula6 in propositional logic has a proof. Furthermore,

we expect that most theorems proven in mathematical logic

systems other than propositional logic (e.g. Peano Arithmetic)

can also be represented in propositional logic if we set a

bound on the number of digits in the natural numbers, and use

truth variables in propositional logic to represent the digits of

natural numbers.

Propositional logic is expressive enough for proving the

equivalence of two Turing machines: for any two functionality

equivalent polynomial-time Turing machines, we can set an

upper bound on the input length that is super-polynomial in

the security parameter. Then, by the completeness theorem of

propositional logic, there always exists a propositional logic

proof of equivalence for the two Turing machines under the

given input bound. However, there is no guarantee that such

proofs in propositional logic have polynomial size.

Our results crucially require the proof size to be a poly-

nomial. Thus, it is important to understand what can be

proven with polynomial-size propositional proofs. This ques-

tion has been extensively studied in proof complexity. In [30],

Cook introduced a theory PV to formalize the intuition of

“polynomial-time reasoning” and showed that any proof in

PV can be translated to a polynomial-size propositional logic

proof. Later, a series of works [63], [22], [52] proposed other

propositional translations. In this work, we use PV since

it is conceptually the simplest. PV allows the definition of

new function symbols using Cobham’s characterization of

polynomial time functions [26]. Basic arithmetic operations

can be introduced in this way, and their related properties can

be proved in PV .

On the positive side, Cook [30] suggested that a good

part of elementary number theory can be formalized in PV
if the theorems are stated carefully. In the region of linear

algebra, [68] showed that the Cayley–Hamilton theorem, basic

properties of determinants, and basic matrix properties can be

proven in PV . For theorems in complexity, it is known that

the Cook-Levin theorem and PCP theorem can be formalized

and proven in PV [29], [65]. Indeed, Cook observed that the

correctness of “natural” polynomial-time algorithms usually

can be proven in PV [28]. In this work, we show that a

large part of the cryptographic algorithms fall in this category.

They include functionality preservation of puncturable PRFs

and the correctness of ElGamal Encryption [32] and Regev’s

encryption [66] (See Section I-C).

On the negative side, it is known that Fermat’s little theorem

is unlikely to be provable in PV unless factoring can be

solved in polynomial time, due to the witnessing theorem

[22]. Because of the same reason, the correctness of any

polynomial-time algorithm that decides primes is unlikely

to be proven in PV . Moreover, assuming NP �= coNP ,

6A propositional formula is semantically true if it always evaluates to true
under any truth assignments.

there are tautologies that can not be proven with polynomial-

size proofs in propositional logic, because TAUT is coNP-

complete [31].

Beyond Theory PV . As discussed earlier, our approach

relies on polynomial-size proofs in propositional logic. To

increase the scope of our approach, a future direction is to

either handle super-polynomial size propositional proofs, or

use more expressive logic systems. In the former direction, the

main challenge is that in our present approach, the sizes of the

intermediate circuits grows with the size of the propositional

proofs, and thus the obfuscated program will be super-poly

size if we naively rely on super-polynomial size propositional

proofs. We hypothesize that a potential solution could be to

restrict the logic system to “bounded-space reasoning” theo-

ries, and finding a more clever way to build the intermediate

circuits from propositional logic proofs.

An alternate future direction is to generalize our idea to

leverage the “local” property of proofs in more powerful

logic systems such as Buss’s theories Si
2, T

i
2 [22] since more

theorems can be proven in them. Ultimately, one might ask if

we can build iO for programs whose equivalence is provable in

Zermelo–Fraenkel set theory with the axiom of choice (ZFC).

Since ZFC is the most common foundation of mathematics,

such a result might be sufficient for most applications of iO.

