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Abstract. We present a novel reformulation of balanced truncation, a classical model reduction
method. The principal innovation that we introduce comes through the use of system response data
that has been either measured or computed, without reference to any prescribed realization of the
original model. Data are represented by sampled values of the transfer function or the impulse
response corresponding to the original model. We discuss parallels that our approach bears with the
Loewner framework, another popular data-driven method. We illustrate our approach numerically
in both continuous-time and discrete-time cases.
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1. Introduction. Model reduction here refers to system-theoretic techniques
used to create compactly represented reduced models that are capable of reproduc-
ing the input-output behavior of large-scale dynamical systems with high accuracy.
This is accomplished by encoding fine scale dynamical features of the original systems
efficiently into reduced dynamical systems, allowing them to closely mimic the in-
put/output behavior of the original system for a wide range of input conditions, while
having substantially lower order than the system whose behaviour they mimic. Such
reduced models should be cheap to simulate and easy to manipulate and control. We
refer the reader to [1, 2, 10, 47] for details on a variety of model reduction techniques.

Balanced truncation (BT) [38, 39] is one of the most successful and commonly
deployed model reduction methods. For linear dynamical systems such as those that
we consider in this paper, BT retains asymptotic stability of the original systems
and provides a priori bounds for the model reduction error. BT effectively discards
those states that are both difficult to reach and to observe, as quantified through
the relative magnitude of the system's Hankel singular values. Typically, the loss of
these states is expected to have little effect on the observed input-output dynamics
of the system, and the resulting reduced model may replace the original system in
simulations or analysis without much lost with regard to accuracy. Extensions of BT
to nonlinear systems have emerged over the years, starting with [51] and continuing
with more recent approaches tailored to particular classes of nonlinearities, such as
bilinear systems in [7], quadratic-bilinear systems in [8], and switched systems in [24].

The major computational cost of BT is the need to solve large-scale Lyapunov
equations in order to obtain the system Gramians, or better, their square-root factors.
Many methods have been proposed to accomplish this efficiently; see, e.g., [11, 34,
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DATA-DRIVEN BALANCED TRUNCATION A555

35, 43, 50, 53, 61] and references therein. All such methods make central use of
the system state-space representation and, in the context of BT, produce explicit
state-space projections that ultimately are engaged to generate a reduced model.
Thus, BT is ``intrusive"" to the extent that internal representations of the system
dynamics play a central role in determining a final reduced model. This is to be
contrasted with ``nonintrusive"" methods that are data-driven, requiring access only
to system response and behavior data, e.g., transfer function or impulse response
measurements.

In this paper, we develop a new, data-driven formulation for BT. We achieve this
by recognizing that BT does not make independent use of the two system Gramians,
which each depend on internal and hence generally inaccessible variables. BT rather
makes fundamental use of their product, which preserves system invariants that do not
depend on an underlying system realization. In the present work, we describe how this
product of Gramians can be approximated directly through transfer function sampling
to any accuracy desired. We explicitly derive reduced-order quantities using observed
response data and, as a consequence, arrive at a novel, nonintrusive formulation
of BT.

The rest of the paper is organized as follows: In section 2, we review the basic ele-
ments of BT and detail the usual steps involved for computing balanced reduced-order
models (ROMs). We introduce our main result in section 3, a data-driven approach to
BT, and discuss how one estimates key quantities through quadrature in the frequency
domain that, in turn, involves quantities that are extracted from data. In section
4, we include refinements that take into account symmetries implicit in real-valued
dynamics as well as extensions to MIMO, discrete-time, and infinite-dimensional sys-
tems. Even though our main focus is frequency-domain data, in section 5 we revisit
the problem using time-domain data instead and make connections to earlier works.
Conclusions are provided in section 6, while appendices elaborating on the quadra-
ture rules considered and detailing the proof of Proposition 3.2 are at the end of the
article. Numerical experiments and various illustrations are provided in sections 3, 4,
and 5.

2. Balanced truncation. Consider the linear time-invariant (LTI) system

E \.x(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(2.1)

where the input mapping is given by u : R \rightarrow Rm, the (generalized) state trajec-
tory/variable is x : R \rightarrow Rn, and the output mapping is y : R \rightarrow Rp. The system
matrices are given by E, A \in Rn\times n and B \in Rn\times m, C \in Rp\times n. Assume E is non-
singular and that the matrix pencil (A,E) is asymptotically stable, meaning that the
eigenvalues of (A,E) (or equivalently of E - 1A) are located in the open left half-plane.
The transfer function of the LTI system (2.1), defined as

(2.2) H(s) = C(sE - A) - 1B,

is a p\times m matrix-valued rational function in s.
The two fundamental quantities in BT are the reachability and observability

Gramians. The reachability Gramian P provides a measure of how easily a state
can be accessed from the zero state. In the time domain, P is given by

P =

\int \infty 

0

e\bfE 
 - 1\bfA tE - 1BBTE - T e\bfA 

T\bfE  - T tdt.(2.3)
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A556 I. V. GOSEA, S. GUGERCIN, AND C. BEATTIE

Taking \.\imath \imath 2 =  - 1, this can be represented equivalently in the frequency domain as

P =
1

2\pi 

\int \infty 

 - \infty 
(\.\imath \imath \zeta E - A) - 1BBT ( - \.\imath \imath \zeta ET  - AT ) - 1d\zeta .(2.4)

In a complementary way, the observability Gramian describes how easily a state
can be observed and may be represented as ETQE, where Q is defined as

Q =
1

2\pi 

\int \infty 

 - \infty 
( - \.\imath \imath \omega ET  - AT ) - 1CTC(\.\imath \imath \omega E - A) - 1d\omega .(2.5)

The Gramians P and Q satisfy the following generalized Lyapunov equations:

APET +EPAT +BBT = 0,(2.6)

ATQE+ETQA+CTC = 0.(2.7)

Although ETQE is the observability Gramian in this case, the Lyapunov equation
(2.7) for Q enjoys a fundamental structural similarity to (2.6), and so similar com-
putational algorithms are applicable (see, e.g., [11, 43, 57]). The solutions, P and Q,
to (2.6) and (2.7), respectively, are symmetric positive-semidefinite matrices, and one
may compute square factors L,U \in Rn\times n (e.g., via a Cholesky factorization) so that

(2.8) P = UUT and Q = LLT .

This provides the essential elements allowing us to define BT, which we summarize in
Algorithm 1. The singular values of LTEU (diagonal entries of diag(S1,S2) in (2.10))
are the Hankel singular values of the associated dynamical system, and these values
are system invariants that are independent of realization. BT truncates the states
that correspond to small Hankel singular values in S2. The rth-order reduced model
resulting from BT in Algorithm 1 is asymptotically stable, and its transfer function is

(2.9) Hr(s) = Cr(sEr  - Ar)
 - 1Br,

which satisfies \| H - Hr\| \scrH \infty \leq 2 trace(S2), where \| \cdot \| \scrH \infty denotes the \scrH \infty -norm of a
dynamical and where we assumed, for simplicity, that the Hankel singular values are
distinct. For details, we refer the reader to [1].

3. A data-driven framework for balancing. The main innovation that we
introduce centers on the observation that the key quantities LTEU, LTAU, LTB,
and CU, appearing in steps 1 and 3 of Algorithm 1, may be replaced by unitarily
equivalent quantities that are well approximated directly from data. ``Data"" in our
setting correspond to sampling of the transfer function H(s); we assume access to
the values of H(\.\imath \imath \^\omega ) at a finite number of frequencies \^\omega . (We consider time-domain
sampling in section 5.) Our choice of frequency sampling, \^\omega , will be associated with
numerical quadratures used to approximate (2.4) and (2.5). Further details are pro-
vided below and in Appendix A; however, we note here that some quadrature rules
also engage asymptotics of the integrand which in our setting may then require mea-
suring the leading two Markov parameters of H(s), i.e., the leading two coefficients
in the expansion of H(s) around s = \infty . For H(s) = C(sE - A) - 1B, M0 = CE - 1B
is the zeroth Markov parameter (the first coefficient) and M1 = CE - 1AE - 1B is the
first Markov parameter (the second expansion coefficient). These quantities can be
measured nonintrusively, as explained in, e.g., [31], with practical applications ranging
from vector network analyzers [32] to 3D laser vibrometers [62].
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Algorithm 1 Balanced truncation (BT) (square-root implementation)

Input: LTI system described by matrices E, A \in Rn\times n, B \in Rn\times m, and C \in Rp\times n.
Output: BT reduced-system: Ar \in Rr\times r,Br \in Rr\times m,Cr \in Rp\times r.

1: Compute the Lyapunov factors U,L \in Rn\times n from (2.8), and pick a truncation
index, 1 \leq r \leq min(rank(U), rank(L)).

2: Compute the SVD of the matrix LTEU, partitioned as follows:

(2.10) LTEU =
\bigl[ 
Z1 Z2

\bigr] \Biggl[ S1

S2

\Biggr] \Biggl[ 
YT

1

YT
2

\Biggr] 
,

where S1 \in Rr\times r and S2 \in R(n - r)\times (n - r).
3: Construct the model reduction bases

(2.11) Wr = LZ1S
 - 1/2
1 and Vr = UY1S

 - 1/2
1 .

4: The reduced-order system matrices are given by

(2.12)
\bfE r = \bfW T

r \bfE \bfV r = \bfI r \bfA r = \bfW T
r \bfA \bfV r = \bfS 

 - 1/2
1 \bfZ T

1 (\bfL T\bfA \bfU )\bfY 1\bfS 
 - 1/2
1 ,

\bfB r = \bfW T
r \bfB = \bfS 

 - 1/2
1 \bfZ T

1 (\bfL T\bfB ), \bfC r = \bfC \bfV r = (\bfC \bfU )\bfY 1\bfS 
 - 1/2
1 .

To simplify initial discussion, we consider first SISO systems, taking B = b and
C = cT , for b, c \in Rn and the associated (scalar-valued) transfer function, H(s).1

Generalization to MIMO systems is straightforward and discussed in section 4.2.

3.1. Computing key quantities from data. For large-scale dynamical sys-
tems, solving the Lyapunov equations (2.6) and (2.7) for the Gramians P and Q is
computationally demanding. Sophisticated strategies have been developed for solv-
ing these equations; see, e.g., [1, 5, 11, 34, 50, 53] and references therein. Using any
of these techniques, one may find low-rank approximations to U and L, and then
Algorithm 1 uses instead these approximate low-rank factors. These approximate
balancing approaches remain intrusive in the sense that they still will depend on ex-
plicit system realizations and model projection, i.e., U and L are approximated first,
followed by an explicit projection step. Our approach will sidestep this through di-
rect, nonintrusive, data-driven estimation of a quantity that is unitarily equivalent to
LTEU.

