
Succinct Zero Knowledge for Floating Point Computations
Sanjam Garg

sanjamg@berkeley.edu

UC Berkeley and NTT Research

Berkeley, California, USA

Abhishek Jain

abhishek@cs.jhu.edu

Johns Hopkins University

Baltimore, Maryland, USA

Zhengzhong Jin

zjin12@jhu.edu

Johns Hopkins University

Baltimore, Maryland, USA

Yinuo Zhang

yinuo.yz@gmail.com

UC Berkeley

Berkeley, California, USA

ABSTRACT
We study the problem of constructing succinct zero knowledge

proof systems for floating point computations. The standard ap-

proach to handle floating point computations requires conversion

to binary circuits, following the IEEE-754 floating point standard.

This approach incurs a poly(𝑤) overhead in prover efficiency for

computations with𝑤-bit precision, resulting in very high prover

runtimes – already the key bottleneck in the design of succinct

arguments.

We make the following contributions:

– We propose a new model for verifying floating point com-

putations that guarantees approximate correctness w.r.t. a

relative error bound. This model is inspired by numerical

analysis, and is very meaningful for applications such as

machine learning and scientific computing.

– Using this model, we present a general method for construct-

ing succinct zero-knowledge proofs for floating point com-

putations starting from existing public-coin “commit-and-

prove” systems. For computations with𝑤-bit precision, our

approach incurs only a log(𝑤) overhead in prover running

time. Our compiler nearly preserves (up to a factor of 2)

the communication complexity of the underlying protocol,

and requires sub-linear verification time. The resulting proof

can be made non-interactive in the random oracle model.

Concretely, our scheme is ∼ 57× faster than the method fol-

lowing IEEE standard exactly [35] for 32-bit floating point

computations.

Central to our main result, and of independent interest, is a new

batch range proof system in standard prime order groups that does

not rely on bit decomposition.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560653

CCS CONCEPTS
• Security and privacy→Mathematical foundations of cryp-
tography.

KEYWORDS
Succinct Proof System; Zero-knowledge; Verifiable Computation.

ACM Reference Format:
Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang. 2022. Suc-

cinct Zero Knowledge for Floating Point Computations. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3548606.3560653

1 INTRODUCTION
Succinct proofs [24, 26] allow a prover to convince a verifier that

an NP statement is true, with communication sub-linear in the

size of the prover’s witness. Such proofs are studied in two avatars:

interactive proofs, where prover and the verifier communicate over

multiple rounds, and non-interactive proofs, where the prover sends

a single message to the verifier. If the interactive proof is public-

coin, known methods (e.g., [17]) can be used to transform it into

a non-interactive proof in the random oracle model [3], or the

common reference string model.

Succinct proofs are typically pairedwith an additional zero knowl-
edge (ZK) property [21], which requires that the verifier does not

learn anything beyond the veracity of the statement. In recent years,

succinct zero-knowledge proofs have found numerous real-world

applications, e.g., in the design of blockchains [4]. This has led to

extensive research towards improving the efficiency of succinct

zero-knowledge proofs in practice [1, 5, 9, 10, 13, 14, 20, 29, 32, 36–

38], both in terms of prover and verifier running times. The stan-

dard approach in all of these works is to model the computation

as an arithmetic or binary circuit, where each wire of the circuit is

represented as an integer value.

How to Verify Floating Point Computations? In many real-

world applications, floating point computations are ubiquitous. A

floating point number is different from an integer, in that it is

expressed using an integer significand part (with a fixed number of

digits) and scaled using an integer exponent part (in a fixed base).

The parameters of machine learning models are usually stored as

floating point numbers in computers. In physics, any measurement

we make may incur some inaccuracy, and hence the result is usually

represented as a floating point number.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

1203

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3560653
https://doi.org/10.1145/3548606.3560653
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3560653&domain=pdf&date_stamp=2022-11-07

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang

In this work, we study the following question,

Can we build efficient succinct zero-knowledge proofs for
floating point computations?

Current Approach and Drawbacks. The standard approach to

prove the correctness of a floating point computation is to first

convert the floating point operations to binary circuits, following

the IEEE-754 floating point standard (see, e.g. [35]). The IEEE stan-

dard guarantees that the result of each floating point operation is

rounded to the closest floating point number, and except for some

corner cases, the result of computation is almost deterministic.

However, this method introduces a very high computational

overhead. Asymptotically, for floating point numbers with 𝑤-bit

precision, each operation requires a binary circuit of size polynomial
in𝑤 . As a concrete example, [35] converts multiplication operation

over IEEE 32-bit floating point numbers with precision𝑤 = 24 into

a binary circuit of 8854 gates. This means that the prover running

time – the key bottleneck in the most efficient known constructions

of succinct proofs systems – increases roughly 9000-fold.

Our Work. In this work, we aim to build succinct zero-knowledge

proof systems with improved prover efficiency. Inspired by nu-
merical analysis [33], we propose a new model for proving the

correctness of floating point computations. In our model, we only

verify an upper bound on the relative error for each floating point

operation in the overall computation. As we discuss shortly, our

model provides strong guarantees for most applications in machine

learning and scientific computing. Crucially, it allows us to avoid

the overhead of transforming floating point operations to binary

circuits, and build proof systems with significantly better prover

efficiency.

Our work is inspired by (although different from) an influential

recent line of research [6, 12] that constructs efficient fully homo-

morphic encryption [18] schemes for floating point computations

by deviating from the IEEE standard.

2 OUR CONTRIBUTIONS
In this work, we initiate the study of prover- efficient succinct zero-
knowledge proofs for floating point computations. We start by

providing a summary of our contributions.

• We first propose a relative error model to verify floating

point computations.

• We build a generic compiler that transforms any (public-

coin) “commit-and-prove” zero-knowledge proof of knowl-

edge system into a succinct zero-knowledge proof system

for floating-point computation. For computations with𝑤-bit

precision, the prover time in our system grows only log-
arithmically in 𝑤 . The communication complexity nearly

preserves the communication of the underlying protocol (up

to a factor of 2), and the verification time is sub-linear in the

size of the computation.

• Finally, we provide a concrete efficiency analysis of our pro-

tocol. Compared to the prior method that involves verifying

that the computation followed the IEEE standard exactly

[35], the prover running time of our scheme is ∼ 57× faster

for 32-bit floating point numbers, and 236× faster for 64-bit

floating point numbers. We also compare performance with

an alternative solution that uses optimized versions of exist-

ing range proofs (that rely on bit-decomposition) within our

relative error model. In this case, the prover runtime of our

scheme is ∼ 2.5× to 3.7× faster, depending on the precision.

Our improvements are much more significant if multiplica-

tion gates dominate the relation circuit; see Section 2.2 and

6.7 for more details.

We now describe our contributions in more detail. We first pro-

vide an overview of our model in Section 2.1. We then describe our

results and performance analysis in Section 2.2.

2.1 Our Model
We introduce the following model for proving the approximate cor-

rectness of floating point computations: a (honest) prover performs

the floating point computation following the IEEE standard, and

then proves an upper bound on the relative error for each step of

the floating point computation. Specifically, for each (addition or

multiplication) gate 𝑔 with input wires 𝑎, 𝑏 and output wire 𝑐 , we

require a prover to prove that

|𝑐 − 𝑔(𝑎, 𝑏) | ≤ 𝛿 |𝑔(𝑎, 𝑏) |,

for a relative error bound 𝛿 , where 𝑔(𝑎, 𝑏) is the precise value of
the addition (resp. multiplication). Here 𝛿 can be set as machine

epsilon, which is the relative error bound in the IEEE standard.

Zeros, infinities, and not-a-number in IEEE standard can be treated

separately as corner cases.

Our model is directly inspired by the field of numerical analysis
[33] that concerns with measuring the accuracy of numerical algo-

rithms. A general methodology is to first bound the relative error

for each step of the floating point computation, and then an error

bound on the output is derived. The relative error methodology is

used because the behavior of the rounding operation is quite com-

plicated and hard to reason about. The accuracy of most numerical

algorithms can be analyzed in this way.

Meaningfulness of our Model. For any floating point computa-

tion program, a proof in our model can be combined with numerical

analysis about the program to obtain guarantees on the accuracy of
the output of the program. For example, in numerical linear algebra

[34], the backward error analysis for basic numerical algorithms

such as Gaussian elimination and matrix decomposition relies only
on the bound of relative errors. These algorithms serve as a basis

for numerous scientific computing tasks ranging from numerical

differential equation solving to big data analysis [7]. For these ap-

plications, strong guarantees on the accuracy of the output can be

obtained using our approach.

What about more complicated floating point programs for which

rigorous numerical analysis results are not known? The output of

such programs is at least robust in the presence of rounding errors

that arise in the computation following the IEEE standard. Hence,

we can heuristically assume that their output is robust to any small

perturbations bounded by the relative error upper bound during

the computation. Indeed, a counterexample for our assumption

would imply that the accuracy of the output cannot be argued by

following the relative error methodology in numerical analysis but

the program is “numerically stable” in practice. This would greatly

1204

Succinct Zero Knowledge for Floating Point Computations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

advance our understanding of the numerical algorithm being used

and the relative error methodology in numerical analysis.

Finally, we note that the adversarial nature of proof systems

diminishes any error gap between our model and the alternative

model of proving that a computation was performed following the

IEEE standard [35]. As an example, our model does not guarantee

that the value in the output wire of a step of the computation is

rounded to the nearest number (as is done in the IEEE standard).

Instead, our model allows a larger (by a factor of 2 in some cases)
1

absolute error. Note, however, that such difference only appears

when the floating point numbers are public and fixed. In the setting

of zero-knowledge proofs, the floating point numbers are hidden to

the verifier, and a malicious prover may choose any floating point

numbers that lead to the maximum possible rounding error in the

worst case. Hence, the actual rounding error matches the upper

bound in the relative error model.

Efficiency Benefits. Our model of verifying relative errors en-

ables us to achieve better prover efficiency than existing methods. In

particular, our model does not require proving complicated round-

ing operations. Instead, it only requires proving “simple” relations

between a tuple of wire values (𝑎, 𝑏, 𝑐) associated with an operation.

Furthermore, as we discuss below, we can build direct proofs for

such relations without using bit decomposition.

2.2 Our Constructions
We construct succinct zero-knowledge proofs for floating point

computations, both in the interactive and non-interactive setting.

Our main result is a generic compiler that compiles any commit-
and-prove succinct ZK proof of knowledge system into a succinct

ZK proof for floating point computations in our model.

Recall that a commit-and-prove (CP) system is an interactive

protocol that allows a prover to prove that a committed value is a

witness of some instance in anNP language. Most existing succinct

ZK proof systems (see, e.g. [5, 9, 29, 36]) can be abstracted as CP

systems. We require such proof systems for R1CS – an already

popular choice of NP complete language in existing systems.

General Compiler. Let𝑤 be the precision of floating point num-

bers, 𝑘 be the bit-length of the exponent, and 𝐶 be a floating point

computation circuit. Our general compiler yields a protocol with

the following parameters:

• Prover Time: The run-time of the prover is equivalent to the

prover run-time in the underlying CP protocol for proving

an R1CS instance X of size |X| = 𝑂 (log𝑤 + 𝑘) · |𝐶 |.
• Proof Size: The proof size is equivalent to the proof size of

the underlying CP protocol for proving an R1CS instance of

size |X|, with 𝑂 (1) additional field elements.

• Verification Time: The verification time is equivalent to the

verification time of the underlying CP protocol for |X|-size
R1CS, with an additional 𝑂 (

√︁
|X|) group operations.

If the underlying CP system is public-coin and succinct, then
so is our resulting protocol. Furthermore, by relying on the zero
knowledge property of the underlying CP systems, we also achieve

zero knowledge property. Thus, instantiating our compiler with a

1
The upper bound of the relative error caused by rounding to nearest rule is in the

range [𝛿/2, 𝛿], where 𝛿 is machine epsilon. See [19].

(public-coin) commit-and-prove succinct ZK proof (of knowledge)

system, we obtain a (public-coin) succinct ZK proof system for

floating point computations. Applying the Fiat-Shamir transforma-

tion [3] to our protocol, we obtain a non-interactive succinct ZK
argument system for floating point computations.

The verification time of our proof system is sub-linear in the

circuit size, if the underlying CP protocol achieves sub-linear veri-

fication. More precisely, our protocol incurs an additive overhead

of 𝑂 (
√︁
|𝐶 |) in the verification time of the underlying CP protocol.

While it is clearly desirable to achieve smaller verification time, we

note that trading verification time for better prover performance

has been an active area of recent research (see, e.g., [1, 5, 9]). Such

trade-offs can be justified by practical ramifications; indeed, some

of these proof systems are being used in real-world systems.

Our technique for achieving sub-linear verification can be natu-

rally extended to achieve poly-logarithmic verification. This, how-

ever, results in an increase in prover running time (due to the

necessity of a larger group; see Section 6.3). We leave open the

problem of achieving poly-logarithmic verification time (without

blowing up the prover running time) for future research.