The main seeming difficulty towards this goal is that our

current method crucially relies on the property that each line of

the propositional proof is also a circuit, whereas a line in ZFC

is naturally a Turing machine that evaluates the truthfulness

of that line. Hence, an interesting future direction is to extend

our “gate-by-gate” framework to “Turing-machine-by-Turing-

machine” framework to support ZFC.

Towards NP ∩ coNP . Our method of leveraging mathe-

matical proofs limits us to the circuits whose equivalence can

be verified in polynomial time. Since circuit equivalence is

trivially in coNP , ideally, we could hope to bypass the input-

length barrier for the language of circuit pairs in NP∩coNP
[59].

Our work makes an important attempt in this direction. We

note, however, that not all pairs of circuits whose functionally

equivalence is in NP ∩ coNP necessarily have short mathe-

matical proofs. Therefore, fully realizing the above vision is

an important goal for future work.

Comparison with Decomposable iO. Liu and Zhandry [59]

introduced the notion of decomposable iO to unify prior works

[37], [39], [38] that attempt to avoid the use of sub-exponential

hardness assumptions in some specific applications of iO. In

the same work [59], Liu and Zhandry proved that deciding

whether two circuits are “decomposing-equivalent” is in P .

This naturally limits the applicability of their framework. For

example, it cannot support the Sahai-Waters construction of

public-key encryption from iO and pseudorandom generators

[67]. This is because the security of the pseudorandom genera-

tor implies that the two circuits of consideration in the security

proof cannot be “decomposing-equivalent” since the latter is
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in P . Indeed, a similar issue arises in many other applications

and for this reason, decomposable iO is only applicable when

it is easy to check equivalence. (See Section 1.5 in [59] for

more discussion.)

Our work does not suffer from this limitation since we do

not require circuit equivalence to be decidable in P . Instead,

we only require the existence of a witness that allows us

to verify the equivalence of two circuits, where the witness

is a polynomial-size propositional logic proof. In general,

deciding whether the equivalence of two circuits has a short

propositional logic proof is not known to be in P .

On Our Gate-by-Gate Template for iO. In this work, we

develop a new “gate-by-gate” template for building iO for

general circuits from iO for “small” circuits. In our template,

the topology of the input circuit is preserved in the obfuscated

circuit.

While this approach is crucial towards obtaining our re-

sults, we observe that it also yields some additional features

that might be beneficial in specific use cases. Suppose after

distributing an obfuscated circuit, one wishes to modify some

gates in the underlying circuit [5], [36]. Instead of obfuscating

the modified circuit from scratch (which might be costly), our

“gate-by-gate” template allows for easy replacement of the

relevant gates in the obfuscated circuit. We defer a formal

treatment of this property to future work.

II. OVERVIEW OF OUR RESULTS

We now provide an overview of our results. In Section II-A,

we discuss how to establish Δ-Equivalence starting from

propositional proofs of equivalence of two circuits. In Sec-

tion II-B, we describe our construction of iO for Δ-equivalent

circuits. We defer the technical overview of iO for unbounded

input length Turing machines with PV proofs of equivalence

to the full version of the paper.

A. Δ-Equivalence from Propositional Proofs

We show that given two circuits C1, C2, if the proposition

“C1(x) = C2(x)” can be proven in a propositional logic

system with extension axioms such as extended Frege system
(EF), then C1, C2 are Δ-equivalent up to some padding. That

is, we can find a series of intermediate circuits C ′
1, C

′
2, . . . , C

′
�

with the same topology such that every two adjacent circuits

C ′
i, C

′
i+1 only differ in a logarithmic number of gates, and the

subcircuits formed by these gates in C ′
i, C

′
i+1 are functionality

equivalent. Furthermore, the initial circuit C ′
1 and the final

circuit C ′
� are obtained by padding C1, C2, respectively, with

some dummy gates.

Background. We first recall the definition of propositional

proof systems with extension axioms. Such logic systems can

be described as a set of variables and connectives including

“→”, “↔”, “∧”, “∨”, and “¬”, which refers to “imply”,

“equal”, “and”, “or”, and “negation”, respectively. A proof
in the propositional proof system is a series of propositional

formulas, where each formula is derived from either of the

following cases.