We consider first a numerical quadrature rule that approximates the frequency
integral defining P in (2.4), producing an approximate Gramian

P \approx \widetilde P =

\ell p\sum 
j=1

\rho 2j (\.\imath \imath \zeta jE - A) - 1bbT ( - \.\imath \imath \zeta jE
T  - AT ) - 1 + \rho 2\infty E - 1bbTE - T(3.1)

with \rho 2j and \zeta j denoting, respectively, quadrature weights and nodes. The last term
involving \rho \infty corresponds to a ``node at infinity"" and relates to the asymptotic decay
of the integrand in (2.4) in the neighborhood of \zeta = \infty . The presence of this term in

1We distinguish matrix- and vector-valued quantities from scalar-valued quantities with boldface;
hence H(s) for SISO vs. H(s) for the MIMO counterpart, and similarly for Markov parameters, M0

and M1 for SISO vs. M0 and M1 for the MIMO counterparts.
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A558 I. V. GOSEA, S. GUGERCIN, AND C. BEATTIE

(3.1) will depend on the choice of numerical quadrature; we investigate choices where
this term is present and others where it is absent. In either case, we label the total
number of quadrature points (including potentially a ``node at infinity"") as Np. If
the \rho \infty -term in (3.1) is absent, then \ell p = Np; otherwise, \ell p = Np  - 1. Picking a
distribution of quadrature nodes on the imaginary axis is natural in this context; we
focus on two standard exemplars derived from the trapezoid rule and Clenshaw--Curtis
quadrature and provide further details in Appendix A. Quadrature node distributions
can be chosen on different integration contours as well (e.g., [60]), and the approach
that we propose is equally applicable in these modified circumstances.

The balanced proper orthogonal decomposition (Balanced POD) approach of [61]
uses this type of approximation for P, employing the trapezoid rule as an underlying
numerical quadrature approximation. A modified version of Balanced POD based on
a time-domain quadrature applied to (2.3) was later proposed in [49] with an applica-
tion to fluid dynamics. As is the case with other approximate balancing techniques,
Balanced POD is intrusive in the sense that access to an explicit state-space realization
is required.

Approximate balancing techniques typically approximate the Lyapunov factors
U and L from (2.8), and to the extent that system response data may be utilized,
its use seeks to reconstruct evolving states of the system and so tacitly requires a
well-defined state-space realization. This contrasts significantly with the nonintrusive
data-driven approach that we propose below. While there are important common
themes that we adopt from Balanced POD, we do not require any knowledge of a
state-space realization; we do not sample state trajectories even implicitly, and we
have no need for direct approximation of the Lyapunov factors in (2.8).

Evidently, we may decompose the quadrature-based Gramian approximation as\widetilde P = \widetilde U\widetilde U\ast with a square-root factor \widetilde U \in Cn\times Np defined as

(3.2) \widetilde U =
\bigl[ 
\rho 1(\.\imath \imath \zeta 1E - A) - 1b \cdot \cdot \cdot \rho \ell p(\.\imath \imath \zeta \ell pE - A) - 1b \rho \infty E - 1b

\bigr] 
.

Note that both P and its quadrature approximation, \widetilde P, are real-valued matrices, yet
the explicit square-root factor, \widetilde U, is overtly complex and subsequent computation
engages complex floating point arithmetic. A reasonable concern that may arise at
this point is the potential loss of an underlying structural system symmetry, leaving
us possibly with a complex-valued reduced model as an artifact of rounding errors.
We address this concern in section 4.1 and show how the underlying system symmetry
associated with real dynamics may be explicitly preserved and implemented in real
arithmetic.

By applying a similar quadrature approximation to Q, we obtain

Q \approx \widetilde Q =

\ell q\sum 
k=1

\phi 2
k( - \.\imath \imath \omega kE

T  - AT ) - 1ccT (\.\imath \imath \omega kE - A) - 1 + \phi 2
\infty E - T ccTE - 1,(3.3)

where \phi 2
k and \omega k denote, respectively, quadrature weights and nodes associated with

approximatingQ from (2.5). The corresponding square-root factor is \widetilde Q = \widetilde L\widetilde L\ast , where

(3.4) \widetilde L\ast =

\left[     
\phi 1c

T (\.\imath \imath \omega 1E - A) - 1

...
\phi \ell qc

T (\.\imath \imath \omega \ell qE - A) - 1

\phi \infty cTE - 1

\right]     \in CNq\times n.D
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Let us suppose for the moment that the quadratures described in (3.1) and (3.3)
exactly recover the Gramians described in (2.4) and (2.5), respectively, so that

(3.5) UUT = \widetilde U\widetilde U\ast and LLT = \widetilde L\widetilde L\ast .

This, in turn, assures us of the existence of partial isometries, \Psi p \in CNp\times n and
\Psi q \in CNq\times n, such that

\widetilde U\ast = \Psi pU
T and \widetilde L\ast = \Psi qL

T .

Thus, \widetilde L\ast E\widetilde U = \Psi q(L
TEU)\Psi \ast 

p, and so \widetilde L\ast E\widetilde U is unitarily equivalent to LTEU, mod-

ulo its kernel and cokernel. More precisely, LTEU is isomorphic to a linear transfor-
mation induced by \widetilde L\ast E\widetilde U viewed as a mapping of the quotient space, CNp/Ker(\widetilde U),

onto Ran(\widetilde L\ast E\widetilde U). This is a significant observation since the singular values of LTEU
are the Hankel singular values of the system which are system invariants (i.e., indepen-
dent of system realization) and play a fundamental role in BT (see step 2 of Algorithm
1). Although LTEU itself is evidently tied closely to knowledge of a state-space re-

alization, the unitarily equivalent matrix, \widetilde L\ast E\widetilde U, will provide essentially equivalent
information while being directly derivable from data, as we will see.

Proposition 3.1. Let \widetilde U and \widetilde L be as defined in (3.2) and (3.4). Define the

matrix \widetilde L = \widetilde L\ast E\widetilde U \in CNq\times Np . Then, for 1 \leq k \leq Nq and 1 \leq j \leq Np,

(3.6) \widetilde Lk,j =

\left\{                 

 - \phi k\rho j
H(\.\imath \imath \omega k) - H(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
for 1 \leq k \leq \ell q, 1 \leq j \leq \ell p,

\phi k\rho \infty H(\.\imath \imath \omega k) for 1 \leq k \leq \ell q = Nq, j = Np = \ell p + 1,

\phi \infty \rho jH(\.\imath \imath \zeta j) for k = Nq = \ell q + 1, 1 \leq j \leq \ell p = Np,

\phi \infty \rho \infty M0 for k = Nq = \ell q + 1, j = Np = \ell p + 1.

Proof. Let ek denote the kth canonical vector (of conforming length). From the

definitions of \widetilde L and \widetilde U and for indices 1 \leq k \leq \ell q and 1 \leq j \leq \ell p, it follows that

\widetilde Lk,j = eTk
\widetilde Lej = (eTk

\widetilde L\ast )E( \widetilde Uej) = \phi k\rho jc
T (\.\imath \imath \omega kE - A) - 1 E (\.\imath \imath \zeta jE - A) - 1b

=
\phi k\rho j

\.\imath \imath \omega k  - \.\imath \imath \zeta j
cT (\.\imath \imath \omega kE - A) - 1 [(\.\imath \imath \omega kE - A) - (\.\imath \imath \zeta jE - A)] (\.\imath \imath \zeta jE - A) - 1b

=  - \phi k\rho j
\.\imath \imath \omega k  - \.\imath \imath \zeta j

cT
\bigl[ 
(\.\imath \imath \omega kE - A) - 1  - (\.\imath \imath \zeta jE - A) - 1

\bigr] 
b =  - \phi k\rho j

H(\.\imath \imath \omega k) - H(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
.

Next, if 1 \leq k \leq \ell q = Nq and j = Np = \ell p + 1, we can write that

\widetilde Lk,j = eTk
\widetilde Lej = (eTk

\widetilde L\ast )E( \widetilde Uej) = \phi kc
T (\.\imath \imath \omega kE - A) - 1 E \rho \infty E - 1b

= \phi k\rho \infty cT (\.\imath \imath \omega kE - A) - 1b = \phi k\rho \infty H(\.\imath \imath \omega k).

Similarly, we can derive \widetilde Lk,j for the case k = Nq = \ell q + 1 and 1 \leq j \leq \ell p = Np.
Finally, for k = Nq = \ell q + 1, j = Np = \ell p + 1, it follows that

\widetilde Lk,j = (eTk
\widetilde L\ast )E( \widetilde Uej) = \phi \infty cTE - 1 E \rho \infty E - 1b = \phi \infty \rho \infty cTE - 1b = \phi \infty \rho \infty M0,

which completes the proof.
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The observation that the quadrature-based approximate quantity \widetilde L = \widetilde L\ast E\widetilde Umay
be obtained solely from transfer function samples is consistent with it being a system
invariant, producing approximations to Hankel singular values that are also system
invariants and not dependent on any specific state-space realization. Note that \widetilde L has
at most rank n, i.e., the McMillan degree of the underlying system.

Of course, it will not be the case that the quadratures described in (3.1) and (3.3)
are exact, so before we proceed we seek some assurance that the error induced by the
quadrature approximation can be controlled. We have the following result.

Proposition 3.2. Suppose the quadratures in (3.1) and (3.3) produce approxi-

mations \widetilde P and \widetilde Q to P and Q, respectively, that satisfy \| Q  - \widetilde Q\| F \leq \delta 
1+\delta \sigma \sansm \sansi \sansn (Q)

and \| P - \widetilde P\| F \leq \delta 
1+\delta \sigma \sansm \sansi \sansn (P) for some \delta \in (0, 1), where \sigma \sansm \sansi \sansn ( \cdot ) denotes the smallest

singular value. Then there exist isometries \Psi p \in CNp\times n and \Psi q \in CNq\times n such that

(3.7) \| \widetilde L\ast E\widetilde U - \Psi q(L
TEU)\Psi \ast 

p\| F \leq 2 \delta \| E\| 2 \| L\| 2 \| U\| 2.

Let \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma n denote singular values of LTEU (i.e., Hankel singular values

of (2.1)), and let \widetilde \sigma 1 \geq \widetilde \sigma 2 \geq \cdot \cdot \cdot \geq \widetilde \sigma n denote the singular values of \widetilde L\ast E\widetilde U. Then,\Biggl( 
n\sum 

k=1

(\sigma k  - \widetilde \sigma k)
2

\Biggr) 1
2

\leq 2 \delta \| E\| 2 \| L\| 2 \| U\| 2.

The proof of this proposition may be found in Appendix B.
This leads us to consider a quadrature-based approximation to BT that uses \widetilde U

and \widetilde L in lieu of U and L in step 2 of Algorithm 1, replacing the SVD of LTEU
with the SVD of the (nearly) unitarily equivalent matrix, \widetilde L = \widetilde L\ast E\widetilde U, that can be
computed nonintrusively, generated essentially from transfer function measurements.

Recall the singular values of LTEU (the Hankel singular values) are independent
of system realization. Our nonintrusive, quadrature-based approach provides a new
way of accessing the Hankel singular values without recourse to a system realization.

3.1.1. Numerical example. We use the heat model [40] (referred to as [heat]
here), describing thermal response of a thin rod---the system is SISO with dimension
n = 200.

In Figure 3.1, we depict the true Hankel singular values together with the ap-
proximate ones obtained via the nonintrusive quadrature-based approach as described
above. We use two representative quadrature rules described in Appendix A, labeled

5 10 15 20 25 30 35 40 45 50

10
-15

10
-10

10
-5

Approx HSV ExpTrap

True HSV

5 10 15 20 25 30 35 40 45 50

10
-15

10
-10

10
-5

Approx HSV B/CC

True HSV

Fig. 3.1. The computed Hankel singular values (HSV) for the NICONET [\sansh \sanse \sansa \sanst ] model using
a trapezoid quadrature with 120 nodes in the interval [10 - 3, 103] \.\imath \imath (left) and using 120 nodes with

L = 4 and L = 3 in [\sansB /\sansC \sansC ] for \widetilde U and \widetilde L, respectively (right).
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as [\sansE \sansx \sansp \sansT \sansr \sansa \sansp ] and [\sansB /\sansC \sansC ]. As the figures illustrate, the quadrature-based estimates for
the Hankel singular values approximate the true values accurately.

