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A B S T R A C T

Dynamic mode decomposition (DMD) has emerged as a popular data-driven modeling approach
to identifying spatio-temporal coherent structures in dynamical systems, owing to its strong
relation with the Koopman operator. For dynamical systems with external forcing, the iden-
tified model should not only be suitable for a specific forcing function but should generally
approximate the input–output behavior of the underlying dynamics. A novel methodology for
modeling those classes of dynamical systems is proposed in the present work, using wavelets in
conjunction with the input–output dynamic mode decomposition (ioDMD). The wavelet-based
dynamic mode decomposition (WDMD) builds on the ioDMD framework without the restrictive
assumption of full state measurements. Our non-intrusive approach constructs numerical models
directly from trajectories of the full model’s inputs and outputs, without requiring the full-
model operators. These trajectories are generated by running a simulation of the full model
or observing the original dynamical systems’ response to inputs in an experimental framework.
Hence, the present methodology is applicable for dynamical systems whose internal state vector
measurements are not available. Instead, data from only a few output locations are only
accessible, as often the case in practice. The present methodology’s applicability is explained
by modeling the input–output response of an Euler–Bernoulli finite element beam model.
The WDMD provides a linear state-space representation of the dynamical system using the
response measurements and the corresponding input forcing functions. The developed state-
space model can then be used to simulate the beam’s response towards different types of forcing
functions. The method is further validated on a real (experimental) data set using modal analysis
on a simple free–free beam, demonstrating the efficacy of the proposed methodology as an
appropriate candidate for modeling practical dynamical systems despite having no access to
internal state measurements and treating the full model as a black-box.

1. Introduction

Over the last two decades, data-driven modeling has garnered interest in several research areas, particularly when the involved
ynamics are complex and models based on first principles present challenges of varying degrees see, e.g., [1–9] and the references
therein. Moreover, the advances in data processing and sensor capabilities made it much easier to map a system’s response to a
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variety of inputs. In structural dynamics, structures vary in different levels of complexity, and physics-based models may not always
be feasible [10–19]. To gain insight into the aforementioned class of dynamical systems and predict their behaviors in different
perational or loading conditions, it is beneficial to create models using the measured input–output response data.
There are numerous techniques in literature to create mathematical models using the measured input–output response data,

nd system identification (SID) techniques are at the forefront of such methods [20,21]. In particular, the field of subspace-based
ystem identification provides powerful tools for fitting a linear time-invariant (LTI) system to given input–output responses of the
easured system [22–24]. The eigensystem realization algorithm (ERA) [25] is one of the most widely used SID techniques. In
ts original form, the ERA technique uses discrete time–impulse response function to approximate a linear time-invariant model
f the original system. Starting with ERA, various versions have been proposed in the literature, replacing discrete time–impulse
esponses with various other output functions. For example: ERA-natural excitation technique (NeXT) [26,27] substitutes the impulse
response with the correlation matrix of the output sensor data, and ERA-observer Kalman filter identification (OKID) [28,29] uses
observer gain in place of impulse response functions. The stochastic subspace identification (SSI) is another popular technique
for modal identification of dynamical systems, by projecting the future response onto the previous input/output response [30–
32]. Furthermore, body of literature exists for modal identification of structural systems excited under earthquake ground motion
using various linear and nonlinear SID techniques [33–36]. However, for mechanical systems with multiple sensors and actuators
(MIMO), the SID and ERA techniques pose additional computational challenges. For example, ERA algorithm centers around a full
singular-value decomposition (SVD) of a structured Hankel matrix, whose size scales linearly with the input and output dimension.
Furthermore, in the case of systems with slowly decaying dynamics, large Hankel matrices are a possibility and handling them can
be a challenge; see, e.g., [37,38], for recent works to resolve these potential computational bottlenecks.

Of late, dynamic mode decomposition (DMD) has become a popular tool in data-driven modeling, owing to its ability to
decompose the high dimensional data into its coherent spatio-temporal structures [1,2,39–41]. DMD has its roots in the Koopman
theory [42], whose work was later revived by seminal works of Mezić et al. [39–41,43–46]. Optimized DMD [47] and sparsity
promoting DMD [48] transforms the approximation of the linear operator into an optimization problem with constraints in the
eigenvalues, modes, or mode amplitudes. Multi-resolution DMD [49] and higher-order DMD [50] provide a recursive way to
improve the frequency resolution and transient handling capability of the standard DMD. Kernel-based DMD [51] and Extended
DMD (EDMD) [52] provide a means to extend the framework towards nonlinear systems by creating meaningful observables.
Proctor et al. [53] developed a variant of DMD known as DMD with controls (DMDc) to incorporate the input signals into the
DMD framework. Benner et al. [43] developed an extension of DMDc, known as input–output DMD (ioDMD), by providing means
to incorporate outputs alongside inputs and states. The ioDMD and DMDc algorithm provide an elegant way to extend the standard
DMD to include the effects of external forcing functions. Overall, the fundamental strength of DMD stems from its deep connection
to the Koopman spectral theory [1,2,39,42], which provides the theoretical foundation and justification for applying DMD on
linear [40,50,54–56] and nonlinear dynamics [51,57,58] . The flexibility in the choice of observables has allowed various extensions
we mentioned above tailored to domain specific applications at hand [2,3,59].

By definition, DMD can extract spatially coherent structures and temporal pattern from data, which corresponds to modal
properties such as mode shapes, natural frequencies and damping ratios, in vibrating structures. However to our knowledge it has
not been widely employed in the field of structural dynamics. This gap in the literature is partly attributed to the strong dominance
of principal component decomposition (POD) [60,61] and subspace-based SID techniques [31,62] among structural dynamics
researchers and also to the requirement of high dimensional data (full state measurements) for DMD [2]. The requirement of full
state measurements for the DMD is somewhat restrictive, limiting the methodology’s application in fields with high dimensional
data. In practice, for mechanical systems, responses can only be measured at specific strategic locations owing to limitations in the
acquisition hardware, and internal full model operators are seldom available. Sparse system identification techniques such as blind
source separation [34,35,63,64], sparse component analysis [65,66], empirical mode decomposition [67–69] and synchro-squeezed
transform [70,71] have been effectively applied for modal identification of dynamical systems with limited measurements, in the
context of structural health monitoring. However, incorporating these techniques in the framework of DMD is challenging and
hence, researchers have taken inspiration from Taken’s embedding theory [72] and proposed applying the DMD procedure on time-
shifted coordinates [40,50,54–56]. These methods require accurate tuning of the time delays (or hyper-parameters), which is often
problem-specific, and noise in the observed data may lead to erroneous results [40,73]. Recent works have proposed techniques to
address these problems and the interested reader is referred to, e.g., [39,56,74,75] and the references therein for more details.

