
Construction and Building Materials 324 (2022) 126717

Available online 4 February 2022
0950-0618/© 2022 Elsevier Ltd. All rights reserved.

Deep learning based automated segmentation of air-void system in 
hardened concrete surface using three dimensional reconstructed images 

Jueqiang Tao a, Haitao Gong a, Feng Wang a,*, Xiaohua Luo a, Xin Qiu b, Jinli Liu c 

a Ingram School of Engineering, Texas State University, San Marcos, USA 
b Department of Road and Traffic Engineering, Zhejiang Normal University, Jinhua, China 
c Department of Geography and Environmental Studies, Texas State University, San Marcos, USA   

A R T I C L E  I N F O   

Keywords: 
3D reconstruction 
DCNN 
Semantic segmentation 
Air voids 
Hardened concrete 

A B S T R A C T   

The automated air-void detection methods specified in the ASTM C457 require the aid of contrast enhancement 
which is time consuming and labor intensive. This study investigated the utilization of three-dimensional (3D) 
reconstruction and Deep Convolution Neural Network (DCNN) methods to detect the air voids in hardened 
concrete surfaces without the use of contrast enhancement. The experimental results showed that the DCNN 
could accurately distinguish air voids from hardened concrete images with the detection accuracy of over 0.9 in 
only less than a minute. The accuracy rates for air content, specific surface, and spacing factor were 0.92, 0.91, 
and 0.89, respectively.   

1. Introduction 

Air voids are small air bubbles that are embedded in the hardened 
concrete paste. The existence of a well-distributed air-void system in a 
hardened concrete pavement is critical for maintaining the freeze- 
thawing performance of the concrete infrastructure. Air-void petro
graphic analysis provides evidence on whether a concrete infrastructure 
can resist freeze–thaw damages in cold regions. Among the air-void 
analysis procedures, the detection of air voids in the hardened con
crete surface is one of the most important requirements. Well-trained 
petrographic raters are required for conducting the petrographic anal
ysis, while the analysis results are subjective and could lead to biased 
concrete performance estimations [1]. In addition, more than 2,000 air- 
void observations are required for each concrete sample, which makes 
the air-void analysis a time-consuming and labor-intensive process [1]. 

Numerous automating efforts have been conducted to reduce human 
labor by adopting contrast-enhancement methods and computer image 
analysis techniques. The conventional contrast-enhancement method 
applies black ink and white powders to make the concrete surface black 
and air voids white. The RapidAir 457 procedure proposed by Pade et al. 
was the most widely used contrast-enhancement based automated sys
tem [2]. The prepared concrete surface needs to be carefully examined 
by a trained petrographer using a stereomicroscope to evaluate: 1) if the 
surface enhancement is acceptable and 2) more importantly to blacken 

and cover any pores and cracks present in coarse and fine aggregates 
with a very thin tip black sharpie. The inappropriate pigments or powder 
sizes adopted for contrast enhancement can lead to a biased result [3]. 
Some dark and thick pigments can fill up tiny air voids and make the air 
voids inaccessible to the white powders [4]. The grain size of powders is 
decisive for the minimum air-void size that can be observed. Fine 
powder particles may get stuck in tiny defects on the concrete surface 
and are hard to be wiped away, which lead to an overestimation of the 
air-void content. Whereas, coarse powders can create a ‘wall effect’ 
around the perimeter of small air voids and cause an underestimation of 
the air-void content [3]. X-ray Computed Tomography (CT) is a typical 
non-destructive method that has been widely adopted for air-void 
analysis [5]. However, the high expense of using X-ray CT equipment 
makes it unlikely for practical use. 

The air voids in a hardened concrete surface have similar greyscale 
values as the paste in the concrete surface. However, unlike the solid 
phase which provides only color information, the air voids are hollows 
in the hardened concrete surface. The three-dimensional (3D) informa
tion (e.g. depth and gradient) of air voids is valuable for air voids 
detection. Consequently, a new approach to automated air-void seg
mentation that is free of contrast enhancement is using 3D reconstruc
tion techniques. Wolter et al. [4] proposed an air-void segmentation 
method without contrast enhancement by introducing the surface pro
file information. The photogrammetry method was adopted for 
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estimating the depth of each pixel in the concrete images. However, the 
proposed method was not accurate enough. Tao et al. [6] captured the 
3D concrete surface information using the photometric stereo method. 
The 3D surface captured valuable information for air-void segmentation. 
The 3D reconstruction techniques provided an inexpensive solution to 
automated air-void segmentation without using contrast enhancement. 
However, reflective concrete surface and transparent aggregates still 
cause inaccuracies to 3D reconstruction, and impact the segmentation 
results [6]. 

As a subarea in artificial intelligence (AI), deep learning (DL) has 
achieved great success in semantic segmentation. During the semantic 
segmentation process, a classification label is predicted on each pixel, 
which may greatly fulfill the objectives of air-void segmentation. The 
deep convolutional neural networks (DCNN), which is an important 
branch in DL, shows good potential in detecting target objects in noisy 
images at pixel resolution. Another advantage of DCNN is the end-to-end 
segmentation manner. Significant fewer human interventions are 
required to be involved in the segmentation work. Song et al. [7] made 
an innovative attempt at using DCNN method to segment the phases in 
hardened concrete surfaces. The proposed air-void segmentation 
method outperformed the contrast-enhancement method and achieved 
much higher accuracy in the boundary area between each phase. 
However, the air voids still need to be highlighted using orange chalk 
powders, which made the method not fully automatic. 