Concrete Parameters. For a concrete comparison of our approach

with the IEEE-754 standard and the optimized bit-decomposition

method (see Section 6.7 for its detailed description), we list the

parameters of zero-knowledge CP protocol regarding the three

different approaches, for 32-bit floating point numbers (𝑤 = 24, 𝑘 =

8) and 64-bit floating point numbers (𝑤 = 53, 𝑘 = 11) in Table 1. The

parameters support floating-point circuits of ≈ 2
20

gates. While

our construction supports different moduli, here we choose the

modulus 𝑝 ≈ 2
384

, which can be used with 384-bit elliptic curves

BN-384.
The R1CS size of our protocol is 91× ∼ 432× smaller than fol-

lowing the IEEE standard exactly and 4× ∼ 7× smaller than the

optimized bit decomposition method, depending on the length of

floating point number (32 bits or 64 bits). If we use the 384-bit groups

for all methods, then such improvement translated to the running

time of the prover efficiency. Since the optimized bit-decomposition

method can also use smaller groups such as 256-bit groups, tak-

ing into account the difference in group sizes, our protocol is still

57× ∼ 236× faster than following IEEE standard and 2.5× ∼ 3.7×
faster than the optimized bit-compositionmethod in terms of prover

efficiency. We achieve these improvement at the cost of doubling

the proof size. Finally, we note that our construction achieves sig-

nificantly more improvement for the case of multiplication gates

(as opposed to addition gates); hence, if the circuit is dominated by

multiplication gates, our overall improvements will be more signif-

icant. For more details in performance estimation and comparison,

see Section 6.7.

Batch Range Proofs. Central to our main result is a new con-

struction of batch range proof system in groups of (known) prime

order, without relying on bit-decomposition techniques.

A batch range proof system allows for proving an instance of

the form {(𝑦𝑖 , [ℓ𝑖 , 𝑟𝑖])}𝑖 , where 𝑦𝑖 , ℓ𝑖 , 𝑟𝑖 are committed using some

commitment scheme. The prover tries to convince a verifier that

for every 𝑖 , 𝑦𝑖 is in the interval [ℓ𝑖 , 𝑟𝑖].
Implicit in our main result is a public-coin succinct batch range

proofs from any public-coin succinct “commit-and-prove” proof

1205

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang

This work Bit. IEEE-754

32-bit

|R1CS| per (+) 89 296 2456

|R1CS| per (×) 35 207 8854

Overall proof size 2(|Π | + |𝑐 |) |Π | + |c| |Π | + |c|

64-bit

|R1CS| per (+) 115 528 15637

|R1CS| per (×) 24 439 44899

Overall proof size 2(|Π | + |𝑐 |) |Π | + |c| |Π | + |c|
Table 1: Concrete performance for floating point number
addition/multiplication, where we choose log

2
𝑝 = 384. “IEEE-

754” refers to the method of converting a floating point ad-
dition/multiplication to a binary circuit. For 32-bit floating
numbers we list the circuit size in the source code of [35]. For
64-bit floating numbers we list the circuit size achieved by [2].
The “Bit.” refers to the bit decomposition method used by [9]
for range proofs, optimized for floating point computations.
|R1CS| refers to the size of R1CS instance for the underlying
protocol. The numbers under “This work” correspond to our
succinct zero-knowledge protocol with linear verification
time. “Overall Proof size” is the size of the prover’s message
size, where |Π | is the proof size of the underlying “commit-
and-prove” proof system and |𝑐 | is the size of the underlying
commitment.

system for R1CS over a prime order field F𝑝 . Our batch range proof

with the following properties.

• Prover Time:The prover’s running time for aR1CS instance
X with |X| = 𝑂 (log𝑤 + 𝑘) · 𝑛, where 𝑛 is the number of

instances in the batch range proof.

• Proof Size:The underlying proofwith𝑂 (1) additional group
or field elements.

• Verification Time: The verification time of the underlying

“commit-and-prove” for X, with additional 𝑂 (|X|1/2) group
operations.

Known constructions of batch range proofs fall into two cate-

gories: the first approach relies on bit decomposition [9, 11, 23],

which introduces an Ω(𝑤) overhead in prover time for proving

that a𝑤-bit integer is within some range. For example, for 32-bit

floating point number, the bit-decomposition method needs 3.3×
larger R1CS for each addition gate, and 5.9× larger R1CS for each

multiplication gate.

Another approach relies on groups of unknown order [8, 22],

which is computationally inefficient
2
. Our construction, in contrast,

relies on prime (known) order groups and does not require bit

decomposition. This result might be of independent interest.

2.3 Related Work
To the best of our knowledge, there is no prior work on succinct

proof systems that supports full functionality of floating point

computations.

Weng et al. [35] proposed a (non-succinct) ZK proof system

that supports floating point computation. Their approach involves

2
The typical choices of unknown order groups are RSA groups and class groups. Both

of them need large group size to resist subexponential time attacks.

compiling the floating point computation to a binary circuit follow-

ing the IEEE standard. Their implementation only supports single

precision (32-bit) floating point computation.

Setty et al. [31] proposed a general proof system that supports

integer and rational number arithmetic. They also support float-

ing point computation by rational numbers. However, they do not

support rounding operation, which is crucial for floating point com-

putations in practice.

3 TECHNICAL OVERVIEW
In this section, we provide an overview of our techniques. To sim-

plify our illustration, we first only consider fixed point computation,

where all the wire values can be essentially viewed as𝑤-bits inte-

gers (for fixed point number with precision𝑤). We will extend our

ideas to floating point computations later on in this overview.

Firstly, we show how to prove that the relative error for an addi-

tion gate is small. In other words, we want to prove the following

inequality:

|𝑎 + 𝑏 − 𝑐 | < 𝛿 |𝑎 + 𝑏 |,

where 𝑎, 𝑏 are input wires to the addition gate and 𝑐 is the output

wire, all being 𝑤-bits integers (up to an 2
−𝑤

factor that can be

dropped all together). Note that for each gate, we can write an in-

equality as above. Hence there will be a batch of inequalities that we
want to prove. To build succinct proofs for them, our starting point

is the recent work [15], where they build a range proof in known

order groups without bit decomposition, but without support for

batching.

Following a line of research [16, 22, 25] on range proofs, their

idea is to first turn each inequality into the compatible form of a

range proof: 𝑧 > 0. This can be done by adding some intermediate

constraints and variables. When it comes to prove that 𝑧 > 0, we

turn to Legendre’s three square theorem, which states that any

positive integer that equals to 1 mod 4 can be expressed as the sum

of three squares. Specifically, (𝑧 > 0) ⇔ (4𝑧 − 3 > 0), and there

always exists three integers {𝛾𝑖 }𝑖∈[3] such that

4𝑧 − 3 =
3∑︁

𝑖=1

𝛾2𝑖 . (1)

Furthermore, these three integers can be found efficiently in𝑂 (log2 𝑧)
time [28]. Hence, to prove 𝑧 > 0, one only needs to provide {𝛾𝑖 }’s
and show that 4𝑧 − 3 is the three square sum of them.

Nevertheless, it does not work directly: Recall that for most

of the existing succinct proofs, usually the prover firstly uses a

succinct commitment to commit the wires, and then interacts with

the verifier to ensure that the committed values satisfy the required

constraint using some PCP-based method. In this framework, the

prover can only prove statements in the finite field, either because

the commitment scheme is group based, or the PCPs need to work

in a finite field. Consequently, the soundness of such protocols can

only ensure that Equation 1 holds in some finite field. Due to the

wrap around in the finite field, it could be that the Equation 1 holds

modulo some number 𝑝 , but not holds over integers.

To circumvent this, one possible direction is to use an unknown

order group, one candidate being the RSA group [22]. However, the

RSA group size is relatively larger than the known order groups

1206

Succinct Zero Knowledge for Floating Point Computations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

such as elliptic curves. Another direction could be using class

groups. But those groups are computationally inefficient as well

[30]. Hence, we set our goal as building such succinct proofs in

standard prime known-order groups.

This Work. To overcome the aforementioned barrier, our idea

is to further ensure that all the values 𝑧 and 𝛾𝑖 ’s are very small

compared to 𝑝 , so that the wrapping around in modulo 𝑝 fields does

not happen. One naive way to achieve this is to have the verifier

query each value, but this requires the prover to open commitment

of each wires, thus leading to non-succinct proofs.

Achieving Succinctness. To resolve this issue, we extend the idea
of random linear combinations. Simply describing, to prove that a

batch of values 𝑦𝑖 ’s are all 0, one could have the verifier to send

some random coefficients 𝑟𝑖 ← F𝑝 , and have the prover prove that∑
𝑖 𝑦𝑖 · 𝑟𝑖 = 0.

In our case, we want to prove all 𝑦𝑖 ’s are small, but we can’t use

random linear combination directly. Because if one of 𝑦𝑖 is not zero,

then the random linear combination

∑
𝑖 𝑦𝑖 · 𝑟𝑖 is uniformly random

in F𝑝 , which tells nothing about whether all 𝑦𝑖 ’s are small. Hence,

instead of sampling 𝑟𝑖 ’s randomly in F𝑝 , we sample them in a small

range. In this way, the summation

∑
𝑖 𝑦𝑖 · 𝑟𝑖 should also be small.

Then we have the verifier check whether the summation is also in

a small range or not. To argue soundness, we hope to prove that if

one of 𝑦𝑖 is large, then the random linear combination is also large

with overwhelming probability.

However, the above statement doesn’t hold. In fact, there is a

simple counterexample. Consider the case where there is only one

element 𝑦1 = 2
−1 (mod 𝑝). Then 𝑦1 = (𝑝 + 1)/2 is a large value

for any prime 𝑝 > 2. However, if we sample 𝑟1 from a small range,

then with probability 1/2, 𝑟1 is an even number. Then 𝑦1 · 𝑟1 =

(𝑟1/2) (mod 𝑝), which is a small value. This counterexample can

be extended to more general case where each 𝑦𝑖 is a “fraction”. For

more detail, see Section 6.6.

Argue Soundness. Using a careful analysis, we can prove that such
counterexamples are the only possible counterexamples. Namely,

let’s consider 𝑦𝑖 ’s such that Pr{𝑟𝑖 }𝑖 [
∑
𝑖 𝑦𝑖 · 𝑟𝑖 mod 𝑝 is small] >

1/poly(𝜆), where each 𝑟𝑖 is sampled from a small range. Then we

can prove that each 𝑦𝑖 must be of the form 𝐴𝑖/𝐵𝑖 (mod 𝑝), where
both 𝐴𝑖 ’s and 𝐵𝑖 ’s are small integers. To prove this, notice that

for each index 𝑖 , by an averaging argument, there must exist a

series of 𝑟 𝑗 ’s where 𝑗 ≠ 𝑖 , such that conditioning on them, we have

Pr𝑟𝑖 [𝑦𝑖 · 𝑟𝑖 +
∑

𝑗≠𝑖 𝑦 𝑗 · 𝑟 𝑗 is small | {𝑟 𝑗 } 𝑗≠𝑖] > 1/poly(𝜆), where the
randomness is only over the 𝑖-th coordinate 𝑟𝑖 . Now, if we set the

range of 𝑟𝑖 to be super-polynomial, then by counting argument

there must exist two different 𝑟𝑖 , 𝑟
′
𝑖
such that their random linear

combination with 𝑦𝑖 ’s are both small. If we denote the random

linear combinations of 𝑦𝑖 with respect to 𝑟𝑖 and 𝑟 ′
𝑖
as 𝑌𝑖 and 𝑌 ′

𝑖
,

then we have 𝑦𝑖 = (𝑌𝑖 − 𝑌 ′𝑖) · (𝑟𝑖 − 𝑟
′
𝑖
)−1 (mod 𝑝).

In this way, we prove that each 𝑦𝑖 is in a form of “fractions”,

where both the numerator and denominator are small integers.

Towards arguing soundness, we need to resolve the following two

challenges:

– The Equation (1) holds only modulo 𝑝 . We need to drop

the modulo operation so that we can derive 𝑧 > 0 from

Equation (1).

– 𝑌𝑖 ’s are in the form of “fractions”. We need them to be inte-

gers.

To address the first challenge, we observe that, if we set the

modulo 𝑝 to be large enough, then each equation for “fractions”

over F𝑝 implies that there exists an assignment of the variables over

real numbers such that the Equation (1) holds without modulo 𝑝 . To

see this, consider an addition equation𝑎1+𝑎2 = 𝑎3 (mod 𝑝), where
𝑎1 = 𝐴1 ·𝐵−1

1
, 𝑎2 = 𝐴2 ·𝐵−1

2
, 𝑎3 = 𝐴3 ·𝐵−1

3
(mod 𝑝) are all “fractions”

with small numerators and denominators. Multiplying both sides

by 𝐵1𝐵2𝐵3, we have 𝐴1𝐵2𝐵3 +𝐴2𝐵1𝐵3 = 𝐴3𝐵1𝐵2 (mod 𝑝).
Since 𝐴𝑖 ’s and 𝐵𝑖 ’s are small integers, then for a relatively large

𝑝 , the modulo 𝑝 operation does not wrap around. Hence, the same

equation holds over integers and we have 𝐴1/𝐵1 +𝐴2/𝐵2 = 𝐴3/𝐵3
over reals, without modulo 𝑝 .

