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Abstract. Suppose that θ is irrational. Then almost all elements ν ∈ Z[θ]
that may be written as a k-fold product of the shifted integers n+θ (n ∈ N)
are thus represented essentially uniquely.

1. Introduction

Given a complex number θ, the shifted integer analogue of the natural num-
bers N + θ = {n + θ : n ∈ N} possesses, at a superficial level, many additive
properties in common with its unshifted cousin N. For multiplicative prob-
lems, the close connections plausible in the additive setting rapidly evaporate.
In this note we examine a shifted analogue of the restricted divisor function.
Thus, when ν ∈ Z[θ], we consider the function

τk(ν;X, θ) =
∑

16d16X

. . .
∑

16dk6X

(d1+θ)···(dk+θ)=ν

1.

The mean value
∑

ν∈Z[θ]

τk(ν;X, θ)2

counts the number of integral solutions of the equation

(x1 + θ) · · · (xk + θ) = (y1 + θ) · · · (yk + θ), (1.1)

with 1 6 xi, yi 6 X (1 6 i 6 k). We show that when θ 6∈ Q, then almost all
solutions of (1.1) are the diagonal ones in which (x1, . . . , xk) is a permutation
of (y1, . . . , yk). Thus, almost all elements ν ∈ Z[θ] that may be written as a
k-fold product of shifted integers n + θ (n ∈ N) are represented essentially
uniquely in this manner.

In order to describe our conclusions in more detail, it is convenient to in-
troduce some notation. Denote by Tk(X) the number of k-tuples x and y

in which 1 6 xi, yi 6 X (1 6 i 6 k), and (x1, . . . , xk) is a permutation of
(y1, . . . , yk). The precise determination of Tk(X) as an explicit polynomial in
⌊X⌋ is a combinatorial problem complicated by a consideration of k-tuples x
and y in which various subsets of the variables x1, . . . , xk and y1, . . . , yk share
a common value. For the purposes of this paper, it suffices to remark that
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Tk(X) = k!Xk + O(Xk−1). We begin with the simplest situation in which
θ ∈ C is either transcendental, or else algebraic of large degree over Q.

Theorem 1.1. Let k ∈ N. Suppose that θ ∈ C is either transcendental, or
else algebraic of degree d over Q, where d > k. Then one has

∑

ν∈Z[θ]

τk(ν;X, θ)2 = Tk(X).

The situation in which θ is algebraic of small degree is more complicated.

Theorem 1.2. Let k ∈ N and ε > 0. Suppose that θ ∈ C is algebraic of degree
d over Q, where 2 6 d < k. Then one has

∑

ν∈Z[θ]

τk(ν;X, θ)2 = Tk(X) +O(Xk−d+1+ε).

Here, the implicit constant in Landau’s notation may depend on k, ε and θ.

It follows that when θ 6∈ Q, then there is a paucity of non-diagonal solutions
in the equation (1.1). Moreover, one has the asymptotic formula

∑

ν∈Z[θ]

τk(ν;X, θ)2 = k!Xk +O(Xk−1+ε).

These conclusions are in marked contrast with the corresponding situation in
which θ ∈ Q. When θ is rational, experts will recognise that a straightforward
exercise employing the circle method yields the lower bound

∑

ν∈Z[θ]

τk(ν;X, θ)2 ≫θ,k X
k(logX)(k−1)2 .

Indeed, additional work would exhibit an asymptotic formula in place of this
lower bound. In this regard, we note that the contour integral methods of [1, 2]
would also be accessible. The inquisitive reader interested in paucity problems
for diagonal Diophantine systems will find a representative slice of the relevant
literature in [4, 5, 6, 8].

One motivation for considering this problem is that such multiplicative equa-
tions arise naturally when studying the higher moments of zeta and L-functions
(see [7] for a related problem). In particular, equation (1.1) is intimately re-
lated to the moments and value distribution of the Hurwitz zeta function ζ(s, θ)
with shift parameter 0 < θ 6 1. For irrational shifts θ, this forms the focus of
an ongoing project of the first and second author. For rational shifts θ, see [3].

