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ABSTRACT

We study the problem of constructing succinct zero knowledge
proof systems for floating point computations. The standard ap-
proach to handle floating point computations requires conversion
to binary circuits, following the IEEE-754 floating point standard.
This approach incurs a poly(w) overhead in prover efficiency for
computations with w-bit precision, resulting in very high prover
runtimes — already the key bottleneck in the design of succinct
arguments.
We make the following contributions:

- We propose a new model for verifying floating point com-
putations that guarantees approximate correctness w.r.t. a
relative error bound. This model is inspired by numerical
analysis, and is very meaningful for applications such as
machine learning and scientific computing.

- Using this model, we present a general method for construct-
ing succinct zero-knowledge proofs for floating point com-
putations starting from existing public-coin “commit-and-
prove” systems. For computations with w-bit precision, our
approach incurs only a log(w) overhead in prover running
time. Our compiler nearly preserves (up to a factor of 2)
the communication complexity of the underlying protocol,
and requires sub-linear verification time. The resulting proof
can be made non-interactive in the random oracle model.
Concretely, our scheme is ~ 57X faster than the method fol-
lowing IEEE standard exactly [35] for 32-bit floating point
computations.

Central to our main result, and of independent interest, is a new
batch range proof system in standard prime order groups that does
not rely on bit decomposition.
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1 INTRODUCTION

Succinct proofs [24, 26] allow a prover to convince a verifier that
an NP statement is true, with communication sub-linear in the
size of the prover’s witness. Such proofs are studied in two avatars:
interactive proofs, where prover and the verifier communicate over
multiple rounds, and non-interactive proofs, where the prover sends
a single message to the verifier. If the interactive proof is public-
coin, known methods (e.g., [17]) can be used to transform it into
a non-interactive proof in the random oracle model [3], or the
common reference string model.

Succinct proofs are typically paired with an additional zero knowl-
edge (ZK) property [21], which requires that the verifier does not
learn anything beyond the veracity of the statement. In recent years,
succinct zero-knowledge proofs have found numerous real-world
applications, e.g., in the design of blockchains [4]. This has led to
extensive research towards improving the efficiency of succinct
zero-knowledge proofs in practice [1, 5, 9, 10, 13, 14, 20, 29, 32, 36—
38], both in terms of prover and verifier running times. The stan-
dard approach in all of these works is to model the computation
as an arithmetic or binary circuit, where each wire of the circuit is
represented as an integer value.

How to Verify Floating Point Computations? In many real-
world applications, floating point computations are ubiquitous. A
floating point number is different from an integer, in that it is
expressed using an integer significand part (with a fixed number of
digits) and scaled using an integer exponent part (in a fixed base).
The parameters of machine learning models are usually stored as
floating point numbers in computers. In physics, any measurement
we make may incur some inaccuracy, and hence the result is usually
represented as a floating point number.
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In this work, we study the following question,

Can we build efficient succinct zero-knowledge proofs for
floating point computations?

Current Approach and Drawbacks. The standard approach to
prove the correctness of a floating point computation is to first
convert the floating point operations to binary circuits, following
the IEEE-754 floating point standard (see, e.g. [35]). The IEEE stan-
dard guarantees that the result of each floating point operation is
rounded to the closest floating point number, and except for some
corner cases, the result of computation is almost deterministic.

However, this method introduces a very high computational
overhead. Asymptotically, for floating point numbers with w-bit
precision, each operation requires a binary circuit of size polynomial
in w. As a concrete example, [35] converts multiplication operation
over IEEE 32-bit floating point numbers with precision w = 24 into
a binary circuit of 8854 gates. This means that the prover running
time - the key bottleneck in the most efficient known constructions
of succinct proofs systems — increases roughly 9000-fold.

Our Work. In this work, we aim to build succinct zero-knowledge
proof systems with improved prover efficiency. Inspired by nu-
merical analysis [33], we propose a new model for proving the
correctness of floating point computations. In our model, we only
verify an upper bound on the relative error for each floating point
operation in the overall computation. As we discuss shortly, our
model provides strong guarantees for most applications in machine
learning and scientific computing. Crucially, it allows us to avoid
the overhead of transforming floating point operations to binary
circuits, and build proof systems with significantly better prover
efficiency.

Our work is inspired by (although different from) an influential
recent line of research [6, 12] that constructs efficient fully homo-
morphic encryption [18] schemes for floating point computations
by deviating from the IEEE standard.

2 OUR CONTRIBUTIONS

In this work, we initiate the study of prover- efficient succinct zero-
knowledge proofs for floating point computations. We start by
providing a summary of our contributions.

e We first propose a relative error model to verify floating
point computations.

We build a generic compiler that transforms any (public-
coin) “commit-and-prove” zero-knowledge proof of knowl-
edge system into a succinct zero-knowledge proof system
for floating-point computation. For computations with w-bit
precision, the prover time in our system grows only log-
arithmically in w. The communication complexity nearly
preserves the communication of the underlying protocol (up
to a factor of 2), and the verification time is sub-linear in the
size of the computation.

Finally, we provide a concrete efficiency analysis of our pro-
tocol. Compared to the prior method that involves verifying
that the computation followed the IEEE standard exactly
[35], the prover running time of our scheme is ~ 57X faster
for 32-bit floating point numbers, and 236X faster for 64-bit
floating point numbers. We also compare performance with
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an alternative solution that uses optimized versions of exist-
ing range proofs (that rely on bit-decomposition) within our
relative error model. In this case, the prover runtime of our
scheme is ~ 2.5X to 3.7x faster, depending on the precision.
Our improvements are much more significant if multiplica-
tion gates dominate the relation circuit; see Section 2.2 and
6.7 for more details.

We now describe our contributions in more detail. We first pro-
vide an overview of our model in Section 2.1. We then describe our
results and performance analysis in Section 2.2.

2.1 Our Model

We introduce the following model for proving the approximate cor-
rectness of floating point computations: a (honest) prover performs
the floating point computation following the IEEE standard, and
then proves an upper bound on the relative error for each step of
the floating point computation. Specifically, for each (addition or
multiplication) gate g with input wires a, b and output wire ¢, we
require a prover to prove that

e —9g(a,b)| < 6lg(a,b)l,

for a relative error bound 8, where g(a, b) is the precise value of
the addition (resp. multiplication). Here § can be set as machine
epsilon, which is the relative error bound in the IEEE standard.
Zeros, infinities, and not-a-number in IEEE standard can be treated
separately as corner cases.

Our model is directly inspired by the field of numerical analysis
[33] that concerns with measuring the accuracy of numerical algo-
rithms. A general methodology is to first bound the relative error
for each step of the floating point computation, and then an error
bound on the output is derived. The relative error methodology is
used because the behavior of the rounding operation is quite com-
plicated and hard to reason about. The accuracy of most numerical
algorithms can be analyzed in this way.

Meaningfulness of our Model. For any floating point computa-
tion program, a proof in our model can be combined with numerical
analysis about the program to obtain guarantees on the accuracy of
the output of the program. For example, in numerical linear algebra
[34], the backward error analysis for basic numerical algorithms
such as Gaussian elimination and matrix decomposition relies only
on the bound of relative errors. These algorithms serve as a basis
for numerous scientific computing tasks ranging from numerical
differential equation solving to big data analysis [7]. For these ap-
plications, strong guarantees on the accuracy of the output can be
obtained using our approach.

What about more complicated floating point programs for which
rigorous numerical analysis results are not known? The output of
such programs is at least robust in the presence of rounding errors
that arise in the computation following the IEEE standard. Hence,
we can heuristically assume that their output is robust to any small
perturbations bounded by the relative error upper bound during
the computation. Indeed, a counterexample for our assumption
would imply that the accuracy of the output cannot be argued by
following the relative error methodology in numerical analysis but
the program is “numerically stable” in practice. This would greatly
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advance our understanding of the numerical algorithm being used
and the relative error methodology in numerical analysis.

Finally, we note that the adversarial nature of proof systems
diminishes any error gap between our model and the alternative
model of proving that a computation was performed following the
IEEE standard [35]. As an example, our model does not guarantee
that the value in the output wire of a step of the computation is
rounded to the nearest number (as is done in the IEEE standard).
Instead, our model allows a larger (by a factor of 2 in some cases)!
absolute error. Note, however, that such difference only appears
when the floating point numbers are public and fixed. In the setting
of zero-knowledge proofs, the floating point numbers are hidden to
the verifier, and a malicious prover may choose any floating point
numbers that lead to the maximum possible rounding error in the
worst case. Hence, the actual rounding error matches the upper
bound in the relative error model.