In the present study, for systems with a limited number of measurements a novel data-driven methodology called Wavelet-
based Dynamic mode Decomposition (WDMD) is proposed. The proposed methodology builds on ioDMD and utilizes the wavelet
decomposition of measured responses as observables, thereby enlarging the state dimensions. In other words, wavelet coefficients of
the measured outputs serve as the pseudo-states of the dynamical system, and the DMD framework approximates a linear operator
that advances the pseudo-states by a time step. The present approach can be thought of as a particular case of EDMD with a special
choice of the observables. Hence, the present methodology can be applied to model dynamical systems such as a vibrating mechanical
system, whose internal state vectors are not readily available, and only data from a few output locations are accessible, which is
often the case in practice.

In the present context, data-driven modeling creates numerical models for capturing the input–output characteristics of the
underlying structure. The advantage with such models is that it relies completely on measured responses, thereby circumventing
the need for the knowledge of any underlying governing dynamics of the structure. In this paper, the data corresponds to time-
domain samples of the input–output trajectories, and modeling equates to the best fit linear operator that advances the system
2

states by a time step. In this paper, the data is fixed, only some outputs are observed and one cannot go back to re-query the
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dynamics. The authors refer the reader to [74,76], which deals with the partial state observation where it is possible to re-query
the system dynamics at each stage. For data-driven techniques that uses frequency domain samples, the authors refer the reader
to [7,8,17,18,77–79] and the references therein.

The major contributions of this papers are as follows: First, a new data-driven modeling methodology (WDMD) is proposed that
tilizes only the input–output trajectories of the system. To the authors’ best knowledge, extending ioDMD’s applicability through
he use of wavelets has not yet been explored. The proposed methodology provides at least the same and in many cases better quality
f the fit using only input–output trajectories, compared with the baseline approach, which has access to full state information. In
ddition, our present work provides a means to apply the DMD algorithm towards modal analysis and structural vibration of a
echanical system. Finally, these numerical results are complemented with experimental tests on a free–free aluminum cantilever
eam, in which WDMD methodology is utilized to develop data-driven models from (noisy) real data.
The paper is structured as follows. First, a brief description of DMD, ioDMD, and EDMD are presented in Section 2. In Section 3,

our work’s major contribution, WDMD, is derived. The proposed methodology is demonstrated on data from a simulated finite
element model of a cantilever beam in Section 4. In Section 5, experimental case studies are carried out on a free–free beam to
emonstrate the efficiency and robustness of the WDMD in approximating practical mechanical systems. Conclusions and potential
uture directions are given in Section 6.

. Background

.1. Dynamic mode decomposition

In this section, a brief introduction to the classical dynamic mode decomposition (DMD) framework is provided. For details, we
efer the reader to [1,3,80] and the references therein. Consider the system of time-invariant ordinary differential equations of the
orm

𝐱̇(𝑡) = 𝑓 (𝐱(𝑡)), (1)

here 𝑥(𝑡) ∈ ℜ𝑁 is the state vector and 𝑓 ∶ ℜ𝑁 → ℜ𝑁 is a nonlinear map. Given the sampling times 𝑡0, 𝑡1,… , 𝑡𝐾 (equally distanced),
et {𝐱(𝑡0), 𝐱(𝑡1), … , 𝐱(𝑡𝐾 )} denote the samples of the state 𝐱(𝑡) of dynamical system Eq. (1). For this data, define two snapshot
atrices 𝐗0 and 𝐗1 as

𝐗0 =
[

𝐱(𝑡0) 𝐱(𝑡1) ⋯ 𝐱(𝑡𝐾−1)
]

∈ ℜ𝑁×𝐾 and 𝐗1 =
[

𝐱(𝑡1) 𝐱(𝑡2) ⋯ 𝐱(𝑡𝐾 )
]

∈ ℜ𝑁×𝐾 , (2)

here 𝐗0 denotes the snapshot matrix from 𝑡0 to 𝑡𝐾−1 and 𝐗1 ∈ ℜ𝑁×𝐾−1 from 𝑡1 to 𝑡𝐾 , which advances the 𝐗0 matrix by one time
step. The most fundamental form of DMD aims to explain the snapshot data with a linear dynamical system of the form,

𝐱(𝑡𝑘+1) ≈ 𝐀𝐱(𝑡𝑘), for 𝑘 = 0, 1, 2,… , 𝐾 − 1, where 𝐀 ∈ ℜ𝑁×𝑁 . (3)

In terms of 𝐗0 and 𝐗1, the approximation in Eq. (3) can be written in the matrix form as

𝐗1 ≈ 𝐀𝐗0. (4)

The DMD algorithm finds the best-fit solution 𝐀, one that minimizes the least-squares distance in the Frobenius norm, i.e.,

𝐀 = argmin
𝐀̂∈R𝑁×𝑁

‖

‖

‖

𝐗1 − 𝐀̂𝐗0
‖

‖

‖𝐹
. (5)

The optimal solution 𝐀 in Eq. (5) is given by

𝐀 = 𝐗1𝐗0
†, (6)

here 𝐗0
† ∈ ℜ𝐾×𝑁 denotes the Moore–Penrose inverse of 𝐗0 ∈ ℜ𝑁×𝐾 . The practical issues in computing the 𝐀 matrix involves

lgebraic assumptions and singular value decomposition of the 𝐗0 matrix, which are skipped here for brevity. Interested readers
re directed to [3,80–83] for more rigorous discussion on practical algorithms and computational considerations.

.2. input–output Dynamic mode decomposition (ioDMD)

The DMD method as described in the previous section can only be used for systems that evolve on their own, with no external
nput and for which all states are assumed to be measured. However, dynamical systems in practice have external inputs and the
orm as represented by Eq. (3) will not be sufficient to explain the dynamics [84]. This lead to the development of DMD with
ontrols (DMDc) [53] by including measurements of a control input 𝐮(𝑡). The input–output DMD is a further extension of the DMDc
y incorporating the observed outputs [43,85]. The ioDMD framework constructs a reduced-order model directly from the observed
nput–output data and the full state vector 𝐱(𝑡). The ioDMD framework models the dynamical systems of the form

𝐱̇(𝑡) = 𝑓 (𝐱(𝑡),𝐮(𝑡)),
𝐲(𝑡) = 𝑔(𝐱(𝑡),𝐮(𝑡)),

(7)

here 𝐮(𝑡) ∈ ℜ𝑚 denotes the inputs driving the system and 𝐲(𝑡) ∈ ℜ𝑑 is the measured output.
3



Mechanical Systems and Signal Processing 187 (2023) 109919M. Krishnan et al.
The ioDMD method approximates the evolution of Eq. (7) with a linear dynamical system of the form

𝐱(𝑡𝑘+1) ≈ 𝐀𝐱(𝑡𝑘) + 𝐁𝐮(𝑡𝑘),
𝐲(𝑡𝑘) ≈ 𝐂𝐱(𝑡𝑘) + 𝐃𝐮(𝑡𝑘),

(8)

where 𝐀 ∈ ℜ𝑁×𝑁 ,𝐁 ∈ ℜ𝑁×𝑚,𝐂 ∈ ℜ𝑑×𝑁 ,𝐃 ∈ ℜ𝑑×𝑚. In addition to the state snapshots 𝐗0 and 𝐗1 in Eq. (2), define the input and
output snapshot matrices as