Perhaps it is worth stressing that the equation (1.1) corresponds to a system
of polynomial equations with integral variables. In order to illustrate this point,
consider the situation in which k = 3 and θ =

√
2. We make use of the linear

independence of 1 and
√
2 over Q. On noting that

(x1+
√
2)(x2+

√
2)(x3+

√
2) = x1x2x3+2(x1+x2+x3)+

√
2(x1x2+x2x3+x3x1+2),
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we find that the equation (1.1) holds if and only if x and y satisfy the simul-
taneous equations

x1x2x3 + 2(x1 + x2 + x3) = y1y2y3 + 2(y1 + y2 + y3)

x1x2 + x2x3 + x3x1 = y1y2 + y2y3 + y3y1

}

. (1.2)

In this scenario, we conclude from Theorem 1.2 that the number N(X) of
integral solutions of the system (1.2) with 1 6 xi, yi 6 X (1 6 i 6 3) satisfies

N(X) = 6X3 +O(X2+ε).

The basic strategy that we employ in the proofs of Theorems 1.1 and 1.2
is based on the generation of multiplicative polynomial identities. These are
inspired by an examination of the polynomial

k
∏

i=1

(t− xi)−
k
∏

i=1

(t− yi).

There are parallels here with the third author’s treatment of the Vinogradov
system in joint work with Vaughan [6]. We also interpret the function τk(ν;X, θ)
as the number of integral solutions of the equation

(x1 + θ)(x2 + θ) · · · (xk + θ) = ν,

with 1 6 xi 6 X (1 6 i 6 k). This can be seen as a restriction of the k-fold
divisor function in the ring of integers OK of the number field K = Q(θ).
Indeed, if θ ∈ C is algebraic of degree d, then the general element of OK has
the shape x1 + x2θ+ . . .+ xdθ

d−1 for appropriate rational numbers x1, . . . , xd.
Plainly, the elements x+ θ with x ∈ Z constitute a thin 1-dimensional subset
of this d-dimensional set OK . Although immediate appeal to ideas concerning
divisor functions is limited by this observation, the crude bound τk(ν;X, θ) =
O(Xε) does play a role in the concluding phase of our proof of Theorem 1.2.

Our basic parameter is X, a sufficiently large positive number. Whenever ε
appears in a statement, either implicitly or explicitly, we assert that the state-
ment holds for each ε > 0. In this paper, implicit constants in the notations
of Landau and Vinogradov may depend on ε, k, and θ. We make frequent use
of vector notation in the form x = (x1, . . . , xk). Here, the dimension k will be
evident to the reader from the ambient context.

Acknowledgements: The second author is grateful to his PhD advisor, Steve
Gonek, for support and encouragement. The third author’s work is supported
by NSF grants DMS-2001549 and DMS-1854398. The second and third authors
also benefitted from activities hosted by the American Institute of Mathemat-
ics, San Jose supported via the latter grant. The authors are grateful to the
referee for useful comments.

2. The proof of Theorem 1.1

We begin in this section by considering the situation in which θ ∈ C is
either transcendental, or else is algebraic of degree d > k over Q. In such
circumstances, we rewrite the equation (1.1) by using elementary symmetric
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polynomials σj(z) ∈ Z[z1, . . . , zk]. These may be defined for j > 0 by means
of the generating function identity

k
∑

j=0

σj(z)t
k−j =

k
∏

i=1

(t+ zi).

The equation (1.1) may thus be rewritten in the form

k
∑

j=0

σj(x)θ
k−j =

k
∑

j=0

σj(y)θ
k−j.