Efficiency Benefits. Our model of verifying relative errors en-
ables us to achieve better prover efficiency than existing methods. In
particular, our model does not require proving complicated round-
ing operations. Instead, it only requires proving “simple” relations
between a tuple of wire values (a, b, ¢) associated with an operation.
Furthermore, as we discuss below, we can build direct proofs for
such relations without using bit decomposition.

2.2 Our Constructions

We construct succinct zero-knowledge proofs for floating point
computations, both in the interactive and non-interactive setting.
Our main result is a generic compiler that compiles any commit-
and-prove succinct ZK proof of knowledge system into a succinct
ZK proof for floating point computations in our model.

Recall that a commit-and-prove (CP) system is an interactive
protocol that allows a prover to prove that a committed value is a
witness of some instance in an NP language. Most existing succinct
ZK proof systems (see, e.g. [5, 9, 29, 36]) can be abstracted as CP
systems. We require such proof systems for R1CS - an already
popular choice of NP complete language in existing systems.

General Compiler. Let w be the precision of floating point num-
bers, k be the bit-length of the exponent, and C be a floating point
computation circuit. Our general compiler yields a protocol with
the following parameters:

« Prover Time: The run-time of the prover is equivalent to the
prover run-time in the underlying CP protocol for proving
an R1CS instance X of size |X| = O(logw + k) - |C|.

« Proof Size: The proof size is equivalent to the proof size of
the underlying CP protocol for proving an R1CS instance of
size |X|, with O(1) additional field elements.

« Verification Time: The verification time is equivalent to the
verification time of the underlying CP protocol for |X|-size
R1CS, with an additional O(\/@ ) group operations.

If the underlying CP system is public-coin and succinct, then
so is our resulting protocol. Furthermore, by relying on the zero
knowledge property of the underlying CP systems, we also achieve
zero knowledge property. Thus, instantiating our compiler with a

The upper bound of the relative error caused by rounding to nearest rule is in the
range [J/2, 8], where & is machine epsilon. See [19].
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(public-coin) commit-and-prove succinct ZK proof (of knowledge)
system, we obtain a (public-coin) succinct ZK proof system for
floating point computations. Applying the Fiat-Shamir transforma-
tion [3] to our protocol, we obtain a non-interactive succinct ZK
argument system for floating point computations.

The verification time of our proof system is sub-linear in the
circuit size, if the underlying CP protocol achieves sub-linear veri-
fication. More precisely, our protocol incurs an additive overhead
of O(\/|—C| ) in the verification time of the underlying CP protocol.
While it is clearly desirable to achieve smaller verification time, we
note that trading verification time for better prover performance
has been an active area of recent research (see, e.g., [1, 5, 9]). Such
trade-offs can be justified by practical ramifications; indeed, some
of these proof systems are being used in real-world systems.

Our technique for achieving sub-linear verification can be natu-
rally extended to achieve poly-logarithmic verification. This, how-
ever, results in an increase in prover running time (due to the
necessity of a larger group; see Section 6.3). We leave open the
problem of achieving poly-logarithmic verification time (without
blowing up the prover running time) for future research.

Concrete Parameters. For a concrete comparison of our approach
with the IEEE-754 standard and the optimized bit-decomposition
method (see Section 6.7 for its detailed description), we list the
parameters of zero-knowledge CP protocol regarding the three
different approaches, for 32-bit floating point numbers (w = 24, k =
8) and 64-bit floating point numbers (w = 53, k = 11) in Table 1. The
parameters support floating-point circuits of ~ 220 gates. While
our construction supports different moduli, here we choose the
modulus p ~ 2384, which can be used with 384-bit elliptic curves
BN-384.

The R1CS size of our protocol is 91X ~ 432X smaller than fol-
lowing the IEEE standard exactly and 4Xx ~ 7X smaller than the
optimized bit decomposition method, depending on the length of
floating point number (32 bits or 64 bits). If we use the 384-bit groups
for all methods, then such improvement translated to the running
time of the prover efficiency. Since the optimized bit-decomposition
method can also use smaller groups such as 256-bit groups, tak-
ing into account the difference in group sizes, our protocol is still
57x ~ 236X faster than following IEEE standard and 2.5X ~ 3.7x
faster than the optimized bit-composition method in terms of prover
efficiency. We achieve these improvement at the cost of doubling
the proof size. Finally, we note that our construction achieves sig-
nificantly more improvement for the case of multiplication gates
(as opposed to addition gates); hence, if the circuit is dominated by
multiplication gates, our overall improvements will be more signif-
icant. For more details in performance estimation and comparison,
see Section 6.7.

Batch Range Proofs. Central to our main result is a new con-
struction of batch range proof system in groups of (known) prime
order, without relying on bit-decomposition techniques.

A batch range proof system allows for proving an instance of
the form {(y;, [, ri]) }i, where y;, £;, r; are committed using some
commitment scheme. The prover tries to convince a verifier that
for every i, y; is in the interval [£;, r;].

Implicit in our main result is a public-coin succinct batch range
proofs from any public-coin succinct “commit-and-prove” proof
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This work Bit. IEEE-754

[R1CS| per (+) 39 296 2456

32-bit [ |R1CS] per (X) 35 207 8854
Overall proof size || 2(|TI| + [c]) | |TI| +|e| | |TI| + |c]

[R1CS| per (+) 115 528 15637

64-bit [ |R1CS] per (x) 24 439 44899
Overall proof size || 2(|II| + [c|) | |TI| +|e| | |TI| +|c]

Table 1: Concrete performance for floating point number
addition/multiplication, where we choose log, p = 384. “IEEE-
754” refers to the method of converting a floating point ad-
dition/multiplication to a binary circuit. For 32-bit floating
numbers we list the circuit size in the source code of [35]. For
64-bit floating numbers we list the circuit size achieved by [2].
The “Bit” refers to the bit decomposition method used by [9]
for range proofs, optimized for floating point computations.
|[R1CS| refers to the size of R1CS instance for the underlying
protocol. The numbers under “This work” correspond to our
succinct zero-knowledge protocol with linear verification
time. “Overall Proof size” is the size of the prover’s message
size, where |II| is the proof size of the underlying “commit-
and-prove” proof system and |c| is the size of the underlying
commitment.

system for R1CS over a prime order field F. Our batch range proof
with the following properties.

« Prover Time: The prover’s running time for a R1CS instance
X with |X| = O(logw + k) - n, where n is the number of
instances in the batch range proof.

« Proof Size: The underlying proof with O(1) additional group
or field elements.

« Verification Time: The verification time of the underlying
“commit-and-prove” for X, with additional O(|X|'/2) group
operations.

Known constructions of batch range proofs fall into two cate-
gories: the first approach relies on bit decomposition [9, 11, 23],
which introduces an Q(w) overhead in prover time for proving
that a w-bit integer is within some range. For example, for 32-bit
floating point number, the bit-decomposition method needs 3.3x
larger R1CS for each addition gate, and 5.9% larger R1CS for each
multiplication gate.

Another approach relies on groups of unknown order [8, 22],
which is computationally inefficient?. Our construction, in contrast,
relies on prime (known) order groups and does not require bit
decomposition. This result might be of independent interest.

2.3 Related Work

To the best of our knowledge, there is no prior work on succinct
proof systems that supports full functionality of floating point
computations.

Weng et al. [35] proposed a (non-succinct) ZK proof system
that supports floating point computation. Their approach involves

2The typical choices of unknown order groups are RSA groups and class groups. Both
of them need large group size to resist subexponential time attacks.
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compiling the floating point computation to a binary circuit follow-
ing the IEEE standard. Their implementation only supports single
precision (32-bit) floating point computation.

Setty et al. [31] proposed a general proof system that supports
integer and rational number arithmetic. They also support float-
ing point computation by rational numbers. However, they do not
support rounding operation, which is crucial for floating point com-
putations in practice.

3 TECHNICAL OVERVIEW

In this section, we provide an overview of our techniques. To sim-
plify our illustration, we first only consider fixed point computation,
where all the wire values can be essentially viewed as w-bits inte-
gers (for fixed point number with precision w). We will extend our
ideas to floating point computations later on in this overview.

Firstly, we show how to prove that the relative error for an addi-
tion gate is small. In other words, we want to prove the following
inequality:

la+b—c| <8la+b],

where a, b are input wires to the addition gate and c is the output
wire, all being w-bits integers (up to an 27" factor that can be
dropped all together). Note that for each gate, we can write an in-
equality as above. Hence there will be a batch of inequalities that we
want to prove. To build succinct proofs for them, our starting point
is the recent work [15], where they build a range proof in known
order groups without bit decomposition, but without support for
batching.