Back to the previous example of checking an addition gate: as-

sume that using random linear combination test, we identify some

fractional numbers 𝑧∗ and 𝛾∗
𝑖
such that the following inequality

holds over (mod 𝑝): 4𝑧∗ − 3 =
∑
3

𝑖=1 𝛾
∗2
𝑖
. Deploying above argu-

ment, we can see that this inequality also holds over the reals, thus

the fraction 𝑧∗ > 0, as desired. This further implies that there ex-

ists input wire values 𝑎∗, 𝑏∗ ∈ R and output wire value 𝑐∗ ∈ R,
such that this addition gate has small relative error with respect to

these values (details in the full version This argument can also be

extended to all multiplication gates, thus we argue that there exists

an assignment of real numbers to all the wires such that all gates

in the circuit have small relative errors.

For the second challenge, instead of further arguing Equation 1

holds over integers rather than reals, we define soundness for the

following weaker notion. If there doesn’t exist an assignment of

the wire values in real numbers such that each gate is correct up to

some relative error 𝛿 , then any cheating proof will be rejected. We

note that there is a theoretical gap between the completeness and

soundness properties. Recall that, completeness requires that if the

circuit can be approximately satisfied by a set of floating point num-

bers of some fixed precision𝑤 , then the honest prover should be

accepted. However, it’s possible that a circuit is not approximately

satisfied by floating point numbers, but is approximately satisfiable

in real numbers. However, we expect this gap to be rather narrow

in practice. Intuitively, for any floating point circuit that is robust

to small perturbation caused by rounding errors, if the circuit is

approximately satisfiable over reals then we can take the precision

to be slightly larger, such that those real numbers can be rounded

to floating point numbers, and those floating point numbers can

make the circuit approximately satisfiable.

Summary (So Far). We now give a summary of our construction

(so far).

– Firstly, we convert a fixed point circuit to an R1CS instance,

containing all necessary constraints such as Equation 1.

– Prover:Commit theR1CSwitness and send the commitment

to the verifier.

– Verifier: Send the random linear combination coefficients

{𝑟𝑖 }𝑖 , where 𝑟𝑖 ’s are small.

– Prover: Compute the random linear combination {𝑣 𝑗 } 𝑗 and
send it to the verifier. The prover also uses the underlying

commit-and-prove proof system to prove that the witness

1207

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang

satisfies the R1CS instance, and the random linear combina-

tion is computed correctly.

– Verifier: The verifier verifies the proof, and checks whether

the random linear combinations {𝑣 𝑗 } 𝑗 are in a small range.

If we use the above construction directly, we need to choose a

modulo 𝑝 that is large enough for all wires values. However, we

note that the wire values can have different orders of magnitude.

Hence, in our actual construction, we split the variables to two

disjoint sets according to their magnitudes, and use two random

linear combinations to test them separately. In this way, we can

choose a smaller modulo 𝑝 . There are several more optimizations

in our construction. For more details, see Section 6.1.

Next, we explain how we extend our techniques to handle float-

ing point computations.

Extension to Floating Point Numbers. A floating point number
of precision𝑤 differs from a fixed point number of precision𝑤 in

that it has an additional part containing exponents. More formally,

any floating point number can be written as 𝑠 · 2𝑒−𝑤 , where 𝑠 is a
𝑤-bit integer with most significant bit fixed to 1 (hence normalized),

and 𝑒 is a 𝑘-bit integer. When all the wires are given as floating

point numbers, checking the relative error for each gate becomes

trickier, since their exponent parts play a role in the inequality as

well.

Let us start with floating number multiplication: we want to

check the following essential inequality; |𝑠𝑎 · 2𝑒𝑎 · 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐 | ≤
𝛿 · |𝑠𝑎 · 2𝑒𝑎 · 𝑠𝑏 · 2𝑒𝑏 | .

Clearly, one can reduce this task to that of fixed point mul-

tiplication, by asking the prover to supply intermediate values

𝑎 = 𝑠𝑎 · 2𝑒𝑎 (similarly for 𝑏, 𝑐) and prove that these intermediate val-

ues are correctly computed. Then the goal reduces to showing that

|𝑎 · 𝑏 − 𝑐 | ≤ 𝛿 · |𝑎 · 𝑏 | , which can be easily handled. Nevertheless,

checking these three intermediates values could be fairly inefficient

especially for large 𝑘 . This is because the best known method to

check exponentiation is to bit decompose each of the exponents: 𝑒𝑎 ,

𝑒𝑏 and 𝑒𝑐 , and then use repeated squaring to derive and to prove

necessary constraints.

We bypass this overhead by observing that when 𝑠𝑎 , 𝑠𝑏 and

𝑠𝑐 are all normalized, the multiplication between 𝑠𝑎 and 𝑠𝑏 can

stretch the exponents by either 𝑤 − 1 or 𝑤 , thus the exponent

𝑒𝑐 is close to 𝑒𝑎 + 𝑒𝑏 + 𝑤 up to 1. In other words, 𝑒𝑐 − (𝑒𝑎 +
𝑒𝑏) ∈ {𝑤 − 1,𝑤}. With this in mind, let’s first transform the in-

equality into

���𝑠𝑎 · 𝑠𝑏 − 𝑠𝑐 · 2𝑒𝑐−(𝑒𝑎+𝑒𝑏) ��� ≤ 𝛿 · |𝑠𝑎 · 𝑠𝑏 | . Then, since
2
𝑒𝑐−(𝑒𝑎+𝑒𝑏) ∈ {2𝑤−1, 2𝑤}, we can hardcode these two values inside

our constraints and add additional constraints which enforces the

right value, thus effectively eliminating the need to check otherwise

heavy exponentiations.

When it comes to floating number addition, we want to check the

following inequality: |𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐 | ≤ 𝛿 ·|𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 | .
As in the case of multiplication, we observe a similar relationship

between these three exponents. For the sake of simplicity, let’s

assume 𝑠𝑎, 𝑠𝑏 ≥ 0 and 𝑒𝑎 ≥ 𝑒𝑏 . If we add the two floating point

numbers: 𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 , the exponent of the result of such

addition should be either 𝑒𝑎 or 𝑒𝑎 + 1, depending on whether the

value 𝑠𝑎 + 𝑠𝑏 · 2𝑒𝑏−𝑒𝑎 overfloats (e.g. its value exceeds 2
𝑤
) or not. In

other words, in this case 𝑒𝑐 −𝑒𝑎 ∈ {0, 1}. Thus, divide 2𝑒𝑎 from both

side of the inequality, we have: |𝑠𝑎 + 𝑠𝑏 · 2𝑒𝑏−𝑒𝑎 − 𝑠𝑐 · 2𝑒𝑐−𝑒𝑎 | ≤
𝛿 · |𝑠𝑎 + 𝑠𝑏 · 2𝑒𝑏−𝑒𝑎 | .

Now 𝑠𝑐 · 2𝑒𝑐−𝑒𝑎 ∈ {𝑠𝑐 , 2𝑠𝑐 } and we can add certain constraints to

enforce it to take the correct value. Thus we only need to define

intermediate values 𝑏 = 𝑠𝑏 · 2𝑒𝑏−𝑒𝑎 and ask the prover to prove the

correctness of such exponentiation. In summary, we only require

one bit decomposition of 𝑒𝑏 − 𝑒𝑎 so as to apply our range proof as

in the case of fixed point addition.

Zero-Knowledge. Our protocol can achieve zero-knowledge (ZK)

as follows: we instantiate the underlying commit-and-prove proof

system with one that achieves ZK. Further, to hide 𝑣𝑖 ’s and prove

that they are small, we use the following bit-decomposition method,

instead of sending 𝑣 𝑗 ’s in clear to the verifier. Specifically, to prove

𝑣 ′
𝑗
𝑠 are at most 𝑟 -bits, we can we decompose 𝑣 𝑗 ’s to bits

𝑣 𝑗 = 𝑠 ·
𝑟∑︁

𝑘=0

𝑣 𝑗 [𝑘] · 2𝑘 , 𝑣 𝑗 [𝑘] = 0 or 1

and incorporate the above equation and the constraints 𝑣 𝑗 [𝑘] · (1−
𝑣 𝑗 [𝑘]) = 0, 𝑠2

𝑗
= 1 into the R1CS. Since there is only a small number

of 𝑣 𝑗 ’s, the bit-decomposition is dominated by the main body of

the protocol, and hence it doesn’t affect the efficiency. In this way,

ZK follows from the ZK of the underlying commit-and-prove proof

system and the hiding property of commitment scheme. For more

details, See Section 6.4.

Sub-linear Verification. Our protocol so far needs linear verifica-
tion time. The bottleneck is that the underlying “commit-and-prove”

verification needs to at least read the random linear coefficients

{𝑟𝑖 }𝑖 in order to verify that {𝑣 𝑗 } 𝑗 ’s are correctly computed. Since

for each gate we write some Equation (1), if we denote |𝐶 | as the
circuit size, then there are𝑂 (|𝐶 |) of 𝑟𝑖 ’s, and hence the verification

time is linear.

To achieve sub-linear verification, we sample r = {𝑟𝑖 }𝑖∈[𝑛] in a

succinct way as follows. We first sample s = (𝑠1, 𝑠2, . . . , 𝑠√𝑛) and
t = (𝑡1, . . . , 𝑡√𝑛) from a small range, and then generate r = s ⊗ t.
Then we have the prover compute the random linear combination

w.r.t r in the same way as before, but use the underlying “commit-

and-prove” to further ensure that r = s ⊗ t is computed correctly.

Now the verification of the underlying “commit-and-prove” only

needs to read s and t to verify the proof, and hence the additional

verification time becomes sub-linear.

To prove soundness of our sub-linear verification protocol, we

use a pigeonhole argument to first extract the values in the “fraction”

form. Then we set the modulo to be large enough as before. For

more details, see Section 6.3.

4 PRELIMINARIES
We defer definitions of commitment schemes, interactive proof

systems and R1CS to the full version.

Sum of Three Squares. Legendre’s three-square theorem states

that every natural number 𝑘 that is not of the form 𝑘 = 4
𝑎 (8𝑏 +

7), (𝑎, 𝑏 ∈ N) can be represented as a sum of three integer squares

(𝑘 = 𝑥2 +𝑦2 +𝑧2). Therefore, for any 𝑘 ∈ N \ {0}, 4𝑘 − 3 can always

be written as a sum of three integer squares. Let 𝑛 = log𝑘 be the

bit length of 𝑘 .

1208

Succinct Zero Knowledge for Floating Point Computations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

In [27], the authors give an efficient randomized algorithm for

identifying (𝑥,𝑦, 𝑧) such that 4𝑘 − 3 = 𝑥2 + 𝑦2 + 𝑧2, for any natural

number 𝑘 . The expected running time of the algorithm is 𝑂 (𝑛2).
The high level idea is as follows: keep guessing an even value 𝑥 (as

one of the squares) until 𝑝 = 4𝑘 − 3 − 𝑥2 is a prime congruent to

1 mod 4. If so, compute one square root of the form 𝛼2 ≡ −1 mod 𝑝

and then compute the gcd 𝑦 +𝑧𝑖 = (𝛼 + 𝑖, 𝑝) over Gaussian integers.

It then follows that 𝑝 = 𝑦2 + 𝑧2 so that 4𝑘 − 3 = 𝑥2 + 𝑦2 + 𝑧2.

5 DEFINITIONS
5.1 Approximate Circuit Computation
Fixed and Floating Point Numbers. For a positive integer𝑤 , a

fixed point number of precision𝑤 is a number of the form 𝑠 · 2−𝑤 ,
where the significand 𝑠 ∈ [−2𝑤−1, 2𝑤−1) is an integer represented

in𝑤 bits.

A floating point number of precision𝑤 is a pair of integers (𝑠, 𝑒),
which represent a real number 𝑠 · 2𝑒−𝑤 , where |𝑠 | ∈ [2𝑤−1, 2𝑤) is
an integer represented in𝑤 + 1 bits consisting of 1 sign bit and𝑤

bit fraction (called the significand) whose most significant bit is

always fixed to 1.

A floating point addition (resp. subtraction, multiplication) gate

takes as input two floating point numbers, and outputs a floating

point number. A floating point circuit is a circuit where each gate is

either a floating point addition, subtraction or multiplication gate.

Definition 5.1 (𝛿-Approximate Correctness). Let 𝑓 be the (precise)

addition (resp., subtraction, multiplication) function, and let (𝑎, 𝑏)
be the input wires and 𝑐 be the output wire of a floating/fixed point

addition (resp., subtraction, multiplication) gate.

We say such a floating/fixed point addition (resp. subtraction,

multiplication) gate computation is 𝛿-approximately correct, if the

relative error is bounded by 𝛿 , i.e. |𝑐 − 𝑓 (𝑎, 𝑏) | < 𝛿 |𝑓 (𝑎, 𝑏) |.

Definition 5.2 (Floating/Fixed𝛿-Satisfiable). We say a floating/fixed

point circuit 𝐶 is floating/fixed 𝛿-satisfiable, if there exists an as-

signment of wires with floating/fixed point numbers such that each

gate is 𝛿-approximately correct.

Definition 5.3 (Real 𝛿-Satisfiable). We say a floating point circuit

𝐶 is real 𝛿-satisfiable, if there exists an assignment of wires with real

numbers such that each gate is 𝛿-approximately correct. It is easy

to see that a floating 𝛿-satisfiable circuit 𝐶 is also real 𝛿-satisfiable.

