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The automated air-void detection methods specified in the ASTM C457 require the aid of contrast enhancement
which is time consuming and labor intensive. This study investigated the utilization of three-dimensional (3D)
reconstruction and Deep Convolution Neural Network (DCNN) methods to detect the air voids in hardened
concrete surfaces without the use of contrast enhancement. The experimental results showed that the DCNN
could accurately distinguish air voids from hardened concrete images with the detection accuracy of over 0.9 in

only less than a minute. The accuracy rates for air content, specific surface, and spacing factor were 0.92, 0.91,

and 0.89, respectively.

1. Introduction

Air voids are small air bubbles that are embedded in the hardened
concrete paste. The existence of a well-distributed air-void system in a
hardened concrete pavement is critical for maintaining the freeze-
thawing performance of the concrete infrastructure. Air-void petro-
graphic analysis provides evidence on whether a concrete infrastructure
can resist freeze-thaw damages in cold regions. Among the air-void
analysis procedures, the detection of air voids in the hardened con-
crete surface is one of the most important requirements. Well-trained
petrographic raters are required for conducting the petrographic anal-
ysis, while the analysis results are subjective and could lead to biased
concrete performance estimations [1]. In addition, more than 2,000 air-
void observations are required for each concrete sample, which makes
the air-void analysis a time-consuming and labor-intensive process [1].

Numerous automating efforts have been conducted to reduce human
labor by adopting contrast-enhancement methods and computer image
analysis techniques. The conventional contrast-enhancement method
applies black ink and white powders to make the concrete surface black
and air voids white. The RapidAir 457 procedure proposed by Pade et al.
was the most widely used contrast-enhancement based automated sys-
tem [2]. The prepared concrete surface needs to be carefully examined
by a trained petrographer using a stereomicroscope to evaluate: 1) if the
surface enhancement is acceptable and 2) more importantly to blacken

and cover any pores and cracks present in coarse and fine aggregates
with a very thin tip black sharpie. The inappropriate pigments or powder
sizes adopted for contrast enhancement can lead to a biased result [3].
Some dark and thick pigments can fill up tiny air voids and make the air
voids inaccessible to the white powders [4]. The grain size of powders is
decisive for the minimum air-void size that can be observed. Fine
powder particles may get stuck in tiny defects on the concrete surface
and are hard to be wiped away, which lead to an overestimation of the
air-void content. Whereas, coarse powders can create a ‘wall effect’
around the perimeter of small air voids and cause an underestimation of
the air-void content [3]. X-ray Computed Tomography (CT) is a typical
non-destructive method that has been widely adopted for air-void
analysis [5]. However, the high expense of using X-ray CT equipment
makes it unlikely for practical use.

The air voids in a hardened concrete surface have similar greyscale
values as the paste in the concrete surface. However, unlike the solid
phase which provides only color information, the air voids are hollows
in the hardened concrete surface. The three-dimensional (3D) informa-
tion (e.g. depth and gradient) of air voids is valuable for air voids
detection. Consequently, a new approach to automated air-void seg-
mentation that is free of contrast enhancement is using 3D reconstruc-
tion techniques. Wolter et al. [4] proposed an air-void segmentation
method without contrast enhancement by introducing the surface pro-
file information. The photogrammetry method was adopted for
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estimating the depth of each pixel in the concrete images. However, the
proposed method was not accurate enough. Tao et al. [6] captured the
3D concrete surface information using the photometric stereo method.
The 3D surface captured valuable information for air-void segmentation.
The 3D reconstruction techniques provided an inexpensive solution to
automated air-void segmentation without using contrast enhancement.
However, reflective concrete surface and transparent aggregates still
cause inaccuracies to 3D reconstruction, and impact the segmentation
results [6].

As a subarea in artificial intelligence (AI), deep learning (DL) has
achieved great success in semantic segmentation. During the semantic
segmentation process, a classification label is predicted on each pixel,
which may greatly fulfill the objectives of air-void segmentation. The
deep convolutional neural networks (DCNN), which is an important
branch in DL, shows good potential in detecting target objects in noisy
images at pixel resolution. Another advantage of DCNN is the end-to-end
segmentation manner. Significant fewer human interventions are
required to be involved in the segmentation work. Song et al. [7] made
an innovative attempt at using DCNN method to segment the phases in
hardened concrete surfaces. The proposed air-void segmentation
method outperformed the contrast-enhancement method and achieved
much higher accuracy in the boundary area between each phase.
However, the air voids still need to be highlighted using orange chalk
powders, which made the method not fully automatic.

The objective of this paper is to propose an end-to-end automated
segmentation method that could detect air voids in concrete surfaces
without contrast enhancement. In the study, an air-void image dataset
including a set of surface normal images and air-void annotations was
first developed. The surface normal images were generated from the
surface normal vectors of concrete surfaces which were estimated using
a 3D reconstruction technique. The annotations were first obtained
using the contrast-enhancement method and then refined by human
raters. Consequently, as a DCNN model, U-Net was trained using the air-
void dataset for detecting air voids in hardened concrete images. Finally,
the segmentation results were manually evaluated using a set of accu-
racy measurement indexes.