Following a line of research [16, 22, 25] on range proofs, their
idea is to first turn each inequality into the compatible form of a
range proof: z > 0. This can be done by adding some intermediate
constraints and variables. When it comes to prove that z > 0, we
turn to Legendre’s three square theorem, which states that any
positive integer that equals to 1 mod 4 can be expressed as the sum
of three squares. Specifically, (z > 0) & (4z — 3 > 0), and there
always exists three integers {yi};¢[3] such that

3
2
4z—3:Zyi.
i=1

Furthermore, these three integers can be found efficiently in O (log? z)
time [28]. Hence, to prove z > 0, one only needs to provide {y;}’s
and show that 4z — 3 is the three square sum of them.

Nevertheless, it does not work directly: Recall that for most
of the existing succinct proofs, usually the prover firstly uses a
succinct commitment to commit the wires, and then interacts with
the verifier to ensure that the committed values satisfy the required
constraint using some PCP-based method. In this framework, the
prover can only prove statements in the finite field, either because
the commitment scheme is group based, or the PCPs need to work
in a finite field. Consequently, the soundness of such protocols can
only ensure that Equation 1 holds in some finite field. Due to the
wrap around in the finite field, it could be that the Equation 1 holds
modulo some number p, but not holds over integers.

To circumvent this, one possible direction is to use an unknown
order group, one candidate being the RSA group [22]. However, the
RSA group size is relatively larger than the known order groups

1)
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such as elliptic curves. Another direction could be using class
groups. But those groups are computationally inefficient as well
[30]. Hence, we set our goal as building such succinct proofs in
standard prime known-order groups.

This Work. To overcome the aforementioned barrier, our idea
is to further ensure that all the values z and y;’s are very small
compared to p, so that the wrapping around in modulo p fields does
not happen. One naive way to achieve this is to have the verifier
query each value, but this requires the prover to open commitment
of each wires, thus leading to non-succinct proofs.

Achieving Succinctness. To resolve this issue, we extend the idea
of random linear combinations. Simply describing, to prove that a
batch of values y;’s are all 0, one could have the verifier to send
some random coefficients r; < F, and have the prover prove that
2iyi-ri=0.

In our case, we want to prove all y;’s are small, but we can’t use
random linear combination directly. Because if one of y; is not zero,
then the random linear combination }}; y; - r; is uniformly random
in Fp, which tells nothing about whether all y;’s are small. Hence,
instead of sampling r;’s randomly in Fj, we sample them in a small
range. In this way, the summation }; y; - r; should also be small.
Then we have the verifier check whether the summation is also in
a small range or not. To argue soundness, we hope to prove that if
one of y; is large, then the random linear combination is also large
with overwhelming probability.

However, the above statement doesn’t hold. In fact, there is a
simple counterexample. Consider the case where there is only one
element y; = 27! (mod p). Then y; = (p + 1)/2 is a large value
for any prime p > 2. However, if we sample r1 from a small range,
then with probability 1/2, r; is an even number. Then y; - r1 =
(r1/2) (mod p), which is a small value. This counterexample can
be extended to more general case where each y; is a “fraction”. For
more detail, see Section 6.6.

Argue Soundness. Using a careful analysis, we can prove that such
counterexamples are the only possible counterexamples. Namely,
let’s consider y;’s such that Pry,..[2; yi - ri mod p is small] >
1/poly (1), where each r; is sampled from a small range. Then we
can prove that each y; must be of the form A;/B; (mod p), where
both A;’s and B;’s are small integers. To prove this, notice that
for each index i, by an averaging argument, there must exist a
series of r;’s where j # i, such that conditioning on them, we have
Pry,[yi-ri+ Xz yj-rjissmall | {rj};zi] > 1/poly(A), where the
randomness is only over the i-th coordinate r;. Now, if we set the
range of r; to be super-polynomial, then by counting argument
there must exist two different r;, ri/ such that their random linear
combination with y;’s are both small. If we denote the random
linear combinations of y; with respect to r; and r as ¥; and Y/,
then we have y; = (Y; - Y/) - (r; — rl.’)_1 (mod p).

In this way, we prove that each y; is in a form of “fractions”,
where both the numerator and denominator are small integers.
Towards arguing soundness, we need to resolve the following two
challenges:

- The Equation (1) holds only modulo p. We need to drop
the modulo operation so that we can derive z > 0 from
Equation (1).
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- Y;’s are in the form of “fractions”. We need them to be inte-
gers.

To address the first challenge, we observe that, if we set the
modulo p to be large enough, then each equation for “fractions”
over Fp, implies that there exists an assignment of the variables over
real numbers such that the Equation (1) holds without modulo p. To
see this, consider an addition equation a;+az = a3 (mod p), where
a; = Ay -Bl_l, as = Az -Bz_l, as = Az ~B3_1 (mod p) are all “fractions”
with small numerators and denominators. Multiplying both sides
by B1B2B3, we have A1B2B3 +A2B1B3 = A3B]Bz (mod p)

Since A;’s and B;’s are small integers, then for a relatively large
p, the modulo p operation does not wrap around. Hence, the same
equation holds over integers and we have A; /By + A2/By = A3/Bs
over reals, without modulo p.

Back to the previous example of checking an addition gate: as-
sume that using random linear combination test, we identify some
fractional numbers z* and y; such that the following inequality
holds over (mod p): 4z* -3 = Z?:l ylf‘z. Deploying above argu-
ment, we can see that this inequality also holds over the reals, thus
the fraction z* > 0, as desired. This further implies that there ex-
ists input wire values a*,b* € R and output wire value ¢* € R,
such that this addition gate has small relative error with respect to
these values (details in the full version This argument can also be
extended to all multiplication gates, thus we argue that there exists
an assignment of real numbers to all the wires such that all gates
in the circuit have small relative errors.

For the second challenge, instead of further arguing Equation 1
holds over integers rather than reals, we define soundness for the
following weaker notion. If there doesn’t exist an assignment of
the wire values in real numbers such that each gate is correct up to
some relative error §, then any cheating proof will be rejected. We
note that there is a theoretical gap between the completeness and
soundness properties. Recall that, completeness requires that if the
circuit can be approximately satisfied by a set of floating point num-
bers of some fixed precision w, then the honest prover should be
accepted. However, it’s possible that a circuit is not approximately
satisfied by floating point numbers, but is approximately satisfiable
in real numbers. However, we expect this gap to be rather narrow
in practice. Intuitively, for any floating point circuit that is robust
to small perturbation caused by rounding errors, if the circuit is
approximately satisfiable over reals then we can take the precision
to be slightly larger, such that those real numbers can be rounded
to floating point numbers, and those floating point numbers can
make the circuit approximately satisfiable.

Summary (So Far). We now give a summary of our construction
(so far).

Firstly, we convert a fixed point circuit to an R1CS instance,
containing all necessary constraints such as Equation 1.
Prover: Commit the R1CS witness and send the commitment
to the verifier.

Verifier: Send the random linear combination coefficients
{ri}i, where r;’s are small.

Prover: Compute the random linear combination {v;}; and
send it to the verifier. The prover also uses the underlying
commit-and-prove proof system to prove that the witness
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satisfies the R1CS instance, and the random linear combina-
tion is computed correctly.

- Verifier: The verifier verifies the proof, and checks whether
the random linear combinations {v;}; are in a small range.

If we use the above construction directly, we need to choose a
modulo p that is large enough for all wires values. However, we
note that the wire values can have different orders of magnitude.
Hence, in our actual construction, we split the variables to two
disjoint sets according to their magnitudes, and use two random
linear combinations to test them separately. In this way, we can
choose a smaller modulo p. There are several more optimizations
in our construction. For more details, see Section 6.1.

Next, we explain how we extend our techniques to handle float-
ing point computations.

Extension to Floating Point Numbers. A floating point number
of precision w differs from a fixed point number of precision w in
that it has an additional part containing exponents. More formally,
any floating point number can be written as s - 2°™", where s is a
w-bit integer with most significant bit fixed to 1 (hence normalized),
and e is a k-bit integer. When all the wires are given as floating
point numbers, checking the relative error for each gate becomes
trickier, since their exponent parts play a role in the inequality as
well.

Let us start with floating number multiplication: we want to
check the following essential inequality; |sg - 267 - sp, - 260 — 5 - 2%¢|
- Isq- 28 - sp - 260

Clearly, one can reduce this task to that of fixed point mul-
tiplication, by asking the prover to supply intermediate values
a = sq - 2% (similarly for b, ¢) and prove that these intermediate val-
ues are correctly computed. Then the goal reduces to showing that
la-b—c| <§-|a-b|, which can be easily handled. Nevertheless,
checking these three intermediates values could be fairly inefficient
especially for large k. This is because the best known method to
check exponentiation is to bit decompose each of the exponents: e,
ep and e, and then use repeated squaring to derive and to prove
necessary constraints.