3.2. Data-driven BT. Although BT yields reduced models in a manner that
reflects system invariants and in that sense is independent of system realizations,
BT typically does require explicit access to a state-space representation and thus,
in a practical sense, remains tied to system realizations. In particular, note that
in step 3 of Algorithm 1, model reduction bases Wr and Vr are constructed and
then used to project state-space quantities. Through our (implicit) use of quad-
rature approximations for the reachability and observability Gramians, we are able
to avoid any explicit reference to model reduction bases or to specific system real-
izations and to effect BT in a coordinate system determined solely by input-output
data.

Notice that in step 4 of Algorithm 1, we have Ar = S
 - 1/2
1 ZT

1 (LTAU)Y1S
 - 1/2
1 ,

and so the construction of Ar makes reference to both LTAU and the SVD of LTEU,
reflecting equivalent basis transformations on both A and E. Proposition 3.1 showed
how we can replace LTEU with the (nearly) unitarily equivalent matrix, \widetilde L = \widetilde L\ast E\widetilde U
(which could then be computed directly from data). So, we might expect that we
could construct a realization equivalent to Ar by replicating on A an equivalent
change of basis that had been visited upon E by \widetilde L = \widetilde L\ast E\widetilde U. Pleasantly, we will
find this to be the case by examining \widetilde M = \widetilde L\ast A\widetilde U. Similar observations hold for br

and cr.

Proposition 3.3. Let \widetilde U and \widetilde L be as defined in (3.2) and (3.4). Define the

matrix \widetilde M = \widetilde L\ast A\widetilde U \in CNq\times Np . Then, the (k, j) entry of \widetilde M, for 1 \leq k \leq Nq and
1 \leq j \leq Np, is given by

(3.8) \widetilde Mk,j =

\left\{                 

 - \phi k\rho j
\.\imath \imath \omega kH(\.\imath \imath \omega k) - \.\imath \imath \zeta jH(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
for 1 \leq k \leq \ell q, 1 \leq j \leq \ell p,

\phi k\rho \infty (\.\imath \imath \omega kH(\.\imath \imath \omega k) - M0) for 1 \leq k \leq \ell q = Nq, j = Np = \ell p + 1,

\phi \infty \rho j (\.\imath \imath \zeta jH(\.\imath \imath \zeta j) - M0) for k = Nq = \ell q + 1, 1 \leq j \leq \ell p = Np,

\phi \infty \rho \infty M1 for k = Nq = \ell q + 1, j = Np = \ell p + 1.

Likewise, defining \widetilde h = \widetilde L\ast b \in CNq\times 1 and \widetilde gT = cT \widetilde U \in C1\times Np , we find

\widetilde hk =

\Biggl\{ 
\phi kH(\.\imath \imath \omega k) for 1 \leq k \leq \ell q,

\phi \infty M0 for k = Nq = \ell q + 1,
(3.9)

\widetilde gj =

\Biggl\{ 
\rho jH(\.\imath \imath \zeta j) for 1 \leq j \leq Np,

\rho \infty M0 for j = Np = \ell p + 1.
(3.10)

Proof. The proof is similar to that of Proposition 3.1. Notice first that for any
square matrix, T, and any \varsigma , \mu \in C that are not eigenvalues of T, one may verify

\varsigma (\varsigma I - T) - 1  - \mu (\mu I - T) - 1 =  - (\varsigma  - \mu )(\varsigma I - T) - 1T(\mu I - T) - 1.

By setting T = AE - 1 and simplifying, one finds

\varsigma (\varsigma E - A) - 1  - \mu (\mu E - A) - 1 =  - (\varsigma  - \mu )(\varsigma E - A) - 1A(\mu E - A) - 1.D
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Now, using the definitions of \widetilde L and \widetilde U,\widetilde Mk,j = eTk
\widetilde Mej = (eTk

\widetilde L\ast )A( \widetilde Uej) = \phi k\rho jc
T (\.\imath \imath \omega kE - A) - 1A(\.\imath \imath \zeta jE - A) - 1b

=  - \phi k\rho j
\.\imath \imath \omega k  - \.\imath \imath \zeta j

cT
\bigl[ 
\.\imath \imath \omega k(\.\imath \imath \omega kE - A) - 1  - \.\imath \imath \zeta j(\.\imath \imath \zeta jE - A) - 1

\bigr] 
b

=  - \phi k\rho j
\.\imath \imath \omega kH(\.\imath \imath \omega k) - \.\imath \imath \zeta jH(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
.

Next, if 1 \leq k \leq \ell q = Nq and j = Np = \ell p + 1, we can write that

\widetilde Mk,j = eTk
\widetilde Mej = (eTk

\widetilde L\ast )A( \widetilde Uej) = \phi kc
T (\.\imath \imath \omega kE - A) - 1A\rho \infty E - 1b

= \phi k\rho \infty cT
\bigl[ 
\.\imath \imath \omega k(i\omega kE - A) - 1  - E - 1

\bigr] 
b = \phi k\rho \infty (\.\imath \imath \omega kH(\.\imath \imath \omega k) - M0) .

Similarly, we can find the exact derivation of \widetilde Lk,j in (3.8) for the case k = Nq =
\ell q + 1, 1 \leq j \leq \ell p = Np. Next, for k = Nq = \ell q + 1, j = Np = \ell p + 1, it follows that

\widetilde Mk,j = eTk
\widetilde Mej = (eTk

\widetilde L\ast )A( \widetilde Uej) = \phi \infty cTE - 1 A \rho \infty E - 1b

= \phi \infty \rho \infty cTE - 1AE - 1b = \phi \infty \rho \infty M1.

Finally, one can write

\widetilde hk = eTk
\widetilde h = (eTk

\widetilde L)b =

\Biggl\{ 
\phi kc

T (\.\imath \imath \omega kE - A) - 1b = \phi kH(\.\imath \imath \omega k) for 1 \leq k \leq \ell q,

\phi \infty cTE - 1b = \phi \infty M0 for k = Nq = \ell q + 1

and

\widetilde gj = \widetilde gT ej = cT (\widetilde Uej) =

\Biggl\{ 
\rho jc

T (\.\imath \imath \zeta jE - A) - 1b = \rho jH(\.\imath \imath \zeta j) for 1 \leq j \leq Np,

\rho \infty cTE - 1b = \rho \infty M0 for j = Np = \ell p + 1,

completing the proof.

We have been able to replace LTEU, LTAU, LTb, and cTU in Algorithm 1 with
equivalent quantities that are derivable directly from data (i.e., from transfer function
samples). We assemble this together in Algorithm 2, yielding a computationally
feasible strategy for quadrature-based balanced truncation (QuadBT), requiring only
transfer function sampling (i.e., no access to internal properties) and fully capable of
recovering models equivalent to BT reduced models to any accuracy desired.

Note the contrast in the construction of Ar in (2.12) with that of \widetilde Ar in (3.12).
The former computes the inner term LTAU and requires access to internal quantities
characterizing the dynamics; the latter approximates this term through \widetilde M and may be

constructed directly from transfer function samples. Indeed, the quantities \widetilde S - 1/2
1

\widetilde Z\ast 
1

and \widetilde Y1
\widetilde S - 1/2
1 are available from the SVD of the data matrix \widetilde L in (3.6).

Remark 3.1. In the analysis above, we have assumed that the quadrature nodes
\{ \zeta j\} for \widetilde P and \{ \omega k\} for \widetilde Q are distinct from each other. However, it may be more

convenient to choose the same quadrature nodes (and weights) for both \widetilde P and \widetilde Q.

This leads to only minor changes to Algorithm 2. The vectors \widetilde h in (3.9) and \widetilde g in

(3.10) stay unchanged. The principal change occurs in the diagonal entries of \widetilde L and\widetilde M: if \omega k = \zeta k, then the (k, k) entry of \widetilde L in (3.6) becomes

\widetilde Lk,k =  - \phi k\rho kH
\prime (\.\imath \imath \omega k),
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Algorithm 2 Quadrature-based (data-driven) balanced truncation (QuadBT)

Input: LTI system described through a transfer function evaluation map, H(s);
quadrature nodes, \zeta j , and weights, \rho j , for j = 1, 2, . . . , Np;
quadrature nodes, \omega k, and weights, \phi k, for k = 1, 2, . . . , Nq;
and a truncation index, 1 \leq r \leq min(Np, Nq).

Output: QuadBT reduced-system: \widetilde Ar \in Rr\times r, \widetilde br,\widetilde cr \in Rr.

1: Sample transfer function values, \{ H(\.\imath \imath \zeta j)\} 
Np

j=1 and \{ H(\.\imath \imath \omega k)\} 
Nq

k=1. Using the sam-

ples and quadrature weights, \{ \rho j\} and \{ \phi k\} , construct \widetilde L \in CNq\times Np , \widetilde M \in CNq\times Np ,\widetilde h, and \widetilde g as in (3.6), (3.8), (3.9), and (3.10), respectively,

2: Compute the SVD of \widetilde L:
(3.11) \widetilde L =

\Bigl[ \widetilde Z1
\widetilde Z2

\Bigr] \Biggl[ \widetilde S1 \widetilde S2

\Biggr] \Biggl[ \widetilde Y\ast 
1\widetilde Y\ast 
2

\Biggr] 
,

where \widetilde S1 \in Rr\times r and \widetilde S2 \in R(Nq - r)\times (Np - r).
3: Construct the reduced-order matrices:

(3.12)
\widetilde Er = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde L \widetilde Y1

\widetilde S - 1/2
1 = Ir, \widetilde Ar = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde M \widetilde Y1

\widetilde S - 1/2
1 ,\widetilde br = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde h, and \widetilde cr = \widetilde gT \widetilde Y1

\widetilde S - 1/2
1 .

where H \prime denotes the derivative of H. The (k, k) entry of \widetilde M in (3.8) is replaced by

\widetilde Mk,k =  - \phi k\rho k (\omega kH
\prime (\.\imath \imath \omega k) +H(\.\imath \imath \omega k)) .

The remaining entries in \widetilde L and \widetilde M are unchanged.

3.2.1. Numerical examples: The SISO case. In this section we will test the
approximation capability of our newly proposed method QuadBT and compare it with
that of classical BT. We employ the following abbreviations:

1. [BT-classic]: The classical BT approach (Algorithm 1).

2. [ExpTrap-N]: QuadBT (Algorithm 2) via the exponential trapezoid rule with N
points (without derivative samples); more details may be found in Appendix A.

3. [B/CC-N]: QuadBT (Algorithm 2) via the Boyd/Clenshaw--Curtis rule with N
points (without derivative samples); more details may be found in Appendix A.