Definition 5.4 (Promise Language for 𝛿-circuit satisfiability). For
any 𝛿 ∈ (0, 1), we define the floating 𝛿-circuit satisfiability problem

as the following promise language (𝐿𝛿 , 𝐿𝛿):
– An (circuit) instance 𝐶 ∈ 𝐿𝛿 if 𝐶 is floating 𝛿-satisfiable. In

this case there exists witnessW corresponding to the wire

assignments, where each coordinate ofW is a floating point

number of𝑤-precision.

– An (circuit) instance 𝐶 ∉ 𝐿𝛿 if 𝐶 is not real 𝛿-satisfiable.

Remark 1. The aforementioned definitions of floating point gates
and circuit, floating 𝛿-satisfiability etc. can also be extended to fixed
point number computations.

We remark that here we have a theoretical gap between the

completeness and soundness. That is, there could be a circuit that

is real 𝛿-satisfiable, but not floating 𝛿-satisfiable, since not every

real number can be represented as floating point number. However,

we expect such gap to be narrow in practice. As we discussed in

Section 2.1, we expect the floating point program used in practice

is robust to any small perturbations bounded by the relative error

upper bound. Hence, if we round the real number to the nearest

floating point number, then the circuit is still satisfiable for those

floating point numbers.

5.2 Interactive Proofs for Floating Point
Computations

An interactive proofs for floating 𝛿-circuit satisfiability problem

(𝐿𝛿 , 𝐿𝛿) is a pair of algorithms (G,P,V), with the following syntax.
– G(1𝜆) : The CRS generation algorithm takes as input the

security parameter 𝜆, and it outputs a crs.
– P(crs,𝐶,W) : The prover is given the crs, a circuit 𝐶 ∈ 𝐿𝛿 ,
and a witnessW for 𝐶 , it outputs a proof 𝜋 .

– V(crs,𝐶, 𝜋) : The verifier takes as input the crs, a circuit 𝐶 ,
and the proof 𝜋 . Then it decides to accept or reject.

Furthermore, we require the following properties.

– Completeness. For every circuit instance 𝐶 ∈ 𝐿𝛿 and its

witness W, the honest prover’s proof 𝜋 should always be

accepted, i.e.

Pr

[
crs← G(1𝜆), 𝜋 ← P(1𝜆, crs,𝐶,W) : V(1𝜆, crs,𝐶, 𝜋) = 1

]
= 1.

– Soundness. There exists some negligible function 𝜖 such

that for every circuit instance𝐶 ∈ 𝐿𝛿 , and for all probabilistic
polynomial timemalicious proverP∗, its proof 𝜋∗ is accepted
with probability at most 𝜖 , i.e.

Pr

[
crs← G(1𝜆), 𝜋∗ ← P∗ (1𝜆, crs,𝐶,W) : V(1𝜆, crs,𝐶, 𝜋∗) = 1

]
≤ 𝜖.

Succinctness. We say the protocol is succinct, if the size of the

proof 𝜋 is bounded by |W|𝑜 (1) , where |W| is the bit-length ofW.

Non-interactive Proofs. We say a proof system is non-interactive,

if it only has one round.

Remark 2. We can transform any public-coin interactive protocols
to a non-interactive one using the Fiat-Shamir transformation [17].
The succinctness and the zero-knowledge properties are preserved.

6 COMMIT-AND-PROVE FOR FLOATING
POINT COMPUTATIONS

In this section, we build a commit-and-prove protocol for floating

point number computations. Our construction is generic from any

commit-and-prove for R1CS with argument of knowledge prop-

erty.Before going into the technical details, we firstly give a high

level overview of our ideas.

Recall that, for floating point computation, around each gate

we want to prove constraints of the form |𝑐 − 𝑓 (𝑎, 𝑏) | < 𝛿 |𝑓 (𝑎, 𝑏) |,
where 𝑎, 𝑏, 𝑐 are values on two inputs and one output wire, and

𝑓 (𝑎, 𝑏) is the precise value of the gate output. For simplicity, let’s

consider 𝑓 as a multiplication gate in this overview, as other gates

can be handled in a similar way. Recall that, a floating point number

is represented as a significand 𝑠 and an exponent 𝑒 (Section 5.1).

For multiplications, we need to prove that the exponent part 𝑐 is

roughly the addition of the exponent part of 𝑎 and 𝑏, which can be

1209

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang

done easily. Then the only complication left is how to prove the sig-

nificand parts of 𝑐 is also approximately correct, which is essentially

proving the 𝛿-approximate correctness for fixed point computation.

For this reason, let’s only consider fixed point computation instead

of floating point computation in this section. We will extend the

same techniques to floating point numbers in (Section 6.5).

Since 𝑎, 𝑏, 𝑐 are fixed point numbers, they can be represented

as 𝑎 = 𝑎′ · 2−𝑤 , 𝑏 = 𝑏 ′ · 2−𝑤 , 𝑐 = 𝑐 ′ · 2−𝑤 , where 𝑎′, 𝑏 ′, 𝑐 ′ ∈
[−2𝑤−1, 2𝑤−1) are 𝑤-bit integers. For any 𝛿 ∈ (0, 1), it suffices to

consider 𝛿 = Δ1/Δ2, (Δ1 < Δ2), where Δ1,Δ2 ∈ (0, 2𝑤] are both
positive integers. Then the constraint we want to prove becomes

|Δ2 · (2𝑤𝑐 ′ − 𝑎′ · 𝑏 ′) | < |Δ1 · 𝑎′ · 𝑏 ′ |.

Now we add two intermediate variables 𝑥 B Δ2 · (2𝑤𝑐 ′ −𝑎′ ·𝑏 ′)
and𝑦 B Δ1 ·𝑎′ ·𝑏 ′. Notice that the constraint |𝑥 | < |𝑦 | is equivalent
to 𝑥2 < 𝑦2. It thus suffices to prove that 𝑧 B (𝑥 + 𝑦) (𝑦 − 𝑥) > 0.

Next, we present our construction.

6.1 Construction
Before we build the commit-and-prove for floating point computa-

tions, we list the necessary ingredients as follows.

Ingredients.

– A commitment scheme (KGen,Com) with hiding and bind-

ing property.

– A commit-and-prove protocol (KGen,Com,P,V) for the
commitment scheme (KGen,Com) and R1CS over a finite

field F𝑝 with argument of knowledge property.

– A compiler R1CSCompiler that takes as input a circuit𝐶 for

floating/fixed point numbers, and outputs a R1CS instance.

Construction. The construction of commit-and-prove for float-

ing/fixed point computation is depicted in Figure 1.

To reduce the concrete size of 𝑝 , the actual random linear combi-

nation in our protocol is in fact more fine-grained than the overview

described in Section 3. In particular, in the case of fixed point com-

putation, instead of doing a single random linear combination over

all wire values, we partition all the wires into two parts: the wires

with ≲ 3𝑤-bits, and the wires with ≳ 3𝑤-bits but ≲ 6𝑤-bits. Then

we use two random linear combinations to test them separately.

Hence, we have the R1CSCompiler output two disjoint sets 𝑆1, 𝑆2
to contain the wire values for these two kinds of wires. The case of

floating point computation is handled in a similar way.

R1CSCompiler for Fixed Point Circuits. We first construct the

R1CSCompiler for fixed point computation as follows. Recall that

a fixed point number of precision𝑤 is a number of the form 𝑠 · 2−𝑤 ,
where 𝑠 ∈ [−2𝑤−1, 2𝑤−1) is an integer represented in𝑤 bits.

– The compiler takes as input a fixed point circuit 𝐶 and 𝛿 . It

parses 𝛿 = Δ1/Δ2, where Δ1,Δ2 are both integers of 𝑤-bit,

and initializes two empty sets 𝑆1 = ∅, 𝑆2 = ∅, and an empty

R1CS instance X.
– For each gate 𝑔𝑖 in𝐶 , let 𝑎𝑖 · 2−𝑤 , 𝑏𝑖 · 2−𝑤 be the input wires,

and 𝑐𝑖 · 2−𝑤 be the output wire.

– If𝑔𝑖 is amultiplication gate, compute 𝑥𝑖 = Δ2 (2𝑤𝑐𝑖−𝑎𝑖 ·𝑏𝑖),
𝑦𝑖 = Δ1 · 𝑎𝑖 · 𝑏𝑖 as follows. Let 𝑔𝑖 B 𝑎𝑖 · 𝑏𝑖 , 𝑥𝑖 B 2

𝑤Δ2 ·
𝑐𝑖 − Δ2 · 𝑔𝑖 , 𝑦𝑖 B Δ1 · 𝑔𝑖 .

Commit-and-prove for Floating/Fixed Point Computation

(1) The prover and the verifier run R1CSCompiler to obtain a

R1CS instance,(
XR1CS, {𝑆𝑖 ,𝑤𝑖 }𝑖∈[ℓ]

)
← R1CSCompiler(1𝜆,𝐶, 𝛿),

where XR1CS is a R1CS instance with 𝑛 variables. The prover

can also derive the corresponding R1CS witnessWR1CS from

a witnessW of 𝐶 . The prover generates 𝑐 B Com(WR1CS;𝑢)
with some randomness 𝑢, and sends 𝑐 to the verifier.

(2) The verifier sends a series of random coefficients r← [0, 2𝜅)𝑛
to the prover.

(3) The prover sends back {𝑣𝑖 }𝑖∈[ℓ] , where 𝑣𝑖 =〈
WR1CS |𝑆𝑖 , r|𝑆𝑖

〉
∈ F𝑝 (r|𝑆𝑖 ∈ F𝑛𝑝 agrees with r for all

entries in 𝑆𝑖 , and is 0 otherwise).

(4) The prover and the verifier augment the R1CS instanceXR1CS
by appending the constraint

〈
WR1CS |𝑆𝑖 , r|𝑆𝑖

〉
= 𝑣𝑖 , for all

𝑖 ∈ [ℓ]. They denote X′R1CS as the augmented R1CS instance.

Then they execute the commit-and-prove protocol.

P
(
1
𝜆, (X′R1CS, 𝑢)

)
↔V(1𝜆,X′R1CS).

The verifier checks that 𝑣𝑖 ∈ [−𝑛 · 2𝑤𝑖+𝜅 , 𝑛 · 2𝑤𝑖+𝜅) for each
𝑖 ∈ [ℓ]. It accepts if both the range check passes and V
accepts. Otherwise the verifier rejects.

Figure 1: Description of commit-and-prove for floating/fixed
point computation.

Otherwise if 𝑔𝑖 is an addition/subtraction gate, compute

𝑥𝑖 = Δ2 (𝑎𝑖 ± 𝑏𝑖 − 𝑐), 𝑦𝑖 = Δ1 (𝑎𝑖 ± 𝑏𝑖) as follows. Let
𝑔𝑖 B 𝑎𝑖 ± 𝑏𝑖 , 𝑥𝑖 B Δ2 · 𝑔𝑖 − Δ2 · 𝑐𝑖 , 𝑦𝑖 B Δ1 · 𝑔𝑖 .

– Compute 𝑧𝑖 = (𝑥𝑖 + 𝑦𝑖) · (𝑦𝑖 − 𝑥𝑖) as follows. Let 𝑧+𝑖 B
𝑥𝑖 + 𝑦𝑖 , 𝑧−

𝑖
B 𝑦𝑖 − 𝑥𝑖 , 𝑧𝑖 B 𝑧+

𝑖
· 𝑧−

𝑖
.

– Add new variables 𝛾𝑖,1, 𝛾𝑖,2, 𝛾𝑖,3, and verify 4𝑧𝑖 − 3 = 𝛾2
𝑖,1
+

𝛾2
𝑖,2
+ 𝛾2

𝑖,3
as follows. Let 𝑢𝑖,𝑘 B 𝛾2

𝑖,𝑘
,∀𝑘 ∈ [3], sum𝑖 B

𝑢𝑖,1 + 𝑢𝑖,2, 4𝑧𝑖 − 3 B sum𝑖 + 𝑢𝑖,3 .
– Add all above constraints to the R1CS instance X, and
update 𝑆1 and 𝑆2 as follows,

𝑆1 B 𝑆1 ∪ {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑔𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑧+𝑖 , 𝑧
−
𝑖 , {𝛾𝑖,𝑘 }𝑘∈[3] },

𝑆2 B 𝑆2 ∪ {𝑧𝑖 , {𝑢𝑖,𝑘 }𝑘∈[3] , sum𝑖 }.

– Finally, output (X, {(𝑆1,𝑤1 B 3𝑤 + 2), (𝑆2,𝑤2 B 6𝑤 + 4)}).

6.2 Security Proofs
We defer the security proof to the full version.

6.3 Achieving Sublinear Verification
We defer how to achieve sublinear verification to the full version.

6.4 Achieving Zero-knowledge
Our protocol can be easily modified to achieve zero knowledge

property. We refer the reader to Section 3 for a high-level overview.