We bypass this overhead by observing that when sg4, s, and
s¢ are all normalized, the multiplication between s, and s; can
stretch the exponents by either w — 1 or w, thus the exponent
ec is close to ez + e, + w up to 1. In other words, e; — (eg +
ep) € {w — 1, w}. With this in mind, let’s first transform the in-

equality into |sq - s, — s¢ - 26 (€a*€6)| < §. |5, - 5| . Then, since

2¢c—(eater) ¢ {2“’_1, 2"}, we can hardcode these two values inside
our constraints and add additional constraints which enforces the
right value, thus effectively eliminating the need to check otherwise
heavy exponentiations.

When it comes to floating number addition, we want to check the

following inequality: [sg - 2@ + s, - 266 — s, - 2%¢| < §-[sq - 2@ + 55, -

As in the case of multiplication, we observe a similar relationship
between these three exponents. For the sake of simplicity, let’s
assume Sq,sp > 0 and e; > ep. If we add the two floating point
numbers: s, - 299 + 5p, - 20, the exponent of the result of such
addition should be either e, or e; + 1, depending on whether the
value sq + s - 227 % overfloats (e.g. its value exceeds 2") or not. In
other words, in this case e. — e, € {0, 1}. Thus, divide 2@ from both

IA
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side of the inequality, we have: |sg + sp, - 2607 % — 5. - 267 €a| <
8- |sq+sp -2 ¢a|.

Now s, - 2¢¢7 ¢ € {s., 2s.} and we can add certain constraints to
enforce it to take the correct value. Thus we only need to define
intermediate values b = sp, - 2¢7% and ask the prover to prove the
correctness of such exponentiation. In summary, we only require
one bit decomposition of e, — e, so as to apply our range proof as
in the case of fixed point addition.

Zero-Knowledge. Our protocol can achieve zero-knowledge (ZK)
as follows: we instantiate the underlying commit-and-prove proof
system with one that achieves ZK. Further, to hide v;’s and prove
that they are small, we use the following bit-decomposition method,
instead of sending v;’s in clear to the verifier. Specifically, to prove
v;.s are at most r-bits, we can we decompose v;’s to bits

-
vj=s- Zvj[k] -2k, vj[k] =0or1
k=0

and incorporate the above equation and the constraints v;[k] - (1 -
vj[k]) =0, s]z. = 1 into the R1CS. Since there is only a small number
of v’s, the bit-decomposition is dominated by the main body of
the protocol, and hence it doesn’t affect the efficiency. In this way,
ZK follows from the ZK of the underlying commit-and-prove proof
system and the hiding property of commitment scheme. For more
details, See Section 6.4.

Sub-linear Verification. Our protocol so far needs linear verifica-
tion time. The bottleneck is that the underlying “commit-and-prove”
verification needs to at least read the random linear coefficients
{ri}i in order to verify that {v;};’s are correctly computed. Since
for each gate we write some Equation (1), if we denote |C| as the
circuit size, then there are O(|C|) of r;’s, and hence the verification
time is linear.

To achieve sub-linear verification, we sample r = {r};c[,] ina
succinct way as follows. We first sample s = (s1, s, . . .,s\/ﬁ) and
t=(t1,..., tﬁ) from a small range, and then generater = s ® t.
Then we have the prover compute the random linear combination
w.r.t r in the same way as before, but use the underlying “commit-
and-prove” to further ensure that r = s ® t is computed correctly.
Now the verification of the underlying “commit-and-prove” only
needs to read s and t to verify the proof, and hence the additional
verification time becomes sub-linear.

To prove soundness of our sub-linear verification protocol, we
use a pigeonhole argument to first extract the values in the “fraction”
form. Then we set the modulo to be large enough as before. For
more details, see Section 6.3.

4 PRELIMINARIES

We defer definitions of commitment schemes, interactive proof
systems and R1CS to the full version.

Sum of Three Squares. Legendre’s three-square theorem states
that every natural number k that is not of the form k = 44(8b +
7), (a,b € N) can be represented as a sum of three integer squares
(k = x? +y% +2%). Therefore, for any k € N\ {0}, 4k — 3 can always
be written as a sum of three integer squares. Let n = log k be the
bit length of k.
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In [27], the authors give an efficient randomized algorithm for
identifying (x,y, z) such that 4k — 3 = x% + y? + 22, for any natural
number k. The expected running time of the algorithm is O(n?).
The high level idea is as follows: keep guessing an even value x (as
one of the squares) until p = 4k — 3 — x? is a prime congruent to
1 mod 4. If so, compute one square root of the form ¢? = —1 mod p
and then compute the ged y+zi = (a+i, p) over Gaussian integers.
It then follows that p = y? + 22 so that 4k — 3 = x? + y? + 22,

5 DEFINITIONS

5.1 Approximate Circuit Computation

Fixed and Floating Point Numbers. For a positive integer w, a
fixed point number of precision w is a number of the form s - 27V,
where the significand s € [-2¥~1,2%~1) is an integer represented
in w bits.

A floating point number of precision w is a pair of integers (s, e),
which represent a real number s - 26~%, where |s| € [2"7],2V) is
an integer represented in w + 1 bits consisting of 1 sign bit and w
bit fraction (called the significand) whose most significant bit is
always fixed to 1.

A floating point addition (resp. subtraction, multiplication) gate
takes as input two floating point numbers, and outputs a floating
point number. A floating point circuit is a circuit where each gate is
either a floating point addition, subtraction or multiplication gate.

Definition 5.1 (5-Approximate Correctness). Let f be the (precise)
addition (resp., subtraction, multiplication) function, and let (a, b)
be the input wires and ¢ be the output wire of a floating/fixed point
addition (resp., subtraction, multiplication) gate.

We say such a floating/fixed point addition (resp. subtraction,
multiplication) gate computation is §-approximately correct, if the
relative error is bounded by 4, i.e. |c — f(a,b)| < 8|f(a, b)|.

Definition 5.2 (Floating/Fixed §-Satisfiable). We say a floating/fixed
point circuit C is floating/fixed J-satisfiable, if there exists an as-
signment of wires with floating/fixed point numbers such that each
gate is §-approximately correct.

Definition 5.3 (Real §-Satisfiable). We say a floating point circuit
C is real d-satisfiable, if there exists an assignment of wires with real
numbers such that each gate is §-approximately correct. It is easy
to see that a floating J-satisfiable circuit C is also real §-satisfiable.

Definition 5.4 (Promise Language for §-circuit satisfiability). For
any § € (0, 1), we define the floating §-circuit satisfiability problem
as the following promise language (Lg, Ls):

- An (circuit) instance C € L if C is floating §-satisfiable. In
this case there exists witness W corresponding to the wire
assignments, where each coordinate of W is a floating point
number of w-precision.

- An (circuit) instance C ¢ Lg if C is not real §-satisfiable.

REMARK 1. The aforementioned definitions of floating point gates
and circuit, floating §-satisfiability etc. can also be extended to fixed
point number computations.

We remark that here we have a theoretical gap between the
completeness and soundness. That is, there could be a circuit that
is real J-satisfiable, but not floating §-satisfiable, since not every
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real number can be represented as floating point number. However,
we expect such gap to be narrow in practice. As we discussed in
Section 2.1, we expect the floating point program used in practice
is robust to any small perturbations bounded by the relative error
upper bound. Hence, if we round the real number to the nearest
floating point number, then the circuit is still satisfiable for those
floating point numbers.

5.2 Interactive Proofs for Floating Point
Computations

An interactive proofs for floating §-circuit satisfiability problem
(Ls, Ls) is a pair of algorithms (G, P, V), with the following syntax.

- G(1%) : The CRS generation algorithm takes as input the
security parameter A, and it outputs a crs.

- P(crs,C, W) : The prover is given the crs, a circuit C € L,
and a witness W for C, it outputs a proof .

- V(crs, C, i) : The verifier takes as input the crs, a circuit C,
and the proof 7. Then it decides to accept or reject.

Furthermore, we require the following properties.
- Completeness. For every circuit instance C € Ls and its
witness W, the honest prover’s proof 7 should always be
accepted, i.e.

Pr|crs « Q(l’l), T — P(lA,CI‘S, C, W) :(V(IA, crs,C, ) = 1] =1.

- Soundness. There exists some negligible function € such
that for every circuit instance C € Lg, and for all probabilistic
polynomial time malicious prover P*, its proof 7* is accepted
with probability at most e, i.e.

Pr|crs « Q(ll), 7* e P*(l’l, crs, C, W) :(V(lk,crs, Cr')=1|<e.