𝐔𝟎 =
[

𝐮(𝑡0) 𝐮(𝑡1) ... 𝐮(𝑡𝐾−1)
]

∈ ℜ𝑚×𝐾 and 𝐘0 =
[

𝐲(𝑡0) 𝐲(𝑡1) ... 𝐲(𝑡𝐾−1)
]

∈ ℜ𝑑×𝐾 . (9)

This would entail writing Eq. (8) in terms of its matrix counterpart as
[

𝐗1
𝐘𝟎

]

≈
[

𝐀 𝐁
𝐂 𝐃

] [

𝐗𝟎
𝐔𝟎

]

. (10)

Let

𝜰 =
[

𝐀 𝐁
𝐂 𝐃

]

∈ ℜ(𝑁+𝑑)×(𝑁+𝑚) (11)

denote the optimal solution to Eq. (10). Similar to the original DMD framework, the ioDMD method finds the optimal solution 𝜰
by solving a least-squares problem, namely

𝜰 = argmin
𝜰̂∈ℜ(𝑁+𝑑)×(𝑁+𝑚)

‖

‖

‖

‖

‖

[

𝐗𝟏
𝐘𝟎

]

− 𝜰̂
[

𝐗𝟎
𝐔𝟎

]

‖

‖

‖

‖

‖F
. (12)

The optimal 𝜰 in ioDMD is given by

𝜰 =
[

𝐀 𝐁
𝐂 𝐃

]

=
[

𝐗𝟏
𝐘𝟎

] [

𝐗𝟎
𝐔𝟎

]†

. (13)

Practical issues that arise in computing Eq. (6) arise here as well. Computing the pseudo-inverse in Eq. (13) often involves inverting
small non-zero singular values, thereby leading to numerical instabilities. Therefore, in practice, singular values below a relative
tolerance 𝛽 ∈ ℜ+ are truncated during the pseudo-inverse computation or other regularization techniques could be employed. One
can also perform model reduction on the state snapshot matrix 𝐗 to further reduce the state-space dimension of the output linear
dynamical system. This is carried out by performing an additional SVD-based projection step before solving the least squares problem
in Eq. (12). We refer the reader to [3,43] for details.

2.3. Extended DMD and the Koopman operator

Koopman theory [42] has received considerable attention recently due to the pioneering work of Mezić et al. [86]. It has been
shown that the DMD algorithm is a special case of Koopman theory applied to linearly consistent data [41,86] and the DMD modes
approximate the Koopman eigenvalues if the set of observable is sufficiently large (i.e., it spans the eigenvectors of the Koopman
operator) and the data has to be sufficiently rich (i.e., it covers the dynamics of interest) [3,52].

In the case of a linear system with full measurements, linear observable or full state measurements are sufficient for the DMD
algorithm to recover the dynamics of the underlying systems, as they span the eigenvectors of the Koopman operator. However,
in the case of partially observed state measurement or non-linear systems, direct application of the DMD algorithm falls short of
recovering the underlying dynamics. This observation has lead to the development of extended DMD (EDMD) by Williams et al. [52],
which creates new observables, 𝝋, from the state vector. To give context to the proposed algorithm, WDMD, it is pertinent to
introduce EDMD, and the present section serves to do so. The Koopman operator  acts directly on observables 𝝋 rather than on
state-space [42,52], i.e.,

𝝋 ≜ 𝝋◦ ⇒ 𝝋
(

𝐱(𝑡𝑘)
)

= 𝝋
(

𝐱(𝑡𝑘+1)
)

, (14)

where  ∶  →  is the evolution operator, and ◦ denotes the composition operator. Intuitively, the linear Koopman operator
takes a scalar function 𝜑 and returns a new function 𝜑 that predicts the value of 𝜑, one step ahead in future. It is to be noted
that the dynamical system defined by  and the one defined by  are two different parameterizations of the same fundamental
behavior.

EDMD aims to approximate the Koopman operator using a suitable choice of dictionary of observables,  = [𝜑1, 𝜑2,… , 𝜑𝑁𝐾 ].
The vector valued function Φ ∶  → C1×𝑁𝐾 , where

Φ(𝒙) = [𝜑1(𝒙), 𝜑2(𝒙),… , 𝜑𝑁𝐾 (𝒙)], (15)

can now be defined for the snapshot of the system, 𝐱(𝑡𝑘), and for 𝐳(𝑡𝑘) =  (𝐱(𝑡𝑘)). Then, one proceeds by defining two snapshot
matrices using the samples Φ(𝐱(𝑡𝑘)) and Φ( (𝐱(𝑡𝑘))) for 𝑘 = 0, 1,… , 𝐾 and solves a least-squares problem to form the best fit
matrix 𝐊 ∈ ℜ𝑁𝐾×𝑁𝐾 . The eigenvalues and eigenvectors of the finite dimensional representation 𝐊 are then used to compute an
approximation to the Koopman modes and Koopman eigenfunctions. Thus, EDMD provides a mean to approximate the infinite
dimensional Koopman operator and Koopman eigenfunctions through the selection of observables. For details, the reader is referred
4

to [52].
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2.4. Problem formulation

Consider an underlying dynamical system evolving in an 𝑁-dimensional state-space, i.e.,

𝐱̇(𝑡) = 𝑓 (𝐱(𝑡),𝐮(𝑡)), (16)

where 𝐱(𝑡) ∈ ℜ𝑁 is the state, 𝐮(𝑡) ∈ ℜ𝑚 is the input, and 𝑓 ∶ ℜ𝑁 → ℜ𝑁 is a nonlinear mapping. Assume that, unlike in DMD
or ioDMD, we do not have access to the full-state samples 𝐱(𝑡𝑘). Instead, we have only access to a measurement vector (output)
(𝑡) ∈ ℜ𝑑 via an observation (output) matrix 𝐂 ∈ ℜ𝑑×𝑁 , i.e., we have access to the output

𝐲(𝑡) = 𝐂𝐱(𝑡). (17)

Using only these output trajectories and the excitation input applied to the system, the proposed Wavelet based DMD (WDMD)
methodology creates a dynamical system to approximate the time evolution of the underlying system. The next section mathemat-
ically details the WDMD methodology.

3. Wavelet-based dynamic mode decomposition

The main idea behind the present methodology is to create observables using the stationary wavelet coefficients of all the
available output measurements, and thereby to approximate the Koopman operator that advances these observables by a time step.
Central to this idea is the wavelet transform. The next subsection, which mainly follows [87], presents a brief overview of the
necessary background on wavelet transform. We refer the reader to [87–89] for details.