We first consider the [heat] model from section 3.1.1. We use first 60 and then
120 logarithmically spaced points in the interval [10 - 3, 103] \.\imath \imath as nodes for [ExpTrap]

(the left and right nodes are different). In [B/CC], choose L = 4 and L = 3 for \widetilde U
and \widetilde L, respectively, using again first 60 and then 120 nodes. We vary the reduction
order from r = 2 to r = 14 in increments of two and collect both the \scrH \infty and the
\scrH 2 norms of the error systems H(s) - Hr(s) corresponding to [BT-classic] and both
quadrature schemes. The results are presented in Figure 3.2, illustrating that both
QuadBT models (with [ExpTrap-N] and [B/CC-N]) nearly replicate the performance of
[BT-classic].

As a second example, we use the International Space Station benchmark [40]
(referred to as [iss1r]) modeling the 1r component of the International Space Station---
the system dimension is n = 270; it has three inputs and three outputs. To enforce a
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Fig. 3.2. The relative \scrH \infty (left) and \scrH 2 (right) error approximation for different quadratures
and nodes applied to the NICONET [\sansh \sanse \sansa \sanst ] model.

5 10 15 20

10
-3

10
-2

10
-1

BT-classic

ExpTrap-200

B/CC-200

ExpTrap-400

B/CC-400

5 10 15 20

10
-2

10
-1

BT-classic

ExpTrap-200

B/CC-200

ExpTrap-400

B/CC-400

Fig. 3.3. The relative \scrH \infty (left) and \scrH 2 (right) error approximation for different quadratures
and nodes applied to the NICONET [\sansi \sanss \sanss \sansone \sansr ] model.

SISO system, we restrict our attention to the first input and first output. We choose
both 200 and 400 logarithmically spaced points in the interval [10 - 1, 102] \.\imath \imath as nodes
for the [ExpTrap] scheme (the left and right nodes are different). In [B/CC], we choose

L = 10 and L = 9 for \widetilde U and \widetilde L, respectively, and use both 200 and 400 nodes. We then
vary the reduction order in the interval [2, 24] (in increments of two) and collect both
the \scrH \infty and the \scrH 2 norms of the error systems corresponding to all three reduced
models. The results are presented in Figure 3.3. As in the [heat] case, these figures
show that transfer-function-based QuadBT very closely mimics (in many cases exactly
replicates) the \scrH \infty and \scrH 2 performance of the projection-based BT. In this example,
[B/CC] quadrature outperforms [ExpTrap].

For our last experiment, we purposefully reduce the accuracy of the underlying
quadrature by using only a third as many nodes as in the previous experiment while
keeping the same nodal configuration as before (i.e., 20 and 40 nodes, respectively,
that are logarithmically spaced in [10 - 3, 103] \.\imath \imath for [ExpTrap] and the same L-parameter
choices for [B/CC]). This leads to a slightly less accurate approximation of Hankel
singular values, as can be observed in the left part of Figure 3.4. Likewise, the
corresponding reduced models are slightly less accurate than those computed in the
first experiment; see the right part of Figure 3.4. This situation is somewhat analogous
to what is observed with approximate BT methods that approach the solution of the
Lyapunov equations (2.6)--(2.7) through explicit low-rank approximation of the related
square-root factors, (2.8). Such approaches, exemplified by low-rank ADI methods
(see, e.g., [11, 22, 35, 44]) produce errors in the low-rank factors that jointly contribute
to the error in LTEU in the first step of BT, in a way that is similar to what we
see when coarsening our quadrature rules. Although the behavior of these projection-
based low-rank ADI approaches is still not fully understood, there is overwhelming
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2 4 6 8 10 12 14 16 18 20
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Approx HSV ExpTrap-20

Approx HSV B/CC-20
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-2 BT-classic
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B/CC-20
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Fig. 3.4. The computed Hankel singular values (HSV) for the NICONET [\sansh \sanse \sansa \sanst ] model using

using 20 nodes with L = 4 and L = 3 in [\sansB /\sansC \sansC ] for \widetilde U and \widetilde L, respectively, and 20 nodes for [ExpTrap]
(left) and the relative \scrH \infty (right) error approximation for different quadratures and nodes applied
to the NICONET [\sansh \sanse \sansa \sanst ] model.

numerical evidence that projection-based approximate BT produced by such methods
works very well in practice. We anticipate that this favorable situation will be seen
in our current data-driven BT formulation, as well.

3.3. Connections to approximate BT methods. Due to its compelling the-
oretical properties, an immense amount of literature has developed around effective
methods for approximating BT for large-scale dynamical systems, often focusing on
efficient handling of the main computational bottleneck in BT, namely, the computa-
tion of Gramians, which requires the solution of two large-scale Lyapunov equations
(2.6)--(2.7). We list a small selection of these works here [11, 34, 35, 44, 53, 57]; further
references and detail can be found within these resources.

A common approach for approximate BT involves constructing low-rank approx-
imate factors to P and Q, i.e., P \approx \widehat U\widehat UT and Q \approx \widehat L\widehat LT , with rank( \widehat U) and rank(\widehat L)
much smaller than n. Then we use \widehat U and \widehat L in Algorithm 1 in place of the true square-
root factors U and L. Unfortunately, regardless of how \widehat U and \widehat L are computed, this
construction requires access to internal dynamics and state-space quantities. The
reduced model is then obtained by an explicit projection as in (2.12). This is funda-

mentally different from what we develop in this work; we do not compute \widehat U or \widehat L, and
we do not require access to state-space quantities. We only assume access to transfer
function samples. Despite these major contrasts, there are striking similarities that
motivate the underlying approximation theory.

The quadrature approximation (3.1) to P has been a major force behind the
frequency-domain version of Balanced POD [61]. Indeed, the Balanced POD approach
of [61] engages a numerical quadrature for the Gramians, P and Q, using unit quad-
rature weights, \rho j = 1 for j = 1, . . . , \ell p (3.1) and \phi k = 1 for j = 1, . . . , \ell q in (3.3), and
omitting the node at infinity in both cases. The approach of [61] was later referred
to as Poor Man's Truncated Balanced Reduction in [45]; however, the implemen-
tation there is restricted to symmetric systems. Significantly, Balanced POD is not
data-driven in the sense that we explore here, but rather it is both projection-based
and intrusive, requiring explicit access to a state-space representation. Nonetheless,
it is clear that one may immediately arrive at a transfer-function-based data-driven
formulation of Balanced POD by using the QuadBT framework developed here.

Along similar lines, Gauss--Kronrod quadrature was used to approximate Hankel
singular values in [12], but as with earlier methods, explicit state-space represen-
tations are still required. Similar quadrature strategies were later used in [18] to
extend BT to structure-preserving model reduction for integro-differential equations.
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In all these methods, frequency-domain quadrature to approximate Gramians can
be viewed as a common thread shared with our framework. Significantly, we avoid
explicit state-space projections by directly working with transfer function evaluations.

Evidently, numerical quadrature can also be applied to the time-domain represen-
tation of P as in (2.3), and this has also been considered as a strategy for approximate
BT; see, e.g., [13, 14, 28, 38, 41, 54]. We explore these connections in section 5 where
a time-domain formulation of this data-driven BT framework is considered.

ADI-type methods (see, e.g., [9, 11, 22, 35, 44, 53, 55]) are among the most

commonly used tools for producing approximate low-rank Gramian factors \widehat U and\widehat L. These methods are iterative in character and depend on shift parameters that
determine the speed of convergence. Even though the resulting low-rank factor \widehat U
will have a different structure than \widetilde U in (3.2), one may view either result as a low-
rank factor for frequency-domain Balanced POD. Both factors span the same (Krylov)
subspaces provided that the shift parameters are chosen to be the negative of the
quadrature nodes [5]. Significantly, low-rank ADI solutions have also been connected
to time-domain quadrature methods [13, 14], highlighting a powerful approximation-
theoretic core unifying the approaches. Our approach is distinct from other methods in
that it never constructs approximate solutions to P or Q nor attempts to approximate
low-rank factors. Our QuadBT reduced model is constructed directly from data.

3.4. Comparison with interpolatory Loewner model reduction. For the

sampling points \{ \mu k\} 
Nq

k=1 and \{ \lambda j\} 
Np

j=1, consider L \in CNq\times Np , M \in CNq\times Np , defined
elementwise as

Lk,j =  - H(\mu k) - H(\lambda j)

\mu k  - \lambda j
and Mk,j =  - \mu kH(\mu k) - \lambda jH(\lambda j)

\mu k  - \lambda j
(3.13)

for k = 1, 2, . . . , Nq and j = 1, 2, . . . , Np.

The matrices L and M in (3.13) are called, respectively, the Loewner and shifted-
Loewner matrices. Notice that L and M bear evident similarities to the key matrices\widetilde L in (3.6) and \widetilde M in (3.8) that are central to QuadBT. Indeed, assuming that the
node at infinity is absent from the quadrature rules in (3.1) and (3.3) and that the
quadrature nodes in QuadBT determine \mu k = \.\imath \imath \omega k for k = 1, 2, . . . , Nq and \lambda j = \.\imath \imath \zeta j
for j = 1, 2, . . . , Np in (3.13), the matrices \widetilde L in (3.6) and \widetilde M in (3.8) used in QuadBT
will be diagonal scalings of L and M:

\widetilde L = \sansd \sansi \sansa \sansg (\phi 1, . . . , \phi Nq )L \sansd \sansi \sansa \sansg (\rho 1, . . . , \rho Np) \mathrm{a}\mathrm{n}\mathrm{d} \widetilde M = \sansd \sansi \sansa \sansg (\phi 1, . . . , \phi Nq )M \sansd \sansi \sansa \sansg (\rho 1, . . . , \rho Np).

The matrices L and M of (3.13) were originally conceived to play a role in quite
a different model reduction scheme which we refer to as the interpolatory Loewner
model reduction framework. This model reduction framework was introduced in [37]
as a data-driven interpolation-based system identification and complexity reduction
technique. It has become a popular and powerful tool for model reduction over the
last decade and has been successfully extended to parametrized linear dynamical
systems [30], structured linearized systems [52], and bilinear [3] and quadratic-bilinear
systems [23] and has been formulated to work with time-domain data as well [42].

The principal feature of the interpolatory Loewner framework is the construction
of a rational interpolant matching the given sampled transfer function data. This pro-
vides immediately a realization of a reduced model that matches the system response
at specified driving frequencies (or equivalently, at specified complex interpolation
points). The quality of the final reduced model is strongly tied to the choice of in-
terpolation points and in the MIMO setting, also to the choice of tangent directions.

D
ow

nl
oa

de
d 

04
/2

3/
23

 to
 1

98
.8

2.
23

0.
35

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATA-DRIVEN BALANCED TRUNCATION A567

If some additional flexibility exists in where the system may be sampled, \scrH 2-optimal
reduced-order interpolants may be feasibly computed [6]. For a detailed account of
theoretical developments as well as implementation details for Loewner-based methods
relating especially to rational interpolation, we refer to [2, 4] and references therein.

Although our QuadBT framework makes use of matrices that are, at least in many
cases of interest, diagonally scaled Loewner and shifted Loewner matrices, rational
interpolation plays no role for us. Instead, we have observed that there are strong
links among (a) quadrature rules (3.1) and (3.3), (b) the (limiting) implicit Gramian
factorizations described in (3.5), and (c) the related Loewner/shifted Loewner factor-
izations. These links couple together the features developed in Propositions 3.1, 3.2,
and 3.3 and allow us ultimately to mimic BT in a purely data-driven manner.