2. Literature review
2.1. 3D reconstruction methods

Generally, the state-of-the-art 3D reconstruction approaches can be
classified as passive and active methods. Passive 3D reconstruction
techniques reconstruct the 3D surface of an object without introducing
new energy into the environment [8]. Numerous technologies and
methods employed this approach, including multi-view stereo [9],
structure from motion [10], light-field cameras [11], and space-carving
techniques [12]. Binocular stereo is the most common multiview stereo
approach [13]. Two cameras are utilized to capture pictures from
slightly different two viewpoints. By analyzing the disparity between the
objects in the two pictures, the relative depth can be calculated. How-
ever, calculating the disparity is not always straightforward for a com-
puter vision system. The well-known correspondence problem induces
the difficulty in locating matching points in the two images. In the case
when an object surface with low texture needs to be captured, the
structure light technique, which is one of the active 3D imaging ap-
proaches, can be introduced to aid the 3D reconstruction by creating
projected light patterns. The projected patterns help the computer vision
system to solve the correspondence problem. Wolter et al. [4] made the
first study on 3D air-void segmentation by using a photogrammetry
method. The working principle of photogrammetry is similar to binoc-
ular stereo. The research investigated the potential of utilizing 3D
reconstruction for air-void segmentation, but large differences were
observed between the experiment results and the ground truth. A
possible reason could be that the concrete surfaces were texture-less,
which increased the difficulty of solving the correspondence problem.
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Space-carving and light-field systems can overcome the correspondence
problem. However, space-carving systems require many different views
and may fail to reconstruct the crowded areas [11]. Light-field systems
rely on expensive camera technology to capture high-resolution data
and thus make the air-void analysis system not cost-effective [14].

Active 3D imaging approaches introduce outside energy sources to
help 3D reconstruction and overcome many problems of the passive
approaches. The time-of-flight 3D laser scanner is an active scanner that
uses laser light to probe the subject [15]. The core of this type of scanner
is a time-of-flight laser rangefinder. The laser rangefinder finds the
distance of a surface by timing the round-trip time of a pulse of light. The
laser rangefinder only detects the distance of one point in its direction of
view. Thus, the scanner scans its entire field of view one point at a time
by changing the range finder’s direction of view to scan different points.
The advantage of time-of-flight range finders is that the method is
capable of operating over very long distances [16]. The disadvantage of
time-of-flight range finders is relatively low accuracy and low resolu-
tion. Due to the high speed of light, timing the round-trip time is difficult
and the accuracy of the distance measurement is relatively low. Trian-
gulation is another active 3D imaging approach [17]. Triangulation
laser emits a laser on the subject and exploits a camera to look for the
location of the laser dots. Depending on how far away the laser strikes a
surface, the laser dot appears at different places in the camera’s field of
view. The laser dot, the camera, and the laser emitter form a triangle,
which makes the depth measurement possible. Triangulation laser
scanners are susceptible to occlusions and air-void regions may be
obscured by air-void edges. Photometric stereo is an active imaging
technique that is low-cost and can achieve high image resolutions and
fast capture speeds [18]. The photometric stereo method estimates the
3D surface of objects based on the relationship between image intensity
and the surface normal under various lighting directions. The photo-
metric stereo method has the key advantage of achieving automation
while reducing test time, which is a cost-effective and real access to
high-resolution 3D images, easy to implement, and robust to reconstruct
on textured or texture-less surfaces.

2.2. Deep semantic segmentation methods

As a subset of machine learning, the deep learning based semantic
segmentation, which aims to classify an image at pixel resolution, has
achieved significant success in many image segmentation related fields,
including autonomous driving [19], pavement condition survey [20],
face recognition [21], and image search engines [22]. The key advan-
tage of deep learning based semantic segmentation techniques is the
ability to learn appropriate feature representation of pixels in each
category in an end-to-end manner. The deep learning techniques sub-
stantially improved the accuracy and efficiency of a semantic segmen-
tation task.

R. Girshick et al. [23] proposed a region-based convolutional neural
networks (RCNN). The method first utilized selective search [24] to
extract numerous object regions, and then a set of features were
extracted from each of the extracted regions. Finally, a classifier was
utilized to classify regions into each category. Compared with conven-
tional hand-crafted methods, the RCNN was able to address more
complicated tasks and achieved a higher accuracy. A 30% improvement
was found compared with the previous best model. However, the RCNN
also suffers from many drawbacks for image segmentation tasks. Har-
iharan et al. [25] argued that the network of RCNN was actually fine-
tuned to classify bounding boxes, making it suboptimal to extract fore-
ground features. Guo et al. [26] stated that the features extracted by
RCNN did not contain sufficient spatial information, which leads to
fuzzy boundaries in segmented images. Many improvements have been
made to address these issues [25,27,28]. Long et al. [29] proposed the
Fully Convolutional Network (FCN) which was the basis of many state-
of-the-art deep learning based semantic segmentation methods. They
replaced the fully connected layers of various CNNs like AlexNet [30],



J. Tao et al.

Table 1
Description of experimental specimens.