Succinctness. We say the protocol is succinct, if the size of the
proof x is bounded by IWlo(l), where |W]| is the bit-length of W.

Non-interactive Proofs. We say a proof system is non-interactive,
if it only has one round.

REMARK 2. We can transform any public-coin interactive protocols
to a non-interactive one using the Fiat-Shamir transformation [17].
The succinctness and the zero-knowledge properties are preserved.

6 COMMIT-AND-PROVE FOR FLOATING
POINT COMPUTATIONS

In this section, we build a commit-and-prove protocol for floating
point number computations. Our construction is generic from any
commit-and-prove for R1CS with argument of knowledge prop-
erty.Before going into the technical details, we firstly give a high
level overview of our ideas.

Recall that, for floating point computation, around each gate
we want to prove constraints of the form |c — f(a, b)| < §|f(a,b)|,
where a, b, ¢ are values on two inputs and one output wire, and
f(a,b) is the precise value of the gate output. For simplicity, let’s
consider f as a multiplication gate in this overview, as other gates
can be handled in a similar way. Recall that, a floating point number
is represented as a significand s and an exponent e (Section 5.1).
For multiplications, we need to prove that the exponent part c is
roughly the addition of the exponent part of a and b, which can be
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done easily. Then the only complication left is how to prove the sig-
nificand parts of ¢ is also approximately correct, which is essentially
proving the §-approximate correctness for fixed point computation.
For this reason, let’s only consider fixed point computation instead
of floating point computation in this section. We will extend the
same techniques to floating point numbers in (Section 6.5).

Since a, b, ¢ are fixed point numbers, they can be represented
asa =a -2Yb=1"b -2"Y,c = -2V, where a’,b’,c’ €
[-2%~1,2%~1) are w-bit integers. For any & € (0, 1), it suffices to
consider § = A1/Ag, (A1 < Az), where A1, Az € (0,2"] are both
positive integers. Then the constraint we want to prove becomes

|Ag - (2% —a’ - b)| < |Ay-a’ - b

Now we add two intermediate variables x := Ay - (2¥¢’ —a’ - b’)
and y = Ay-a’-b’. Notice that the constraint |x| < |y| is equivalent
to x% < y2. It thus suffices to prove that z := (x + y)(y — x) > 0.

Next, we present our construction.

6.1 Construction

Before we build the commit-and-prove for floating point computa-
tions, we list the necessary ingredients as follows.

Ingredients.

- A commitment scheme (KGen, Com) with hiding and bind-
ing property.

- A commit-and-prove protocol (KGen, Com, P, V) for the
commitment scheme (KGen, Com) and R1CS over a finite
field F,, with argument of knowledge property.

- A compiler R1CSCompiler that takes as input a circuit C for
floating/fixed point numbers, and outputs a R1CS instance.

Construction. The construction of commit-and-prove for float-
ing/fixed point computation is depicted in Figure 1.

To reduce the concrete size of p, the actual random linear combi-
nation in our protocol is in fact more fine-grained than the overview
described in Section 3. In particular, in the case of fixed point com-
putation, instead of doing a single random linear combination over
all wire values, we partition all the wires into two parts: the wires
with < 3w-bits, and the wires with > 3w-bits but < 6w-bits. Then
we use two random linear combinations to test them separately.
Hence, we have the R1CSCompiler output two disjoint sets Sy, Sy
to contain the wire values for these two kinds of wires. The case of
floating point computation is handled in a similar way.

R1CSCompiler for Fixed Point Circuits. We first construct the
R1CSCompiler for fixed point computation as follows. Recall that
a fixed point number of precision w is a number of the form s - 27",
where s € [-2"71,2%"1) is an integer represented in w bits.

— The compiler takes as input a fixed point circuit C and 8. It
parses § = A1/Az, where Ay, Az are both integers of w-bit,
and initializes two empty sets S; = 0, So = 0, and an empty
R1CS instance X.

- For each gate g; in C, let a; - 27, b; - 27" be the input wires,
and ¢; - 27" be the output wire.

- If g; is a multiplication gate, compute x; = Ay (2% c¢;—a;-b;),
y; = A1 - a; - b; as follows. Let g; == a; - b;, x; =2"Ay-
ci—AN2-gi, yi=ANAr-gi

1210

Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang

Commit-and-prove for Floating/Fixed Point Computation

(1) The prover and the verifier run R1CSCompiler to obtain a
R1CS instance,

(chs, {Si, wi}ie[[]) — R1CSCompiler(1A, C,9),

where XRrics is a R1CS instance with n variables. The prover
can also derive the corresponding R1CS witness Wgqcs from
a witness W of C. The prover generates ¢ := Com(Wgics; u)
with some randomness u, and sends ¢ to the verifier.

(2) The verifier sends a series of random coefficients r « [0, 2¢)"
to the prover.

(3) The prover
<WR1CS|S,-) r|5i> € Fp (rls; € IFZ agrees with r for all
entries in S;, and is 0 otherwise).

(4) The prover and the verifier augment the R1CS instance Xr1cs
by appending the constraint (WR1C5|5i, r|5i> v, for all
i € [£]. They denote X/,. .. as the augmented R1CS instance.

R1CS
Then they execute the commit-and-prove protocol.

P (1%, (K 0)) © VO Ty

The verifier checks that v; € [—n - 2Yit* n . 2VitX) for each
i € [£]. It accepts if both the range check passes and V
accepts. Otherwise the verifier rejects.

sends back {vi}ie[s], Where =

4]

Figure 1: Description of commit-and-prove for floating/fixed
point computation.

Otherwise if g; is an addition/subtraction gate, compute
xi = Ag(a; = b;j —c),yi = A1(a; + b;) as follows. Let
gi=aixbi, xi=A7Ny-Gi—-Ny-ci, yi=D»7"g.

- Compute z; = (x; +y;) - (yi — x;) as follows. Let z;" :
zZ; =Y — X + z; .

zZj = Zi .
- Add new variables y; 1, yi 2, ¥i 3, and verify 4z; — 3 = yizl +

Xi i,

yiz + y£3 as follows. Let u; . = yl_z’k,\v’k € [3],sum; =
uj1 +uj2,4zi — 3 = sum; + u;3.

— Add all above constraints to the R1CS instance X, and
update S; and Sy as follows,

o = + -
S1 = 81 U{ai, bi, ci, §i, Xi, Yi, 27, 21 »

Sy =S, U {z;, {ui,k}ke[g,],sumi}.

ik kers1h

- Finally, output (X, {(S1, w1 = 3w + 2), (S2, wg = 6w +4)}).

6.2 Security Proofs

We defer the security proof to the full version.

6.3 Achieving Sublinear Verification

We defer how to achieve sublinear verification to the full version.

6.4 Achieving Zero-knowledge

Our protocol can be easily modified to achieve zero knowledge
property. We refer the reader to Section 3 for a high-level overview.
For this part, we are going to assume that the underlying com-
mitment scheme in the commit-and-prove system to be additively



Succinct Zero Knowledge for Floating Point Computations

homomorphic: Com(x;r1) + Com(y;r2) = Com(x +y,r1 +7r2) (see
the full version for its definition.) This is in fact already the case
for many existing commit-and-prove systems. We achieve zero
knowledge via the following simple modifications:

(1) Instep 1 of Figure 1, instead of committing to just Wrcs, the
prover commits to the concatenation of Wrycs||0™ as ¢ =
Com(WRrics||0™;u), wherem = 3;c1) (log(n) - (w; +x) +1)
is the total bit length of all v;¢[;)’s. It then sends c to the
verifier.

(2) In step 3 of Figure 1, the prover still defines {v;};¢[] ac-
cordingly, however not sending them to the verifier. It in-
stead computes the bit decomposition of for each v; as v; =
sny:g(En)'(WﬁK) 0;i[j]-2%, where v; [ j] is the j-th bit of v; and
si € {—1,+1} is the sign of v;. It then sets b; = s;||{v;[j]},
and then sends the commitment
¢’ := Com(0/Wricsl| {bi}iepr) su) to the verifier.

(3) (Adding Range Constraints) In step 4, the prover and verifier
add the constraints that v; € [—n - 2Wit% n . 2WitK) for each
i € [£] to the R1CS instance. These range constraints can be

enforced via the same bit-decomposition method as follows:
log(n)-(wi+k) .
k=0 4] [.] ] :

— Foreachi € [£],add constrainto; = s;-,

2k,

— Add constraints that v;[j] - (1 —v;[j]) =0, sl.z =1.

(4) (Format Checking) In step 4, the prover and verifier define

another R1CS instance X},~¢ checking that the witness

committed in ¢’ is well-formed: it is correctly padded with

the zero vector 0/"rics| This check ensures that the witness
WRics committed in ¢ remains unchanged.