– Axiom: The formula is in one of the following forms:

P → (Q → P ), (P → (Q → R)) → ((P → Q) →
(P → R)), or ¬¬P → P where P,Q,R are formulas.

– Modus Ponens: The formula is in the form Q, and there

are two previous formulas P, P → Q derived before the

current formula.

– Extension: The formula is in the form e ↔ Q, where e is

a new variable that does not appear in Q and all previous

formulas. This rule is used to introduce intermediate

variables and hence can shorten the proof size.

For any circuit, we can treat each of its wires as a variable

in propositional logic, whose truth value represents the wire

value. Then the mathematical statement “C1(x) = C2(x)” can

be formalized in EF as a formula.

Assuming there exists a proof π = (θ1, θ2, . . . , θk) in

propositional logic for C1(x) = C2(x), we now prove that

C1, C2 are Δ-equivalent. Equivalently, we only need to show

that we can transform from C1 to C2 via a series of incremen-

tal changes, where each change replaces a logarithmic size

subcircuit with a functionally equivalent new subcircuit. To

illustrate our high-level ideas, we firstly ignore the topology

of the circuits, and hence we can add gates and delete

gates arbitrarily. Since we can always treat extension rules

as introducing a new wire in the circuit, we also assume there

are no extension rules for simplicity.

Our transformation is based on the following key observa-

tions.

– The proof π is “local”, i.e., the truthfulness of each θi
follows from a constant number of previous formulas in

θ1, . . . , θi−1.

– The propositional formulas θ1, θ2, . . . , θk can also be

regarded as boolean circuits, since the connectives includ-

ing “→” can be expressed as the combination of ∧,∨,

and ¬ gates.

A Sketch of the Transformation. Based on these obser-

vations, our transformation from C1 to C2 proceeds in the

following phases. We start with a circuit C(x) that is the same

as C1(x). After the following incremental changes to C, C(x)
will become C2(x).

– Grow C2. We add the circuit C2(x) to C in a gate-by-

gate manner. Specifically, we add each gate of C2 in the

topological order to C, while the output wire of C is still

set to be the output wire of C1(x).
We only change the circuit C for a constant number of

gates when we add a gate, since we can always assume

such a gate has a constant arity without loss of generality.

– Grow the Proof. We add the formulas θ1, θ2, . . . θk in

the proof π one by one to C as follows. Note that each

formula θi can be regarded as a circuit that computes the

truth values of θi from its variables.

Firstly, we add θ1 to C by modifying the output of C
as C1(x) ∧ θ1. Similarly, to add θ2, we further modify

the output of C to be C1(x) ∧ θ1 ∧ θ2. We continue this

process until all θ1, θ2, . . . , θk are added. Then the output

of C becomes C1(x) ∧ θ1 ∧ θ2 ∧ . . . ∧ θk.
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We now show that we only change a small subcircuit in

each step of the above process. There are three cases for

each i, depending on how θi is derived.

– Axiom: In this case θi is one of the axioms, for

example, θi is in the form P → (Q → P ). We

can assume without loss of generality that P,Q are

constant size formulas, as we can always reduce the

size of P,Q by assigning their subformulas to new

variables using the extension rule.

In this case the change from C1(x) ∧ θ1 ∧ . . . ∧
θi−1 to C1(x)∧ θ1 ∧ . . .∧ θi−1 ∧ θi can be regarded

as replacing a subcircuit that always outputs 1 with

a new subcircuit θi. The functionality equivalence

between the two subcircuits follows from the fact

that axioms must be tautologies.

– Modus Ponens: For this case, there exists some P,Q
such that P, P → Q are the formulas derived in the

first (i− 1) formulas, and the current formula θi is

Q. Similar to the case of axioms, we can assume

P,Q are constant-size formulas.