3.1. Maximal overlap discrete wavelet transform (MODWT)

The wavelet transform convolves a signal with a function called the mother wavelet, and the transform is computed across
several scales representing different frequency bands for different segments of the signal. The wavelet transform provides a multi-
resolution analysis (in contrast to the Fourier transform, which has a uniform time–frequency distribution.) The orthogonal wavelet
decomposition of a signal 𝑦(𝑡) is given by,

𝑦(𝑡) =
∑

𝑗

∑

𝑘
𝑤𝑗𝑘𝜓

𝑗
𝑘 , (18)

with the wavelet coefficient 𝑤𝑗𝑘 given by the inner product

𝑤𝑗𝑘(𝑦) =
⟨

𝑦, 𝜓 𝑗𝑘
⟩

=
⟨

𝑦(𝑡), 1
2𝑗∕2

𝜓
( 𝑡
2𝑗

− 𝑘
)

⟩

= 1
2𝑗∕2 ∫

∞

−∞
𝑦(𝑡)𝜓∗

( 𝑡
2𝑗

− 𝑘
)

𝑑𝑡, (19)

where the function 𝜓 represents the mother wavelet, 𝜓 𝑗𝑘 = 1
2𝑗∕2

𝜓
(

𝑡
2𝑗 − 𝑘

)

is the scaled and translated mother wavelet, and (⋅)∗

enotes the complex conjugation. The transform is usually computed at discrete values in a grid corresponding to dyadic values of
𝑗 and translations of 𝑘, where both 𝑗, 𝑘 are integers, yielding the discrete wavelet transform (DWT).
In practice, successive high and low-pass filtering replaces the integration procedures in Eq. (19). This is followed by down-

ampling at each level [87]. The coefficients resulting from these operations are called approximation and detail coefficients. The
etails of DWT implementation are not mentioned here for brevity, and interested readers are referred to seminal works such as [87].
ue to down sampling at each level, DWT wavelet coefficients do not have the property of time invariance.
The aforementioned issue can be addressed through a special type of wavelet transform known as the maximal overlap discrete

avelet transform (MODWT) [89]. MODWT has the advantage that it can eliminate down-sampling, thereby resulting in wavelet
etail and scale coefficients at each level of the same length as the original time series, thereby facilitating a ready comparison
etween the series and its decomposition. Decomposing the time-series {𝑦(𝑡0), 𝑦(𝑡1),… , 𝑦(𝑡𝐾−1)} using MODWT to 𝐽 levels involves
he application of 𝐽 pairs of filters. The filtering procedure at 𝑗th level entails applying a high-pass filter (ℎ̃0𝑗,𝑙) known as wavelet
ilter, and low-pass filter (𝑔0𝑗,𝑙) known as scaling filter, where 𝑙 = 1, 2,… , 𝐿𝑗 is the length of the filter. This procedure yields a set of
avelet and scaling coefficients at each level 𝑗 as

𝑊𝑗,𝑡𝑘 =
𝐾−1
∑

𝑙=0
ℎ̃𝑗,𝑙𝑦(𝑡𝑘−𝑙 𝑚𝑜𝑑 𝐾 ), 𝑉𝑗,𝑡𝑘 =

𝐾−1
∑

𝑙=0
𝑔𝑗,𝑙𝑦(𝑡𝑘−𝑙 𝑚𝑜𝑑 𝐾 ), (20)

here ℎ̃𝑗,𝑙 is ℎ̃0𝑗,𝑙 periodized to length 𝐾 and 𝑔𝑗,𝑙 follows analogously using 𝑔0𝑗,𝑙 values, and mod represents the modular operator;
ee [89] for details. The equivalent wavelet filter (ℎ̃𝑗,𝑙) and scaling filter (𝑔𝑗,𝑙) for the 𝑗th level are a set of scale-dependent localized
ifferencing and averaging operators, respectively, and can be regarded as stretched versions of the base filter (𝑗 = 1). The MODWT
avelet coefficients at each scale will have the same length as the original signal 𝑦(𝑡) as seen from Eq. (20). Define the time-series
ector

𝒚 = [𝑦(𝑡0), 𝑦(𝑡1),… , 𝑦(𝑡𝐾−1)]𝑇 ∈ ℜ𝐾 . (21)

hen Eq. (20) can be expressed in matrix form as

̃ ̃ ̃ ̃
5

𝐖𝑗 =  𝑗𝒚 and 𝐕𝑗 =  𝑗𝒚, (22)
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where 𝐖𝑗 = [𝑊𝑗,𝑡0 , 𝑊𝑗,𝑡1 , … ,𝑊𝑗,𝑡𝐾−1
]𝑇 ∈ ℜ𝐾 and 𝐕̃𝑗 = [𝑉𝑗,𝑡0 , 𝑉𝑗,𝑡1 , … , 𝑉𝑗,𝑡𝐾−1

]𝑇 ∈ ℜ𝐾 represent the 𝑗th level MODWT wavelet and
scaling coefficients, respectively. The 𝐾 ×𝐾 matrix ̃ 𝑗 is defined as

̃ 𝑗 =
1
2𝑘

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ̃𝑗,0 ℎ̃𝑗,𝐾−1 ℎ̃𝑗,𝐾−2 … ℎ̃𝑗,3 ℎ̃𝑗,2 ℎ̃𝑗,1
ℎ̃𝑗,1 ℎ̃𝑗,0 ℎ̃𝑗,𝐾−1 … ℎ̃𝑗,4 ℎ̃𝑗,3 ℎ̃𝑗,2
ℎ̃𝑗,2 ℎ̃𝑗,1 ℎ̃𝑗,0 … ℎ̃𝑗,5 ℎ̃𝑗,4 ℎ̃𝑗,3
⋮ ⋮ ⋮ … ⋮ ⋮ ⋮

ℎ̃𝑗,𝐾−2 ℎ̃𝑗,𝐾−3 ℎ̃𝑗,𝐾−4 … ℎ̃𝑗,1 ℎ̃𝑗,0 ℎ̃𝑗,𝐾−1
ℎ̃𝑗,𝐾−1 ℎ̃𝑗,𝐾−2 ℎ̃𝑗,𝐾−3 … ℎ̃𝑗,2 ℎ̃𝑗,1 ℎ̃𝑗,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (23)

and the 𝐾 × 𝐾 matrix ̃ 𝑗 is defined analogously using 𝑔𝑗,𝑙 values; see [89] for details. The original time series 𝑦 can be recovered
from its MODWT via

𝒚 =
𝐽
∑

𝑗=1
̃

T
𝑗𝐖𝑗 + ̃

T
𝐽 𝐕̃𝐽 =

𝐽
∑

𝑗=1
𝐃̃𝑗 + 𝐒̃𝐽 where 𝐃̃𝑗 ∶= ̃

T
𝑗𝐖𝑗 ∈ ℜ𝐾 and 𝐒̃𝐽 = ̃

T
𝐽 𝐕̃𝐽 ∈ ℜ𝐾 . (24)

The last equality defines a MODWT-based multi-resolution analysis (MRA) of the original time series 𝒚 in terms of 𝑗th level MODWT
detail coefficients 𝐃̃𝑗 and 𝐽 th level MODWT smooth coefficients 𝐒̃𝑗 .