For this part, we are going to assume that the underlying com-

mitment scheme in the commit-and-prove system to be additively

1210

Succinct Zero Knowledge for Floating Point Computations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

homomorphic: Com(𝑥 ; 𝑟1) + Com(𝑦; 𝑟2) = Com(𝑥 + 𝑦, 𝑟1 + 𝑟2) (see
the full version for its definition.) This is in fact already the case

for many existing commit-and-prove systems. We achieve zero

knowledge via the following simple modifications:

(1) In step 1 of Figure 1, instead of committing to justWR1CS, the

prover commits to the concatenation ofWR1CS | |0𝑚 as 𝑐 B
Com(WR1CS | |0𝑚 ;𝑢), where𝑚 =

∑
𝑖∈[𝑙] (log(𝑛) · (𝑤𝑖 + 𝜅) + 1)

is the total bit length of all 𝑣𝑖∈[𝑙] ’s. It then sends 𝑐 to the

verifier.

(2) In step 3 of Figure 1, the prover still defines {𝑣𝑖 }𝑖∈[𝑙] ac-
cordingly, however not sending them to the verifier. It in-

stead computes the bit decomposition of for each 𝑣𝑖 as 𝑣𝑖 =

𝑠𝑖 ·
∑log(𝑛) · (𝑤𝑖+𝜅)
𝑘=0

𝑣𝑖 [𝑗]·2𝑘 , where 𝑣𝑖 [𝑗] is the 𝑗-th bit of 𝑣𝑖 and
𝑠𝑖 ∈ {−1, +1} is the sign of 𝑣𝑖 . It then sets b𝑖 B 𝑠𝑖 | |{𝑣𝑖 [𝑗]},
and then sends the commitment

𝑐 ′ B Com(0 |WR1CS | | | {b𝑖 }𝑖∈[𝑙] ;𝑢 ′) to the verifier.

(3) (Adding Range Constraints) In step 4, the prover and verifier

add the constraints that 𝑣𝑖 ∈ [−𝑛 · 2𝑤𝑖+𝜅 , 𝑛 · 2𝑤𝑖+𝜅) for each
𝑖 ∈ [ℓ] to the R1CS instance. These range constraints can be

enforced via the same bit-decomposition method as follows:

– For each 𝑖 ∈ [ℓ], add constraint 𝑣𝑖 = 𝑠𝑖 ·
∑log(𝑛) · (𝑤𝑖+𝜅)
𝑘=0

𝑣𝑖 [𝑗]·
2
𝑘 .

– Add constraints that 𝑣𝑖 [𝑗] · (1 − 𝑣𝑖 [𝑗]) = 0, 𝑠2
𝑖
= 1.

(4) (Format Checking) In step 4, the prover and verifier define

another R1CS instance X∗R1CS checking that the witness

committed in 𝑐 ′ is well-formed: it is correctly padded with

the zero vector 0
|WR1CS |

. This check ensures that the witness

WR1CS committed in 𝑐 remains unchanged.

(5) In step 4, the prover and verifier initiate the underlying

commit-and-prove protocol with zero-knowledge property,

and then proceed checking both R1CS instances X′R1CS and
X∗R1CS, with respect to the commitments 𝑐 + 𝑐 ′ and 𝑐 ′.

We defer the proof of zero knowledge to the full version. At a high

level the zero-knowledge property can be proven as follows. First,

we use the zero-knowledge simulator of the underlying commit-

and-prove to simulate the transcript of commit-and-prove in step 4.

Then we use the hiding property of the underlying commitment

scheme to argue that the commitments 𝑐, 𝑐 ′ sent in step 1 and 3 can

be simulated.

To argue soundness, notice that due to the range constraints,

each 𝑣𝑖 must be the correct range. Furthermore, the witnessWR1CS
committed in the first commitment 𝑐 cannot be modified by the

prover since we also enforce that the value committed in 𝑐 ′ must

start with all 0’s. We defer the soundness proof to the full version.

Finally, via the Fiat-Shamir transformation, we obtain a ZK-

SNARG for floating/fixed point computations.

6.5 Extension to Floating Point Computation
Recall that a floating point number of precision𝑤 is a pair of integers

(𝑠, 𝑒), which represent a real number 𝑠 ·2𝑒−𝑤 , where |𝑠 | ∈ [2𝑤−1, 2𝑤)
is an integer represented in 𝑤 + 1 bits with 1 sign bit and 𝑤 bit

fraction (called the significand) where the fraction is always normal-

ized such that the most significant bit is fixed to 1. We first present

a high-level overview of our R1CS compiler which compiles any

floating point computation into a R1CS instance. Starting from this

point, we make two inherent relaxations for the ease of our com-

piler construction. Firstly, we fix 𝛿 = 2
−𝑤

for addition/subtraction

gate and 𝛿 = 2
−2𝑤

for multiplication gate. Secondly, we relax all the

constraints (as defined in 5.1) from strict inequalities to inequalities.

Adding/Subtracting Two Floating Point Numbers. Suppose

we want to add/subtract two floating point numbers: 𝑠𝑎 · 2𝑒𝑎−𝑤
and 𝑠𝑏 · 2𝑒𝑏−𝑤 . Let the outcome of such addition/subtraction be

𝑠𝑐 · 2𝑒𝑐−𝑤 . Following 𝛿-approximate correctness, we want to ensure

that: ��𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐 �� ≤ 𝛿 ·
��𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 �� ,

wherewe havemultiplied both sides by 2
𝑤
to simplify the inequality.

We also incorporate subtraction into addition by allowing each

summand to take negative values.

A Naive Approach. Checking floating point numbers addition is

particularly challenging due to the fact that we also need to take

care of their exponents. To see why, consider a naive (however very

inefficient) way to convert this inequality into R1CS constraints:

Let’s first define intermediate variables and constraints that mimic

all exponentiations: (e.g. we can define 𝜆𝑎 B 2
𝑒𝑎

and so on). Once

we have these intermediate exponentiations, one can then check:

|𝑠𝑎 · 𝜆𝑎 + 𝑠𝑏 · 𝜆𝑏 − 𝑠𝑐 · 𝜆𝑐 | ≤ 𝛿 · |𝑠𝑎 · 𝜆𝑎 + 𝑠𝑏 · 𝜆𝑏 | .
If we take the upper bound of the size of each summand, we can

essentially view each summand as a (very large) fixed-point number.

In this way we can apply our previous range proof technique to

this inequality just like the case of fixed point addition.

This naive approach mainly suffers from two sources of ineffi-

ciency: Firstly, the best known method to check exponentiation

requires bit decomposing the exponent, and then use repeated

squaring algorithm to break down the exponentiation procedure

into one multiplication and addition at each step, thus turning them

into constraints compatible with R1CS. Clearly, we need to bit de-

compose all of 𝑒𝑎 , 𝑒𝑏 and 𝑒𝑐 , turning them into roughly 3× (2𝑘 + 1)
constraints with 3 × (2𝑘) new variables. We reduce the number

of constraints and variables by roughly a factor of 3, via only one

bit decomposition and some extra constraints. For large value of

𝑘 (for example, 𝑘 = 11 in a 64-bit floating point number) this will

greatly increase the prover time. Secondly, for large 𝑘 , the value

𝜆𝑎 = 2
𝑒𝑎 ≈ 2

2
𝑘
will typically become very large. This will cause

the upper bound on each summand to significantly grow, which

pushes the choice of the modulus 𝑝 to become large (for example,

in a 32-bit floating point number, 2
𝑘 < 128 and we need to choose 𝑝

to be around 670 bits). In our approach, we reduce this upper bound

so that it no longer depends on 𝑘 , but on log(𝑤) instead. This will
allow us to choose a smaller 𝑝 to again reduce prover computation

(in the last example, log(𝑤) ≈ 5 so we can choose 𝑝 to be around

270 bits).

Converting Addition into Constraints: Our Approach. We

begin explaining our idea with a simple yet useful observation:

Claim 1. For |𝑠𝑎 |, |𝑠𝑏 |, |𝑠𝑐 | ∈
[
2
𝑤−1, 2𝑤

)
and 𝛿 = 2

−𝑤 ,
if |𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐 | ≤ 𝛿 ·|𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 | , then min(𝑒𝑎−
𝑒𝑏 , 𝑒𝑏 − 𝑒𝑐 , 𝑒𝑎 − 𝑒𝑐) ∈ {−1, 0, 1}.

Proof. First suppose that among 𝑠𝑎 , 𝑠𝑏 and 𝑠𝑐 , two of them have

the same signs and the other has the opposite sign, we claim that this

1211

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang

is impossible: by renaming the variables, we can always assume that

𝑠𝑎 and 𝑠𝑏 have the same signs. Furthermore, since we can always

negate the signs of all variables within an absolute clause, let’s

always assume that 𝑠𝑎, 𝑠𝑏 ≥ 0, such that −𝑠𝑐 ≥ 0. Therefore,��𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐 ��
=𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐

≥𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 .

Since𝛿 ·𝑠𝑎 < 𝑠𝑎 and𝛿 ·𝑠𝑏 < 𝑠𝑏 , 𝑠𝑎 ·2𝑒𝑎+𝑠𝑏 ·2𝑒𝑏 > 𝛿 ·|𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 | ,
which is a contradiction. Now suppose that all of 𝑠𝑎 , 𝑠𝑏 and 𝑠𝑐
have the same (positive) signs, and furthermore assume 𝑠𝑎 · 2𝑒𝑎 ≥
𝑠𝑏 · 2𝑒𝑏 by renaming the variables if necessary, then we have:

|𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐 | ≤ 𝛿 · (𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏),

(1−𝛿)𝑠𝑎 ·2𝑒𝑎 +(1−𝛿)𝑠𝑏 ·2𝑒𝑏 ≤ 𝑠𝑐 ·2𝑒𝑐 ≤ (1+𝛿)𝑠𝑎 ·2𝑒𝑎 +(1+𝛿)𝑠𝑏 ·2𝑒𝑏 .

Since 𝛿 = 2
−𝑤

, and 𝑠𝑎 ≥ 2
𝑤−1

, (1 − 𝛿)𝑠𝑎 ≈ 𝑠𝑎 ≈ (1 + 𝛿)𝑠𝑎 and

(1−𝛿)𝑠𝑏 ≈ 𝑠𝑏 ≈ (1+𝛿)𝑠𝑏 , so that we have: 𝑠𝑎 ·2𝑒𝑎 +𝑠𝑏 ·2𝑒𝑏 ≈ 𝑠𝑐 ·2𝑒𝑐 .
Since 𝑠𝑎 · 2𝑒𝑎 ≥ 𝑠𝑏 · 2𝑒𝑏 , then: 𝑠𝑐 · 2𝑒𝑐 ≈ 𝑠𝑎 · 2𝑒𝑎 + 𝑠𝑏 · 2𝑒𝑏 ≤ 𝑠𝑎 · 2𝑒𝑎+1
Given that both 𝑠𝑎, 𝑠𝑐 are normalized, by comparing the terms, we

get 𝑒𝑐 ≤ 𝑒𝑎 + 1, hencemin(𝑒𝑎 − 𝑒𝑏 , 𝑒𝑏 − 𝑒𝑐 , 𝑒𝑎 − 𝑒𝑐) ∈ {−1, 0, 1}. □

To express each floating point number addition into a number

of R1CS constraints, let’s utilize the above observation by dividing

2
𝑒𝑐

from both sides of the inequality and also defining 𝜃𝑎 B 𝑒𝑎 − 𝑒𝑐
and 𝜃𝑏 B 𝑒𝑏 − 𝑒𝑐 . Notice that we have three possible scenarios:

(1) Case I: 𝜃𝑎 ∈ {−1, 0, 1} ⇔ 𝑒𝑎 − 𝑒𝑐 ∈ {−1, 0, 1}.
(2) Case II: 𝜃𝑏 ∈ {−1, 0, 1} ⇔ 𝑒𝑏 − 𝑒𝑐 ∈ {−1, 0, 1}.
(3) Case III: 𝜃𝑎 − 𝜃𝑏 ∈ {−1, 0, 1} ⇔ 𝑒𝑎 − 𝑒𝑏 ∈ {−1, 0, 1}.

Meanwhile, the inequality translates into:

���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃𝑏 − 𝑠𝑐 ��� ≤
𝛿 ·

���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃𝑏 ��� .
Our goal is to use only one bit decomposition to enforce two

constraints: (𝜆𝑎 = 2
𝜃𝑎

and 𝜆𝑏 = 2
𝜃𝑏
). In order to achieve this goal,

observe that in each of the three possible scenarios, we only need to

enforce one such constraint (hence one bit decomposition): 𝜆𝜃 = 2
𝜃
,

where 𝜃 is either 𝜃𝑎 or 𝜃𝑏 . The reason is as follows:

(1) Case I: Since 𝜃𝑎 is small, we can rewrite its constraint using

Lagrange interpolation as: 𝜆𝜃𝑎 =
𝜃𝑎 (𝜃𝑎−1)

4
+ 𝜃𝑎 (𝜃𝑎 + 1) −

(𝜃𝑎 + 1) (𝜃𝑎 − 1). Now set 𝜃 = 𝜃𝑏 , and add the additional

constraint that 𝜆𝜃 = 2
𝜃
.

(2) Case II: This case resembles a similar treatment as Case I,

where 𝜃 = 𝜃𝑎 .