(5) In step 4, the prover and verifier initiate the underlying
commit-and-prove protocol with zero-knowledge property,
and then proceed checking both R1CS instances Xp - and
X*R1CS’ with respect to the commitments ¢ + ¢’ and ¢’.

We defer the proof of zero knowledge to the full version. At a high
level the zero-knowledge property can be proven as follows. First,
we use the zero-knowledge simulator of the underlying commit-
and-prove to simulate the transcript of commit-and-prove in step 4.
Then we use the hiding property of the underlying commitment
scheme to argue that the commitments ¢, ¢’ sent in step 1 and 3 can
be simulated.

To argue soundness, notice that due to the range constraints,
each v; must be the correct range. Furthermore, the witness Wr1cs
committed in the first commitment ¢ cannot be modified by the
prover since we also enforce that the value committed in ¢’ must
start with all 0’s. We defer the soundness proof to the full version.

Finally, via the Fiat-Shamir transformation, we obtain a ZK-
SNARG for floating/fixed point computations.

6.5 Extension to Floating Point Computation

Recall that a floating point number of precision w is a pair of integers
(s, €), which represent a real number s-26~%, where |s| € [2%71,2")
is an integer represented in w + 1 bits with 1 sign bit and w bit
fraction (called the significand) where the fraction is always normal-
ized such that the most significant bit is fixed to 1. We first present
a high-level overview of our R1CS compiler which compiles any
floating point computation into a R1CS instance. Starting from this

1211

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

point, we make two inherent relaxations for the ease of our com-
piler construction. Firstly, we fix § = 27" for addition/subtraction
gate and § = 272" for multiplication gate. Secondly, we relax all the
constraints (as defined in 5.1) from strict inequalities to inequalities.

Adding/Subtracting Two Floating Point Numbers. Suppose
we want to add/subtract two floating point numbers: sg - 264"
and s, - 267", Let the outcome of such addition/subtraction be
sc - 27" Following §-approximate correctness, we want to ensure
that:

isa 2% gy, - 20 — g, . 2%

<5 sq- 2 +sp -2,

where we have multiplied both sides by 2% to simplify the inequality.
We also incorporate subtraction into addition by allowing each
summand to take negative values.

A Naive Approach. Checking floating point numbers addition is
particularly challenging due to the fact that we also need to take
care of their exponents. To see why, consider a naive (however very
inefficient) way to convert this inequality into R1CS constraints:
Let’s first define intermediate variables and constraints that mimic
all exponentiations: (e.g. we can define A, := 2% and so on). Once
we have these intermediate exponentiations, one can then check:

[sq-Aa+sp-Ap—Sc-Ae|l <O Isq-Aa+sp-Apl-

If we take the upper bound of the size of each summand, we can
essentially view each summand as a (very large) fixed-point number.
In this way we can apply our previous range proof technique to
this inequality just like the case of fixed point addition.

This naive approach mainly suffers from two sources of ineffi-
ciency: Firstly, the best known method to check exponentiation
requires bit decomposing the exponent, and then use repeated
squaring algorithm to break down the exponentiation procedure
into one multiplication and addition at each step, thus turning them
into constraints compatible with R1CS. Clearly, we need to bit de-
compose all of ey, €, and e, turning them into roughly 3 X (2k + 1)
constraints with 3 X (2k) new variables. We reduce the number
of constraints and variables by roughly a factor of 3, via only one
bit decomposition and some extra constraints. For large value of
k (for example, k = 11 in a 64-bit floating point number) this will
greatly increase the prover time. Secondly, for large k, the value
Ag = 2% ~ 22" will typically become very large. This will cause
the upper bound on each summand to significantly grow, which
pushes the choice of the modulus p to become large (for example,
in a 32-bit floating point number, 2k < 128 and we need to choose p
to be around 670 bits). In our approach, we reduce this upper bound
so that it no longer depends on k, but on log(w) instead. This will
allow us to choose a smaller p to again reduce prover computation
(in the last example, log(w) =~ 5 so we can choose p to be around
270 bits).

Converting Addition into Constraints: Our Approach. We

begin explaining our idea with a simple yet useful observation:
Cram 1. For|sql, |spl, Isc] € [2“’_1,2“’) and§=27",

if |sq -2 +5p - 260 —s¢ - 29| < §-|sq - 2% +sp, - 2€0|, then min(eq—

epsep — €c,eq — ec) € {—1,0,1}.

Proor. First suppose that among sg, s and s, two of them have
the same signs and the other has the opposite sign, we claim that this
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is impossible: by renaming the variables, we can always assume that
sq and s have the same signs. Furthermore, since we can always
negate the signs of all variables within an absolute clause, let’s
always assume that s4, s, > 0, such that —s. > 0. Therefore,

|sq - 264 +5p, - 20 — 5. - 2%

=sq - 2% + g5 - 2%0 — 5 - 2%
>5q - 2% 55, - 2%,

Since §-sq4 < sq and §-sp < sp, Sq-26a+sp,-20 > §-sy - 2%a + 53, - 260,
which is a contradiction. Now suppose that all of s4, s, and s,
have the same (positive) signs, and furthermore assume s, - 2¢¢ >
sp - 2°0 by renaming the variables if necessary, then we have:
[sq - 26 +sp, - 260 — 50 - 28| < § - (sq - 2% + 55 - 2°),

(1-8)sq-2%+(1-08)sp 2% < 5c-2% < (1+8)s4-2%+(1+65)sp- 2.

Since § = 27%, and s, = 2¥71, (1 = 8)sq = sq ~ (1 + 8)s, and
(1-9)sp = sp = (1+5)sp, so that we have: s, - 2%a +5p, - 20 ~ 5. - 2%,
Since s4 - 2@ > sp, - 20, then: s - 26¢ x 54 - 2% 455, - 260 < 5, - 26at]
Given that both sg, s are normalized, by comparing the terms, we
get e. < eg+1, hence min(eq —ep, ep —€c,eq —ec) € {—1,0,1}. O

To express each floating point number addition into a number
of R1CS constraints, let’s utilize the above observation by dividing
2% from both sides of the inequality and also defining 0, = e, — e,
and 0, := ep, — e.. Notice that we have three possible scenarios:

(1) Casel: 0, € {-1,0,1} & e —e. € {-1,0,1}.

(2) CaseIl: 0, € {-1,0,1} © ¢, —e. € {—1,0,1}.

(3) CaseIlll: 6, — 0, € {-1,0,1} @ e5 — ¢}, € {-1,0,1}.

Meanwhile, the inequality translates into: |s, - 202 + s, - 2% — 5 | <

5~‘sa-29a +sb-29” .

Our goal is to use only one bit decomposition to enforce two
constraints: (1 = 2% and A, = 29%). In order to achieve this goal,
observe that in each of the three possible scenarios, we only need to
enforce one such constraint (hence one bit decomposition): Ay = 29,
where 0 is either 6, or 6. The reason is as follows:

(1) Case I: Since 0, is small, we can rewrite its constraint using

Lagrange interpolation as: Ag, = w +04(0a+1) —
(0q +1)(65 — 1). Now set 6 = 0y, and add the additional
constraint that 1y = 2.

(2) Case II: This case resembles a similar treatment as Case I,

where 0 = 6,.

(3) CasellL: Let’s set § = 0, and add the constraint that 1y = 2.

Now define A, ;, = 04 — 0p, which is again small, meaning
that we can again use Lagrange interpolation to derive the
constraint for 0, as:

1 = Aa,b (Aa,b - 1)
4

0, = Ag+Dqp(Agp+1)-Ag—(Agp+1)(Agp—1)-Ap.

In order to determine whether 8 = 0, or 6 = 6}, we use three
relaxed indicator variables and enforce each of their values to take
either 0 or 1:

(1) 1p,(1-1g,) =0,and g, =1 = Case I happens (details later);

(2) 15,(1-14,) =0,and 19, =1 = Case Il happens;
(3) 1p,,(1-1p,,)=0,and 15, =1 = Case Il happens.
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Notice that we do not require the reverse of these statements to be
true. Now we add two more constraints:

(1) Ilga + ﬂgb + ILAa,h =1

(2) 0= ]lga . 91, + ]191; ~ 04+ ]1Aa,b . 9[,.
These constraints will enforce 6 to take the value of either 6, or 0,
depending on the desired scenario.