3.4.1. Numerical examples. We use the [heat] and [iss1r] models from sec-
tions 3.1.1 and 3.2.1 as test cases. QuadBT is implemented using only the [ExpTrap]
quadrature.

We choose 120 logarithmically spaced points in the interval [10 - 3, 103] \.\imath \imath for the
[heat] model and 400 logarithmically spaced points in the interval [10 - 1, 102] \.\imath \imath for the
[iss1r] model. In the interpolatory Loewner framework, the singular values of L and/or
the augmented matrix [ L M ] play a fundamental role in determining reduction
order, analogous to Hankel singular values in BT; see [2, section 4.3]. Therefore,
in addition to the QuadBT quantities, we construct L and M corresponding to the
same transfer function samples and compute (i) the true Hankel singular values, (ii)
QuadBT-based Hankel singular values, and (iii) the singular values of L and [ L M ].
Results are depicted in Figure 3.5. While the Hankel singular values computed via
[ExpTrap] approximate the true ones fairly well, the singular values corresponding to
the Loewner method appear to follow the trend only up to a scaling factor. This
simple example shows the importance of the quadrature weights appearing in the
QuadBT framework.

Next, we consider the SISO version of the [iss1r] model and apply both QuadBT
with [ExpTrap] using 200 logarithmically spaced points in the interval [10 - 1, 102] \.\imath \imath and
the Loewner-based interpolation method. We vary the reduction order from r = 2 to
r = 24 and collect the \scrH \infty and the \scrH 2 norms of the error systems for both methods.
The results are presented in Figure 3.6 where the label [Loewner-200] refers to the
Loewner method with N = 200 points. Figure 3.6 shows that for the same transfer
function data, it pays off to use appropriate quadrature weights to perform QuadBT
as QuadBT outperforms the Loewner approach and mimics BT much more closely.

For the two quadrature rules that we consider here (described in Appendix A),
the quadrature nodes are closely related to spectral/pseudospectral approximations

5 10 15 20 25 30 35 40 45 50
10

-20

10
-10

10
0 Approx BT HSV

Loewner SVD

[ L M ] SVD

True HSV

10 20 30 40 50 60 70 80

10
-5

10
0

Approx BT HSV

Loewner SVD

[ L M ] SVD

True HSV

Fig. 3.5. The computed Hankel singular values (HSV) for the heat model (left) and the [\sansi \sanss \sanss \sansone \sansr ]
model (right).
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Fig. 3.6. Relative \scrH \infty (left) and \scrH 2 (right) approximation errors for different methods applied
to the [\sansi \sanss \sanss \sansone \sansr ] model.

of the integrand and so will also be effective for producing accurate interpolants for
interpolation-based methods including those that typify the Loewner model reduction
framework. Other choices for quadrature rules (e.g., Gauss rules) might not yield such
effective interpolants.

4. Refinements and extensions.

4.1. Keeping it real. The original system has been presumed to be real, insofar
as real-valued inputs and real-valued initial states assure real-valued outputs. This
guarantees in turn that a real realization involving matrices E, A \in Rn\times n, B \in 
Rn\times m,C \in Rp\times n is possible, though not necessarily explicitly available. Equivalently,
the associated system transfer function H(s) = C(sE  - A) - 1B displays a conjugate
symmetry of system poles and residues (i.e., complex poles and residues must occur
in conjugate pairs). If we utilize symmetric quadrature rules in the approximations
given in (3.1) and (3.3)---that is, if the sets of quadrature nodes and associated weights,

\{ (\zeta j , \rho j)\} 
Np

j=1 and \{ (\omega k, \phi k\} 
Nq

k=1, are symmetrically distributed on the real axis with
respect to 0---then we will be able to retain this conjugate symmetry, accomplish
computations equivalent to steps 2, 3, and 4 of QuadBT using only real arithmetic,
and be assured that the final reduced model will inherit the conjugate symmetry of
the original system, thus representing a reduced-order real dynamical system.

For simplicity, we focus on the SISO case and suppose that both node sets have
an even number of points that are symmetrically distributed across the real axis, say
Np = 2\nu p and Nq = 2\nu q. (More general settings are considered in [2, page 203]).
Relabel these node sets as

\zeta  - \nu p < \zeta  - \nu p+1 < \cdot \cdot \cdot < \zeta  - 1 < 0 < \zeta 1 < \cdot \cdot \cdot < \zeta \nu p - 1 < \zeta \nu p ,

\omega  - \nu q
< \omega  - \nu q+1 < \cdot \cdot \cdot < \omega  - 1 < 0 < \omega 1 < \cdot \cdot \cdot < \omega \nu q - 1 < \omega \nu q

,

noting that \zeta  - j =  - \zeta j and with corresponding weights, \rho  - j = \rho j , for j = 1, . . . , \nu p.
Similarly, we have \omega  - k =  - \omega k and \phi  - k = \phi k for k = 1, . . . , \nu q. The nodes/weights
are then reordered with respect to this \pm node pairing:

(4.1) \{ \zeta 1, \zeta  - 1, \zeta 2, \zeta  - 2, . . . , \zeta \nu p
, \zeta  - \nu p

\} and \{ \omega 1, \omega  - 1, \omega 2, \omega  - 2, . . . , \omega \nu q
, \omega  - \nu q

\} .

When the samples obtained in step 1 of QuadBT are reordered in the same way, they
appear now as a sequence of conjugate pairs:

\{ H(\.\imath \imath \zeta j), H(\.\imath \imath \zeta j)\} 
\nu p

j=1 and \{ H(\.\imath \imath \omega k), H(\.\imath \imath \omega k)\} 
\nu q

k=1.

Notice that one need only explicitly evaluate the first function of each pair.
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Now instead of (3.6), we reconsider the construction of \widetilde L taking into account

the new node ordering given in (4.1). With respect to this node ordering, \widetilde L can be

partitioned into 2\times 2 blocks, \widetilde L(2)
k,j , conforming to the conjugate pairing of quadrature

nodes in (4.1)---left data at (\.\imath \imath \omega k, - \.\imath \imath \omega k); right data at (\.\imath \imath \zeta j , - \.\imath \imath \zeta j):

\widetilde L(2)
k,j =  - \phi k\rho j

\left[   H(\.\imath \imath \omega k) - H(\.\imath \imath \zeta j)
\.\imath \imath \omega k - \.\imath \imath \zeta j

H(\.\imath \imath \omega k) - H(\.\imath \imath \zeta j)
\.\imath \imath \omega k - ( - \.\imath \imath \zeta j)

H(\.\imath \imath \omega k) - H(\.\imath \imath \zeta j)
( - \.\imath \imath \omega k) - \.\imath \imath \zeta j

H(\.\imath \imath \omega k) - H(\.\imath \imath \zeta j)
( - \.\imath \imath \omega k) - ( - \.\imath \imath \zeta j)

\right]   
for j = 1, . . . , \nu p and k = 1, . . . , \nu q. Note that each \widetilde L(2)

k,j satisfies a Sylvester equation:

\widetilde L(2)
k,j

\Biggl[ 
\.\imath \imath \omega k 0

0  - \.\imath \imath \omega k

\Biggr] 
 - 

\Biggl[ 
\.\imath \imath \zeta j 0

0  - \.\imath \imath \zeta j

\Biggr] \widetilde L(2)
k,j

= \phi k\rho j

\Biggl( \Biggl[ 
1

1

\Biggr] 
[H(\.\imath \imath \zeta j) H(\.\imath \imath \zeta j) ] - 

\Biggl[ 
H(\.\imath \imath \omega k)

H(\.\imath \imath \omega k)

\Biggr] 
[ 1 1 ]

\Biggr) 
.

This uniquely determines each \widetilde L(2)
k,j (and hence, \widetilde L) when the sets of quadrature nodes,

\{ \zeta j\} and \{ \omega k\} , are disjoint as we have assumed.\widetilde L is unitarily equivalent to a real matrix as we next demonstrate explicitly. Define

J = 1\surd 
2
[ 1  - \.\imath \imath 

1 \.\imath \imath ], and consider a unitary equivalence defined by

\widetilde LR = (I\nu q \otimes J \star ) \widetilde L (I\nu p \otimes J).

\widetilde LR can be partitioned into 2\times 2 blocks, conforming precisely to the earlier partitioning

of \widetilde L, and indeed one finds, for each block, \widetilde L(2)R
k,j = J \star \widetilde L(2)

k,jJ for j = 1, . . . , \nu p and

k = 1, . . . , \nu q. One may check directly that \widetilde L(2)R
k,j is real. Indeed, each block may be

determined uniquely from a corresponding (real) Sylvester equation:

\widetilde L(2)R
k,j

\Biggl[ 
0 \omega k

 - \omega k 0

\Biggr] 
 - 

\Biggl[ 
0 \zeta j

 - \zeta j 0

\Biggr] \widetilde L(2)R
k,j = 2\phi k\rho j

\Biggl[ 
\sansR \sanse (H(\.\imath \imath \zeta j) - H(\.\imath \imath \omega k)) \sansI \sansm (H(\.\imath \imath \zeta j))

\sansI \sansm (H(\.\imath \imath \omega k)) 0

\Biggr] 

for j = 1, . . . , \nu p and k = 1, . . . , \nu q. One may solve these Sylvester equations for \widetilde L(2)R
k,j ,

in real arithmetic, independently of one another in parallel.
Similar considerations may be applied to (3.8), (3.9), and (3.10), which define,

respectively, the complementary matrix \widetilde M, and vectors \widetilde h and \widetilde g. For \widetilde M, we find as
before, a unitarily equivalent real matrix:

\widetilde MR = (I\nu q \otimes J \star ) \widetilde M (I\nu p \otimes J),

which may be partitioned into submatrices, \widetilde M(2)R
k,j = J \star \widetilde M(2)

k,jJ, for j = 1, . . . , \nu p and

k = 1, . . . , \nu q, conforming to the partitioning for \widetilde LR. These submatrices are directly
computable from real Sylvester equations:

\widetilde M(2)R
k,j

\Biggl[ 
0 \omega k

 - \omega k 0

\Biggr] 
 - 

\Biggl[ 
0 \zeta j

 - \zeta j 0

\Biggr] \widetilde M(2)R
k,j

= 2\phi k\rho j

\Biggl[ 
Im (\omega k H(\.\imath \imath \omega k) - \zeta j H(\.\imath \imath \zeta j)) Re (\zeta j H(\.\imath \imath \zeta j))

Re (\omega k H(\.\imath \imath \omega k)) 0

\Biggr] D
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for j = 1, . . . , \nu p, k = 1, . . . , \nu q. For \widetilde h and \widetilde g, we may define corresponding real
vectors, \widetilde h(R)

= (I\nu q
\otimes J \star )\widetilde h and \widetilde g(R)T = \widetilde gT (I\nu p

\otimes J).

If we return to QuadBT (Algorithm 2) and replace \widetilde L, \widetilde M, \widetilde h, and \widetilde g with their real

counterparts derived above, \widetilde L(R), \widetilde M(R), \widetilde h(R)
, and \widetilde g(R), then the computations in

steps 3 and 4 may be done entirely in real arithmetic, and the final reduced model
defined in step 4 will be real, even in the presence of rounding errors.