(3) Case III: Let’s set 𝜃 = 𝜃𝑏 , and add the constraint that 𝜆𝜃 = 2
𝜃
.

Now define Δ𝑎,𝑏 = 𝜃𝑎 − 𝜃𝑏 , which is again small, meaning

that we can again use Lagrange interpolation to derive the

constraint for 𝜃𝑎 as:

𝜆∗
𝜃𝑎

=
Δ𝑎,𝑏 (Δ𝑎,𝑏 − 1)

4

·𝜆𝜃+Δ𝑎,𝑏 (Δ𝑎,𝑏+1)·𝜆𝜃−(Δ𝑎,𝑏+1) (Δ𝑎,𝑏−1)·𝜆𝜃 .

In order to determine whether 𝜃 = 𝜃𝑎 or 𝜃 = 𝜃𝑏 , we use three

relaxed indicator variables and enforce each of their values to take

either 0 or 1:

(1) 1𝜃𝑎 (1−1𝜃𝑎) = 0, and1𝜃𝑎 = 1 =⇒ Case I happens (details later);

(2) 1𝜃𝑏 (1 − 1𝜃𝑏) = 0, and 1𝜃𝑏 = 1 =⇒ Case II happens;

(3) 1Δ𝑎,𝑏
(1 − 1Δ𝑎,𝑏

) = 0, and 1Δ𝑎,𝑏
= 1 =⇒ Case III happens.

Notice that we do not require the reverse of these statements to be

true. Now we add two more constraints:

(1) 1𝜃𝑎 + 1𝜃𝑏 + 1Δ𝑎,𝑏
= 1;

(2) 𝜃 = 1𝜃𝑎 · 𝜃𝑏 + 1𝜃𝑏 · 𝜃𝑎 + 1Δ𝑎,𝑏
· 𝜃𝑏 .

These constraints will enforce 𝜃 to take the value of either 𝜃𝑎 or 𝜃𝑏 ,

depending on the desired scenario.

Turn Inequality into Equality for Large 𝜃 . A subtle issue in the

above construction is that if the absolute value of 𝜃 becomes large,

the modulus 𝑝 needs also to grow large for soundness to hold. To

understand this issue, let’s take case I as an example: we want to

use range proof to show the following inequality:���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 − 𝑠𝑐 ��� ≤ 𝛿 ·
���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 ��� .

Notice that both 𝜃𝑎 and 𝜃 may be negative (thus leaving fractional

numbers on both sides), and we are checking this inequality over

mod 𝑝 . To ensure the inequality also holds over the reals, we return

to our previous techniques: First let’s multiplying both sides by

2
|𝜃 |+1

to ensure that all of the exponents are positive (thus removing

fractional numbers):���𝑠𝑎 · 2𝜃𝑎+|𝜃 |+1 + 𝑠𝑏 · 2𝜃+|𝜃 |+1 − 𝑠𝑐 · 2 |𝜃 |+1���
≤𝛿 ·

���𝑠𝑎 · 2𝜃𝑎+|𝜃 |+1 + 𝑠𝑏 · 2𝜃+|𝜃 |+1��� .
Now if we choose the bit length of modulus 𝑝 to be larger than

2 log(𝑛)+4𝑤+3𝜅+12+22 · |𝜃 |, the above inequality will hold over the
reals. Clearly, the bit length of 𝑝 needs to grow with 2

2 |𝜃 | ≈ 2
𝑘+1

.

The increased group size will induce a significant cost on prover

computation. Fortunately, we observe that when |𝜃 | exceeds𝑤 + 2,
we can get rid of the dependence on |𝜃 | by substituting all inequali-

ties with different equalities for each of the aforementioned three

scenarios:

(1) Case I: There are two possibilities:

(a) 𝜃 > 𝑤 + 2 : Since 𝑠𝑎, 𝑠𝑏 , 𝑠𝑐 are normalized and |𝜃𝑎 | ≤ 1, we

can bound

���𝑠𝑎 · 2𝜃𝑎 − 𝑠𝑐 ��� < 2
2 · |𝑠𝑏 |. Therefore,���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 − 𝑠𝑐 ��� > |𝑠𝑏 · 2𝑤 | > 𝛿 ·

���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 ��� .
Thus we always reject.

(b) 𝜃 < −(𝑤 + 2) : In this case

���𝑠𝑏 · 2𝜃 ��� is relatively small com-

pared to

���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 ���. Our intuition is that one can

simply drop the summand

���𝑠𝑏 · 2𝜃 ��� while still obeying the

inequality. More formally, since

���𝑠𝑏 · 2𝜃 ��� < ��𝑠𝑏 · 2−𝑤−2�� <��𝑠𝑎 · 2−𝑤−1�� < 𝛿 ·
���𝑠𝑎 · 2𝜃𝑎 ��� ≤ 𝛿 ·

���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 ���, we can
instead enforce the equality constraint that 𝑠𝑎 · 2𝜃𝑎 = 𝑠𝑐 .

This is done by checking 𝑠𝑎 = 𝑠𝑐 and 𝑒𝑎 = 𝑒𝑐 .

(2) Case II: This case resembles the analysis of Case I.

(3) Case III: There are two possibilities:

(a) 𝑠𝑎 · 2𝜃𝑎 +𝑠𝑏 · 2𝜃 = 0 : In this case, we simply check if 𝑠𝑐 = 0

(In our construction we ignore this case for simplicity).

(b) Otherwise, first assume 𝜃 > 𝑤 + 2, notice that���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 ��� ≥ 2
𝜃 |𝑠𝑏 + 𝑠𝑎/2| ≥ 2

𝜃−1 . Furthermore,���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 ��� ≤ 2
𝜃 |𝑠𝑏 + 2𝑠𝑎 | ≤ 2

𝜃+2 . As a result, we

1212

Succinct Zero Knowledge for Floating Point Computations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

deduce that: ���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 − 𝑠𝑐 ���
≥
���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 ��� − |𝑠𝑐 |
≥2𝜃−1 − |𝑠𝑐 | ≥ 2

𝜃−1 − 2𝑤 ,

on the other hand, 𝛿 ·
���𝑠𝑎 · 2𝜃𝑎 + 𝑠𝑏 · 2𝜃 ��� ≤ 2

𝜃+2−𝑤
.

For𝑤 > 2 and 𝜃 > 𝑤 + 2, one can observe that 2
𝜃+2−𝑤 <

2
𝜃−1 − 2𝑤 , thus the desired inequality will not hold. The

other scenario where 𝜃 < −(𝑤 + 2) is very similar. There-

fore we should always reject when |𝜃 | > 𝑤 + 2.
To conclude, we can choose the bit length of 𝑝 to grow with 2

2 ·
max(𝜃,𝑤 + 2) instead of 𝜃 . In practice we will simplify our con-

straints by picking the cutoff to be 𝑤 + 8 = 2
5
for 32 bit floating

point numbers, or𝑤 + 9 = 2
6
for 64 bit floating point numbers.

Multiplying Two Floating Point Numbers. Suppose we want
to multiply two floating point numbers: 𝑠𝑎 · 2𝑒𝑎−𝑤 and 𝑠𝑏 · 2𝑒𝑏−𝑤 .
Let the outcome of such multiplication be 𝑠𝑐 · 2𝑒𝑐−𝑤 . Following
𝛿-approximate correctness 5.1, we want to ensure that:��𝑠𝑎 · 2𝑒𝑎 · 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐 �� ≤ 𝛿 ·

��𝑠𝑎 · 2𝑒𝑎 · 𝑠𝑏 · 2𝑒𝑏 �� .
Our methodology for multiplications will align with our previous

route for addition. We begin with yet another simpler observation

about the relationship between these exponents (𝑒𝑎, 𝑒𝑏 , 𝑒𝑐).

Claim 2. For |𝑠𝑎 |, |𝑠𝑏 |, |𝑠𝑐 | ∈
[
2
𝑤−1, 2𝑤

)
and 𝛿 = 2

−𝑤 ,
if |𝑠𝑎 · 2𝑒𝑎 · 𝑠𝑏 · 2𝑒𝑏 − 𝑠𝑐 · 2𝑒𝑐 | ≤ 𝛿 · |𝑠𝑎 · 2𝑒𝑎 · 𝑠𝑏 · 2𝑒𝑏 | , then 𝑒𝑐 −
(𝑒𝑎 + 𝑒𝑏) ∈ {𝑤 − 1,𝑤}.

Proof. First, let’s rewrite the inequality as:���𝑠𝑎 · 𝑠𝑏 − 𝑠𝑐 · 2𝑒𝑐−(𝑒𝑎+𝑒𝑏) ��� ≤ 𝛿 · |𝑠𝑎 · 𝑠𝑏 | . Since |𝑠𝑎 |, |𝑠𝑏 | ∈
[
2
𝑤−1, 2𝑤

)
,

we have 2
2𝑤−2 ≤ |𝑠𝑎 · 𝑠𝑏 | < 2

2𝑤 . WLOG assume 𝑠𝑎𝑠𝑏 ≥ 0 so

that 𝑠𝑐 ≥ 0 (the other case is similar), then: 𝑠𝑎𝑠𝑏 (1 − 𝛿) ≤ 𝑠𝑐 ·
2
𝑒𝑐−(𝑒𝑎+𝑒𝑏) ≤ 𝑠𝑎𝑠𝑏 (1 + 𝛿) .
Since 𝛿 = 2

−2𝑤
, 𝑠𝑎𝑠𝑏 (1 − 𝛿) ≈ 𝑠𝑎𝑠𝑏 ≈ 𝑠𝑎𝑠𝑏 (1 + 𝛿), thus we

can derive the following lower and upper bound: 2
2𝑤−2 ≤ 𝑠𝑐 ·

2
𝑒𝑐−(𝑒𝑎+𝑒𝑏) < 2

2𝑤 . Since 𝑠𝑐 ∈ [2𝑤−1, 2𝑤), by comparing the terms,

we deduce that 𝑒𝑐 − (𝑒𝑎 + 𝑒𝑏) ∈ {𝑤 − 1,𝑤}. □

Converting Multiplication into Constraints. Let’s define 𝜃 =

𝑒𝑐 − (𝑒𝑎 + 𝑒𝑏). Applying the previous claim, if 𝜃 ∉ {𝑤 − 1,𝑤}, we
simply reject (unless 𝑠𝑎 · 𝑠𝑏 = 0, which we ignore for simplicity). If

𝜃 ∈ {𝑤 − 1,𝑤}, we can compute the exponentiation 𝜆𝜃 B 2
𝜃
using

Lagrange Interpolation:

𝜆𝜃 = (𝜃 −𝑤 + 1) · 2𝑤 − (𝜃 −𝑤) · 2𝑤−1 .
Then we can apply range proof as before. In the next part, we

present our compiler which converts floating point number com-

putation into R1CS constraints.

R1CSCompiler for Floating Point Computation.

– The compiler takes as input a floating point circuit 𝐶 and

𝛿 ∈ {2−𝑤 , 2−2𝑤} and initializes an empty R1CS instance X.
It also initializes empty sets 𝑆1 and 𝑆2.

– For each gate 𝑔 in 𝐶 , let 𝑠𝑎 · 2𝑒𝑎−𝑤 , 𝑠𝑏 · 2𝑒𝑏−𝑤 be the input

wire values, 𝑠𝑐 · 2𝑒𝑐−𝑤 be the output wire value. Let 𝑘 be the

bit length of exponents and let (𝜃 [1], ..., 𝜃 [𝑘]) be the natural
bit decomposition of 𝜃 such that 𝜃 =

∑𝑘
𝑖=1 2

𝑖 · 𝜃 [𝑖].
– For every addition/subtraction gate 𝑔, we introduce the fol-

lowing new variables and constraints:

Constraints for Indicators Notes
𝜃𝑎 = 𝑒𝑎 − 𝑒𝑐 ; 𝜃𝑏 = 𝑒𝑏 −
𝑒𝑐 ; Δ𝑎,𝑏 = 𝑒𝑎 − 𝑒𝑏 ;

Create indicators for

three different cases.

1𝜃𝑎 (1 − 1𝜃𝑎) = 0;

1𝜃𝑏 (1 − 1𝜃𝑏) = 0;

1Δ𝑎,𝑏
(1 − 1Δ𝑎,𝑏

) = 0.

1𝜃𝑎 · (𝜃𝑎 + 1)𝜃𝑎 (𝜃𝑎 − 1) = 0;

1𝜃𝑏 · (𝜃𝑏 + 1)𝜃𝑏 (𝜃𝑏 − 1) = 0; Defining each indicator.

1Δ𝑎,𝑏
· (Δ𝑎,𝑏+1)Δ𝑎,𝑏 (Δ𝑎,𝑏−1) =

0.

1𝜃𝑎 + 1𝜃𝑏 + 1Δ𝑎,𝑏
= 1; Decide the value 𝜃

to be bit decomposed.𝜃 = 1𝜃𝑎 ·𝜃𝑏 +1𝜃𝑏 ·𝜃𝑎+1Δ𝑎,𝑏
·𝜃𝑏 .

Constraints for Bit Decom-
positions

Notes

∀𝑖 ∈ [𝑘] : 𝜃 [𝑖] · (1 − 𝜃 [𝑖]) = 0; Create 𝑘 bits and a sign

variable.