Specimen Total Description of material constituents

No. scan Coarse aggregate Fine aggregate

1 3 Limestone Quartz, limestone, chert,
1(test) granite and feldspar

2 2 Limestone Manufactured sand, quartz,
1(test) feldspar and chert

3 1 Limestone, quartz and Quartz, limestone,

1(test) chert sandstone, igneous and

siliceous

4 3 Limestone, siliceous, Limestone, siliceous,
1(test) igneous chert and igneous chert and quartzite
quartzite
5 3 Sandstone, limestone and ~ Quartz, limestone,
1(test) igneous sandstone, igneous and

siliceous

VGG [31], GoogLeNet [32], and ResNet [33] with fully convolutional
layers. The structure first realized end-to-end image semantic segmen-
tation at pixel level. While the conventional FCN model did not consider
the global context information, the model inherently limited the spatial
precision for semantic segmentation. Mostajabi et al. [34] and Szegedy
et al. [35] illustrated the importance of adopting global context infor-
mation for accurate image segmentation. As for semantic segmentation,
per-pixel classification was often ambiguous in the presence of only local
information. However, the task became much simpler if contextual in-
formation, from the whole image, was available. Chen et al. [36]
introduced conditional random field (CRF) into FCN and proposed
DeepLab. The CRF significantly refined object boundaries in the
segmented image with improved efficiency. Dilated convolutions [37]
expanded the receptive field of CNN by enlarging convolution filters
without increasing parameters. The key advantage of dilated convolu-
tions was improving the ability of global information integration
without additional computation cost. The multi-scale context aggrega-
tion module [38], improved DeepLab [39], and the ENet [40] all
adopted dilated convolutions as a method to integrate global informa-
tion. Feature fusion is another way to enlarge the receptive field of CNN.
Liuetal. [41] proposed the ParseNet which concatenated global features
with local features to form combined features. The combined features
were then convoluted for classification. Chen et al [39] utilized Atrous
Spatial Pyramid Pooling to combine the output of dilated convolutions
with various dilation rates together to enlarge the field-of-view without
increasing the number of parameters.

3. Data acquisition
3.1. Hardened concrete samples

The hardened concrete specimens were provided by the concrete
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Fig. 2. Photometric stereo system with six LED lights.

laboratory of the Texas Department of Transportation (TxDOT).
Considering the fact that the appearance of the concrete specimens
could affect the semantic segmentation results, the concrete specimens
with various aggregate types and cement types were selected as exper-
imental specimens. All the selected concrete specimens were drilled and
sampled from an in-service concrete pavement structure. The details of
the experimental specimens are described in Table 1. The specimen
surfaces were polished according to the specifications in ASTM C457. To
fit the field-of-view of the photometric stereo system, the original
samples were sub-sliced into 4 cm x 5 cm small pieces and a region of 3
cm x 4.5 cm was captured as the field-of-view. Consequently, A total of
12 pieces of sliced concrete samples were utilized for the training pur-
pose. For each category of the hardened concrete samples, one slice was
utilized for testing purposes. There was a total of 5 pieces of sliced
concrete samples utilized for the testing purpose.

3.2. Data annotation and registration

The labels of training data were first annotated using a contrast-
enhancement method, and then manually refined. Acrylic ink and a
rubber brayer were adopted to blacken the polished concrete surfaces
[3]. The applied acrylic ink could generate a thin dark layer without
filling out air voids. In case some aggregates cannot be ideally painted,
the missed regions were carefully re-painted by a marker pen. The
specimens were then left to air dry at room temperature for 30 min. After
the ink was dried thoroughly, a barium sulfate powder with an average
particle size of 3 pm was used to highlight the air voids into white color.
The barium sulfate powders were scattered on the hardened concrete
surface and then pressed into air voids using hand fingers. The excess

®)

Fig. 1. An example of manually annotated air-void image: (a) Hardened concrete surface, (b) Annotated air voids.
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2D concrete surface
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3D concrete surface

Fig. 3. Illustration of surface normal vector on concrete surface. n, n,, and n, are the components of surface normal vector in x y and z directions at the point (x,

Y,2.)

powders were removed with the edge of a silicone spatula. The images of
the contrast enhanced concrete surface were captured using the photo-
metric stereo system that is shown in Fig. 2. The system consisted of six
LED lights and was designed for illuminating the concrete samples in
different directions. The details of the setup and utilization of the
photometric stereo system are described in ‘3D Reconstruction —
Photometric Stereo’ section. All six LED lights were lighted to generate a
uniform illumination on the concrete surfaces. Finally, an image-
processing software (ImageJ) was used to segment the air voids from
the enhanced concrete images by setting a gray value threshold. The

Matrix of
surface normal

Otsu method was utilized to provide an optimal threshold. In the case
when the Otsu method did not generate an ideal threshold, the gener-
ated threshold may be manually adjusted. The non-air-void regions in
the concrete images such as cracks, voids in aggregates and the region
with residual barium sulfate powder were double-checked and removed
by the rater using Adobe Photoshop. It is worth mentioning that the
contrast enhancement process is only used for data preparation. During
the 3D reconstruction and image segmentation process, no contrast
enhancement is required for concrete samples.