4.2. MIMO systems. We have thus far presented an analysis framework spe-
cific to SISO dynamical systems; however, the MIMO case follows from this nearly
immediately; the only change occurs in the construction of \widetilde L, \widetilde M, \widetilde h and \widetilde cr and not
in Algorithm 2 itself. Specifically, assume that the underlying dynamical system has
m inputs and p outputs (e.g., as in (2.1)). In this case, the transfer function is a
matrix-valued rational function, and we will denote it by H(s) so that for any fre-
quency \^s \in C, we have H(\^s) \in Cp\times m. Therefore, assuming the same set-up as in

Proposition 3.1, in defining \widetilde L, we have

(4.2) \widetilde Lk,j =  - \phi k\rho j
H(\.\imath \imath \omega k) - H(\.\imath \imath \zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
\in Cp\times m

as the (k, j)th block of \widetilde L and therefore \widetilde L \in C(p\cdot Nq)\times (m\cdot Np). Similarly, in Proposition
3.3, we will have

(4.3) \widetilde Mk,j =  - \phi k\rho j
\.\imath \imath \omega kH(\.\imath \imath \omega k) - \.\imath \imath \zeta jH(i\zeta j)

\.\imath \imath \omega k  - \.\imath \imath \zeta j
\in Cp\times m

as the (k, j)th block of \widetilde M and thus \widetilde M \in C(p\cdot Nq)\times (m\cdot Np). Since we are dealing with

MIMO systems, we replace \widetilde h with \widetilde H = \widetilde L\ast B \in C(Nq\cdot p)\times m and \widetilde gT with \widetilde G = C\widetilde U \in 
Cp\times (Np\cdot m) with the kth row block of \widetilde H and jth columns block of \widetilde G given by

\widetilde Hk = \phi kH(\.\imath \imath \omega k) \in Cp\times m and \widetilde Gj = \rho jH(\.\imath \imath \zeta j) \in Cp\times m.

Then, Algorithm 2 simply proceeds with these new definitions.

4.2.1. Numerical example: The MIMO case. We examine performance
for the [iss1r] numerical test case, which has p = 3 outputs and m = 3 inputs.
Modifications specified above in section 4.2 are followed to adapt QuadBT to a MIMO
setting.

Choose both 200 and 400 logarithmically spaced points in the interval [10 - 1, 102] \.\imath \imath 
as nodes for [ExpTrap] (the left and right nodes are chosen to be distinct). For [B/CC],

choose L = 10 and L = 10.5 for \widetilde U and \widetilde L, respectively, using both 200 and 400 nodes.
We then vary the reduction order from r = 2 to r = 24 and compute the relative \scrH \infty 
and \scrH 2 errors, corresponding to both quadrature schemes. The results are presented
in Figure 4.1. As in the SISO case, QuadBT accurately mimics BT performance. In
this MIMO example, [B/CC] outperforms [ExpTrap].

4.3. Discrete-time systems. Consider a discrete-time dynamical system char-
acterized by the difference equations

(4.4)
Exk+1 = Axk +Buk,

yk = Cxk,
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Fig. 4.1. Relative \scrH \infty (left) and \scrH 2 (right) approximation errors for different quadrature
schemes ([\sansE \sansx \sansp \sansT \sansr \sansa \sansp ] vs. [\sansB /\sansC \sansC ]) and different numbers of nodes (200 vs. 400) for [\sansi \sanss \sanss \sansone \sansr ] MIMO
model.

where the input mapping is given by u : Z \rightarrow Rm, the state trajectory/variable is
x : Z \rightarrow Rn, and the output mapping is y : Z \rightarrow Rp. The system matrices, as in the
continuous case, are given by A,E \in Rn\times n and B \in Rn\times m, C \in Rp\times n. We assume
that the discrete system is asymptotically stable, i.e., the eigenvalues of the matrix
pencil (A,E) are located in the open unit disc.

The reachability Gramian P in the frequency domain is given by

P =
1

2\pi 

\int 2\pi 

0

(e\.\imath \imath \zeta E - A) - 1BBT (e - \.\imath \imath \zeta ET  - AT ) - 1d\zeta .(4.5)

Similarly, the observability Gramian can be represented as

Q =
1

2\pi 

\int 2\pi 

0

(e - \.\imath \imath \omega ET  - AT ) - 1CTC(e \.\imath \imath \omega E - A) - 1d\omega .(4.6)

P and Q satisfy the following Stein equations:

APAT +BBT = EPET , ATQA+CTC = ETQE.(4.7)

As in the continuous-time case, we employ a numerical quadrature rule to approximate
the the Gramian P defined in (4.5) to obtain the approximant

P \approx \widetilde P =

Np\sum 
j=1

\rho 2j (e
\.\imath \imath \omega jE - A) - 1BBT (e - \.\imath \imath \omega jET  - AT ) - 1(4.8)

with \rho 2j and \omega j \in [0, 2\pi ] denoting, respectively, quadrature weights and nodes.
We apply a similar quadrature approximation for Q and obtain

Q \approx \widetilde Q =

Nq\sum 
k=1

\phi 2
k(e

 - \.\imath \imath \zeta kET  - AT ) - 1CTC(e \.\imath \imath \zeta kE - A) - 1,(4.9)

where \phi 2
k and \zeta k \in [0, 2\pi ] denote, respectively, quadrature weights and nodes associ-

ated with approximating Q. The rest of the QuadBT formulation for discrete systems
follows immediately as in Algorithm 2. We omit those details here for brevity.

4.3.1. Numerical example: The discrete-time case. We analyze an nth-
order lowpass digital Butterworth filter with normalized cutoff frequency Wc, using
the parameter values n = 40 and Wc = 0.6. (A realization can be obtained in
MATLAB using the command butter.)
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Fig. 4.2. The relative \scrH \infty approximation error for different quadratures applied to the Butter-
worth digital filter model.

Choose both 150 and 300 linearly spaced points in the interval [0, 2\pi ) as the
\omega j 's and \zeta k's in (4.8) and (4.9), for [ExpTrap]. Here, the left and right nodes are
chosen to be the same. For the [B/CC] quadrature, the values of \omega j 's and \zeta k's are
chosen to be Chebyshev nodes instead, again both using 150 and 300 nodes. We vary
the reduction order from r = 2 to r = 40 and collect the relative \scrH \infty and \scrH 2 errors,
corresponding to both quadrature schemes and classical BT. The results are presented
in Figure 4.2. QuadBT via both [ExpTrap] and [B/CC] almost exactly replicates the
BT behavior, illustrating the success of our proposed method in the discrete-time
setting as well.

4.4. An infinite-dimensional example. We revisit a numerical example from
[6] describing the response of an infinite-dimensional linear system, in this case a
one-dimensional heat equation. The evolution of the temperature distribution on a

semi-infinite rod is characterized by the PDE \partial y
\partial t  - 

\partial 2y
\partial z2 = 0, where y(z, t) denotes the

temperature at position z and time t. The temperature is controlled at the location
z = 0, while the temperature at z = 1 is the quantity of interest. By enforcing
particular initial and boundary conditions as in [6], one may explicitly derive a transfer

function: H(s) = Y (1,s)
Y (0,s) = e - 

\surd 
s, describing the mapping from y(0, t) to y(1; t), where

Y (\cdot , s) denotes the Laplace transform of y(\cdot , t). BT can be approached within an
operator-theoretic framework using ideas found, for example, in [19, 48]. However,
we are able to bypass these subtleties, since the transfer function H(s) is immediately

available, as well as its derivative H \prime (s) =  - e - 
\surd 

s

2
\surd 
s
.

We directly apply QuadBT with [ExpTrap] using 50 logarithmically spaced points
in the interval [10 - 2, 101] \.\imath \imath . The results are displayed in Figure 4.3. In the left plot,
we show the approximation error, | H(\.\imath \imath \omega ) - Hr(\.\imath \imath \omega ) | , for r = 8, 12, 16, 20. In the right
side of Figure 4.3, we present the approximate Hankel singular values of the transfer
function H(s) = e - 

\surd 
s. Reduced models via QuadBT successfully approximate the

original transfer function without requiring a discretization of the underlying PDE.

Remark 4.1. The numerical quadratures that we employ in our experiments con-
verge exponentially fast with respect to the number of quadrature nodes used (see
Appendix A). Thus, one might not anticipate the need for a large number of quad-
rature nodes in order to ensure accuracy. Nonetheless, exponential convergence is
an asymptotic property that might not be readily observed in circumstances where
the spectral abscissa of A is close to 0 or if A is significantly nonnormal. In such
circumstances, the number of quadrature nodes that are required for accurate model
reduction may grow quite large, and the cost of QuadBT may become dominated by
the cost of the SVD of \widetilde L in (3.11). Indeed, with a large number, N , of quadrature
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Fig. 4.3. The approximation error for different reduction orders (left) and the approximated

Hankel singular values (HSV) (right) for H(s) = e - 
\surd 
s.

nodes Nq \approx Np \approx N , say, the cost of computing step 2 of Algorithm 2 in order
to extract an order r reduced model, will grow at least as \scrO (N2r), using standard
approaches. The computational burden of this step could be moderated potentially
by using randomized algorithms, e.g., randomized SVD approaches [26], and such

approaches may not require that \widetilde L be explicitly available as well.

5. Time-domain formulation. Thus far, we have developed ideas that are cen-
tral to QuadBT presuming access to frequency-domain data, i.e., data resulting from
transfer function sampling at selected points in the complex plane. This formulation
utilized a frequency-domain description of P and Q, expressed in (2.4) and (2.5).
In this section, we establish an analogous framework in the time domain, sampling
the system response at selected instants in time and then using a time-domain rep-
resentation of P and Q to derive a realization corresponding to an approximate BT.
There are elements in common with time-domain Balanced POD [49, 54, 61], which
uses time-domain state snapshots. We will show that, as in the frequency-domain
version, those implementations can be performed without access to state (internal)
data. In our presentation, we will adapt the notation from [49] to our formulation.
We will focus on the SISO case for simplicity. However, unlike in [49], we will in-
clude the E term in our formulation to keep the paper consistent with the earlier
frequency-domain framework of QuadBT.

5.1. Time-domain QuadBT for continuous-time systems. As illustrated
in [49, 54, 61], the Balanced POD approach can be applied in the time domain by
considering a numerical quadrature approximation to time domain definitions of the
Gramians, as given, e.g., in (2.3) for the reachability Gramian. We also note that
in the seminal paper [38] where BT was originally introduced, Moore had already
mentioned the potential of quadrature-based approximation to Gramians, thus mo-
tivating time-domain Balanced POD via empirical Gramians. We refer to the recent
work [29] for a comparative study on BT-related methods employing empirical Grami-
ans. Following on to themes developed here, we will illustrate that the time-domain
Balanced POD formulation can be fully implemented using only input/output data
and in particular, without access to state variables or internally characterized state
realizations.

Assume that the time-domain formula (2.3) for P is approximated via a numerical
quadrature on (0,\infty ):

\bfP =

\int \infty 

0

e\bfE 
 - 1\bfA t\bfE  - 1\bfb \bfb T\bfE  - T e\bfA 

T\bfE  - T tdt \approx 
Np\sum 
j=1

\rho 2je
\bfE  - 1\bfA tj\bfE  - 1\bfb \bfb T\bfE  - T e\bfA 

T\bfE  - T tj ,(5.1)
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where (\rho 2j , tj) for j = 1, . . . , Np denote quadrature weight/node pairs on (0,\infty ). Define

(5.2) \widetilde U =
\Bigl[ 
\rho 1e

\bfE  - 1\bfA t1E - 1b \cdot \cdot \cdot \rho Npe
\bfE  - 1\bfA tNpE - 1b

\Bigr] 
\in Rn\times Np .