(1 − sgn𝜃) · (1 + sgn𝜃) = 0.

𝜃 = sgn𝜃 ·∑𝑘
𝑖=1 2

𝑖 · 𝜃 [𝑖]; Bit decomposition of 𝜃 .

1𝜃>0 =
sgn𝜃+1

2
; Defining indicator for

𝜃 > 0.

1 |𝜃 | ≤𝑤+2 =
∏𝑘

𝑖=log(𝑤+2)+1 (1 −
𝜃 [𝑖]).

Defining indicator for

|𝜃 | ≤ 𝑤 + 2.

Constraints for Exponentia-
tions

Notes

𝜆𝜃,1 = 1; Truncate 𝜃 to

log(𝑤 + 2) bits and then

define 𝜆𝜃 = 2
𝜃
using

repeated squares.

∀𝑖 ∈ [log(𝑤 + 2)] :
𝜆𝜃,𝑖+1 = (1 − 𝜃 [𝑖]) · 𝜆𝜃,𝑖
+𝜃 [𝑖] · 𝜆𝜃,𝑖 · 22

𝑖
;

𝜆𝜃 = 𝜆𝜃,log(𝑤+2) .

∀𝛼 ∈ {𝑎, 𝑏} : 𝜆𝜃𝛼 =
𝜃𝛼 (𝜃𝛼−1)

4
+

𝜃𝛼 (𝜃𝛼 + 1) − (𝜃𝛼 + 1) (𝜃𝛼 − 1);
𝜆𝜃𝛼 = 2

𝜃𝛼
whenever

𝜃𝛼 ∈ {−1, 0, 1}.
𝜆∗
𝜃𝑎

=
Δ𝑎,𝑏 (Δ𝑎,𝑏−1)

4
· 𝜆𝜃

+Δ𝑎,𝑏 (Δ𝑎,𝑏 + 1) · 𝜆𝜃 − (Δ𝑎,𝑏 +
1) (Δ𝑎,𝑏 − 1) · 𝜆𝜃 .

𝜆∗
𝜃𝑎

= 2
𝜃𝑎

whenever

Δ𝑎,𝑏 ∈ {−1, 0, 1}.

1213

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang

Constraints for Range
Proofs with Small 𝜃

Notes

𝑥𝐼 = 𝛿−1 · (𝑠𝑎 · 𝜆𝜃𝑎 + 𝑠𝑏 · 𝜆𝜃 −
𝑠𝑐), 𝑦𝐼 = 𝑠𝑎 · 𝜆𝜃𝑎 + 𝑠𝑏 · 𝜆𝜃 ;

We first assign to

variable Θ𝑗 the

inequality to be

checked (e.g.

(𝑥 𝑗 + 𝑦 𝑗) (𝑦 𝑗 − 𝑥 𝑗) > 0)

for each of three cases.

𝑥𝐼 𝐼 = 𝛿−1 · (𝑠𝑎 · 𝜆𝜃 + 𝑠𝑏 · 𝜆𝜃𝑏 −
𝑠𝑐), 𝑦𝐼 𝐼 = 𝑠𝑎 · 𝜆𝜃 + 𝑠𝑏 · 𝜆𝜃𝑏 ;
𝑥𝐼 𝐼 𝐼 = 𝛿−1 · (𝑠𝑎 · 𝜆∗𝜃𝑎 + 𝑠𝑏 · 𝜆𝜃 −
𝑠𝑐), 𝑦𝐼 𝐼 𝐼 = 𝑠𝑎 · 𝜆∗𝜃𝑎 + 𝑠𝑏 · 𝜆𝜃 ;
∀𝑗 ∈ {I, II, III}, Θ𝑗 = (𝑥 𝑗 +
𝑦 𝑗) (𝑦 𝑗 − 𝑥 𝑗);
𝑧 = 1 |𝜃 | ≤𝑤+2 · (1𝜃𝑎 ·Θ𝐼 +1𝜃𝑏 ·
Θ𝐼 𝐼 + 1Δ𝑎,𝑏

· Θ𝐼 𝐼 𝐼);
Using the indicators,

the variable 𝑧 will cor-

respond to the desired

case.

4𝑧 − 3 = 𝛾2
1
+ 𝛾2

2
+ 𝛾2

3
. Apply range proof

(we omit intermediate

steps).

Constraints for Large 𝜃 Notes
(1−1 |𝜃 | ≤𝑤+2) ·1𝜃>0 ·1𝜃𝑎 = 0; In case I, reject if 𝜃 >

𝑤 + 2.
(1−1 |𝜃 | ≤𝑤+2) · (1−1𝜃>0) ·1𝜃𝑎 ·
((𝑠𝑎 − 𝑠𝑐)2 + 𝜃2𝑎) = 0;

Otherwise, accept iff

𝑠𝑎 = 𝑠𝑐 ∧ 𝑒𝑎 = 𝑒𝑐 .

(1−1 |𝜃 | ≤𝑤+2) ·1𝜃>0 ·1𝜃𝑏 = 0; Case II is similar to Case

I.

(1−1 |𝜃 | ≤𝑤+2) · (1−1𝜃>0) ·1𝜃𝑏 ·
((𝑠𝑏 − 𝑠𝑐)2 + 𝜃2𝑏) = 0;

(1 − 1 |𝜃 | ≤𝑤+2) · 1Δ𝑎,𝑏
= 0. In case III, always re-

ject.

– Add all above constraints to the R1CS instanceX and update

𝑆1 and 𝑆2 as follows, 𝑆1 B 𝑆1∪{{𝑥 𝑗 , 𝑦 𝑗 } 𝑗 ∈{I, II, III}, {𝛾𝑘 }𝑘∈[3] },
𝑆2 B 𝑆2 ∪ {𝑧, {Θ𝑗 } 𝑗 ∈{I, II, III}}.

– For every multiplication gate 𝑔, we introduce the following

new variables and constraints:

Constraints for Exponentia-
tions

Notes

𝜃 = 𝑒𝑐 − (𝑒𝑎 + 𝑒𝑏);
Reject if 𝜃 ∉ {𝑤 − 1,𝑤}.(𝜃 −𝑤) (𝜃 −𝑤 + 1) = 0.

𝜆𝜃 = (𝜃 −𝑤 + 1) · 2𝑤 − (𝜃 −𝑤) ·
2
𝑤−1 .

Otherwise compute 2
𝜃
.

Constraints for Range
Proofs

Notes

𝑥 = 𝛿−1 · (𝑠𝑎 · 𝑠𝑏 − 𝑠𝑐 · 𝜆𝜃), 𝑦 =

𝑠𝑎 · 𝑠𝑏 ; Apply range proof.

𝑧 = (𝑥 + 𝑦) (𝑦 − 𝑥);
4𝑧 − 3 = 𝛾2

1
+ 𝛾2

2
+ 𝛾2

3
.

– Add all above constraints to the R1CS instanceX and update

𝑆1 and 𝑆2 as follows, 𝑆1 B 𝑆1 ∪ {𝑥, 𝑦, {𝛾𝑘 }𝑘∈[3] }, 𝑆2 B
𝑆2 ∪ {𝑧}.

– Finally, output (X, {(𝑆1,𝑤1 B 3𝑤 + 6), (𝑆2,𝑤2 B 6𝑤 + 12)}).

6.6 Security Proofs
We defer the security proofs to the full version.

6.7 Optimization and Performance

R1CSCompiler for Small 𝑝. In Section 6.1, we constructed a

R1CSCompiler for log
2
𝑝 > 6𝑤 + 3𝜅 + 2 log

2
𝑛 + 𝑂 (1). In prac-

tice, the typical choices of the underlying groups are Curve25519
or BN-256 which leads to log

2
𝑝 ≈ 256, and BN-384 which leads

to log
2
𝑝 ≈ 384. If one wants to choose 256-bits groups, and use

𝑤 = 24 for the precision of a IEEE 32-bit floating point number, then

𝜅 becomes as small as 20 ∼ 30. Hence, we provide a R1CSCompiler
that reduces the size of 𝑝 to 3𝑤 + 3𝜅 + 2 log

2
𝑛 +𝑂 (1), at the cost of

producing a slightly larger R1CS instance.

Our key observation is that, the 6𝑤 term sources from the value

𝑧𝑖 = (𝑥𝑖 + 𝑦𝑖) (𝑦𝑖 − 𝑥𝑖), where 𝑥𝑖 , 𝑦𝑖 ’s are both 3𝑤-bits integers.

Therefore, the value 𝑧𝑖 has 6𝑤-bits. Hence, to use a smaller 𝑝 , we

avoid computing 𝑧𝑖 = (𝑥𝑖 + 𝑦𝑖) (𝑦𝑖 − 𝑥𝑖). Instead, to prove (𝑥𝑖 +
𝑦𝑖) (𝑦𝑖 − 𝑥𝑖) > 0, we firstly compute a helper variable 𝑠𝑖 ∈ {−1, +1}
as the sign of 𝑥𝑖+𝑦𝑖 . Then we prove that 𝑠𝑖 · (𝑦𝑖−𝑥𝑖) > 0. Specifically,

we modify the R1CSCompiler in Section 6.1 as follows.

– . . .

– Compute 𝑠𝑖 ∈ {−1, +1} as the sign of 𝑥𝑖 + 𝑦𝑖 . To ensure 𝑠𝑖 is

computed correctly, we add a constraint 𝑠𝑖 · (𝑥𝑖 + 𝑦𝑖) > 0 to

the R1CS instance X, and convert it to equalities using sum

of three squares, and then add a constraint 𝑠2
𝑖
= 1 to ensure

𝑠𝑖 ∈ {−1, +1}.
– Add a constraint 𝑠𝑖 · (𝑦𝑖 − 𝑥𝑖) > 0 to the R1CS instance X by

sum of three squares.

– . . .

In terms of our instantiation, we will pick the following parameters

for 𝑝:

– “Small groups” refers to the field size 𝑝 with log
2
𝑝 > 3𝑤 +

3𝜅 + 2 log
2
𝑛 +𝑂 (1). We choose 𝑝 ≈ 2

256
for small group.

– “Large groups” refers to the field size 𝑝 with log
2
𝑝 > 6𝑤 +

3𝜅 + 2 log
2
𝑛 +𝑂 (1). We choose 𝑝 ≈ 2

384
for large group.

Soundness Amplification. We set the parameter 𝜅 ≈ 40 for small

𝑝 ≈ 2
256

. To achieve > 80-bits security, we repeat the random linear

combination for 2 times.

OptimizedBit-DecompositionMethod. We compare ourmethod

with the following method of verifying relative error via bit decom-

position: first convert the verification on the upper bound of the

relative error to the verification of some value 𝑧 ≥ 0 in the same

way as before, then we bit-decompose 𝑧 as 𝑧 =
∑ ⌊log𝑧 ⌋
𝑖=0

2
𝑖𝑧𝑖 , where

𝑧𝑖 is the 𝑖-th bit of 𝑧. Then we use the constraint 𝑧𝑖 · (1 − 𝑧𝑖) = 0

to encode 𝑧𝑖 ∈ {0, 1}. In this way, we convert 𝑧 ≥ 0 to a R1CS
instance.

Performance. We compare our work with other different methods

in terms of the following metrics:

– Size of R1CS per constraint: We count the size of R1CS in-

stance per constraint as the additional average number of

non-zero entries in the matrix 𝐴, 𝐵 and 𝐶 when, adding such

constraint to the R1CS (See the full version for the definition

of R1CS. We estimate Prover Efficiency based on the total

number of non-zero entries, times the number of group oper-

ations spent on each non-zero entry. In practice, we find that

“Large groups” operations are about 2× slower than “Small

groups” (See our choice of groups above).

1214

Succinct Zero Knowledge for Floating Point Computations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

– Overall proof size: This is the size of the prover’s message

size. For any scheme which internally utilizes “commit-and-

prove” proof system, we use |Π | to denote the proof size,

and |c| to denote the commitment size of the underlying

“commit-and-prove” proof system, thus |Π | + |c| being the

overall proof size.

We choose the precision𝑤 = 24 or 53, which corresponds to the

precision of an IEEE 32-bit floating point number or 64-bit floating

point number, respectively.

Concrete Efficiency. We present concrete efficiency of our zero-
knowledge commit-and-prove protocol for floating point number

addition/multiplication (without sublinear verification). For com-

parison, we consider two other approaches:

– The “optimized bit decomposition” method used by [9] for

range proofs. We denote this method by “Bit.” in our tables.

– Themethod of converting a floating point addition/multiplication

to a binary circuit. We denote this method by “IEEE-754” in

our tables. For 32-bit floating numbers we list the circuit size

in the source code of [35]. For 64-bit floating numbers we

list the circuit size achieved by [2].

We first compare the size of R1CS per constraint of our protocol
using “large groups”, with other approaches using “small groups”.

The concrete numbers are presented in table 2.

For 32-bit floating point computation with respect to an arith-

metic circuit with even number of addition and multiplication gates,

the size of R1CS per gate of our protocol is 91× less than that of

the method following IEEE standard exactly [35] and is 4× less

than that of the optimized bit-decomposition method. For 64-bit

floating point computation, this size of our protocol is 432× less

than that of strictly following IEEE standard and 7× less than that

of the optimized bit-decomposition method.