The objective of this paper is to propose an end-to-end automated 
segmentation method that could detect air voids in concrete surfaces 
without contrast enhancement. In the study, an air-void image dataset 
including a set of surface normal images and air-void annotations was 
first developed. The surface normal images were generated from the 
surface normal vectors of concrete surfaces which were estimated using 
a 3D reconstruction technique. The annotations were first obtained 
using the contrast-enhancement method and then refined by human 
raters. Consequently, as a DCNN model, U-Net was trained using the air- 
void dataset for detecting air voids in hardened concrete images. Finally, 
the segmentation results were manually evaluated using a set of accu
racy measurement indexes. 

2. Literature review 

2.1. 3D reconstruction methods 

Generally, the state-of-the-art 3D reconstruction approaches can be 
classified as passive and active methods. Passive 3D reconstruction 
techniques reconstruct the 3D surface of an object without introducing 
new energy into the environment [8]. Numerous technologies and 
methods employed this approach, including multi-view stereo [9], 
structure from motion [10], light-field cameras [11], and space-carving 
techniques [12]. Binocular stereo is the most common multiview stereo 
approach [13]. Two cameras are utilized to capture pictures from 
slightly different two viewpoints. By analyzing the disparity between the 
objects in the two pictures, the relative depth can be calculated. How
ever, calculating the disparity is not always straightforward for a com
puter vision system. The well-known correspondence problem induces 
the difficulty in locating matching points in the two images. In the case 
when an object surface with low texture needs to be captured, the 
structure light technique, which is one of the active 3D imaging ap
proaches, can be introduced to aid the 3D reconstruction by creating 
projected light patterns. The projected patterns help the computer vision 
system to solve the correspondence problem. Wolter et al. [4] made the 
first study on 3D air-void segmentation by using a photogrammetry 
method. The working principle of photogrammetry is similar to binoc
ular stereo. The research investigated the potential of utilizing 3D 
reconstruction for air-void segmentation, but large differences were 
observed between the experiment results and the ground truth. A 
possible reason could be that the concrete surfaces were texture-less, 
which increased the difficulty of solving the correspondence problem. 

Space-carving and light-field systems can overcome the correspondence 
problem. However, space-carving systems require many different views 
and may fail to reconstruct the crowded areas [11]. Light-field systems 
rely on expensive camera technology to capture high-resolution data 
and thus make the air-void analysis system not cost-effective [14]. 

Active 3D imaging approaches introduce outside energy sources to 
help 3D reconstruction and overcome many problems of the passive 
approaches. The time-of-flight 3D laser scanner is an active scanner that 
uses laser light to probe the subject [15]. The core of this type of scanner 
is a time-of-flight laser rangefinder. The laser rangefinder finds the 
distance of a surface by timing the round-trip time of a pulse of light. The 
laser rangefinder only detects the distance of one point in its direction of 
view. Thus, the scanner scans its entire field of view one point at a time 
by changing the range finder’s direction of view to scan different points. 
The advantage of time-of-flight range finders is that the method is 
capable of operating over very long distances [16]. The disadvantage of 
time-of-flight range finders is relatively low accuracy and low resolu
tion. Due to the high speed of light, timing the round-trip time is difficult 
and the accuracy of the distance measurement is relatively low. Trian
gulation is another active 3D imaging approach [17]. Triangulation 
laser emits a laser on the subject and exploits a camera to look for the 
location of the laser dots. Depending on how far away the laser strikes a 
surface, the laser dot appears at different places in the camera’s field of 
view. The laser dot, the camera, and the laser emitter form a triangle, 
which makes the depth measurement possible. Triangulation laser 
scanners are susceptible to occlusions and air-void regions may be 
obscured by air-void edges. Photometric stereo is an active imaging 
technique that is low-cost and can achieve high image resolutions and 
fast capture speeds [18]. The photometric stereo method estimates the 
3D surface of objects based on the relationship between image intensity 
and the surface normal under various lighting directions. The photo
metric stereo method has the key advantage of achieving automation 
while reducing test time, which is a cost-effective and real access to 
high-resolution 3D images, easy to implement, and robust to reconstruct 
on textured or texture-less surfaces. 

2.2. Deep semantic segmentation methods 

As a subset of machine learning, the deep learning based semantic 
segmentation, which aims to classify an image at pixel resolution, has 
achieved significant success in many image segmentation related fields, 
including autonomous driving [19], pavement condition survey [20], 
face recognition [21], and image search engines [22]. The key advan
tage of deep learning based semantic segmentation techniques is the 
ability to learn appropriate feature representation of pixels in each 
category in an end-to-end manner. The deep learning techniques sub
stantially improved the accuracy and efficiency of a semantic segmen
tation task. 