The raw concrete images and the enhanced concrete images were

Blue Channel

RGB space

Fig. 4. Mapping surface normal to RGB space. N, Ny, and N, are surface normal matrices that contain the components that are involved in x, y, and z directions. The
r, g and b are pixel intensities in red, blue, and green channels. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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128 128 128 128

Output

Fig. 5. U-Net for image with resolution of 256 pixels x 256 pixels.

captured in two different scans in sequence. The hardened concrete
surface was first scanned using the photometric stereo system to obtain
the 3D surface normal image of the hardened concrete surface. The
concrete specimen was then taken away from the testbed of the photo-
metric stereo system for contrast-enhancement procedure. After the
enhancement procedure, the concrete sample was relocated to the
testbed and scanned to capture the contrast-enhanced image. Even
though careful locating was exercised to ensure the hardened concrete
was aligned to the same position as the first scan, slight displacements
were still observed between the two scans. The DCNNs require accurate
annotations, and the labels and image features are expected to corre-
spond at pixel level. Therefore, the images of the two scans were
manually adjusted using Adobe Photoshop to match up at each pixel in
the two scans. An example of a hardened concrete image and its anno-
tated air-void image is shown in Fig. 1.

Polished hardened concrete

Surface Normal
Reconstruction —
Photometric Stereo

Concrete surface normal image

Contrast
Enhancement

4. Methodology
4.1. 3D reconstruction — Photometric stereo

As discussed in the research by Tao et al., various photometric stereo
methods were compared for the extraction of 3D air-void information
[6]. The conventional photometric stereo method that was proposed by
Woodham outperformed the other photometric stereo methods and
could extract the gradient of air voids [6]. The Woodham’s photometric
stereo method, which is shown in Equation (1), utilizes the relationship
between incoming lighting direction L e %3, surface normal
N e %%, and observed intensity I € .%#%! to compute the surface
normal of each pixel [18].

i L,

n,
. L X
=1 M
i Ly e

ke .7 is the number of lighting directions. In this study, a

Contrast enhanced hardened concrete

Imagc Labcling

Air-void annotation

+

U-Net Model Training

Fig. 6. Steps of U-Net model training. The concrete surface normal images and air-void annotations were utilized for the training process.
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Table 2

Augmentation strategies.
Augmentation Flipping  Rotating  Scaling  FillMode  Images for
Strategy Training
Augmentation 1 \/ \/ \/ wrap 27,000
Augmentation 2 \/ \/ \/ constant 27,000
Augmentation 3 \/ X X X 18,000

photometric stereo system with 6 LED lights, as shown in Fig. 2, was
used for 3D reconstruction. A Sony Charge-Coupled Device (CCD)
camera with a resolution of 42 megapixels was adopted for concrete
surface image capturing. The system achieved a resolution of 5.6 pm/
pixel for concrete images. The details of the photometric stereo system
were presented in a previous paper by the authors [6].

A diagram of an estimated surface normal vector on hardened con-
crete surface is shown in Fig. 3. The components ny, n,, and n, in the
computed surface normal vector were then normalized to (-1, 1) scale.
Whereas the DCNNs are designed for RGB images and the intensity of
pixels in each channel is between 0 and 255. To ensure the surface
normal compatible with the DCNNs, the ny, ny, and n; of each pixel were
mapped from (-1, 1) to (0, 255). An example of the mapping process
with a 4 pixels x 4 pixels image is shown in Fig. 4. For example, n,;;,
ny11, and ng;; are the components of the surface normal at pixel (1,1) on
X, y, and z directions. The r;3, g17, and by;, which are mapped by n,;7,
ny11, and ny;3, are the pixel intensity of the pixel (1,1) in red, blue, and
green channels, respectively.

4.2. Semantic segmentation — U-Net

U-Net, which is a variant of FCN and improved with skipped con-
nections, was adopted for air-void segmentation in this study [42]. As
shown in Fig. 5, the U-Net consists of an encoder structure and a decoder
structure. Skip connections between the encoder and decoder combine
lower-level features with higher-level features. The combined features
can improve pixel-level localization. The U-Net architecture has been
validated to be powerful for image segmentation. It is currently one of
the most used algorithms in biomedical image segmentation [43] and
has been successfully extended to the other semantic segmentation tasks
in many other fields [44]. In addition, the U-Net model can generate a
comparable result using a small dataset. In the study, the algorithm was
coded and implemented with TensorFlow, an open-source deep learning
library in Python. The training processes were conducted on the Google
Colab Pro which provides Graphics Processing Units (GPUs) for deep
learning purposes and one NVIDIA® Tesla® V100 GPU with 16 GB of
RAM. A flow chart that includes the major works of training the U-Net
model is shown in Fig. 6.

There are 1,941,105 trainable parameters incorporated in the U-Net
model. The images were randomly cropped into 256 pixels x 256 pixels
small pieces and 10,200 cropped images were generated. 80% of the
crops were adopted as training data and 20% of the crops were adopted
as validation data. During the training process, cross-entropy was

(b)

Fig. 7. Augmented images using different augmentation strategies: (a) Original image, (b) Augmentation 1, (¢) Augmentation 2, (d) Augmentation 3.
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selected as the loss factor to evaluate the discrepancy between the
training results and labels after each epoch. The Adam optimizer was
adopted for updating the weights in U-Net.