In this case the change from C1(x)∧ . . .∧P ∧ . . .∧
(P → Q)∧. . .∧θi−1 to C1(x)∧. . .∧P ∧. . .∧(P →
Q) ∧ . . . ∧ θi−1 ∧Q can be regarded as replacing a

subcircuit P ∧ (P → Q) with a new subcircuit P ∧
(P → Q)∧Q. The functionality equivalence can be

proved by enumerating all possible truth assignment

to P and Q.

– Change the Output. Let o1, o2 be the output wires of

C1, C2 respectively. Then a proof of “C1(x) = C2(x)”
ends with o1 ↔ o2. Namely, θk is the formula o1 ↔
o2. Hence, we can replace the output of C, which is

o1 ∧ θ1 ∧ . . .∧ θk, with o2 ∧ θ1 ∧ . . .∧ θk. This step is an

incremental change, since it can be regarded as replacing

the subcircuit o1 ∧ (o1 ↔ o2) with o2 ∧ (o1 ↔ o2).
– Shrink the Proof. This phase deletes θ1, θ2, . . . , θk in the

circuit C. Specifically, we remove θk, θk−1, . . . θ1 one by

one in the reversing order that they are added.

This process is a series of incremental changes for the

same reason as the “Grow the Proof” phase.

– Shrink C1. At the beginning of this phase, the circuit

C outputs o2, which is the output wire of C2(x). The

circuit C1 is still in C, but its output wire o1 is not used

anywhere. Then we delete the gates of C1 in C one by

one in the reverse topological order. Finally, we obtain

the circuit C = C2.

Deleting a gate of C1 in this phase is an incremental

change for the same reason as the “Grow C2” phase.

The reader may already notice that the above sketch over-

simplifies many details. For example, the output of the circuit

C is computed as a series of ∧-gates, i.e. C(x) = o1 ∧ θ1 ∧
θ2 . . . in the “Grow the Proof” phase, and we argue that we

change the subcircuit P ∧ (P → Q) to P ∧ (P → Q) ∧ Q.

However, in the reality, we need to use the arity-2 ∧-gates to

implement the series of ∧-gates in C(x). Then P ∧ (P → Q)
and P ∧ (P → Q) ∧ Q may not be subcircuits, since the

positions of P,Q may not be consecutive in the circuit.

Building An AND Tree. We resolve this issue by imple-

menting the series of ∧-gates as a binary tree of ∧-gates.

Initially, on every leaves there is a gate that always outputs

1. Then in the “Grow the Proof” phase, we replace the leaves

with θi’s one by one. Now, for each θi = Q obtained from

modus ponens, the subcircuit consists of the root-to-leaf paths

of P, P → Q and θi. This subcircuit contains only O(log k)
gates, which is logarithmic.

Handling Extension Rules. Another issue is how to handle

the extension rules. Indeed, there is an additional phase “Grow

the Extension” between the “Grow C2” phase and the “Grow

the Proof” phase, where we handle all the extensions by

introducing new wires in the circuit. Specifically, for any

extension of the form e ↔ Q, we add a new wire e and

set it as the output wire of a circuit that computes Q. Here we

can also assume Q is only constant size for the same reason

as the “Grow the Proof” phase. Also, between the “Shrink

the Proof” phase and the “Shrink C1” phase, we add a phase

“Shrink the Extension” to delete the wires in the reverse order

that they are introduced.

More technical issues raise when we build iO leveraging

the series of incremental changes above. As we will show

later, our construction of iO for Δ-equivalent circuits does

not hide the topology of the input circuit. As a result, in our

Δ-equivalence definition, we require the circuits C1, C2 and

their intermediate circuits C ′
1, . . . , C

′
� have the same topology.

To further preserve the topology of the circuit, we pad them

to the same topology. We defer the details to the full version

of the paper.