R. Girshick et al. [23] proposed a region-based convolutional neural 
networks (RCNN). The method first utilized selective search [24] to 
extract numerous object regions, and then a set of features were 
extracted from each of the extracted regions. Finally, a classifier was 
utilized to classify regions into each category. Compared with conven
tional hand-crafted methods, the RCNN was able to address more 
complicated tasks and achieved a higher accuracy. A 30% improvement 
was found compared with the previous best model. However, the RCNN 
also suffers from many drawbacks for image segmentation tasks. Har
iharan et al. [25] argued that the network of RCNN was actually fine- 
tuned to classify bounding boxes, making it suboptimal to extract fore
ground features. Guo et al. [26] stated that the features extracted by 
RCNN did not contain sufficient spatial information, which leads to 
fuzzy boundaries in segmented images. Many improvements have been 
made to address these issues [25,27,28]. Long et al. [29] proposed the 
Fully Convolutional Network (FCN) which was the basis of many state- 
of-the-art deep learning based semantic segmentation methods. They 
replaced the fully connected layers of various CNNs like AlexNet [30], 

J. Tao et al.                                                                                                                                                                                                                                      



Construction and Building Materials 324 (2022) 126717

3

VGG [31], GoogLeNet [32], and ResNet [33] with fully convolutional 
layers. The structure first realized end-to-end image semantic segmen
tation at pixel level. While the conventional FCN model did not consider 
the global context information, the model inherently limited the spatial 
precision for semantic segmentation. Mostajabi et al. [34] and Szegedy 
et al. [35] illustrated the importance of adopting global context infor
mation for accurate image segmentation. As for semantic segmentation, 
per-pixel classification was often ambiguous in the presence of only local 
information. However, the task became much simpler if contextual in
formation, from the whole image, was available. Chen et al. [36] 
introduced conditional random field (CRF) into FCN and proposed 
DeepLab. The CRF significantly refined object boundaries in the 
segmented image with improved efficiency. Dilated convolutions [37] 
expanded the receptive field of CNN by enlarging convolution filters 
without increasing parameters. The key advantage of dilated convolu
tions was improving the ability of global information integration 
without additional computation cost. The multi-scale context aggrega
tion module [38], improved DeepLab [39], and the ENet [40] all 
adopted dilated convolutions as a method to integrate global informa
tion. Feature fusion is another way to enlarge the receptive field of CNN. 
Liu et al. [41] proposed the ParseNet which concatenated global features 
with local features to form combined features. The combined features 
were then convoluted for classification. Chen et al [39] utilized Atrous 
Spatial Pyramid Pooling to combine the output of dilated convolutions 
with various dilation rates together to enlarge the field-of-view without 
increasing the number of parameters. 

3. Data acquisition 

3.1. Hardened concrete samples 

The hardened concrete specimens were provided by the concrete 

laboratory of the Texas Department of Transportation (TxDOT). 
Considering the fact that the appearance of the concrete specimens 
could affect the semantic segmentation results, the concrete specimens 
with various aggregate types and cement types were selected as exper
imental specimens. All the selected concrete specimens were drilled and 
sampled from an in-service concrete pavement structure. The details of 
the experimental specimens are described in Table 1. The specimen 
surfaces were polished according to the specifications in ASTM C457. To 
fit the field-of-view of the photometric stereo system, the original 
samples were sub-sliced into 4 cm × 5 cm small pieces and a region of 3 
cm × 4.5 cm was captured as the field-of-view. Consequently, A total of 
12 pieces of sliced concrete samples were utilized for the training pur
pose. For each category of the hardened concrete samples, one slice was 
utilized for testing purposes. There was a total of 5 pieces of sliced 
concrete samples utilized for the testing purpose. 

3.2. Data annotation and registration 

The labels of training data were first annotated using a contrast- 
enhancement method, and then manually refined. Acrylic ink and a 
rubber brayer were adopted to blacken the polished concrete surfaces 
[3]. The applied acrylic ink could generate a thin dark layer without 
filling out air voids. In case some aggregates cannot be ideally painted, 
the missed regions were carefully re-painted by a marker pen. The 
specimens were then left to air dry at room temperature for 30 min. After 
the ink was dried thoroughly, a barium sulfate powder with an average 
particle size of 3 μm was used to highlight the air voids into white color. 
The barium sulfate powders were scattered on the hardened concrete 
surface and then pressed into air voids using hand fingers. The excess 

Table 1 
Description of experimental specimens.  

Specimen 
No. 

Total 
scan 

Description of material constituents 
Coarse aggregate Fine aggregate 

1 3 Limestone Quartz, limestone, chert, 
granite and feldspar 1(test) 

2 2 Limestone Manufactured sand, quartz, 
feldspar and chert 1(test) 

3 1 Limestone, quartz and 
chert 

Quartz, limestone, 
sandstone, igneous and 
siliceous 

1(test) 

4 3 Limestone, siliceous, 
igneous chert and 
quartzite 

Limestone, siliceous, 
igneous chert and quartzite 1(test) 

5 3 Sandstone, limestone and 
igneous 

Quartz, limestone, 
sandstone, igneous and 
siliceous 

1(test)  

Fig. 1. An example of manually annotated air-void image: (a) Hardened concrete surface, (b) Annotated air voids.  

Fig. 2. Photometric stereo system with six LED lights.  

J. Tao et al.                                                                                                                                                                                                                                      



Construction and Building Materials 324 (2022) 126717

4

powders were removed with the edge of a silicone spatula. The images of 
the contrast enhanced concrete surface were captured using the photo
metric stereo system that is shown in Fig. 2. The system consisted of six 
LED lights and was designed for illuminating the concrete samples in 
different directions. The details of the setup and utilization of the 
photometric stereo system are described in ‘3D Reconstruction – 
Photometric Stereo’ section. All six LED lights were lighted to generate a 
uniform illumination on the concrete surfaces. Finally, an image- 
processing software (ImageJ) was used to segment the air voids from 
the enhanced concrete images by setting a gray value threshold. The 

Otsu method was utilized to provide an optimal threshold. In the case 
when the Otsu method did not generate an ideal threshold, the gener
ated threshold may be manually adjusted. The non-air-void regions in 
the concrete images such as cracks, voids in aggregates and the region 
with residual barium sulfate powder were double-checked and removed 
by the rater using Adobe Photoshop. It is worth mentioning that the 
contrast enhancement process is only used for data preparation. During 
the 3D reconstruction and image segmentation process, no contrast 
enhancement is required for concrete samples. 