3.2. Main approach

As mentioned in Section 2.4, the output trajectories of the underlying system are measured and assuming that these trajectories
are sampled at time instances 𝑡0, 𝑡1,… , 𝑡𝐾 , yielding the measurement samples

𝐲(𝑡𝑘) = 𝐂𝐱(𝑡𝑘), for 𝑘 = 0, 1,… , 𝐾 − 1. (25)

Based on MODWT analysis of the previous section, our goal is now to create new auxiliary state variables (and an observation
matrix) so that the new dynamics with the auxiliary state still corresponds to the true output samples in Eq. (25). Then we can
apply the ioDMD using the trajectories of the original input and outputs, and the trajectories of the auxiliary states.

Towards this goal, let 𝑦𝑖(𝑡), for 𝑖 = 1, 2,… , 𝑑, denote the 𝑖th component (row) of the measurement vector 𝐲(𝑡), i.e., 𝑦𝑖(𝑡) is the 𝑖th
output. Decompose 𝑦𝑖(𝑡) using MODWT as in Eq. (24):

𝒚𝑖 =
𝐽
∑

𝑗=1
𝐃̃(𝑖)
𝑗 + 𝐒̃(𝑖)𝐽 where 𝒚𝑖 = [𝑦𝑖(𝑡0), 𝑦𝑖(𝑡1),… , 𝑦𝑖(𝑡𝐾−1)]𝑇 , (26)

and 𝐃(𝑖)
𝑗 ∈ ℜ𝐾 and 𝐒(𝑖)𝑗 ∈ ℜ𝐾 are the corresponding 𝑗th level detail and smooth coefficients corresponding to 𝑦𝑖(𝑡). Let 𝐞𝑘 ∈ ℜ𝐾

denote the 𝑘th canonical vector and 𝐞 = [1 1… 1]𝑇 ∈ ℜ𝐽+1 denote the vector of ones. Then, using Eq. (26), 𝑦𝑖(𝑡𝑘) (the (𝐾 +1)st row
of 𝒚𝑖 = [𝑦𝑖(𝑡0), 𝑦𝑖(𝑡1),… , 𝑦𝑖(𝑡𝐾−1)]𝑇 ) can be written as

𝑦𝑖(𝑡𝑘) = 𝐞𝑇𝑘+1𝒚𝑖 =
𝐽
∑

𝑗=1
𝐞𝑇𝑘+1𝐃̃

(𝑖)
𝑗 + 𝐞𝑇𝑘+1𝐒̃

(𝑖)
𝐽 = 𝐞𝑇𝐰𝑖(𝑡𝑘) (27)

where

𝐰𝑖(𝑡𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐞𝑇𝑘+1𝐃̃
(𝑖)
1

𝐞𝑇𝑘+1𝐃̃
(𝑖)
2

⋮
𝐞𝑇𝑘+1𝐃̃

(𝑖)
𝐽

𝐞𝑇𝑘+1𝐒̃
(𝑖)
𝐽

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℜ𝐽+1. (28)

Then, the full output vector at time 𝑡𝑘, i.e., 𝐲(𝑡𝑘) in Eq. (25), can be rewritten as

𝐲(𝑡𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1(𝑡𝑘)
𝑦2(𝑡𝑘)
⋮

𝑦𝑑 (𝑡𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐞𝑇𝐰1(𝑡𝑘)
𝐞𝑇𝐰2(𝑡𝑘)

⋮
𝐞𝑇𝐰𝑑 (𝑡𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

. (29)

Using the last formula, we define the new auxiliary state 𝐳(𝑡) and the observation matrix 𝐂𝐰

𝐳(𝑡𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐰1(𝑡𝑘)
𝐰2(𝑡𝑘)

⋮
𝐰𝑑 (𝑡𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ𝑑(𝐽+1) and 𝐂𝐰 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐞𝑇 0 ⋯ 0 0
0 𝐞𝑇 ⋱ 0 0
⋮ ⋱ ⋱ ⋱ ⋮
0 0 ⋱ 𝐞𝑇 0
0 0 ⋯ 0 𝐞𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℜ𝑑×𝑑(𝐽+1), (30)

o that
6

𝐲(𝑡𝑘) = 𝐂𝐰𝐳(𝑡𝑘). (31)
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Fig. 1. Cantilever beam model used for the Finite Element simulations.

Note that the new auxiliary state variable 𝐳(𝑡) is composed of the wavelet coefficient observables and thus its samples encodes
how the wavelet coefficient observables evolve over time. Moreover, with the observation matrix 𝐂𝐰, the true output/measurement
vector 𝐲(𝑡) is written in terms of the new state variable 𝐳(𝑡).

Given only the output snapshots 𝐲(𝑡𝑘) in Eq. (25) of the underlying dynamical system, use Eq. (26)-Eq. (30) to construct the
snapshot matrix 𝐙 of the wavelet coefficient observables as

𝐙 = [𝐳(𝑡0) 𝐳(𝑡1) 𝐳(𝑡2) . . . 𝐳(𝑡𝐾 )] ∈ ℜ𝑑(𝐽+1)×(𝐾+1). (32)

Also construct the input snapshot matrix 𝐔0 and 𝐘0

𝐔𝟎 =
[

𝐮(𝑡0) 𝐮(𝑡1) ... 𝐮(𝑡𝐾−1)
]

∈ ℜ𝑀×𝐾 and 𝐘0 =
[

𝐲(𝑡0) 𝐲(𝑡1) ... 𝐲(𝑡𝐾−1)
]

∈ ℜ𝑑×𝐾 . (33)

Note that while the input snapshot matrix 𝐔0 and the output snapshot matrix 𝐘0 in Eq. (33) correspond to the true inputs and
outputs of the underlying dynamical system Eqs. (16) and (17), the state snapshot matrix 𝐙 in Eq. (32) are obtained via the wavelet
coefficient observables (as the original state measurements 𝐱(𝑡𝑘) are not available). Then, WDMD represents the snapshot triplets
𝐙,𝐔0 and 𝐘0 with the dynamical system

𝐳(𝑡𝑘+1) ≈ 𝐀𝐰(𝑡𝑘)𝐳(𝑡𝑘) + 𝐁𝐰𝐮(𝑡𝑘), 𝐲(𝑡𝑘) ≈ 𝐂𝐰𝐳(𝑡𝑘) + 𝐃𝐰𝐮(𝑡𝑘). (34)

This reformulation of the input/output data via wavelet coefficient observables to input/state/output data allows to apply ioDMD
to construct the matrices 𝐀𝐰, 𝐁𝐰, 𝐂𝐰, and 𝐃𝐰 via a least-squares fit as in Section 2.2. Towards this goal, define the two matrices

𝐙0 = [𝐳(𝑡0), 𝐳(𝑡1),… , 𝐳(𝑡𝐾−1)] ∈ ℜ𝑑.(𝐽+1)×𝐾 and 𝐙1 = [𝐳(𝑡1), 𝐳(𝑡1),… , 𝐳(𝑡𝐾 )] ∈ ℜ𝑑.(𝐽+1)×𝐾 . (35)

Then, the dynamical system coefficients in Eq. (34) are given by
[

𝐀𝑤 𝐁𝑤
𝐂𝑤 𝐃𝑤

]

=
[

𝐙1
𝐘0

] [

𝐙0
𝐔0

]
†

. (36)

A brief algorithmic sketch of WDMD is given in Algorithm 1.