B. Construction of iO for Δ-equivalent Circuits

We now describe our construction of iO for Δ-equivalent

circuits. Our high-level strategy is as follows:

– We first consider a notion of δiO, namely, iO for circuits

that only differ by a small subcircuit. Specifically, we

build δiO for any two circuits that only differ by two

logarithmic-size functionally equivalent subcircuits.

– Next, we use δiO to obfuscate Δ-equivalent circuits

as follows. Recall that for any Δ-equivalent circuits

C1, C2, there is a polynomial number of intermediate

circuits C1 = C ′
1, C

′
2, . . . , C

′
� = C2, and each two

adjacent circuits C ′
i, C

′
i+1 only differ by two functionality

equivalent logarithmic subcircuits. From the first step, it

follows that for every i, δiO(C ′
i) and δiO(C ′

i+1) are indis-

tinguishable. By a hybrid argument, we can now establish

the indistinguishability of δiO(C1) and δiO(C2).

Let us explain why this approach overcomes the input-

length barrier. Whether two circuits only differ by two func-

tionality equivalent subcircuits of logarithmic size can be

decided in polynomial-time, since we only need to check

all inputs to the subcircuit instead of all inputs to the entire
circuit. Hence, the input-length barrier does not apply to δiO.

Therefore, we can hope to build δiO without a security loss

that is exponential in the input length.
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Thus, the main task towards our goal is to build δiO.

Towards this end, we present a new template for obfuscation

that preserves the topology of the input circuit. This feature is

crucial to proving security without incurring a loss exponential

in the input length. In particular, it allows us to make “local”

changes to leverage the fact the input pair of circuits only

differ by a logarithmic-size functionally equivalent subcircuit.

To the best of our understanding, this property is not satisfied

by prior templates for obfuscation (see, e.g., [6], [14], [24],

[12], [51], [40]).

Our Gate-by-Gate iO Template. Our first attempt is to

mimic the gate-by-gate construction of garbled circuits [70]

that preserves the structure of the input circuit. Specifically,

for each gate g in an input circuit C, we use a “small”

iO to obfuscate the gate functionality. Note that the input

and output wires need to be encrypted since otherwise, an

adversary can run the obfuscated program on arbitrary inputs

and observe the truth table of the gate g. Towards this end, we

associate a puncturable PRF key to each wire of the circuit,

and use it to encrypt the wire value. Then, for each gate g, we

obfuscate the following circuit Gateg(·, ·): it takes as input two

ciphertexts that correspond to encryptions of g’s input wires.

It first decrypts the ciphertexts, computes the functionality of

the gate g, and then encrypts the output wire value. In order to

perform the decryption and encryption steps, Gateg contains

the puncturable PRF keys for the input and output wires of

g hardwired in its description. The obfuscated circuit consists

of the obfuscation of iO(Gateg)’s for every gate g in C.

In order to prove security, the main idea is to only modify

the obfuscation of the gates that correspond to the logarithmic-

size subcircuit where the input circuits differ. Note that our use

of existing iO schemes (that incur security loss exponential in

the input length) does not pose a problem towards bypassing

the input-length barrier because the input length of each Gateg
is much smaller than the input length of the entire circuit C.

Mix-and-Match Attacks. This initial attempt, unfortunately,

suffers from “mix-and-match” attacks. An adversary can run

the obfuscated program for several different inputs, and keep

the ciphertexts of the intermediate wires. Later, the adversary

can provide the “mixed” input ciphertexts sourced from differ-
ent inputs to some gate iO(Gateg). Then the adversary might

learn more input-output pairs of Gateg than the functionality

of the circuit Gateg should have provided, and thus we have

no hope to prove the security of the above construction.