The raw concrete images and the enhanced concrete images were 

Fig. 3. Illustration of surface normal vector on concrete surface. nx, ny, and nz are the components of surface normal vector in × y and z directions at the point (x, 
y,z.) 

Fig. 4. Mapping surface normal to RGB space. Nx, Ny, and Nz are surface normal matrices that contain the components that are involved in ×,  y, and z directions. The 
r, g, and b are pixel intensities in red, blue, and green channels. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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captured in two different scans in sequence. The hardened concrete 
surface was first scanned using the photometric stereo system to obtain 
the 3D surface normal image of the hardened concrete surface. The 
concrete specimen was then taken away from the testbed of the photo
metric stereo system for contrast-enhancement procedure. After the 
enhancement procedure, the concrete sample was relocated to the 
testbed and scanned to capture the contrast-enhanced image. Even 
though careful locating was exercised to ensure the hardened concrete 
was aligned to the same position as the first scan, slight displacements 
were still observed between the two scans. The DCNNs require accurate 
annotations, and the labels and image features are expected to corre
spond at pixel level. Therefore, the images of the two scans were 
manually adjusted using Adobe Photoshop to match up at each pixel in 
the two scans. An example of a hardened concrete image and its anno
tated air-void image is shown in Fig. 1. 

4. Methodology 

4.1. 3D reconstruction – Photometric stereo 

As discussed in the research by Tao et al., various photometric stereo 
methods were compared for the extraction of 3D air-void information 
[6]. The conventional photometric stereo method that was proposed by 
Woodham outperformed the other photometric stereo methods and 
could extract the gradient of air voids [6]. The Woodham’s photometric 
stereo method, which is shown in Equation (1), utilizes the relationship 
between incoming lighting direction L ∈ R k×3, surface normal 
N ∈ R 3×1, and observed intensity I ∈ R k×1 to compute the surface 
normal of each pixel [18]. 
⎡

⎢
⎢
⎣

i1
i2
⋮
ik

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

L1
L2
⋮
Lk

⎤

⎥
⎥
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⎡

⎣
nx
ny
nz

⎤

⎦ (1) 

k ∈ R is the number of lighting directions. In this study, a 

Fig. 5. U-Net for image with resolution of 256 pixels × 256 pixels.  

Fig. 6. Steps of U-Net model training. The concrete surface normal images and air-void annotations were utilized for the training process.  
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photometric stereo system with 6 LED lights, as shown in Fig. 2, was 
used for 3D reconstruction. A Sony Charge-Coupled Device (CCD) 
camera with a resolution of 42 megapixels was adopted for concrete 
surface image capturing. The system achieved a resolution of 5.6 μm/ 
pixel for concrete images. The details of the photometric stereo system 
were presented in a previous paper by the authors [6]. 

A diagram of an estimated surface normal vector on hardened con
crete surface is shown in Fig. 3. The components nx, ny, and nz in the 
computed surface normal vector were then normalized to (-1, 1) scale. 
Whereas the DCNNs are designed for RGB images and the intensity of 
pixels in each channel is between 0 and 255. To ensure the surface 
normal compatible with the DCNNs, the nx, ny, and nz of each pixel were 
mapped from (-1, 1) to (0, 255). An example of the mapping process 
with a 4 pixels × 4 pixels image is shown in Fig. 4. For example, nx11, 
ny11, and nz11 are the components of the surface normal at pixel (1,1) on 
×, y, and z directions. The r11, g11, and b11, which are mapped by nx11, 
ny11, and nz11, are the pixel intensity of the pixel (1,1) in red, blue, and 
green channels, respectively. 

4.2. Semantic segmentation – U-Net 

U-Net, which is a variant of FCN and improved with skipped con
nections, was adopted for air-void segmentation in this study [42]. As 
shown in Fig. 5, the U-Net consists of an encoder structure and a decoder 
structure. Skip connections between the encoder and decoder combine 
lower-level features with higher-level features. The combined features 
can improve pixel-level localization. The U-Net architecture has been 
validated to be powerful for image segmentation. It is currently one of 
the most used algorithms in biomedical image segmentation [43] and 
has been successfully extended to the other semantic segmentation tasks 
in many other fields [44]. In addition, the U-Net model can generate a 
comparable result using a small dataset. In the study, the algorithm was 
coded and implemented with TensorFlow, an open-source deep learning 
library in Python. The training processes were conducted on the Google 
Colab Pro which provides Graphics Processing Units (GPUs) for deep 
learning purposes and one NVIDIA® Tesla® V100 GPU with 16 GB of 
RAM. A flow chart that includes the major works of training the U-Net 
model is shown in Fig. 6. 

There are 1,941,105 trainable parameters incorporated in the U-Net 
model. The images were randomly cropped into 256 pixels × 256 pixels 
small pieces and 10,200 cropped images were generated. 80% of the 
crops were adopted as training data and 20% of the crops were adopted 
as validation data. During the training process, cross-entropy was 

selected as the loss factor to evaluate the discrepancy between the 
training results and labels after each epoch. The Adam optimizer was 
adopted for updating the weights in U-Net. 