Turn Inequality into Equality for Large 0. A subtle issue in the
above construction is that if the absolute value of  becomes large,
the modulus p needs also to grow large for soundness to hold. To
understand this issue, let’s take case I as an example: we want to
use range proof to show the following inequality:

Sé-sa-2€”+sb~29.

sa-20“+sb~29—sc

Notice that both 8, and 6 may be negative (thus leaving fractional
numbers on both sides), and we are checking this inequality over
mod p. To ensure the inequality also holds over the reals, we return
to our previous techniques: First let’s multiplying both sides by
2011 to ensure that all of the exponents are positive (thus removing
fractional numbers):

|sa 0¥l g g0+101+1 g o011

<5 |sq- 2(9a+|9|+1 +sp - 29+|9|+1

Now if we choose the bit length of modulus p to be larger than
2log(n)+4w+3k+12+22-|0|, the above inequality will hold over the
reals. Clearly, the bit length of p needs to grow with 22101  gk+1,

The increased group size will induce a significant cost on prover
computation. Fortunately, we observe that when |0| exceeds w + 2,
we can get rid of the dependence on |6| by substituting all inequali-
ties with different equalities for each of the aforementioned three
scenarios:

(1) Case I: There are two possibilities:

(a) @ > w+2: Since sq, sp, S¢ are normalized and |6, < 1, we

< 22 . |sp|. Therefore,

can bound [sg - 2% — s,

’su~290+sb-29—sC sa-29“+sb-20.

> sy 2% > 8-

Thus we always reject.

(b) 0 < —(w +2) : In this case |sb . 29‘ is relatively small com-

pared to |sg - 20a 4 Sp* 2€|. Our intuition is that one can
simply drop the summand ‘sb . 29‘ while still obeying the
inequality. More formally, since ‘sb . 29‘ < |sb . Z’W’z| <

lsq - 27v 1 <5 |sa - 20a

<5 ‘sa . 20a +5sp - 2‘9‘,we can

instead enforce the equality constraint that sq - 2% = s.
This is done by checking s, = s; and e, = ec.
(2) Case II: This case resembles the analysis of Case L
(3) Case III: There are two possibilities:
(a) sq-2% +5sp- 29 = 0 : In this case, we simply check if s = 0
(In our construction we ignore this case for simplicity).
(b) Otherwise, first assume 6 > w + 2, notice that

}sa 20a 4 29‘ > 29 s, +54/2| > 2071, Furthermore,

< 29 |sp, + 2s4| < 209%2. As a result, we

Sa 20a +sp - 29‘
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deduce that:

sa~29‘1+sb-29—sC

=

sq - 20 +5sp - 26‘ — |scl

>2071 _ |so| > 2071 - 2™

< 2€+2—w.

on the other hand, § - |sq - 2% + sp - 20

For w > 2 and > w + 2, one can observe that 20¥2~% <

20-1 _ 2% thus the desired inequality will not hold. The
other scenario where 8 < —(w + 2) is very similar. There-
fore we should always reject when |0] > w + 2.

To conclude, we can choose the bit length of p to grow with 22 -
max(0, w + 2) instead of 6. In practice we will simplify our con-
straints by picking the cutoff to be w + 8 = 2% for 32 bit floating
point numbers, or w + 9 = 2° for 64 bit floating point numbers.

Multiplying Two Floating Point Numbers. Suppose we want
to multiply two floating point numbers: s; - 2" and sp, - 262",
Let the outcome of such multiplication be s - 2¢~". Following
d-approximate correctness 5.1, we want to ensure that:

[sq - 2% - sp - 2 —sc - 2% < 8- |sq - 2% - 5, - 2.

Our methodology for multiplications will align with our previous
route for addition. We begin with yet another simpler observation
about the relationship between these exponents (eq, ep, ec).

CraM 2. For|sql, Ispl, Isc] € [2“’_1, 2¥) and§ =27V,
if |sq-2%a -sp 2% —sc-2%| < & |sq 2% -5y - 29|, then e —
(eq+ep) € {w—1,w}.

Proor. First, let’s rewrite the inequality as:

Sq " Sp—Sc - 23”_(‘3“””)‘ < &-|sq - spl . Since |sql, sp| € [2771,2%),
we have 2272 < |s;-sp| < 22Y. WLOG assume szs, = 0 so
that s > 0 (the other case is similar), then: sgs,(1 — 8) < s -
2¢e=(eater) < 5.6 (1+6).

Since § = 272V, sasp(1 = 8) = sasp ~ sasp(1 + 8), thus we
can derive the following lower and upper bound: 22¥~2 < s -
2¢c—(eater) < 92w Gince Sc € [Zw_l, 2%), by comparing the terms,
we deduce that ec — (eq + €p) € {w — 1, w}. O

Converting Multiplication into Constraints. Let’s define 0 =
ec — (eq + ep). Applying the previous claim, if 0 ¢ {w — 1, w}, we
simply reject (unless s, - s = 0, which we ignore for simplicity). If
0 € {w — 1, w}, we can compute the exponentiation 1y := 2 using
Lagrange Interpolation:
do=(0—-w+1)-2%—(0—w)-2v7L
Then we can apply range proof as before. In the next part, we

present our compiler which converts floating point number com-
putation into R1CS constraints.

R1CSCompiler for Floating Point Computation.

— The compiler takes as input a floating point circuit C and
8 € {27v, 272"} and initializes an empty R1CS instance X.
It also initializes empty sets S1 and S.
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- For each gate g in C, let s, - 2647, 5p, - 266~V be the input
wire values, s - 27" be the output wire value. Let k be the
bit length of exponents and let (0[1], ..., [ k]) be the natural
bit decomposition of 6 such that 6 = Z]iczl 28 91i].

- For every addition/subtraction gate g, we introduce the fol-
lowing new variables and constraints:

Constraints for Indicators

Notes

0 = eq —e; 0, = e —
ec; Ngp =ea—ep;

1y, (1-1p,) =0;
1g,(1-14,) =0;
]lAa,b(l_:H'Aa,b):()'

Create indicators for
three different cases.

19,, : (ea +1)0q(0q - 1) =0;
Lg, - (Op + 1)0p(0p — 1) = 0;
]lAa,b’(Aa,b"'l)Aa,b(Aa,b_l) =
0.

Defining each indicator.

]lga + ]lgb + ]lAa,b =1;
0= ﬂea-9b+19b~9a+ﬂAah'9b.

Decide the value 0
to be bit decomposed.

Constraints for Bit Decom-
positions

Notes

Vie [k]: 0[i] - (1-0[i]) = 0;

(1 —sgnb) - (1+sgnb) =0.

Create k bits and a sign
variable.

0 =sgnd -y~ 2. 9[i];
Tgoo = sgn29+1;

— 17k -
Lig|<wez = Hi:log(w+2)+1 (1

o[i).

Bit decomposition of 6.
Defining indicator for
0> 0.

Defining indicator for
0] <w+2.

Constraints for Exponentia-
tions

Notes

Ae,l = l;
Vi € [log(w +2)] :
Agiv1 = (1-0[i]) - Ag;

+0[i] - Ag; - 2%
Ag = Ae,log(w+2) .

Truncate 6 to

log(w + 2) bits and then
define g = 2¢ using
repeated squares.

Vo € {a,b}: g, = w_'_

0o (O + 1)(— (9a)+ 1)(0g — 1);
* Nap(Dgp—1

K, = = Ao

+Aa,b(Aa’b + 1) . /19 — (Aa’b +

1)(Aa,b — 1) . Ae.

Ao, = 20« whenever
0y € {-1,0,1}.
/12 = 2% whenever

Agp € {-1,0,1}.
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Constraints for
Proofs with Small 0

Range

Notes

Xy = 5T (Sa~).9a +sp - Ag —
Sc)s Y1 =3Sa-Ag, +5p - Ao

Xi; = 571 (sa - Ag +sp -Agb -
Sc)s YII = Sa Ao +Sp - Agy;
X111 = 57t. (sa ~/1§a +5sp - Ag —
Se)s Yrr =Sa- Ay +5p - Ao
Vji e {LILII}, ©; = (xj +
y)(yj = x));

We first assign to
variable ©; the
inequality to be
checked (e.g.

(xj +yj)(yj = x;) > 0)
for each of three cases.

z=1g|<wsz (Lg, - Or+ 1y, -
O +1a,, - Omr);

4z—3=yf+y§+y§,

Using the indicators,
the variable z will cor-
respond to the desired
case.

Apply range proof
(we omit intermediate
steps).

Constraints for Large 0

Notes

(1-T1g|<ws2) " Lo>0-Lg, = 0;

(1-1 9| <cws2) - (1=1g50) - 1g, -
((sa —sc)* +6%) =0;

In case I, reject if 0 >
w4+ 2.

Otherwise, accept iff
Sa =S¢ A eg = ec.