Then, \widetilde P = \widetilde U\widetilde U\ast is an approximation to P with \widetilde U as the (approximate) square-root

factor. As pointed out in [49], the columns of \widetilde U without the quadrature weights can
be viewed as the snapshot data obtained from simulating the system

(5.3) E \.w = Aw with w(0) = E - 1b.

One may form a time-domain quadrature approximation to Q in a similar fashion:

\bfQ =

\int \infty 

0

e\bfE 
 - T\bfA T t\bfE  - T \bfc \bfc T\bfE  - 1e\bfA \bfE  - 1tdt \approx 

Nq\sum 
i=1

\phi 2
i e

\bfE  - T\bfA T \tau i\bfE  - T \bfc \bfc T\bfE  - 1e\bfA \bfE  - 1\tau i(5.4)

with (\phi 2
i , \tau j) for i = 1, . . . , Nq being quadrature weight/node pairs on (0,\infty ).

Evidently, the corresponding square-root factor is

(5.5) \widetilde LT =

\left[   \phi 1c
TE - 1e\bfA \bfE  - 1\tau 1

...

\phi Nqc
TE - 1e\bfA \bfE  - 1\tau Nq

\right]   \in RNq\times n,

so that \widetilde Q = \widetilde L\widetilde L\ast approximates Q. Similar to \widetilde U, the columns of \widetilde L without quadrature
weights can be viewed as the snapshot data from simulating the dual system given by

(5.6) ET \.z = AT z with z(0) = E - T c.

The square-root implementation of time-domain Balanced POD [49] proceeds by

using \widetilde U and \widetilde L in place of U and L in the square-root implementation of BT in
Algorithm 1. So far, this still reflects a realization-dependent implementation, i.e., we
require access to state-space representation. We will avoid this requirement below.

As we did with frequency-domain data, we inspect \widetilde L = \widetilde LTE\widetilde U \in RNq\times Np . Using
(5.2) and (5.5), the (i, j)th component of \widetilde L is obtained as

\widetilde Lij = \phi i\rho jc
TE - 1e\bfA \bfE  - 1\tau iEe\bfE 

 - 1\bfA tjE - 1b = \phi i\rho jh(\tau i + tj),(5.7)

where h : R \rightarrow R is the impulse response of the underlying dynamical system, as

(5.8) h(t) = cT e\bfE 
 - 1\bfA tE - 1b.

The last equality in (5.7) follows from the observation

(5.9)
\Bigl( 
E - 1e\bfA \bfE  - 1\tau i

\Bigr) 
Ee\bfE 

 - 1\bfA tj =
\Bigl( 
e\bfE 

 - 1\bfA \tau iE - 1
\Bigr) 
Ee\bfE 

 - 1\bfA tj = e\bfE 
 - 1\bfA (\tau i+tj),

which directly follows from inspection of the partial sums of the series expansion of
the parenthesized expression. Using similar ideas, one can also show that

(5.10) \widetilde h = \widetilde LTb =

\left[   \phi 1c
TE - 1e\bfA \bfE  - 1\tau 1b

...

\phi Nq
cTE - 1e\bfA \bfE  - 1\tau Nqb

\right]   =

\left[   \phi 1h(\tau 1)
...

\phi Nq
h(\tau Nq

)

\right]   D
ow

nl
oa

de
d 

04
/2

3/
23

 to
 1

98
.8

2.
23

0.
35

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATA-DRIVEN BALANCED TRUNCATION A575

and

\widetilde gT = cT \widetilde U =
\Bigl[ 
\rho 1c

T e\bfE 
 - 1\bfA t1E - 1b \cdot \cdot \cdot cT \rho Npe

\bfE  - 1\bfA tNpE - 1b
\Bigr] 

=
\bigl[ 
\rho 1h(t1) \cdot \cdot \cdot \rho Nph(tNp)

\bigr] 
.(5.11)

Now, let us consider the (i, j)th component of \widetilde M:

\widetilde Mij = \phi i\rho jc
TE - 1e\bfA \bfE  - 1\tau iAe\bfE 

 - 1\bfA tjE - 1b = \phi i\rho jh
\prime (\tau i + tj),(5.12)

where

(5.13) h\prime (t) =
d

dt
h(t) = cT e\bfE 

 - 1\bfA tE - 1AE - 1b.

As with the other quantities, \widetilde M can also be obtained from the impulse response
samples; yet in this case one will need to measure the derivative of h\prime (t).

We have just shown that Balanced POD can be obtained directly from sampling
the impulse response h(t) and its derivative h\prime (t) without access to state-snapshot
data. A time-domain version of QuadBT follows directly as given in Algorithm 3.

Algorithm 3 Time-domain QuadBT

Input: LTI system described through an impulse response evaluation map, h(t);
quadrature nodes, tj , and weights, \rho j , for j = 1, 2, . . . , Np;
quadrature nodes, \tau k, and weights, \phi k, for k = 1, 2, . . . , Nq;
and a truncation index, 1 \leq r \leq min(Np, Nq).

Output: Time-domain QuadBT reduced-system: \widetilde Ar \in Rr\times r, \widetilde br,\widetilde cr \in Rr.

1: Sample the impulse response \{ h(tj)\} 
Np

j=1 and \{ h(\tau k)\} 
Nq

k=1 and its derivative

\{ h\prime (tj)\} 
Np

j=1 and \{ h\prime (\tau k)\} 
Nq

k=1. Using the samples and quadrature weights, \{ \rho j\} 
and \{ \phi k\} , construct \widetilde L \in CNq\times Np , \widetilde M \in CNq\times Np , \widetilde h, and \widetilde g as in (5.7), (5.12),
(5.10), and (5.11), respectively,

2: Compute the SVD of \widetilde L:
(5.14) \widetilde L =

\Bigl[ \widetilde Z1
\widetilde Z2

\Bigr] \Biggl[ \widetilde S1 \widetilde S2

\Biggr] \Biggl[ \widetilde Y\ast 
1\widetilde Y\ast 
2

\Biggr] 
,

where \widetilde S1 \in Rr\times r and \widetilde S2 \in R(Nq - r)\times (Np - r).
3: Construct the reduced-order matrices:

(5.15)
\widetilde Er = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde L \widetilde Y1

\widetilde S - 1/2
1 = Ir, \widetilde Ar = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde M \widetilde Y1

\widetilde S - 1/2
1 ,\widetilde br = \widetilde S - 1/2

1
\widetilde Z\ast 
1
\widetilde h, and \widetilde cr = \widetilde gT \widetilde Y1

\widetilde S - 1/2
1 .

Remark 5.1. Opmeer in [41] established a connection between Balanced POD and
interpolatory model reduction when the state data from the simulations of (5.3) and
(5.6) are obtained via a numerical ODE solver such as forward and backward Euler
and other multistage implicit methods. In [14], Bertram and Fa{\ss}bender have further
expanded on this idea by giving explicit connections between the Butcher tableau of
the underlying Runge--Kutta method and the resulting interpolation points.
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Remark 5.2. We note that the impulse response measurements, h(ti) and h\prime (ti),
which are needed to construct the data matrices in (5.7), (5.10), (5.11), and (5.12),
are assumed to be available. In practical scenarios, one would need to rely on the
estimation of such values either from experimental data or from numerical simulation.
We refer to, e.g., [56] for various impulse response measurement approaches that are
in use for acoustical systems.

Remark 5.3. In related current work [46], impulse response sampling of h(t) and
h\prime (t) are employed to extend the eigenvalue realization algorithm [33] to continuous-
time dynamical systems.

5.2. Time-domain QuadBT for discrete-time systems. For the (SISO)
discrete-time dynamical system

Exk+1 = Axk + buk,

yk = cTxk,
(5.16)

the time-domain formulation simplifies drastically due to the uniform discrete time-
stepping. The reachability Gramian P for (5.16), in time domain, is given by

P =

\infty \sum 
k=0

(E - 1A)kE - 1bbTE - T (ATE - T )k.(5.17)

Time-domain Balanced POD for discrete-time systems [36] uses\widetilde U =
\bigl[ 
E - 1b (E - 1A)E - 1b \cdot \cdot \cdot (E - 1A)Np - 1E - 1b

\bigr] 
\in Rn\times Np

as an approximate square-root factor for P, i.e.,

P \approx \widetilde P = \widetilde U\widetilde UT =

Np - 1\sum 
k=0

(E - 1A)kE - 1bbTE - T (ATE - T )k.

One may follow the same development for Q. For (5.16), Q is given by

Q =
\infty \sum 
k=0

(E - TAT )kE - T ccTE - 1(AE - 1)k.(5.18)

Then, an approximate square-root factor for Q is

\widetilde LT =

\left[     
cTE - 1

cTE - 1(AE - 1)
...

cTE - 1(AE - 1)Nq - 1

\right]     \in RNq\times n

such that

Q \approx \widetilde Q = \widetilde L\widetilde LT =

Nq - 1\sum 
k=0

(E - TAT )kE - T ccTE - 1(AE - 1)k.

Note that these truncated sums are also the main tool in obtaining low-rank approxi-
mations to P and Q (see, e.g., [25, 44, 55]). Then, [36] observes that \widetilde L = \widetilde LTE\widetilde U can
be directly obtained from data: Direct computation shows that\widetilde Lij = cT (E - 1A)i+j - 2E - 1b.
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Thus in time-domain Balanced POD for discrete-time systems, \widetilde L is the Hankel matrix
of Markov parameters. Similarly, one may directly show that \widetilde M = \widetilde LTE\widetilde U is the
shifted Hankel matrix of Markov parameters, i.e.,\widetilde Mij = cT (E - 1A)i+j - 1E - 1b.

Likewise, \widetilde LTb and cT \widetilde U can be directly obtained from Markov parameters. In-
deed, [36] observed that for the special case of discrete-time dynamical systems, time-
domain Balanced POD can be obtained from input-output data using Markov parame-
ters. For discrete-time dynamical systems, the Markov parameters are samples of the
impulse response function h(k) = cT (E - 1A)kE - 1b for k = 0, 1, 2, . . .. (Note that [36]
also observed that this formulation of time-domain Balanced POD is equivalent to the
eigenvalue realization algorithm [33].) Our formulation in section 5.1 generalizes con-
cepts from [36] to continuous-time systems and unifies them under a larger umbrella
of impulse-response sampling; our framework in section 5.1 goes farther in removing
the requirement of access to state-space quantities.

6. Conclusion. We introduce here a novel reformulation of one of the most im-
portant system-theoretic model reduction tools in use today, balanced truncation. In
its usual formulation, this method requires intrusive access to the original system re-
alization. By contrast, our reformulation requires only system response data, either
measured or computed. The central theme driving our development involves approxi-
mation of Gramian-related quantities by means of convergent numerical quadratures,
permitting results as close as desired to those of classical BT. We demonstrate the
application of our approach to a multitude of test cases, for both SISO and MIMO
systems, and for both continuous-time and discrete-time systems. We outline time-
domain extensions, connecting our approach to existing methods as well as offering
promising future themes.