4.3. Image Augmentation

To make the training process more efficient, a set of data augmen-
tation procedures were conducted on the training data. Considering the
shapes of the air voids can be a critical differentiation factor for dis-
tinguishing the air voids, the ineffective modifications can lead to a
decreased segmentation accuracy. For example, the compressing and
stretching modifications, which change the height and width ratio of the
air-void image, change the shape of the air voids and thus make the air
voids confused with the air-void like noises. In this research, the effec-
tiveness of using various image augmentation procedures was evalu-
ated. Random combinations of flipping, rotating, and scaling
modification were applied. Scaling and rotating operations significantly
increased the number of images for the training. However, both scaling
and rotating operations generated a margin between the augmented
images and the edges of the pictures. Consequently, two fill modes were
introduced to fill the margins. Three image augmentation strategies, as
shown in Table 2, were developed to investigate the best augmentation
strategy for the segmentation of air-void images. An example of the
augmented image using different augmentation strategies is shown in
Fig. 7.

4.4. Accuracy measurement

An accuracy measurement procedure that is similar to the Modified
Point Count method [45] was utilized for evaluating the accuracy of the
proposed method. Song et al. also adopted a similar accuracy mea-
surement procedure in one of their previous research studies [7]. A 100
x 100 dot matrix was generated and appended to both the segmented
images and the raw concrete images. The pixels in the raw concrete
images that are corresponding to the appended dot-matrix were manu-
ally observed by an experienced petrographer. According to the obser-
vation, the dots in the dot matrix were labeled as air voids and non-air
voids. The dots in the dot matrixes that were appended to the segmented
images were also labeled by identifying the color of the corresponding
pixel in the segmented images. The dot that was appended to a white
pixel was labeled as air voids. The dot that was appended to a black pixel
was labeled as non-air voids. The labeling process for the segmented
images was done automatically using a program coded in Python.
Consequently, accuracy measurements including MIoU (Mean of Inter-
section over Union), P (precision), R (Recall), and F;, which can be
calculated by Equations 2-7, were utilized to evaluate the accuracy of
the segmentation results.

IoU _mw 2)
OU girvoids =
“ " TP+ FP + FN
TN
I non—air—voids — 7o | a7 | D
U ““INTFN 1 FP )

(© (d)
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(b)

Fig. 8. The air voids in original concrete surface image and surface normal image: (a) Original concrete surface image, (b) Mapped surface normal image.

500 um

I 500 um
!
(9]

Fig. 9. Air-void appearances and air-void like noises generated by components on concrete surfaces. (a) Air void 1, (b) Air void 2, (c) Air void 3, (d) Transparent
aggregate, (e) Cracks in aggregate, (f) Void in aggregate, (g) Drak aggregate.

1500 um
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Table 3

Training results of U-Net model using different augmentation strategies.
Augmentation Epochs  Learning Best Train Best Val
Strategy Rate MlIoU MlIoU
Augmentation 1 780 0.001 0.681 0.610
Augmentation 2 780 0.001 0.691 0.647
Augmentation 3 780 0.001 0.814 0.706

TP is the percentage of dots that are correctly segmented as air voids;
TN is the percentage of dots that are correctly segmented as non-air-
void; FP is the percentage of dots that are incorrectly segmented as air
voids; FN is the percentage of dots that are incorrectly segmented as non-
air-void.

5. Results and analysis
5.1. 3D reconstruction results of photometric stereo method

An example of the raw concrete surface and the mapped surface
normal image is shown in Fig. 8. Compared with the original concrete
surface image, the surface normal image increased the contrast in un-
even areas. The areas with a slant surface normal can be distinguished
by identifying the color changes on the surface normal map. The areas
with uniform pale green are the solid phase (aggregates and paste). The
round areas with large color variations in a circle are the air voids.

As shown in Fig. 8, the air voids in the mapped surface normal image
present a clear pattern and can be easily identified by naked eyes. Fig. 9
presents various appearances of air voids and air-void like noises on
concrete surface normal images. As shown in Fig. 9, the regions of some
dark or transparent aggregates also present a variation of color. The
photometric stereo method estimates the surface normal of a target
object by the intensity of reflected light. Under various lighting di-
rections, a slant surface presents a great intensity variation, while a flat
surface generates an identical surface intensity. The dark aggregates
were apt to produce specularities under a specific lighting angle and thus
lead to a biased slant surface normal estimation. For the transparent
aggregates, the lights are transmitted down to the bottom of the ag-
gregates and reflected by the paste. Biased slant surface normal esti-
mations were produced by the transparent aggregates. Consequently,
the photometric stereo method inaccurately estimates the normal in-
formation in the region within some transparent aggregates and dark
aggregates. The biased estimation generated air-void like appearances in
the surface normal map. The similarity made the automated identifi-
cation of air voids in hardened concrete a challenge. In addition, the air
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voids are not the only ‘hollows’ in concrete surfaces. The voids and
cracks in aggregates are another kind of ‘hollows’ in concrete surfaces
that can be mistaken as air voids.