(1-T1g1<ws2) " Lo>0-1g, = 0;

(1-T g <ws2) (1= g50)-1g, -
((sp —50)* +62) = 0;

Case Il is similar to Case
L

(1= 1g1<ws2) - La,, = 0.

In case III, always re-
ject.

- Add all above constraints to the R1CS instance X and update
S1and Sz asfollows, S1 = S1U{{x}, yj}jeqmm)s {Vitke[s)h

So =S U{z {0} jeqmmy}-

— For every multiplication gate g, we introduce the following

new variables and constraints:

Constraints for Exponentia-
tions

Notes

0=ec—(eq+ep);
@-w)y(@—-w+1)=0.

Rejectif 0 ¢ {w—1,w}.

Ao=(O-w+1)-2¥—(0—w)-
ow-l

Otherwise compute 20

Constraints for Range || Notes

Proofs

x=6"T-(sa-sp—sc-Ag), y=

Sa * Sp; Apply range proof.

z= (x+y)(y = x);
— 24 2,,2
dz-3=yi+y;+tVs.

- Add all above constraints to the R1CS instance X and update
S1 and Sz as follows, S1 = S1 U {x, y, {yktkers1}S2 =

Sy U {z}.

- Finally, output (X, {(S1, w1 = 3w +6), (S2, w2 == 6w+12)}).

6.6 Security Proofs

We defer the security proofs to the full version.
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6.7 Optimization and Performance

R1CSCompiler for Small p. In Section 6.1, we constructed a
R1CSCompiler for log, p > 6w + 3k + 2log, n + O(1). In prac-
tice, the typical choices of the underlying groups are Curve25519
or BN-256 which leads to log, p ~ 256, and BN-384 which leads
to log, p ~ 384. If one wants to choose 256-bits groups, and use
w = 24 for the precision of a IEEE 32-bit floating point number, then
k becomes as small as 20 ~ 30. Hence, we provide a R1CSCompiler
that reduces the size of p to 3w + 3k + 2log, n+ O(1), at the cost of
producing a slightly larger R1CS instance.

Our key observation is that, the 6w term sources from the value
zi = (xi +yi)(y; — xi), where x;j,y;’s are both 3w-bits integers.
Therefore, the value z; has 6w-bits. Hence, to use a smaller p, we
avoid computing z; = (x; + y;)(y; — x;). Instead, to prove (x; +
yi)(yi — xi) > 0, we firstly compute a helper variable s; € {—1,+1}
as the sign of x;+y;. Then we prove that s;- (y; —x;) > 0. Specifically,
we modify the RICSCompiler in Section 6.1 as follows.

— Compute s; € {—1,+1} as the sign of x; + y;. To ensure s; is
computed correctly, we add a constraint s; - (x; +y;) > 0 to
the R1CS instance X, and convert it to equalities using sum
of three squares, and then add a constraint sl.z =1 to ensure
si€{-1,+1}.

- Add a constraint s; - (y; —x;) > 0 to the R1CS instance X by
sum of three squares.

In terms of our instantiation, we will pick the following parameters
for p:

- “Small groups” refers to the field size p with log, p > 3w +
3k + 2log, n+ O(1). We choose p ~ 2256 for small group.

- “Large groups” refers to the field size p with log, p > 6w +
3k + 2log, n+ O(1). We choose p ~ 238 for large group.

Soundness Amplification. We set the parameter x ~ 40 for small
p ~ 2%5¢_ To achieve > 80-bits security, we repeat the random linear
combination for 2 times.

Optimized Bit-Decomposition Method. We compare our method
with the following method of verifying relative error via bit decom-
position: first convert the verification on the upper bound of the
relative error to the verification of some value z > 0 in the same
way as before, then we bit-decompose z as z = Ziti%gzj 2iz;, where
z; is the i-th bit of z. Then we use the constraint z; - (1 —z;) =0
to encode z; € {0,1}. In this way, we convert z > 0 to a R1CS

instance.

Performance. We compare our work with other different methods
in terms of the following metrics:

— Size of R1CS per constraint: We count the size of R1CS in-
stance per constraint as the additional average number of
non-zero entries in the matrix A, B and C when, adding such
constraint to the R1CS (See the full version for the definition
of R1CS. We estimate Prover Efficiency based on the total
number of non-zero entries, times the number of group oper-
ations spent on each non-zero entry. In practice, we find that
“Large groups” operations are about 2X slower than “Small
groups” (See our choice of groups above).
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- Overall proof size: This is the size of the prover’s message
size. For any scheme which internally utilizes “commit-and-
prove” proof system, we use |II| to denote the proof size,
and |c| to denote the commitment size of the underlying
“commit-and-prove” proof system, thus |II| + |¢| being the
overall proof size.

We choose the precision w = 24 or 53, which corresponds to the
precision of an IEEE 32-bit floating point number or 64-bit floating
point number, respectively.

Concrete Efficiency. We present concrete efficiency of our zero-
knowledge commit-and-prove protocol for floating point number
addition/multiplication (without sublinear verification). For com-
parison, we consider two other approaches:

— The “optimized bit decomposition” method used by [9] for
range proofs. We denote this method by “Bit.” in our tables.

— The method of converting a floating point addition/multiplication

to a binary circuit. We denote this method by “IEEE-754” in
our tables. For 32-bit floating numbers we list the circuit size
in the source code of [35]. For 64-bit floating numbers we
list the circuit size achieved by [2].

We first compare the size of R1CS per constraint of our protocol
using “large groups”, with other approaches using “small groups”.
The concrete numbers are presented in table 2.

For 32-bit floating point computation with respect to an arith-
metic circuit with even number of addition and multiplication gates,
the size of R1CS per gate of our protocol is 91X less than that of
the method following IEEE standard exactly [35] and is 4% less
than that of the optimized bit-decomposition method. For 64-bit
floating point computation, this size of our protocol is 432X less
than that of strictly following IEEE standard and 7x less than that
of the optimized bit-decomposition method.

In terms of prover efficiency, taking account for the difference
in group sizes, for 32-bit floating point computation our protocol is
45x faster than the method following IEEE standard exactly and is
2x faster than the optimized bit-decomposition method. For 64-bit
floating point computation, our protocol is 216x faster than IEEE
standard and 3.5x faster than the optimized bit-decomposition
method.

The overall proof size is approximately 2x that of the other two
methods since in our zero-knowledge protocol, we send two com-
mitments (¢, ¢’) and proofs (II, I1’). We conservatively estimate
the proof I’ having same size as II. In reality, the instance R1CS’
contains only a small number of non-zero entries, hence I’ should
have a smaller size.

This work Bit. IEEE-754

[R1CS| per (+) 89 296 2456

32-bit [ [R1CS] per (x) 35 207 8854
Overall proof size || 2(|II| + [c]) | |TI| +|e| | ||+ |c]|

[R1CS| per (+) 115 528 15637

64-bit [ [R1CS] per (x) 24 439 44899
Overall proof size || 2(|TI| + [c]) | |TI| +|e| | ||+ |c]|

Table 2: Concrete performance for succinct zero-knowledge
of floating point number addition/multiplication with linear-
time verification in the large groups (log, p = 384).
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We then compare the performance of our protocol for 32-bit
floating point computations, using “small groups”, with other ap-
proaches using “small groups”. The concrete numbers are presented
in table 3.

For 32-bit floating point computations, the size of R1CS per gate
of our protocol is 85X less than the method following the IEEE stan-
dard exactly [35] and 3.8X less than the optimized bit-decomposition
method above. Since all these approaches operate on the same
group, these numbers also translate to prover efficiency.

This work Bit. IEEE-754

[R1CS| per (+) 108 296 2456

32-bit [ [R1CS] per (x) 25 207 3854
Overall proof size || 2(|II| + |c|) | |II| +|c| | |II| + |c|

Table 3: Concrete performance for succinct zero-knowledge
of floating point number addition/multiplication with linear-
time verification in the small groups (log, p = 256).

Additionally we compare our succinct argument of floating point
number computation with sub-linear verification (without zero-
knowledge) with the optimized bit-decomposition method. In this
case the prover efficiency of our work only increases 53% for 32-bit
computation and 28% for 64-bit computation.

Instantiations We defer instantiation of our protocol to the full
version.

7 CONCLUSION

In this work, we study the design of succinct ZK proof systems for
floating point computations. We provide two contributions: a new
relative error model for verifying floating point computations, and
an efficient succinct ZK proof system with sublinear verification.
Our work motivates several interesting directions for future
work. First, reducing the verification complexity to poly-logarithmic
would be very useful. Another interesting direction is modeling and
constructing efficient succinct proof systems for applications where
the correct rounding is crucial, such as finance and accounting.
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