4.3. Image Augmentation 

To make the training process more efficient, a set of data augmen
tation procedures were conducted on the training data. Considering the 
shapes of the air voids can be a critical differentiation factor for dis
tinguishing the air voids, the ineffective modifications can lead to a 
decreased segmentation accuracy. For example, the compressing and 
stretching modifications, which change the height and width ratio of the 
air-void image, change the shape of the air voids and thus make the air 
voids confused with the air-void like noises. In this research, the effec
tiveness of using various image augmentation procedures was evalu
ated. Random combinations of flipping, rotating, and scaling 
modification were applied. Scaling and rotating operations significantly 
increased the number of images for the training. However, both scaling 
and rotating operations generated a margin between the augmented 
images and the edges of the pictures. Consequently, two fill modes were 
introduced to fill the margins. Three image augmentation strategies, as 
shown in Table 2, were developed to investigate the best augmentation 
strategy for the segmentation of air-void images. An example of the 
augmented image using different augmentation strategies is shown in 
Fig. 7. 

4.4. Accuracy measurement 

An accuracy measurement procedure that is similar to the Modified 
Point Count method [45] was utilized for evaluating the accuracy of the 
proposed method. Song et al. also adopted a similar accuracy mea
surement procedure in one of their previous research studies [7]. A 100 
× 100 dot matrix was generated and appended to both the segmented 
images and the raw concrete images. The pixels in the raw concrete 
images that are corresponding to the appended dot-matrix were manu
ally observed by an experienced petrographer. According to the obser
vation, the dots in the dot matrix were labeled as air voids and non-air 
voids. The dots in the dot matrixes that were appended to the segmented 
images were also labeled by identifying the color of the corresponding 
pixel in the segmented images. The dot that was appended to a white 
pixel was labeled as air voids. The dot that was appended to a black pixel 
was labeled as non-air voids. The labeling process for the segmented 
images was done automatically using a program coded in Python. 
Consequently, accuracy measurements including MIoU (Mean of Inter
section over Union), P (precision), R (Recall), and F1, which can be 
calculated by Equations 2–7, were utilized to evaluate the accuracy of 
the segmentation results. 

IoUairvoids =
TP

TP + FP + FN
(2)  

IoUnon−air−voids =
TN

TN + FN + FP
(3) 

Table 2 
Augmentation strategies.  

Augmentation 
Strategy 

Flipping Rotating Scaling FillMode Images for 
Training 

Augmentation 1 √ √ √ wrap 27,000 
Augmentation 2 √ √ √ constant 27,000 
Augmentation 3 √ × × × 18,000  

Fig. 7. Augmented images using different augmentation strategies: (a) Original image, (b) Augmentation 1, (c) Augmentation 2, (d) Augmentation 3.  
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MIoU =
IoUairvoids + IoUnon−airvoids

2
(4)  

P =
TP

TP + FP
(5)  

R =
TP

TP + FN
(6)  

F1 =
2TP

2TP + FP + FN
(7) 

Fig. 8. The air voids in original concrete surface image and surface normal image: (a) Original concrete surface image, (b) Mapped surface normal image.  

(a) (d)

(b) (e)

(c) (f)

(g)
Fig. 9. Air-void appearances and air-void like noises generated by components on concrete surfaces. (a) Air void 1, (b) Air void 2, (c) Air void 3, (d) Transparent 
aggregate, (e) Cracks in aggregate, (f) Void in aggregate, (g) Drak aggregate. 
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TP is the percentage of dots that are correctly segmented as air voids; 
TN is the percentage of dots that are correctly segmented as non-air- 
void; FP is the percentage of dots that are incorrectly segmented as air 
voids; FN is the percentage of dots that are incorrectly segmented as non- 
air-void. 

5. Results and analysis 

5.1. 3D reconstruction results of photometric stereo method 

An example of the raw concrete surface and the mapped surface 
normal image is shown in Fig. 8. Compared with the original concrete 
surface image, the surface normal image increased the contrast in un
even areas. The areas with a slant surface normal can be distinguished 
by identifying the color changes on the surface normal map. The areas 
with uniform pale green are the solid phase (aggregates and paste). The 
round areas with large color variations in a circle are the air voids. 

As shown in Fig. 8, the air voids in the mapped surface normal image 
present a clear pattern and can be easily identified by naked eyes. Fig. 9 
presents various appearances of air voids and air-void like noises on 
concrete surface normal images. As shown in Fig. 9, the regions of some 
dark or transparent aggregates also present a variation of color. The 
photometric stereo method estimates the surface normal of a target 
object by the intensity of reflected light. Under various lighting di
rections, a slant surface presents a great intensity variation, while a flat 
surface generates an identical surface intensity. The dark aggregates 
were apt to produce specularities under a specific lighting angle and thus 
lead to a biased slant surface normal estimation. For the transparent 
aggregates, the lights are transmitted down to the bottom of the ag
gregates and reflected by the paste. Biased slant surface normal esti
mations were produced by the transparent aggregates. Consequently, 
the photometric stereo method inaccurately estimates the normal in
formation in the region within some transparent aggregates and dark 
aggregates. The biased estimation generated air-void like appearances in 
the surface normal map. The similarity made the automated identifi
cation of air voids in hardened concrete a challenge. In addition, the air 

voids are not the only ‘hollows’ in concrete surfaces. The voids and 
cracks in aggregates are another kind of ‘hollows’ in concrete surfaces 
that can be mistaken as air voids. 