The air voids with different sizes and depths presented different
appearances. Inside some deep air voids, a ‘flat region’ can be observed.
The ‘flat regions’ were caused by occlusions. The lights were blocked by
the edge of air voids and did not reach the bottom of the air voids. Thus,
the photometric stereo system failed to capture the information at the
bottom of the air voids. The system assumed those regions as a flat plane
because there was no intensity variation captured in the blocked re-
gions. On the other hand, in shallow air voids, the color variation was
too little and sometimes can be mistaken as non-air-void regions.
Therefore, even though the air voids were highlighted in the surface
normal image, the diversity of air-void appearances and various air-void
like noises made the air-void detection a tough work.

5.2. Evaluation of different Augmentation strategies

Table 3 presents the evaluation results of the U-Net model trained
with different image augmentation strategies. All 3 models were trained
for 780 epochs to ensure convergence. As shown in Table 3, the training
result of Augmentation 1 is almost the same as the evaluation result of
Augmentation 2. Whereas a 3.7% difference is observed between the
evaluation results of validation data. The comparison between
Augmentation 1 and Augmentation 2 indicates that the ‘constant’ fill
mode helps the U-Net model improve robustness. By comparing Aug-
mentations 1 and 2 to Augmentation 3, the U-Net model which was
trained with the images augmented with the strategy of Augmentation 3,
is significantly better than the other two U-Net models. It is worth noting
that the number of images generated by Augmentation 3 is 2/3 of the
total images generated by Augmentation 1 or Augmentation 2. A
reasonable explanation for the observation is that the shape informa-
tion, which is important for distinguishing of air voids, is well retained
in the training data using the strategy of Augmentation 3. Consequently,
the strategy of Augmentation 3 was used in the research.

5.3. Air-void segmentation results of U-Net model

The U-Net was trained using surface normal images and annotated
air-void masks. The model was trained for 780 epochs and the training
work took about 15 h to accomplish. The variations of MIoU and loss
during the training process were recorded in each epoch and presented
in Fig. 10.

The loss estimates the discrepancy of predicted results and labels,
and a lower loss indicates a better segmentation performance. The loss

0.80 | | .08
0.75 -
L 0.06

0.70 -

S —— Train MloU
w

3 . . Val MloU
=" L 0.04 ~ — Train loss

0.60 -

0.55 [ 0.02

0.50 J WA \LJM.LLLMLMJ.MN

o

Epoch

100 200 300 400 500

600 700 800

Fig. 10. The loss and MIoU curves of the U-Net model training.
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Fig. 11. Accuracy measurement of test samples with different thresholds: (a) 10U,y voidss (D) I0Unon-air voids, (¢) MIoU, (d) Air content, and (e) Spacing factor.

curve presents some fluctuations and shows a decreasing trend. The
variation trend of the loss curves slows down with the increase of the
number of epochs and becomes stabilized when the loss value ap-
proaches 0.005. The train_MIoU and val MIoU measure the similarity of
predicted results and labels for the training set and validation set,
respectively, and a higher MIoU indicates a better segmentation per-
formance. The MIoUs of the training dataset and validation dataset are
combining, and an increasing trend is found for both curves. The loss
curve reversely correlates with the MIoU curves. As shown in Fig. 10, the
decreasing trend of the loss curve stabilizes after 650 epochs, which
indicates that the model is converged.

The size of the input of the U-Net model was 256 pixels x 256 pixels
which was much smaller than the size of the raw concrete surface im-
ages. Consequently, the raw concrete surface images were cropped into
256 pixels x 256 pixels small pieces and fed into the trained U-Net, one

cropped image at a time to generate an output. After all the cropped
images were processed, the processed images were then stuck together
as the segmentation result of the raw concrete surface image. The U-Net
model computed on each pixel and output a 256 x 256 matrix. Each
value in the matrix was from O to 1, where 0 means the pixel was most
likely from the background (non-air-void) and 1 means the pixel was
most likely from the target object (air voids). Some raw output values
that are close to 0 are found inside of some air-void regions. To make a
binary air-void segmentation, the selection of a threshold between 0 and
1 is needed to classify a pixel as air void or non-air void. The accuracy
measurements of the test samples with different thresholds are pre-
sented in Fig. 11. As the threshold increases, the IoUs show slight
downward trends. Consequently, 0.1 was chosen as the threshold for
achieving the best MIoU. To evaluate the influence of the threshold to
air-void parameters, the estimated air-void parameters of each threshold
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Fig. 12. Random cropping using different cut sizes: (a) Air voids, (b) Aggregates.

were also calculated. As the concrete samples did not come with the
measured paste content, 27%, which is recommended as a good esti-
mation in FHWA petrographic manual, was used as the estimated paste
content [46]. The air-void parameters were measured using the Pro-
cedure B Modified Point-Count Method. As shown in Fig. 11(d) and 11
(e), it can be observed that the best-fit threshold for air content is 0.5 and
the best-fit threshold for spacing factor is 0.6. The results indicate that
the importance of the segmentation error in different locations is not the
same. By observing the segmentation results, it can be found that a lower
threshold helps to reduce the FN segmentation error inside of large air
voids, while a lower threshold increases the FP segmentation errors
which are mainly FP fine air voids. Most of the FP fine air voids are
caused by the misidentified fine aggregates. The discretely distributed
fine FP air voids have a significant impact on the measurement of air
content and spacing factor. It is worth to mention that even though a
lower threshold has a significant influence on FP fine air voids, but it
barely impacts the segmentation result of TP fine air voids. Conse-
quently, the correct segmentation of fine air-voids and aggregates is
highly important for the accurate measurement of air-void system.