In terms of prover efficiency, taking account for the difference

in group sizes, for 32-bit floating point computation our protocol is

45× faster than the method following IEEE standard exactly and is

2× faster than the optimized bit-decomposition method. For 64-bit

floating point computation, our protocol is 216× faster than IEEE

standard and 3.5× faster than the optimized bit-decomposition

method.

The overall proof size is approximately 2× that of the other two

methods since in our zero-knowledge protocol, we send two com-

mitments (c, c′) and proofs (Π, Π′). We conservatively estimate

the proof Π′ having same size as Π. In reality, the instance R1CS′

contains only a small number of non-zero entries, hence Π′ should
have a smaller size.

This work Bit. IEEE-754

32-bit

|R1CS| per (+) 89 296 2456

|R1CS| per (×) 35 207 8854

Overall proof size 2(|Π | + |𝑐 |) |Π | + |c| |Π | + |c|

64-bit

|R1CS| per (+) 115 528 15637

|R1CS| per (×) 24 439 44899

Overall proof size 2(|Π | + |𝑐 |) |Π | + |c| |Π | + |c|
Table 2: Concrete performance for succinct zero-knowledge
of floating point number addition/multiplication with linear-
time verification in the large groups (log

2
𝑝 = 384).

We then compare the performance of our protocol for 32-bit

floating point computations, using “small groups”, with other ap-

proaches using “small groups”. The concrete numbers are presented

in table 3.

For 32-bit floating point computations, the size of R1CS per gate
of our protocol is 85× less than the method following the IEEE stan-

dard exactly [35] and 3.8× less than the optimized bit-decomposition

method above. Since all these approaches operate on the same

group, these numbers also translate to prover efficiency.

This work Bit. IEEE-754

32-bit

|R1CS| per (+) 108 296 2456

|R1CS| per (×) 25 207 8854

Overall proof size 2(|Π | + |c|) |Π | + |c| |Π | + |c|
Table 3: Concrete performance for succinct zero-knowledge
of floating point number addition/multiplication with linear-
time verification in the small groups (log

2
𝑝 = 256).

Additionally we compare our succinct argument of floating point

number computation with sub-linear verification (without zero-

knowledge) with the optimized bit-decomposition method. In this

case the prover efficiency of our work only increases 53% for 32-bit

computation and 28% for 64-bit computation.

Instantiations We defer instantiation of our protocol to the full

version.

7 CONCLUSION
In this work, we study the design of succinct ZK proof systems for

floating point computations. We provide two contributions: a new

relative error model for verifying floating point computations, and

an efficient succinct ZK proof system with sublinear verification.

Our work motivates several interesting directions for future

work. First, reducing the verification complexity to poly-logarithmic

would be very useful. Another interesting direction is modeling and

constructing efficient succinct proof systems for applications where

the correct rounding is crucial, such as finance and accounting.

ACKNOWLEDGMENTS
The first and fourth authors were supported in part by DARPA

under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-

0200, NSF CNS Award 1936826, and research grants by the Sloan

Foundation, and Visa Inc. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United

States Government or DARPA.

The second and third authors were supported in part by NSF

CNS-1814919, NSF CAREER 1942789 and Johns Hopkins University

Catalyst award. The second author was additionally supported in

part by AFOSR Award FA9550-19-1-0200 and the Office of Naval

Research Grant N00014-19-1-2294. This work was done while the

second and third authors were visiting University of California

Berkeley.

1215

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang

REFERENCES
[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted

Setup. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin,

and Dongyan Xu (Eds.). ACM Press, 2087–2104. https://doi.org/10.1145/3133956.

3134104

[2] David W. Archer, Shahla Atapoor, and Nigel P. Smart. 2021. The Cost of IEEE

Arithmetic in Secure Computation. LatinCrypt. https://ia.cr/2021/054.

[3] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Par-

adigm for Designing Efficient Protocols. In ACM CCS 93, Dorothy E. Denning,

Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.). ACM

Press, 62–73. https://doi.org/10.1145/168588.168596

[4] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459–474. https://doi.org/10.1109/SP.2014.36

[5] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments for

R1CS. In EUROCRYPT 2019, Part I (LNCS, Vol. 11476), Yuval Ishai and Vincent

Rijmen (Eds.). Springer, Heidelberg, 103–128. https://doi.org/10.1007/978-3-030-

17653-2_4

[6] Flávio Bergamaschi, Shai Halevi, Tzipora T. Halevi, and Hamish Hunt. 2019.

Homomorphic Training of 30,000 Logistic Regression Models. In ACNS 19 (LNCS,
Vol. 11464), Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti

Yung (Eds.). Springer, Heidelberg, 592–611. https://doi.org/10.1007/978-3-030-

21568-2_29

[7] Avrim Blum, John Hopcroft, and Ravindran Kannan. 2020. Foundations of Data
Science. Cambridge University Press. https://doi.org/10.1017/9781108755528

[8] Fabrice Boudot. 2000. Efficient Proofs that a Committed Number Lies in an

Interval. In EUROCRYPT 2000 (LNCS, Vol. 1807), Bart Preneel (Ed.). Springer,
Heidelberg, 431–444. https://doi.org/10.1007/3-540-45539-6_31

[9] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and

More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 315–334. https://doi.org/10.1109/SP.2018.00020

[10] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs from

DARK Compilers. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne Canteaut
and Yuval Ishai (Eds.). Springer, Heidelberg, 677–706. https://doi.org/10.1007/978-

3-030-45721-1_24

[11] Jan Camenisch, Rafik Chaabouni, and abhi shelat. 2008. Efficient Protocols for

Set Membership and Range Proofs. In ASIACRYPT 2008 (LNCS, Vol. 5350), Josef
Pieprzyk (Ed.). Springer, Heidelberg, 234–252. https://doi.org/10.1007/978-3-540-

89255-7_15

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homomor-

phic Encryption for Arithmetic of Approximate Numbers. In ASIACRYPT 2017,
Part I (LNCS, Vol. 10624), Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer,

Heidelberg, 409–437. https://doi.org/10.1007/978-3-319-70694-8_15

[13] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal: Post-quantum

and Transparent Recursive Proofs from Holography. In EUROCRYPT 2020, Part I
(LNCS, Vol. 12105), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg,

769–793. https://doi.org/10.1007/978-3-030-45721-1_27

[14] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical

verified computation with streaming interactive proofs. In ITCS 2012, Shafi Gold-

wasser (Ed.). ACM, 90–112. https://doi.org/10.1145/2090236.2090245

[15] Geoffroy Couteau, Michael Klooß, Huang Lin, andMichael Reichle. 2021. Efficient

Range Proofs with Transparent Setup from Bounded Integer Commitments. In

EUROCRYPT 2021, Part III (LNCS, Vol. 12698), Anne Canteaut and François-Xavier
Standaert (Eds.). Springer, Heidelberg, 247–277. https://doi.org/10.1007/978-3-

030-77883-5_9

[16] Geoffroy Couteau, Thomas Peters, and David Pointcheval. 2017. Removing the

Strong RSA Assumption from Arguments over the Integers. In EUROCRYPT 2017,
Part II (LNCS, Vol. 10211), Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.).

Springer, Heidelberg, 321–350. https://doi.org/10.1007/978-3-319-56614-6_11

[17] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.

Odlyzko (Ed.). Springer, Heidelberg, 186–194. https://doi.org/10.1007/3-540-

47721-7_12

[18] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In 41st
ACM STOC, Michael Mitzenmacher (Ed.). ACM Press, 169–178. https://doi.org/

10.1145/1536414.1536440

[19] David Goldberg. 1991. What Every Computer Scientist Should Know about

Floating-Point Arithmetic. ACM Comput. Surv. 23, 1 (mar 1991), 5–48. https:

//doi.org/10.1145/103162.103163

[20] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2015. Delegating

Computation: Interactive Proofs for Muggles. J. ACM 62, 4, Article 27 (sep 2015),

64 pages. https://doi.org/10.1145/2699436

[21] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In 17th ACM STOC.
ACM Press, 291–304. https://doi.org/10.1145/22145.22178

[22] Jens Groth. 2005. Non-interactive Zero-Knowledge Arguments for Voting. In

ACNS 05 (LNCS, Vol. 3531), John Ioannidis, Angelos Keromytis, and Moti Yung

(Eds.). Springer, Heidelberg, 467–482. https://doi.org/10.1007/11496137_32

[23] Jens Groth. 2011. Efficient Zero-Knowledge Arguments from Two-Tiered Homo-

morphic Commitments. InASIACRYPT 2011 (LNCS, Vol. 7073), DongHoon Lee and
XiaoyunWang (Eds.). Springer, Heidelberg, 431–448. https://doi.org/10.1007/978-

3-642-25385-0_23

[24] Joe Kilian. 1992. A Note on Efficient Zero-Knowledge Proofs and Arguments

(Extended Abstract). In 24th ACM STOC. ACM Press, 723–732. https://doi.org/10.

1145/129712.129782

[25] Helger Lipmaa. 2003. On Diophantine Complexity and Statistical Zero-

Knowledge Arguments. InASIACRYPT 2003 (LNCS, Vol. 2894), Chi-Sung Laih (Ed.).
Springer, Heidelberg, 398–415. https://doi.org/10.1007/978-3-540-40061-5_26

[26] Silvio Micali. 2000. Computationally Sound Proofs. SIAM J. Com-
put. 30, 4 (2000), 1253–1298. https://doi.org/10.1137/S0097539795284959

arXiv:https://doi.org/10.1137/S0097539795284959

[27] J. O. Rabin and Jeffrey Shallit. 1985. Randomized Algorithms in Number Theory.
Technical Report. USA.

[28] Michael O. Rabin and Jeffery O. Shallit. 1986. Randomized algorithms

in number theory. Communications on Pure and Applied Mathemat-
ics 39, S1 (1986), S239–S256. https://doi.org/10.1002/cpa.3160390713

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160390713

[29] Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without

Trusted Setup. In CRYPTO 2020, Part III (LNCS, Vol. 12172), Daniele Micciancio

and Thomas Ristenpart (Eds.). Springer, Heidelberg, 704–737. https://doi.org/10.

1007/978-3-030-56877-1_25

[30] Srinath Setty and Jonathan Lee. 2020. Quarks: Quadruple-efficient transparent

zkSNARKs. Cryptology ePrint Archive, Report 2020/1275. https://ia.cr/2020/1275.

[31] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blum-

berg, and Michael Walfish. 2012. Taking Proof-Based Verified Computation a

Few Steps Closer to Practicality. In USENIX Security 2012, Tadayoshi Kohno (Ed.).

USENIX Association, 253–268.

[32] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In

CRYPTO 2013, Part II (LNCS, Vol. 8043), Ran Canetti and Juan A. Garay (Eds.).

Springer, Heidelberg, 71–89. https://doi.org/10.1007/978-3-642-40084-1_5

[33] Lloyd N. Trefethen. 2008. IV. 21 Numerical Analysis, in The Princeton Companion
to Mathematics (illustrated edition ed.). Princeton University Press, USA.

[34] Lloyd N. Trefethen and David Bau. 1997. Numerical Linear Algebra. SIAM.

[35] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021.

Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications

to Machine Learning. Cryptology ePrint Archive, Report 2021/730. https:

//ia.cr/2021/730.

[36] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

Computation. In CRYPTO 2019, Part III (LNCS, Vol. 11694), Alexandra Boldyreva
and Daniele Micciancio (Eds.). Springer, Heidelberg, 733–764. https://doi.org/10.

1007/978-3-030-26954-8_24

[37] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie,

and Yupeng Zhang. 2021. Doubly Efficient Interactive Proofs for General Arith-

metic Circuits with Linear Prover Time. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, Republic

of Korea) (CCS ’21). Association for Computing Machinery, New York, NY, USA,

159–177. https://doi.org/10.1145/3460120.3484767

[38] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent

Polynomial Delegation and Its Applications to Zero Knowledge Proof. In 2020
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 859–876.

https://doi.org/10.1109/SP40000.2020.00052

1216

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://ia.cr/2021/054
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-21568-2_29
https://doi.org/10.1007/978-3-030-21568-2_29
https://doi.org/10.1017/9781108755528
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/2699436
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1137/S0097539795284959
https://arxiv.org/abs/https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1002/cpa.3160390713
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160390713
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://ia.cr/2020/1275
https://doi.org/10.1007/978-3-642-40084-1_5
https://ia.cr/2021/730
https://ia.cr/2021/730
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1145/3460120.3484767
https://doi.org/10.1109/SP40000.2020.00052

	Abstract
	1 Introduction
	2 Our Contributions
	2.1 Our Model
	2.2 Our Constructions
	2.3 Related Work

	3 Technical Overview
	4 Preliminaries
	5 Definitions
	5.1 Approximate Circuit Computation
	5.2 Interactive Proofs for Floating Point Computations

	6 Commit-and-Prove for Floating Point Computations
	6.1 Construction
	6.2 Security Proofs
	6.3 Achieving Sublinear Verification
	6.4 Achieving Zero-knowledge
	6.5 Extension to Floating Point Computation
	6.6 Security Proofs
	6.7 Optimization and Performance

	7 Conclusion
	Acknowledgments
	References