Algorithm 1 WDMD algorithm
Input: Output measurements {𝐲(𝑡𝑖)} ∈ ℜ𝑑 and input measurements {𝐮(𝑡𝑖)} ∈ ℜ𝑚 for 𝑖 = 0, 1,… , 𝐾.
Output: State-space model: 𝐀𝐰 ∈ ℜ𝑑.(𝐽+1)×𝑑.(𝐽+1),𝐁𝐰 ∈ ℜ𝑑.(𝐽+1)×𝑚,𝐂𝐰 ∈ ℜ𝑑×𝑑.(𝐽+1), and 𝐃𝐰 ∈ ℜ𝑑×𝑚.
1: Using {𝐲(𝑡𝑖)}, construct the wavelet observable snapshots {𝐳(𝑡𝑖)} using Eqs. (26)–(30).
2: Form 𝐙 = [𝐳(𝑡0) 𝐳(𝑡1) 𝐳(𝑡2) . . . 𝐳(𝑡𝐾 )] as in Eq. (32)
3: Assemble 𝐙𝟎 and 𝐙𝟏 as in Eq. (35), and 𝐘𝟎 and 𝐔𝟎 as in (33).
4: Compute the approximate discrete linear state-space matrices as in Eq. (36)

Given only the output samples, the present work’s major contribution is to enlarge the original subspace via wavelet decompo-
ition of the response measurement 𝐲(𝑡) and creating new states of the system using the wavelet coefficients. Therefore, the WDMD
methodology can be considered a special case of EDMD with choice of observables in Eq. (15) resulting from the wavelet coefficients
𝑤𝑗𝑘(𝒚) = ⟨𝒚, 𝜓 𝑗𝑘⟩. Thus, WDMD provides a set of basis functions to lift the output measurements to wavelet states, in a sense aiming to
span the eigenvectors of the Koopman operator through ioDMD. Limitations will arise when there are fewer wavelet states, which
will result from a combination of far fewer measurements alongside with smaller decomposition level 𝐽 . Even though this issue
can be circumvented by selecting a large enough decomposition level, the authors would like to note that the highest value of 𝐽 is
limited by the sampling frequency of the signal.

4. A numerical case study using a finite element beam

Numerical simulations are carried out on a hollow cantilever beam model with the dimensions shown in Fig. 1. The beam under
7

study is a finite element representation of an Euler–Bernoulli beam with 30 nodal points representing 60 degrees of freedom (DOF).
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Taking the displacement and velocity of each DOF as the states yields a state-space representation in the first-order form

𝐱̇(𝑡) =
[

𝟎 𝐈
−𝐌−1𝐊 −𝐌−1𝐆

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=A

𝐱(𝑡) +
[

𝟎
−𝐌−1𝐅

]

⏟⏞⏞⏟⏞⏞⏟
∶=B

𝐮(𝑡), 𝐲(𝑡) = C𝐱(𝑡), (37)

here 𝐌,𝐊,𝐆 ∈ ℜ60×60 are, respectively, the mass, stiffness, and damping matrices and 𝐅 ∈ ℜ60×1 is the loading vector; 𝐱 ∈ ℜ120×1

s the state vector; 𝐮(𝑡) ∈ ℜ is the scalar input; and 𝐲 ∈ ℜ𝑑 is the 𝑑-dimensional output vector. This yields the first-order state-space
uantities A ∈ ℜ120×120, B ∈ ℜ120, and C ∈ ℜ𝑑×120. The outputs, observed in 𝐲, can be either the displacement or velocity of the
bserved nodal points. The choice of output will be further clarified below.
The proposed WDMD approach will be utilized to generate a single-input/multiple-output (SIMO), data-driven approximation to

he beam model in Eq. (37) using only the simulated input–output response of the beam without access to its state-space matrices.
This model will then be used to simulate the transient dynamic response of the structure to a given excitation (a testing signal) to
illustrate the quality of the fit. In addition to this time-domain error measure, the input–output mapping of the data-driven model can
also be assessed in the frequency domain by computing the frequency response function (FRF) of the learned model and comparing
it with the original FRF. The FRF of the beam model Eq. (37), denoted by (𝜔), is given by

(𝜔) = C(𝚤𝜔𝐈 −A)−1B, (38)

where 𝚤2 = −1. Let ̃ denote the FRF of the learned model and 𝐲̃(𝑡) the output of the learned. Then, the following two relative error
metrics are defined to evaluate the quality of the fit,

𝜖𝑟𝑒𝑙𝑓𝑑 =

√

√

√

√

√

√

∑𝐿𝜔
𝑗=1 ‖

(

𝜔𝑗
)

− ̃
(

𝜔𝑗
)

‖

2
2

∑𝐿𝜔
𝑗=1

‖

‖

‖


(

𝜔𝑗
)

‖

‖

‖

2

2

and 𝜖𝑟𝑒𝑙𝑡𝑑 =

√

√

√

√

√

∑𝐾
𝑖=1 ‖𝐲(𝑡𝑖) − 𝐲̃(𝑡𝑖)‖22
∑𝐾
𝑖=1 ‖𝐲(𝑡𝑖)‖

2
2

, (39)

where 𝐿𝜔 and 𝐾 are the number of frequency samples and time points respectively. While 𝜖𝑟𝑒𝑙𝑓𝑑 is the relative error between the
original FRF ((𝜔)) and the fitted FRF (̃(𝜔)), 𝜖𝑟𝑒𝑙𝑡𝑑 measures the relative error in time domain between the measured responses 𝐲(𝑡)
and the predicted responses 𝐲̃(𝑡).

In the present numerical case study, the FEM beam is excited using a chirp input over the frequency range 10–800 Hz. The
responses are collected at a sampling frequency of 5000 Hz. The application of the ioDMD methodology, which assumes access to
full state observation, for modeling the input–output response of the FEM beam, is demonstrated in Section 4.1. Next, in Section 4.2
we compare these results with WDMD. In Section 4.4 we present a brief comparative study between WDMD and Delay-DMD. As
mentioned earlier, one can perform an additional model reduction via an SVD-based projection on the state data to further reduce
the learned system dynamics [3,43] . In the present study, this additional step has yielded negligible changes to the final data-driven
model and thus is skipped in all the results.