To prevent such attacks, we can modify the construction

as follows: let ctl, ctr denote the “left” and “right” input

ciphertexts to Gateg . The modified Gateg additionally takes

the entire inputs xl, xr to C that lead to the input ciphertexts

ctl, ctr and checks whether xl = xr. In order to “tie” the

entire input with a ciphertext, we use another puncturable PRF

to compute a message-authenticate code (MAC) over the pair

(ctl, xl) and similarly (ctr, xr)
It is not difficult to see that this modified construction pre-

vents mix-and-match’ attacks. Intuitively, only the ciphertexts

generated by Gateg can have a valid MAC, and hence the mix-

and-match attacks can be caught by the consistency check over

the inputs xl, xr. Unfortunately, however, the input length of

Gateg is now as large as the input length of C. This means

that this construction will incur a security loss exponential in

the input length of C.

An Intermediate Step. Towards overcoming this problem,

we first describe a modified construction that improves upon

the above but only for specific circuits, namely, ones in NC0.

As we will see shortly, it serves as a useful basis towards our

final solution for general circuits.

Our starting idea is to leverage the fact that each gate

in C might not depend on the entire input of C. Hence,

we can modify Gateg such that it only takes as input the

input wire values of C that g depends upon. To characterize

dependency, we introduce the notation dep(w) to denote the

set containing all the intermediate wires that a wire w depends

upon, excluding itself. Note that dep(w) includes not only the

input wires but also the internal wires of C.

The security loss incurred by this modified construction is

exponential in the input length of Gateg . This loss is small

when C is in NC0 since any output bit of an NC0 circuit

only depends on a constant number of input bits. However,

for general circuits, dep(l) and dep(r) may contain the entire

input in the worst case. In such a scenario, the security loss

is still exponential in the input length of C.

Shrinking Input Length via Hashing. To resolve this issue,

we observe that in the above security proof, Gatedirectg does

not even need to know every ciphertext in dep(l) ∪ dep(r) to

compute the wire value of o. Instead, the wire o only depends

on the wires in dep(o) that are also the input wires of the

subcircuit S. For ease of representation, we use inp(S) to

denote the input to S. Since the size of dep(o) ∩ inp(S) is

only logarithmic, if we modify Gateg to take as input the

ciphertexts in dep(o) ∩ inp(S) instead, then we significantly

shorten the input length of Gateg .

However, we can not provide the above set as an explicit

input to Gateg since S is not known in the construction of

δiO; instead, it is only available in the security reduction.

If we hardwire S in (the public description of) Gateg in an

intermediate hybrid of the security proof, then we can not hope

to argue indistinguishability. Hence, we need to hide the set S
and at the same time also provide the above set of ciphertexts

in dep(o) ∩ inp(S) as an input to Gateg .

To achieve these two properties simultaneously, we use

a somewhere extractable hash function (SEH) [46] to hash

the ciphertexts in dep(l) and the ciphertexts in dep(r). We

set the hash function to be extractable for the ciphertexts in

dep(l) ∩ inp(S) and dep(r) ∩ inp(S). The key indistinguisha-

bility property of SEH guarantees that the extraction locations

are hidden in the hash key. Moreover, the size of the SEH

hash value grows linearly in |S|.
Next, we modify the circuit Gateg to take

Hash(CTl),Hash(CTr) as additional inputs, where CTl

(resp. CTr) contains all ciphertexts that the wire l (resp.

r) depends on. Then in the security proof, for each two
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adjacent intermediate circuits C ′
i, C

′
i+1, we first switch the

set S to be the subcircuit that C ′
i and C ′

i+1 differ on. Then,

we replace Gateg with a new Gatedirectg

′
that extracts the sets

of ciphertexts in dep(o) ∩ inp(S) from the hash values and

computes the output wires o directly from them.
However, an issue arises in arguing security since we need

to enforce the consistency check of the ciphertexts in dep(l)
and the ciphertexts in dep(r) given only their hash values. A

natural idea is to further attach a succinct non-interactive proof

that proves that the two hash values are consistent. Note that

we seemingly need such a proof to be statistically sound; such

proofs, however, are unlikely to exist.
Our key observation is that we in fact do not need a succinct

proof with full statistical soundness. Instead, we only suc-

cinct non-interactive arguments (SNARGs) with the following

somewhere statistical soundness property: for two hash values

computed as above, the extracted ciphertexts are consistent.