Since σ0(x) = 1 = σ0(y), we find that

k
∑

j=1

(σj(x)− σj(y))θ
k−j = 0. (2.1)

In our present situation with θ either transcendental, or else algebraic of degree
d > k over Q, the complex numbers 1, θ, . . . , θk−1 are linearly independent over
Q. Then it follows from (2.1) that σj(x) = σj(y) (1 6 j 6 k). In particular,
over the ring Z[t] one obtains the polynomial identity

k
∏

j=1

(t− xj) =
k
∏

j=1

(t− yj). (2.2)

The polynomial relation (2.2) implies that left and right hand sides must
have the same zeros with identical multiplicities. Hence (x1, . . . , xk) must be
a permutation of (y1, . . . , yk). The conclusion

∑

ν∈Z[θ]

τk(ν;X, θ)2 = Tk(X)

is then immediate on considering the Diophantine interpretation (1.1) of the
mean value on the left hand side. This completes the proof of Theorem 1.1.

3. The proof of Theorem 1.2

We now assume that θ ∈ C is an algebraic number of degree d over Q, with
2 6 d < k. In this situation the equation (1.1) simplifies, since θd may be
expressed as a Q-linear combination of 1, θ, . . . , θd−1. However, the equation
(2.1) no longer delivers k independent polynomial equations, but instead d
such equations with d < k. The strategy of §2 is thus no longer applicable.

Let x,y be an integral solution of the equation (1.1) with 1 6 xi, yi 6 X
(1 6 i 6 k), in which (x1, . . . , xk) is not a permutation of (y1, . . . , yk). Observe
first that if xi = yj for any indices i and j with 1 6 i, j 6 k, then we may cancel
the factors xi+ θ and yj + θ, respectively, from the left and right hand sides of
(1.1). It thus suffices to establish the conclusion of Theorem 1.2 with k replaced
by k − 1. Here, of course, if d > k − 1, then the desired conclusion follows
from Theorem 1.1. By repeatedly cancelling pairs of equal factors in this way,
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it is apparent that there is no loss of generality in supposing henceforth that
xi = yj for no indices i and j with 1 6 i, j 6 k.

Consider the polynomial

F (t) =
k
∏

i=1

(t+ xi)−
k
∏

i=1

(t+ yi). (3.1)

This polynomial has degree at most k − 1, and so for suitable integers aj =
aj(x,y) (0 6 j 6 k − 1), we may write

F (t) = a0 + a1t+ . . .+ ak−1t
k−1.

Note that for 0 6 j 6 k − 1, one has

|aj| = |σk−j(x)− σk−j(y)| ≪ Xk−j. (3.2)

Next, denote by mθ ∈ Z[t] the minimal polynomial of θ over Z. Then mθ is
irreducible of degree d over Z, and if mθ has leading coefficient cd 6= 0, then
c−1
d mθ ∈ Q[t] is the usual minimal polynomial of θ over Q. We may write

mθ(t) = c0 + c1t+ . . .+ cdt
d,

in which |cj| ≪θ 1 (0 6 j 6 d). We observe from (1.1) and (3.1) that

F (θ) =
k
∏

i=1

(xi + θ)−
k
∏

i=1

(yi + θ) = 0,

whence mθ(t) divides F (t). Consequently, there is a polynomial Ψ(t) =
Ψθ(t;x,y) ∈ Z[t] having the property that

F (t) = mθ(t)Ψ(t). (3.3)

Since deg(Ψ) = deg(F )− deg(mθ) 6 k − 1− d, we may write

Ψ(t) = b0 + b1t+ . . .+ bk−1−dt
k−1−d,

where bm ∈ Z (0 6 m 6 k − 1 − d). Our immediate goal is to bound the
coefficients bm.

We claim that for 0 6 m 6 k − d− 1, one has

|bm| ≪ Xk−d−m. (3.4)

This we establish by considering the formal Laurent series for mθ(t)
−1. Thus,

we have mθ(t)
−1 = e(t) ∈ Q((1/t)), where for suitable rational coefficients

ej ∈ Q (j > d) one has

e(t) =
∞
∑

j=d

ejt
−j =

1

cdtd
(1 + c−1

d cd−1t
−1 + . . .+ c−1

d c0t
−d)−1.