Appendix A: Two numerical quadrature rules. Our reformulation of BT
makes central use of numerical quadrature rules, and we choose two particular quad-
rature rules, the exponential trapezoid rule and a refinement of the Clenshaw--Curtis
quadrature rule developed by Boyd, to illustrate the approach. These strategies
are effective in approximating matrix-valued integrals which generically appear as\int \infty 
 - \infty F(\zeta )d\zeta , where we assume that, for \zeta \in R, the integrand F(\zeta ) is continuously

differentiable, F( - \zeta ) = F(\zeta )T , and lim\zeta \rightarrow \pm \infty \zeta 2F(\zeta ) = M = MT \in Rn\times n (so that,
in particular, \| F(\zeta )\| = \scrO ( 1

\zeta 2 ) as \zeta \rightarrow \pm \infty ). This assumed form covers the Gramian

integrals, (2.4) and (2.5). The quadrature rules that we describe below are typical
of possible choices though certainly there will be many other refined approaches that
one may consider (see especially [59]).

[ExpTrap]: The exponential trapezoid rule. Note first that\int \infty 

 - \infty 
\bfF (\zeta )d\zeta =

\int \infty 

0

\bfF (\zeta ) + \bfF (\zeta )T d\zeta = L

\int \infty 

 - \infty 
eL\tau 

\Bigl( 
\bfF (eL\tau ) + \bfF (eL\tau )T

\Bigr) 
d\tau =

\int \infty 

 - \infty 
\bfG (\tau ) d\tau ,

where G(\tau ) = LeL\tau 
\bigl( 
F(eL\tau ) + F(eL\tau )T

\bigr) 
; the first equality has used the symmetry

of F(\cdot ), and the second equality has introduced a change of variable for \zeta > 0 as
\zeta = eL\tau . For any h > 0 and t \in R,

\sum \infty 
k= - \infty G(t + khL), viewed as a function of t,

is well-defined, continuously differentiable, and hL-periodic. In particular, it has a
pointwise convergent Fourier series with (matrix-valued) coefficients:

\infty \sum 
k= - \infty 

G(t+ khL) =
2\pi 

hL

\infty \sum 
\ell =0

\widehat G\biggl( 2\pi \ell 

hL

\biggr) 
e \.\imath \imath 2\pi \ell 

hL t,

D
ow

nl
oa

de
d 

04
/2

3/
23

 to
 1

98
.8

2.
23

0.
35

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A578 I. V. GOSEA, S. GUGERCIN, AND C. BEATTIE

where \widehat G(\omega ) denotes the Fourier transform of G(t). Evaluating at t = 0, this expres-
sion may be rearranged to

hL
\infty \sum 

k= - \infty 

G(khL) - 
\int \infty 

 - \infty 
G(\tau ) d\tau = 2\pi 

\infty \sum 
\ell =1

\widehat G\biggl( 2\pi \ell 

hL

\biggr) 
or equivalently,

(A.1) hL
\infty \sum 

k= - \infty 

ekhL
\bigl( 
F(ekhL) + F(ekhL)T

\bigr) 
 - 
\int \infty 

 - \infty 
F(\zeta ) d\tau = 2\pi 

\infty \sum 
\ell =1

\widehat G\biggl( 2\pi \ell 

hL

\biggr) 
.

The right-hand side becomes exponentially close to zero as h \rightarrow 0. The first sum
on the left-hand side manifests the trapezoid rule, which becomes computationally
tractable with suitable truncation of the sum: say, \nu 0 \leq k \leq \nu 0 +\varpi . This leads to\int \infty 

 - \infty 
F(\zeta )d\zeta \approx hLe\nu 0hLF(0) + hLe\nu 0hL

\varpi \sum 
\ell =0

e\ell hL
\Bigl( 
F(e(\nu 0+\ell )hL) + F( - e(\nu 0+\ell )hL)

\Bigr) 
,

which includes a correction that weights the value of F at \zeta = 0 as well.
The right-hand side of (A.1) gives the discretization error if the sum on the left-

hand side were not truncated. This discretization error is on the order of e - 
2\pi a
hL as

h \rightarrow 0, where a \approx inf | \Re e(\lambda )| taken over all poles \lambda ofA (e.g., see [59, Theorem 5.2]). If
we assume for simplicity that the left-hand sum in (A.1) is truncated symmetrically
so that \nu 0 \approx  - \varpi 

2 and note that \| G(\tau )\| = \scrO (e - L| \tau | ) as \tau \rightarrow \pm \infty , then balancing
discretization error with truncation error will suggest that the optimal number of
quadrature nodes will grow proportionately with 1

h2 and the quadrature error will
then decrease exponentially fast as the number of quadrature nodes, \varpi , increases:
roughly as \scrO (e - \alpha 

\surd 
\varpi ) with \alpha \approx 

\surd 
\pi a.

[B/CC]: The Boyd/Clenshaw--Curtis rule. Boyd adapted the Clenshaw--Curtis quad-
rature rule to infinite integration domains in [17]. We summarize the application of
this rule to our setting. Starting with the change of variable \zeta = L cot(\tau ), we find

(A.2)

\int \infty 

 - \infty 
F(\zeta )d\zeta =

\int \pi 

0

F(L cot(\tau ))L

sin2(\tau )
d\tau .

The right-hand integrand is evidently \pi -periodic. With the asymptotics assumed for
F we have that limits exist for the right-hand integrand both at 0 and \pi and they are
real, symmetric, and equal:

lim
\tau \rightarrow 0

F(L cot(\tau ))L

sin2(\tau )
=
1

L
lim
\tau \rightarrow 0

(L cot(\tau ))
2
F(L cot(\tau )) =

1

L
lim
\zeta \rightarrow \infty 

\zeta 2F(\zeta ) =
1

L
M,

lim
\tau \rightarrow \pi 

F(L cot(\tau ))L

sin2(\tau )
=
1

L
lim
\tau \rightarrow \pi 

(L cot(\tau ))
2
F(L cot(\tau )) =

1

L
lim

\zeta \rightarrow  - \infty 
\zeta 2F(\zeta ) =

1

L
M.

The trapezoid rule for the right-hand integral in (A.2) is a compelling choice. Defining
h = \pi 

\varpi +1 for \varpi \in N, take equally spaced points \tau \ell = \ell h for \ell = 0, 1, . . . , \varpi + 1, giving

(A.3)

\int \infty 

 - \infty 
F(\zeta )d\zeta \approx 

\varpi \sum 
\ell =1

hL
F(L cot(\tau \ell ))

sin2(\tau \ell )
+

h

L
M =

\varpi \sum 
\ell =1

\rho 2\ell F(\omega \ell ) + \rho 2\infty M,
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DATA-DRIVEN BALANCED TRUNCATION A579

where \rho 2\ell = L\pi 
(\varpi +1) sin2(\tau \ell )

and \omega \ell = L cot(\tau \ell )) for \ell = 1, . . . , \varpi and \rho 2\infty = \pi 
L(\varpi +1) .

The last term in (A.3) is h
2 multiplying the combined evaluation of the periodicized

integrand at the endpoints, 0 and \pi , corresponding to the ``nodes at infinity"" for the
original integral. We note that a similar derivation was described in [20, section 3.3]
for the computation of the \scrH 2 norm for linear dynamical systems. We refer the reader
to [16] and [21] for details guiding the choice of L in practice.

Appendix B: Proof of Proposition 3.2. The hypotheses imply that

\| Q - \widetilde Q\| 2 < \sigma \sansm \sansi \sansn (Q) and \| P - \widetilde P\| 2 < \sigma \sansm \sansi \sansn (P).

We then use results from [58, Theorem 1.4] (see also [27, Theorem 10.8]) to build
isometries \Psi p \in CNp\times n and \Psi q \in CNq\times n and perturbations \Delta L, \Delta U \in Cn\times n such
that \widetilde U\ast = \Psi p(U+\Delta U)T and \widetilde L\ast = \Psi q(L+\Delta L)T .

Defining \varepsilon q = \| \bfQ  - \widetilde \bfQ \| F

\| \bfQ \| 2
and \varepsilon p = \| \bfP  - \widetilde \bfP \| F

\| \bfP \| 2
, the hypotheses ensure that both

cond(Q)\varepsilon q \leq \delta 

1 + \delta 
< 1 and cond(P)\varepsilon p \leq \delta 

1 + \delta 
< 1,

and then, referring again to [58, Theorem 1.4], we have further

\| \Delta \bfU \| F
\| \bfU \| 2

\leq 
\biggl( 

1\surd 
2

\biggr) 
\sansc \sanso \sansn \sansd (\bfP )\varepsilon p

1 - \sansc \sanso \sansn \sansd (\bfP )\varepsilon p
\leq \delta \surd 

2
\mathrm{a}\mathrm{n}\mathrm{d}

\| \Delta \bfL \| F
\| \bfL \| 2

\leq 
\biggl( 

1\surd 
2

\biggr) 
\sansc \sanso \sansn \sansd (\bfQ )\varepsilon q

1 - \sansc \sanso \sansn \sansd (\bfQ )\varepsilon q
\leq \delta \surd 

2
.

Now observe

\widetilde \bfL \ast \bfE \widetilde \bfU = \bfPsi q(\bfL +\Delta \bfL )T\bfE (\bfU +\Delta \bfU )\bfPsi T
p

=\bfPsi q(\bfL 
T\bfE \bfU )\bfPsi T

p +\bfPsi q (\Delta \bfL )T (\bfE \bfU )\bfPsi T
p +\bfPsi q(\bfL 

T\bfE )(\Delta \bfU )\bfPsi T
p +\bfPsi q (\Delta \bfL )T \bfE (\Delta \bfU )\bfPsi T

p

and as a result,

\| \widetilde L\ast E\widetilde U - \Psi q(L
TEU)\Psi T

p \| F \leq \| \Psi q \Delta LT (EU)\Psi T
p \| F +

\| \Psi q(L
TE)(\Delta U)\Psi T

p \| F + \| \Psi q (\Delta L)T E (\Delta U)\Psi T
p \| F

\leq \| \Delta L\| F \| EU\| 2 + \| LTE\| 2 \| \Delta U\| F + \| \Delta L\| F \| E\| 2\| \Delta U\| F

\leq \delta \surd 
2
\| L\| 2 \| EU\| 2 +

\delta \surd 
2
\| LTE\| 2 \| U\| 2 +

\biggl( 
\delta \surd 
2

\biggr) 2

\| L\| 2 \| E\| 2\| U\| 2

\leq 
\biggl( \surd 

2 \delta +
\delta 2

2

\biggr) 
\| L\| 2 \| E\| 2 \| U\| 2 < 2 \delta \| L\| 2 \| E\| 2 \| U\| 2,

where the last inequality takes into account that 0 < \delta < 1.
For the final assertion, we note that the singular values of \Psi q(L

TEU)\Psi \ast 
p are

\{ \sigma 1, \sigma 2, \cdot \cdot \cdot , \sigma n\} augmented with 0. A consequence of Lidskii's majorization theorem
(e.g., [15, Theorem III.4.4]) gives

n\sum 
k=1

(\widetilde \sigma k  - \sigma k)
2 \leq \| \widetilde L\ast E\widetilde U - \Psi q(L

TEU)\Psi \ast 
p\| 2F .

Then (3.7), the first assertion of Proposition 3.2, gives the conclusion. \blacksquare 
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