As discussed previously, many air-void like noises can be generated
in surface normal images using photometric stereo methods. The trained
model correctly identified most of the biased regions and only a small
percent of the biased regions was incorrectly identified as air voids.
Some well-rounded fine aggregates can be false positively segmented as
air voids, while the percentage of those FP segmentations is not signif-
icant. In addition, most of the voids and cracks in aggregates were well
identified as non-air voids. However, some well-rounded voids in ag-
gregates were still incorrectly segmented as air voids. Also, some
missing air voids were observed in the segmentation result. Most of the
missing air voids were deep air voids. Those air voids generally could be
easily identified using naked eyes, but these kinds of air voids presented
a significantly different appearance in the surface normal map, which
caused interference to the correct air-void image segmentation. One of

the reasons that lead to the missing segmentation could be the quantity
of training data was not sufficient for the U-Net to learn the pattern of
tiny or shallow air voids. Another explanation could be the 256 pixels x
256 pixels sliced training images were not big enough to entirely contain
some large-size air voids. Consequently, the U-Net model failed to cap-
ture valid features to represent the large size air voids. As shown in
Figs. 12, 3 image sizes were selected to make a random cropping from an
image with a large air void and an image with a large aggregate. It can be
clearly observed that the air void and the aggregate can barely be
differentiated from the 256 pixels x 256 pixels cropped images. As the
image size becomes larger, the patterns of air voids and aggregates can
be identified more easily.

To furtherly quantify the observations of the segmentation results.
The accuracy measurements for the testing samples are presented in
Table 4. The testing samples were first scanned using the photometric
stereo system and the surface normal images were then mapped from the
estimated surface normal vectors. All the air-void segmentation results
were output by the trained U-Net512 model based on the surface normal
images. Equations 2-7 were adopted for calculating the accuracy
indices. As shown in Table 4, the average of the MIoU of five testing
samples is 0.884, which indicates that the proposed method could detect
the air voids in hardened concrete surface with a relative good accuracy.
The average FP is 0.009 and the average P is 0.990, which indicate that
the proposed method could differentiate the air voids from most of the
air-void like noises and only a small portion of air-void like noises was
incorrectly identified as air voids. The average FN is 0.115 and is almost
10 times as great as FP. In addition, R is 0.885 which is nearly 0.1 less
than P. Both FN and R indicate that the misidentification was the major
source of segmentation errors.

Consequently, the segmentation results of the concrete surface im-
ages using the U-Net model trained with different cropped image sizes
(256 x 256, 512 x 512, and 1024 x 1024) are presented in Table 5.
After various experiments, it can be observed that the image size has an

Table 4

Accuracy measurement for testing samples.
Specimen No. FP FN TP TN P R F, 10U void T0Uson air-void MIoU
1 0.007 0.121 0.879 0.993 0.992 0.879 0.932 0.873 0.886 0.880
2 0.004 0.027 0.973 0.996 0.996 0.973 0.984 0.969 0.970 0.969
3 0.019 0.113 0.887 0.981 0.979 0.887 0.931 0.871 0.882 0.876
4 0.006 0.159 0.841 0.994 0.993 0.841 0.911 0.836 0.858 0.847
5 0.007 0.154 0.846 0.993 0.991 0.846 0.913 0.840 0.860 0.850
Average 0.009 0.115 0.885 0.991 0.990 0.885 0.934 0.878 0.891 0.884

10



J. Tao et al.

Table 5
U-Net models trained with different image sizes.
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Model Image Size Augmentation Strategy Images for Training Batch Size Best Train MIoU Best Val MIoU
U-Net256 256 x 256 Augmentation 3 18,000 32 0.814 0.706
U-Net512 512 x 512 Augmentation 3 10,187 16 0.794 0.724
U-Net1024 1024 x 1024 Augmentation 3 1,906 4 0.825 0.707
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Fig. 13. Air-void segmentation results of test concrete samples using U-Net512: (a) Sample 1, (b) Sample 2, (c) Sample 3, (d) Sample 4, (e) Sample 5. The sequence of
each image in the subplot is raw hardened concrete image, raw segmentation result (raw output by the U-Net model), and binary segmentation result.
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Table 6

Accuracy measurement for testing samples using U-Net512.
Specimen No. FP FN TP TN P R F; IoUair void IoUnon air-void MIoU
1 0.008 0.115 0.885 0.992 0.991 0.885 0.935 0.878 0.890 0.884
2 0.003 0.014 0.986 0.997 0.997 0.986 0.991 0.983 0.983 0.983
3 0.019 0.092 0.908 0.981 0.980 0.908 0.943 0.892 0.899 0.895
4 0.006 0.073 0.927 0.994 0.994 0.927 0.959 0.922 0.927 0.924
5 0.006 0.115 0.885 0.994 0.993 0.885 0.936 0.879 0.891 0.885
Average 0.008 0.082 0.918 0.992 0.991 0.918 0.953 0.911 0.918 0.914

Table 7

Air-void Parameters Measured on U-Net512 results and Ground Truth using Point Count Method.