Note here that cd 6= 0. Further, since c0, . . . , cd depend at most on θ, it follows
from a Taylor series expansion that ej ≪θ,j 1. We may therefore infer from
(3.3) that Ψ(t) = e(t)F (t), whence

k−1−d
∑

m=0

bmt
m =

(

∞
∑

j=d

ejt
−j

)(

k−1
∑

i=0

ait
i

)

.
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In view of the bounds (3.2) and ej ≪θ,j 1, we deduce that for 0 6 m 6 k−1−d
one has

bm = edam+d + ed+1am+d+1 + . . .+ ek−1−mak−1

≪ Xk−d−m +Xk−d−m−1 + . . .+X ≪ Xk−d−m.

This confirms the bound (3.4). We may suppose henceforth that there is a
positive number C = C(k, θ) having the property that

|bm| 6 CXk−d−m (0 6 m 6 k − d− 1). (3.5)

We now arrive at the polynomial identity that does the heavy lifting in the
proof of Theorem 1.2.

Lemma 3.1. Suppose that x,y is an integral solution of the equation (1.1)
with 1 6 xi, yi 6 X (1 6 i 6 k), in which xi = yj for no indices i and j with
1 6 i, j 6 k. Then, for each index j with 1 6 j 6 k, there is an integer ρj,
with 1 6 |ρj| 6 kCXk−d, having the property that

k
∏

i=1

(xi − yj) = ρjmθ(−yj).

Proof. Recalling (3.1) and (3.3), we see that

F (−yj) =
k
∏

i=1

(xi − yj) = mθ(−yj)Ψ(−yj).

But in view of (3.5), one has

|Ψ(−yj)| 6
k−1−d
∑

m=0

|bm|ymj 6 (k − d)CXk−d.

Thus, there is an integer ρj = Ψ(−yj) with |ρj| 6 kCXk−d for which

k
∏

i=1

(xi − yj) = mθ(−yj)ρj.

Notice here that since the left hand side is a non-zero integer, then so too are
both factors on the right hand side. The conclusion of the lemma follows. �

We may now complete the proof of Theorem 1.2. Our previous discussion
ensures that it is sufficient to count solutions x,y of (1.1) with 1 6 xi, yi 6 X
(1 6 i 6 k), in which xi = yj for no indices i and j with 1 6 i, j 6 k. Given
any such solution, an application of Lemma 3.1 with j = k shows that, for
some integer ρk with 1 6 |ρk| 6 kCXk−d, one has

k
∏

i=1

(xi − yk) = ρkmθ(−yk). (3.6)

Fix any one of the O(X) possible choices for yk, and likewise any one of the
O(Xk−d) possible choices for ρk. Then we see from (3.6) that each of the factors
xi − yk (1 6 i 6 k) must be a divisor of the non-zero integer N = ρkmθ(−yk).
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It therefore follows from an elementary estimate for the divisor function that
there are O(N ε) possible choices for xi − yk (1 6 i 6 k). Fix any one such
choice. Then since yk has already been fixed, we see that x1, . . . , xk and yk are
now all fixed.

At this point we return to the equation (1.1). By taking norms from Q(θ)
down to Q, we see that

k
∏

i=1

mθ(−yi) =
k
∏

i=1

mθ(−xi).

The right hand side here is already fixed and non-zero. A divisor function
estimate therefore shows that there are O(Xε) possible choices for integers
n1, . . . , nk having the property that

mθ(−yi) = ni (1 6 i 6 k).

Fixing any one such choice for the k-tuple n, we find that when 1 6 i 6 k,
there are at most d choices for the integer solution yi of the polynomial equation
mθ(−t) = ni. Altogether then, the number of possible choices for x and y given
a fixed choice for yk and ρk is O((NX)ε). Thus we conclude that the total
number of possible choices for x and y is O(Xk−d+1+ε), and hence

∑

ν∈Z[θ]

τk(ν;X, θ)2 − Tk(X) ≪ Xk−d+1+ε.

This completes the proof of Theorem 1.2.
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