The air voids with different sizes and depths presented different 
appearances. Inside some deep air voids, a ‘flat region’ can be observed. 
The ‘flat regions’ were caused by occlusions. The lights were blocked by 
the edge of air voids and did not reach the bottom of the air voids. Thus, 
the photometric stereo system failed to capture the information at the 
bottom of the air voids. The system assumed those regions as a flat plane 
because there was no intensity variation captured in the blocked re
gions. On the other hand, in shallow air voids, the color variation was 
too little and sometimes can be mistaken as non-air-void regions. 
Therefore, even though the air voids were highlighted in the surface 
normal image, the diversity of air-void appearances and various air-void 
like noises made the air-void detection a tough work. 

5.2. Evaluation of different Augmentation strategies 

Table 3 presents the evaluation results of the U-Net model trained 
with different image augmentation strategies. All 3 models were trained 
for 780 epochs to ensure convergence. As shown in Table 3, the training 
result of Augmentation 1 is almost the same as the evaluation result of 
Augmentation 2. Whereas a 3.7% difference is observed between the 
evaluation results of validation data. The comparison between 
Augmentation 1 and Augmentation 2 indicates that the ‘constant’ fill 
mode helps the U-Net model improve robustness. By comparing Aug
mentations 1 and 2 to Augmentation 3, the U-Net model which was 
trained with the images augmented with the strategy of Augmentation 3, 
is significantly better than the other two U-Net models. It is worth noting 
that the number of images generated by Augmentation 3 is 2/3 of the 
total images generated by Augmentation 1 or Augmentation 2. A 
reasonable explanation for the observation is that the shape informa
tion, which is important for distinguishing of air voids, is well retained 
in the training data using the strategy of Augmentation 3. Consequently, 
the strategy of Augmentation 3 was used in the research. 

5.3. Air-void segmentation results of U-Net model 

The U-Net was trained using surface normal images and annotated 
air-void masks. The model was trained for 780 epochs and the training 
work took about 15 h to accomplish. The variations of MIoU and loss 
during the training process were recorded in each epoch and presented 
in Fig. 10. 

The loss estimates the discrepancy of predicted results and labels, 
and a lower loss indicates a better segmentation performance. The loss 

Table 3 
Training results of U-Net model using different augmentation strategies.  

Augmentation 
Strategy 

Epochs Learning 
Rate 

Best Train 
MIoU 

Best Val 
MIoU 

Augmentation 1 780  0.001  0.681  0.610 
Augmentation 2 780  0.001  0.691  0.647 
Augmentation 3 780  0.001  0.814  0.706  

Fig. 10. The loss and MIoU curves of the U-Net model training.  
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curve presents some fluctuations and shows a decreasing trend. The 
variation trend of the loss curves slows down with the increase of the 
number of epochs and becomes stabilized when the loss value ap
proaches 0.005. The train_MIoU and val_MIoU measure the similarity of 
predicted results and labels for the training set and validation set, 
respectively, and a higher MIoU indicates a better segmentation per
formance. The MIoUs of the training dataset and validation dataset are 
combining, and an increasing trend is found for both curves. The loss 
curve reversely correlates with the MIoU curves. As shown in Fig. 10, the 
decreasing trend of the loss curve stabilizes after 650 epochs, which 
indicates that the model is converged. 

The size of the input of the U-Net model was 256 pixels × 256 pixels 
which was much smaller than the size of the raw concrete surface im
ages. Consequently, the raw concrete surface images were cropped into 
256 pixels × 256 pixels small pieces and fed into the trained U-Net, one 

cropped image at a time to generate an output. After all the cropped 
images were processed, the processed images were then stuck together 
as the segmentation result of the raw concrete surface image. The U-Net 
model computed on each pixel and output a 256 × 256 matrix. Each 
value in the matrix was from 0 to 1, where 0 means the pixel was most 
likely from the background (non-air-void) and 1 means the pixel was 
most likely from the target object (air voids). Some raw output values 
that are close to 0 are found inside of some air-void regions. To make a 
binary air-void segmentation, the selection of a threshold between 0 and 
1 is needed to classify a pixel as air void or non-air void. The accuracy 
measurements of the test samples with different thresholds are pre
sented in Fig. 11. As the threshold increases, the IoUs show slight 
downward trends. Consequently, 0.1 was chosen as the threshold for 
achieving the best MIoU. To evaluate the influence of the threshold to 
air-void parameters, the estimated air-void parameters of each threshold 

Fig. 11. Accuracy measurement of test samples with different thresholds: (a) IoUair voids, (b) IoUnon-air voids, (c) MIoU, (d) Air content, and (e) Spacing factor.  
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were also calculated. As the concrete samples did not come with the 
measured paste content, 27%, which is recommended as a good esti
mation in FHWA petrographic manual, was used as the estimated paste 
content [46]. The air-void parameters were measured using the Pro
cedure B Modified Point-Count Method. As shown in Fig. 11(d) and 11 
(e), it can be observed that the best-fit threshold for air content is 0.5 and 
the best-fit threshold for spacing factor is 0.6. The results indicate that 
the importance of the segmentation error in different locations is not the 
same. By observing the segmentation results, it can be found that a lower 
threshold helps to reduce the FN segmentation error inside of large air 
voids, while a lower threshold increases the FP segmentation errors 
which are mainly FP fine air voids. Most of the FP fine air voids are 
caused by the misidentified fine aggregates. The discretely distributed 
fine FP air voids have a significant impact on the measurement of air 
content and spacing factor. It is worth to mention that even though a 
lower threshold has a significant influence on FP fine air voids, but it 
barely impacts the segmentation result of TP fine air voids. Conse
quently, the correct segmentation of fine air-voids and aggregates is 
highly important for the accurate measurement of air-void system. 