4.1. Data-driven modeling using ioDMD

As discussed in Section 2.2, the ioDMD methodology assumes knowledge about the system’s full internal states 𝐱(𝑡). Hence, the
ioDMD is ideally suited towards gray box modeling wherein the internal states of the system are also sampled. For the beam’s
finite element model, the internal states represent the displacement and velocity at each degree of freedom. The training package
provided to the algorithm consists of: (i) the input forcing signal used to excite the structure (chirp signal), (ii) the internal state
measurements, and (iii) the measured output responses. In the current example, the ioDMD has access to all the internal states of
the system and the output is assumed to be measured at the 6 nodal points shown in Fig. 1. The measured displacements at nodes
1, 7, 12, 18, 24, and 30 are designated as the output responses in the present section. From the provided training package, the ioDMD
algorithm, as presented in Section 2.2, generates a linear discrete dynamical system of the form,

𝐱(𝑡𝑘+1) = 𝐀𝐱(𝑡𝑘) + 𝐁𝐮(𝑡𝑘),
𝐲(𝑡𝑘) = 𝐂𝐱(𝑡𝑘) + 𝐃𝐮(𝑡𝑘),

(40)

to approximate the original beam dynamics in Eq. (37). The singular value truncation tolerance in the computation of the
pseudoinverse in Eq. (13) is set to 𝛽 = 10−12. Since no model reduction step is applied to further reduce the system dimension,
the learned model’s state dimension is equal to the total number of degrees of freedom in the finite element model, i.e., 120. Since,
the output is measured at 6 nodal points, the SIMO ioDMD state-space model in Eq. (40) has 120 internal states, single input, and
six output, and thus the state-space matrices are 𝐀 ∈ ℜ120×120, 𝐁 ∈ ℜ120×1, 𝐂 ∈ ℜ6×120, and 𝐃 ∈ ℜ6×1.

4.1.1. ioDMD model training and testing results
The results of modeling the dynamic response of the FEM beam using ioDMD are summarized in Fig. 2. The data-driven ioDMD

model is excited using the same chirp signal used for training the model. For demonstration purposes, among the six outputs, the
predicted response output at node 18 (𝑦̂) is compared with the measured output from the FEM simulations (𝑦) and is shown in
Fig. 2(a). The low value of the time domain error (𝜖𝑦 = 𝑦− 𝑦̂), shown in green, in Fig. 2(a) demonstrates the good quality of the fit.
The relative error of 𝜖𝑟𝑒𝑙𝑡𝑑 = 2.3 × 10−2 further substantiates the good quality of the fit across all the 6 outputs in the time domain.
8

For validation purposes, a sine burst at 165.1 Hz is used to excite the ioDMD model and quality of the fit analyzed. The Fig. 2(b)
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Fig. 2. (a) Comparison of the predicted response and the original response measured at node 18 when excited with the same training signal (chirp); (b)
Comparison of the predicted response and the original response measured at node 18 when excited with a sine burst at 165 Hz (testing data); (c) Zoomed up
version of (a) demonstrating a high-fidelity approximation in the training phase (d) Zoomed up version of (b) demonstrating a high-fidelity approximation in
the testing phase.

contrasts the simulated response from the ioDMD methodology with the original response measurement from node 18 in the testing
case. The low value of the error plot in Fig. 2(b) clearly illustrates the validity of the model over the frequency ranges of interest.
Fig. 2(c) and Fig. 2(d) presents zoomed versions of the training and testing case respectively. The relative time domain error for
ioDMD is 𝜖𝑟𝑒𝑙𝑡𝑑 = 1.62 × 10−2 for the testing case.

It is straightforward to recover the dynamic modes of the system under consideration using the developed state-space model.
The finite element model is setup in such a way that the dynamic modes of the beam corresponds to the modes of vibration of
the system [16]. The recovered modes (𝝓𝑖𝑜𝐷𝑀𝐷), as shown in Fig. 3(a), closely resemble the modes of vibration of a cantilever
beam (𝝓𝐹𝐸𝑀 ). The quality of the modes recovered using the ioDMD methodology is evaluated using the model assurance criteria
(MAC) [90]. If individual columns of 𝝓𝑖𝑜𝐷𝑀𝐷, representing the DMD modes, are a close match with that of 𝝓𝐹𝐸𝑀 , then the MAC
value will be close to 1. The value of 1 in the diagonal term in Fig. 3(b) shows that the recovered DMD correlates well with the
actual modes of vibration of the system. The zeros in the off-diagonal position further validate the orthogonality of the DMD modes
(also a property of the physical modes), thus further demonstrating the efficacy of the ioDMD model in accurately capturing the
hidden dynamics of the system under consideration.

4.2. Data-driven modeling using WDMD

We now apply the WDMD methodology to model the input–output dynamic responses of the simulated beam. WDMD is used
to obtain a data-driven model, using the snapshots matrices of only the measured outputs at 𝑑 = 6 locations and the chirp input,
recorded in training phase. It is important to note that WDMD develops a SIMO, data-driven, state-space model by only utilizing
the input–output trajectories of the measured nodal points, thus circumventing the restrictive assumption to require the samples of
all the latent states of the system. It will be shown in later sections that WDMD yields high-fidelity approximates even with a small
number of outputs and the quality of the fit further improves with an increase in number of measured outputs. The parameters
controlling the WDMD algorithm are (i) the type of wavelet and (ii) the level of wavelet decomposition. In the current study, the
Haar wavelet [87] is selected as the default setting throughout and the level of decomposition in this section is 𝐽 = 13. Although in
9
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Fig. 3. (a) Mode shapes extracted by ioDMD (b) Comparison of the ioDMD modeshapes with the analytical mode shapes using modal assurance criterior (MAC).

Fig. 4. (a) Comparison of the predicted response using WDMD and the original response measured at node 18 when excited with the training input, plotted
alongside with the error in green; (b) Comparison of the predicted response using WDMD and the original response measured at node 18 when excited with the
sine burst input at 165.1 Hz (testing phase), plotted alongside with the error in green; (c) Comparison of the magnitude of analytical and predicted FRF at node
18 using ioDMD alongside with error magnitudes; (d) Comparison of the magnitude of analytical and predicted FRF at node 18 using WDMD alongside with
error magnitudes.

the current study the level of decomposition is set at 𝐽 = 13, if needed one can use concepts such as hyper-parameter tuning based
on k-fold cross validation, to select a more suitable 𝐽 . As in the ioDMD case, the singular value truncation tolerance in computing
the pseudoinverse is set to 𝛽 = 10−12. Based on these parameters, the number of auxiliary states in the resulting WDMD model in
Eq. (34) is given by 𝑑 × (𝐽 + 1) = 84. Finally, this results in a state-space matrices with the following dimensions 𝐀𝐰 ∈ ℜ84×84,
𝐁 ∈ ℜ84×1, 𝐂 ∈ ℜ6×84, and 𝐃 ∈ ℜ6×1.
10
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Fig. 5. Training phase followed by testing phases, comparing the predicted responses from WDMD model with the FEM simulation results.

4.2.1. WDMD model training and testing results
The results of modeling the dynamic response of the FEM beam using WDMD are summarized in Fig. 4. For a first comparison, the

data-driven model produced by WDMD is used to reproduce the behavior of the system during the training phase. To be consistent,
we excite the WDMD model with the same training (chirp) and testing signal (sine burst) as in the ioDMD case. Fig. 4(a) shows
the predicted response at node 18 alongside with the measured output from the FEM simulations, illustrating a high-fidelity match.
The low value of the time domain error (green) in Fig. 4(a) further validates the good quality of the fit. The relative time-domain
error of 𝜖𝑟𝑒𝑙𝑡𝑑 = 1.59 × 10−2 across the 6 predicted response illustrates a better performance over ioDMD in this case. The sine burst at
165.1 Hz excites the SIMO WDMD model and the predicted response at node 18 is compared with that of FEM simulation results in
Fig. 4(b). The testing phase results in a relative error of 𝜖𝑟𝑒𝑙𝑡𝑑 = 7.84 × 10−3.