Namely, given the hash values hl, hr, ho with respect to

dep(l), dep(r), dep(o), respectively, if the extracted ciphertexts

in dep(l)∩ inp(S) and dep(o)∩ inp(S) are inconsistent, or the

extracted ciphertexts in dep(r) ∩ inp(S) and dep(o) ∩ inp(S)
are inconsistent, then any proof computed by an unbounded

cheating prover must be rejected.
We build such somewhere statistically sound SNARGs with

only poly-logarithmic size proof and verification time from

the polynomial hardness of learning with errors (LWE) by

relying on the techniques in the recent work of [25]. In [25],

the authors constructed SNARGs for the so-called batch index
language with (semi-adaptive) somewhere extraction property

from LWE, where an index language is an NP language

where the instances are treated as indices that can be described

in a logarithmic number of bits. We observe that a minor

modification of their construction achieves (semi-adaptive)

somewhere statistical soundness.
Armed with somewhere statistically sound SNARGs for the

batch index language, we show how to build an SEH with

consistency proofs. We start with the somewhere statistical

binding hash construction of [46]. Their construction also

allows extraction of the binding positions, and hence is also an

SEH. Moreover, their construction has a Merkle tree structure,

and thus supports succinct local openings. Namely, one can

use a root-to-leaf in the Merkle tree to serve as a small-size

opening for each bit in the string being hashed. To hash the

index set CTl, we first assign a unique integer to each wire.

Then we arrange the elements in CTl as an array. At the index

w, if w index is non-empty in CTl then we put ctw at the w-

th index. Otherwise, we put a special symbol ⊥ at the w-th

index. To generate a consistency proof for hl and ho, we use

a SNARG for batch-index language to prove that for each

wire w, there exists valid local openings to hl and ho at the

index w, and if CTl has a non-empty element at the index w,

then CTo also has the same element at the index w. Then the

somewhere statistical soundness of SNARGs for batch-index

implies the property we want from the consistency proof.
It looks like we have bypassed the input-length barrier, since

the input length to Gateg seems to be independent of the input

length of C. However, a careful examination reveals that this

is not the case. Specifically, the bit-length of the hash value

ho is at least the size of one ciphertext plus a poly(λ) term,

and the size of one ciphertext is at least the size of hl or hr.

Hence, we have |ho| ≥ |hl| + poly(λ). Therefore, the size of

the hash value ho grows at least linearly in the depth of the

circuit. This leads to a linear dependence on the depth of the

circuit in the input length of Gateg .

Removing the Depth Dependence. To overcome this issue,

we need to further shrink the hash values. Towards this end,

our key observation is that we only require a weaker extraction

property from SEH: instead of extracting the ciphertexts, we

only need to extract the underlying messages. Hence, we use

a fully homomorphic encryption scheme to encrypt the SEH

extraction trapdoor together with the puncturable PRF keys for

the wires whose values we wish to extract from SEH. Then

we homomorphically extract the underlying messages.

Full Version. A formal presentation of all our results is

deferred to the full version of the paper.
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ear maps. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part I, volume 10210
of Lecture Notes in Computer Science, pages 152–181, Paris, France,
April 30 – May 4, 2017. Springer, Heidelberg, Germany. 1

[8] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of
obfuscating programs. In Joe Kilian, editor, Advances in Cryptology
– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,

1032

Authorized licensed use limited to: Johns Hopkins University. Downloaded on April 23,2023 at 19:14:35 UTC from IEEE Xplore.  Restrictions apply. 



pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany. 1

[9] Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results
on differing-inputs obfuscation. In Marc Fischlin and Jean-Sébastien
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