As discussed previously, many air-void like noises can be generated 
in surface normal images using photometric stereo methods. The trained 
model correctly identified most of the biased regions and only a small 
percent of the biased regions was incorrectly identified as air voids. 
Some well-rounded fine aggregates can be false positively segmented as 
air voids, while the percentage of those FP segmentations is not signif
icant. In addition, most of the voids and cracks in aggregates were well 
identified as non-air voids. However, some well-rounded voids in ag
gregates were still incorrectly segmented as air voids. Also, some 
missing air voids were observed in the segmentation result. Most of the 
missing air voids were deep air voids. Those air voids generally could be 
easily identified using naked eyes, but these kinds of air voids presented 
a significantly different appearance in the surface normal map, which 
caused interference to the correct air-void image segmentation. One of 

the reasons that lead to the missing segmentation could be the quantity 
of training data was not sufficient for the U-Net to learn the pattern of 
tiny or shallow air voids. Another explanation could be the 256 pixels ×
256 pixels sliced training images were not big enough to entirely contain 
some large-size air voids. Consequently, the U-Net model failed to cap
ture valid features to represent the large size air voids. As shown in 
Figs. 12, 3 image sizes were selected to make a random cropping from an 
image with a large air void and an image with a large aggregate. It can be 
clearly observed that the air void and the aggregate can barely be 
differentiated from the 256 pixels × 256 pixels cropped images. As the 
image size becomes larger, the patterns of air voids and aggregates can 
be identified more easily. 

To furtherly quantify the observations of the segmentation results. 
The accuracy measurements for the testing samples are presented in 
Table 4. The testing samples were first scanned using the photometric 
stereo system and the surface normal images were then mapped from the 
estimated surface normal vectors. All the air-void segmentation results 
were output by the trained U-Net512 model based on the surface normal 
images. Equations 2–7 were adopted for calculating the accuracy 
indices. As shown in Table 4, the average of the MIoU of five testing 
samples is 0.884, which indicates that the proposed method could detect 
the air voids in hardened concrete surface with a relative good accuracy. 
The average FP is 0.009 and the average P is 0.990, which indicate that 
the proposed method could differentiate the air voids from most of the 
air-void like noises and only a small portion of air-void like noises was 
incorrectly identified as air voids. The average FN is 0.115 and is almost 
10 times as great as FP. In addition, R is 0.885 which is nearly 0.1 less 
than P. Both FN and R indicate that the misidentification was the major 
source of segmentation errors. 

Consequently, the segmentation results of the concrete surface im
ages using the U-Net model trained with different cropped image sizes 
(256 × 256, 512 × 512, and 1024 × 1024) are presented in Table 5. 
After various experiments, it can be observed that the image size has an 

Fig. 12. Random cropping using different cut sizes: (a) Air voids, (b) Aggregates.  

Table 4 
Accuracy measurement for testing samples.  

Specimen No. FP FN TP TN P R F1 IoUair void IoUnon air-void MIoU 

1  0.007  0.121  0.879  0.993  0.992  0.879  0.932  0.873  0.886  0.880 
2  0.004  0.027  0.973  0.996  0.996  0.973  0.984  0.969  0.970  0.969 
3  0.019  0.113  0.887  0.981  0.979  0.887  0.931  0.871  0.882  0.876 
4  0.006  0.159  0.841  0.994  0.993  0.841  0.911  0.836  0.858  0.847 
5  0.007  0.154  0.846  0.993  0.991  0.846  0.913  0.840  0.860  0.850 
Average  0.009  0.115  0.885  0.991  0.990  0.885  0.934  0.878  0.891  0.884  
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Table 5 
U-Net models trained with different image sizes.  

Model Image Size Augmentation Strategy Images for Training Batch Size Best Train MIoU Best Val MIoU 

U-Net256 256 × 256 Augmentation 3 18,000 32  0.814  0.706 
U-Net512 512 × 512 Augmentation 3 10,187 16  0.794  0.724 
U-Net1024 1024 × 1024 Augmentation 3 1,906 4  0.825  0.707  

Fig. 13. Air-void segmentation results of test concrete samples using U-Net512: (a) Sample 1, (b) Sample 2, (c) Sample 3, (d) Sample 4, (e) Sample 5. The sequence of 
each image in the subplot is raw hardened concrete image, raw segmentation result (raw output by the U-Net model), and binary segmentation result. 
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impact on the air-void segmentation performance. The U-Net512, which 
was trained using 512 pixels × 512 pixels images, showed a slightly 
better performance in generalization than the other two models. Even 
though a higher train accuracy is observed for U-Net256, the U-Net512 
performs better in validation data. 