Air content (%)

Measurement value Error (%)

Specific surface (mm ™)
Measurement value

Spacing factor (mm)

Error (%) Measurement value Error (%)

1 U-Net512 1.64 6.49
Ground truth 1.54

2 U-Net512 1.63 11.64
Ground truth 1.46

3 U-Net512 4.08 2.77
Ground truth 3.97

4 U-Net512 1.6 11.11
Ground truth 1.44

5 U-Net512 1.32 7.32
Ground truth 1.23

Average error (%) 7.87

13.152 25.75 0.288 25.32
10.459 0.386
10.397 1.29 0.367 11.57
10.264 0.415
17.644 10.16 0.086 11.67
16.016 0.098
16.194 2.15 0.24 11.89
15.854 0.272
15.491 7.45 0.304 0.68
16.738 0.302

9.36 12.23

impact on the air-void segmentation performance. The U-Net512, which
was trained using 512 pixels x 512 pixels images, showed a slightly
better performance in generalization than the other two models. Even
though a higher train accuracy is observed for U-Net256, the U-Net512
performs better in validation data.

Fig. 13 shows the air-void segmentation results using U-Net512. In
the raw segmentation results, the output value of a purple pixel is close
to 0 and the output value of a yellow pixel is close to 1. The segmented
concrete images with the threshold of 0.1 are presented in the binary
segmentation results of Fig. 11. TP pixels are marked in white color, TN
pixels are marked in black color, FN pixels are marked in blue color, and
FP pixels are marked in red color. Compared with the segmentation
results using U-Net256, the large air voids can be identified more
completely. Also, some air-void like noises can be better differentiated
using U-Net512. The detailed accuracy measurements of U-Net512 are
estimated and presented in Table 6. As shown in Table 6, the average
MIoU is 0.914 and indicates that U-Net512 model was quite capable of
precisely distinguishing the air voids from the non-air-void regions.
Compared to the segmentation measurements of U-Net256, the average
MIoU of U-Net512 is 0.03 higher than the average MIoU of U-Net256.
Additionally, the U-Net512 significantly reduces the number of mis-
identified air voids. The FN is reduced by 0.03 and the R is increased by
0.03. While the U-Net512 does not show a significant impact on the FP
and P. Both FP and P are slightly increased by 0.001. The size of the
minimum air void that can be segmented by U-Net512 is around 22 pm
(4-pixel length). Table 7 presents the measurement of air-void param-
eters using U-Net512 results and ground truth. The air-void parameters
are measured using the Procedure B Modified Point-Count Method. 27%
is assumed as the measured paste content. As shown in Table 7, the
average measurement errors of air content, specific surface, and spacing
factor for the three hardened concrete specimens are 7.87%, 9.36% and
12.23%, respectively.

Compared with contrast-enhancement based method, the proposed
method also achieved a significant improvement in efficiency and
comparable accuracy. For a concrete surface image with a resolution of
7953*5304 pixels, the construction of the surface normal image of
concrete surface took 10 to 15 s to accomplish, and the segmentation of a
concrete surface normal image took 15 to 20 s to accomplish. The seg-
mentation time for air voids in hardened concrete is significantly
reduced to around half a minute.

12

6. Conclusions

This study investigated the potential of combining deep learning and
3D reconstruction techniques to detect air voids in hardened concrete
surfaces, extracted and processed from concrete pavement structures.
The proposed method can automatically detect the air voids in hardened
concrete surfaces without the use of contrast enhancement, which re-
duces the labor intensiveness and improves the time efficiency. The
research has achieved the following: 1) An air-void dataset, which
consists of a group of surface normal images and air-void annotations,
was developed for DCNN training. 2) The surface normal images of
concrete surfaces were captured using a 3D reconstruction method. In
the surface normal images, the air voids were automatically highlighted
by color variations without the use of contrast-enhancement method. 3)
A DCNN model was trained using the developed air-void dataset for air-
void detection. 4) A rigorous manual verification was conducted to
obtain a reliable reference for evaluating the segmentation accuracy
pixel-to-pixel. The research results have shown that:

(1) The 3D reconstruction method can capture depth variations and
automatically highlight the air voids in the hardened concrete
surface, while some transparent aggregates, dark aggregates, and
voids in aggregates are highlighted as well. Most of the air-void
like noises can be effectively identified using the proposed
method.

The appearance of air voids in surface normal images can vary.
Some deep air voids can generate a significantly different
appearance in the surface normal images, which could greatly
harm the segmentation results. Increase the number of training
data that contains deep air voids or refine the illumination angle
of the photometric stereo system can help improve the segmen-
tation results of deep air voids.

Shapes and gradient variations of air voids are two important
characteristics for air-void segmentation. Inappropriate
augmentation methods can change the appearances of air voids in
training data set and then cause a poor generalization. The se-
lection of image augmentation methods has a significant impact
on the air-void segmentation results.

The over 0.9 average MIoU of the DCNN segmentation indicates
that the DCNN has a good potential in extracting the features

(2)

3)

(€]
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from the surface normal images and making predictions at pixel
level. The U-Net model can correctly segment most of the air-void
regions. The mis-identified air voids are the key error resources.
The FP segmentation of some fine aggregates has the most sig-
nificant impact on the measurement of air-void system.
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