Fig. 13 shows the air-void segmentation results using U-Net512. In 
the raw segmentation results, the output value of a purple pixel is close 
to 0 and the output value of a yellow pixel is close to 1. The segmented 
concrete images with the threshold of 0.1 are presented in the binary 
segmentation results of Fig. 11. TP pixels are marked in white color, TN 
pixels are marked in black color, FN pixels are marked in blue color, and 
FP pixels are marked in red color. Compared with the segmentation 
results using U-Net256, the large air voids can be identified more 
completely. Also, some air-void like noises can be better differentiated 
using U-Net512. The detailed accuracy measurements of U-Net512 are 
estimated and presented in Table 6. As shown in Table 6, the average 
MIoU is 0.914 and indicates that U-Net512 model was quite capable of 
precisely distinguishing the air voids from the non-air-void regions. 
Compared to the segmentation measurements of U-Net256, the average 
MIoU of U-Net512 is 0.03 higher than the average MIoU of U-Net256. 
Additionally, the U-Net512 significantly reduces the number of mis
identified air voids. The FN is reduced by 0.03 and the R is increased by 
0.03. While the U-Net512 does not show a significant impact on the FP 
and P. Both FP and P are slightly increased by 0.001. The size of the 
minimum air void that can be segmented by U-Net512 is around 22 μm 
(4-pixel length). Table 7 presents the measurement of air-void param
eters using U-Net512 results and ground truth. The air-void parameters 
are measured using the Procedure B Modified Point-Count Method. 27% 
is assumed as the measured paste content. As shown in Table 7, the 
average measurement errors of air content, specific surface, and spacing 
factor for the three hardened concrete specimens are 7.87%, 9.36% and 
12.23%, respectively. 

Compared with contrast-enhancement based method, the proposed 
method also achieved a significant improvement in efficiency and 
comparable accuracy. For a concrete surface image with a resolution of 
7953*5304 pixels, the construction of the surface normal image of 
concrete surface took 10 to 15 s to accomplish, and the segmentation of a 
concrete surface normal image took 15 to 20 s to accomplish. The seg
mentation time for air voids in hardened concrete is significantly 
reduced to around half a minute. 

6. Conclusions 

This study investigated the potential of combining deep learning and 
3D reconstruction techniques to detect air voids in hardened concrete 
surfaces, extracted and processed from concrete pavement structures. 
The proposed method can automatically detect the air voids in hardened 
concrete surfaces without the use of contrast enhancement, which re
duces the labor intensiveness and improves the time efficiency. The 
research has achieved the following: 1) An air-void dataset, which 
consists of a group of surface normal images and air-void annotations, 
was developed for DCNN training. 2) The surface normal images of 
concrete surfaces were captured using a 3D reconstruction method. In 
the surface normal images, the air voids were automatically highlighted 
by color variations without the use of contrast-enhancement method. 3) 
A DCNN model was trained using the developed air-void dataset for air- 
void detection. 4) A rigorous manual verification was conducted to 
obtain a reliable reference for evaluating the segmentation accuracy 
pixel-to-pixel. The research results have shown that:  

(1) The 3D reconstruction method can capture depth variations and 
automatically highlight the air voids in the hardened concrete 
surface, while some transparent aggregates, dark aggregates, and 
voids in aggregates are highlighted as well. Most of the air-void 
like noises can be effectively identified using the proposed 
method.  

(2) The appearance of air voids in surface normal images can vary. 
Some deep air voids can generate a significantly different 
appearance in the surface normal images, which could greatly 
harm the segmentation results. Increase the number of training 
data that contains deep air voids or refine the illumination angle 
of the photometric stereo system can help improve the segmen
tation results of deep air voids.  

(3) Shapes and gradient variations of air voids are two important 
characteristics for air-void segmentation. Inappropriate 
augmentation methods can change the appearances of air voids in 
training data set and then cause a poor generalization. The se
lection of image augmentation methods has a significant impact 
on the air-void segmentation results.  

(4) The over 0.9 average MIoU of the DCNN segmentation indicates 
that the DCNN has a good potential in extracting the features 

Table 6 
Accuracy measurement for testing samples using U-Net512.  

Specimen No. FP FN TP TN P R F1 IoUair void IoUnon air-void MIoU 

1  0.008  0.115  0.885  0.992  0.991  0.885  0.935  0.878  0.890  0.884 
2  0.003  0.014  0.986  0.997  0.997  0.986  0.991  0.983  0.983  0.983 
3  0.019  0.092  0.908  0.981  0.980  0.908  0.943  0.892  0.899  0.895 
4  0.006  0.073  0.927  0.994  0.994  0.927  0.959  0.922  0.927  0.924 
5  0.006  0.115  0.885  0.994  0.993  0.885  0.936  0.879  0.891  0.885 
Average  0.008  0.082  0.918  0.992  0.991  0.918  0.953  0.911  0.918  0.914  

Table 7 
Air-void Parameters Measured on U-Net512 results and Ground Truth using Point Count Method.    

Air content (%) Specific surface (mm−1) Spacing factor (mm)   
Measurement value Error (%) Measurement value Error (%) Measurement value Error (%) 

1 U-Net512  1.64 6.49  13.152 25.75  0.288 25.32 
Ground truth  1.54  10.459  0.386 

2 U-Net512  1.63 11.64  10.397 1.29  0.367 11.57 
Ground truth  1.46  10.264  0.415 

3 U-Net512  4.08 2.77  17.644 10.16  0.086 11.67 
Ground truth  3.97  16.016  0.098 

4 U-Net512  1.6 11.11  16.194 2.15  0.24 11.89 
Ground truth  1.44  15.854  0.272 

5 U-Net512  1.32 7.32  15.491 7.45  0.304 0.68 
Ground truth  1.23  16.738  0.302 

Average error (%)   7.87   9.36   12.23  
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from the surface normal images and making predictions at pixel 
level. The U-Net model can correctly segment most of the air-void 
regions. The mis-identified air voids are the key error resources. 
The FP segmentation of some fine aggregates has the most sig
nificant impact on the measurement of air-void system. 
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