To better illustrate the frequency domain performance, Fig. 4(c) and Fig. 4(d) depict, respectively, the magnitude of the predicted
FRF (̃𝑖𝑜𝑑𝑚𝑑 (𝜔)) due to ioDMD and predicted FRF (̃𝑤𝑑𝑚𝑑 (𝜔)) due to WDMD, as compared to the original FRF (𝐻(𝜔)) measured at
node 18. While ioDMD results in a frequency domain relative error of 𝜖𝑟𝑒𝑙𝑓𝑑 = 1.51 × 10−2, WDMD results in a slightly higher error
value of 𝜖𝑟𝑒𝑙𝑓𝑑 = 1.63×10−2. Nevertheless, both WDMD and ioDMD demonstrates excellent capability to capture the frequency domain
characteristics of the system. And more importantly WDMD achieves this accuracy by measuring only 6 of the state variables out
of the total 120.

To further test the capabilities of the WDMD model, two different testing phases are performed. The first test (Test 1) consists
of a time interval with no excitation, thereby allowing the system to be driven by the initial conditions at the end of the training
phase. The second test (Test 2) consists of a sine burst at 230.4 Hz. It is pertinent to observe that at no point during the beginning
of a phase, the input conditions are corrected. This is particularly challenging for Test 1 where there is no input and thus small
deviations in initial conditions can result in high errors. Fig. 5 shows 3 out of the 6 predicted responses alongside with the error
between the WDMD model and the original FEM model. WDMD produces a high-quality fit for the all phases of these tests as can
be seen from the low value of the errors, thus illustrating the efficacy of the algorithm.

Similar to the ioDMD case, the quality of the WDMD modes (𝜙𝑊𝐷𝑀𝐷) and their agreement to the physical modes of the beam
(𝜙𝐹𝐸𝑀 ) can be examined by using the MAC plots as shown in Fig. 6, where 𝑑 represents the number of outputs measured. The quality
of the extracted dynamic modes improves with the increase in total number of outputs measured as seen from Fig. 6. Nevertheless,
even with a small number of measured output (𝑑 = 6), WDMD resulted in a data-driven model that was able to meaningfully extract
modal characteristics of the leading six modes as seen from the diagonal terms in Fig. 6(a). At 𝑑 = 10, we see that WDMD results
almost converge to the ioDMD MAC plots.
11
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Fig. 6. MAC comparison plots for WDMD for (a) 𝑑 = 6; (b) 𝑑 = 7; (c) 𝑑 = 10; (d) 𝑑 = 15.

Fig. 7. Error convergence study results for the SIMO case: (a) Relative time domain error for training phase; (b) Relative time domain error for testing phase;
(c) Relative frequency domain error.
12
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Fig. 8. Error convergence study results for the MIMO case: (a) Relative time domain error for training phase; (b) Relative time domain error for testing phase;
(c) Relative frequency domain error.

Since WDMD only relies on input–output trajectories at the observed nodes, the major factor affecting the WDMD methodology’s
efficacy is the total number of outputs measured across the system. This necessitates an error convergence study in the time domain
as well as in the frequency domain. By increasing the number of outputs measured, the quality of the fit improves as seen from Fig. 7.
The figure shows the relative error as a function of the total number of measured outputs (𝑑). The figure also provides the ioDMD
model error values for comparison purposes. Even with fewer measurements (as few as 6), for this example, the WDMD methodology
outperforms the ioDMD methodology. This figure demonstrates the advantage of applying the WDMD in the practical situation
wherein only a handful of the output trajectories can be measured. The same is true for the frequency domain representation. The
relative error, 𝜖𝑟𝑒𝑙𝑓𝑑 also drops as a function of the number of measurements available but eventually converges to the ioDMD model
error of around 0.015.

4.3. Results for the multiple input case - WDMD

In this section, a multiple-input multiple-output (MIMO), state-space model using WDMD is developed. Towards this goal, the
FEM beam is subjected to uncorrelated input excitations at node 3 and node 17, thereby simulating multiple (two) input excitations.
Similar to the SIMO case, WDMD builds a data-driven model using measured outputs at selected nodal points and chirp inputs
that are used for excitation, resulting in a MIMO learned model as in Eq. (34). WDMD uses 𝐽 = 13 as before. Similar to the SIMO
case, error convergence studies for the training and testing cases are performed. Fig. 8(a) and Fig. 8(b) shows error convergence
lots for the training and testing case respectively as the number of outputs change. The WDMD model error converges towards
he full ioDMD baseline error for the training case, when the number of outputs (𝑑) measured are greater than 11. However for
he testing case with 𝑑 > 11, the WDMD results in a lower testing error compared to the ioDMD model. These results follow the
imilar pattern to those of the SISO case. The smaller error for WDMD in the testing case for this specific testing input might be due
o the frequency content of the signal. Fig. 8 depicts the error in the frequency domain. Similar to the time domain error, there is
o noticeable reduction in the error beyond 𝑑 = 10 and around this value the WDMD error converges to the ioDMD model error.
t is important to emphasize that WDMD provides comparable results to ioDMD (and better in the time-domain testing case for
his example) with a much smaller number of observed state. In this example, there are a total of 120 state variables with WDMD
bserving only 10 of them (less than 10% of the total). Thus, WDMD is able to match the full-state observation accurately.

.4. Comparison with the Delay-DMD

In this section, WDMD is compared with Delay-DMD. Delay-DMD can be thought of as a special case of EDMD with the
bservable vector in Eq. (15) composed of the time-delayed versions of the measurements as, Φ(𝐱𝑘) = [𝐱(𝑡𝑘), 𝐱(𝑡𝑘−𝛿),… , 𝐱(𝑡𝑘−𝛿𝜏 )],
here 𝑘 = 1, 2,… , 𝐾 − 𝛿𝜏 represent the snapshot indices. The integer 𝛿 and 𝜏 represent the lag-time and the embedding dimension,
espectively. As with any algorithm, the performance of the Delay-DMD depends on various parameter choices, such as the lagtime 𝛿
nd the embedding dimension 𝜏 that are often problem-specific [40,91]. Discussion regarding the parameter choices and embedding
13
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Fig. 9. Comparison of WDMD with Delay-DMD for the noise-free data using the 𝜖𝑟𝑒𝑙𝑡𝑑 measure as 𝛽 and 𝑑 vary.

dimensions are beyond the scope of the present study. For comparison purposes with WDMD, 𝛿 is chosen as 1 and the embedding
dimension is varied on a per case basis [3,40,91].

The present comparative study is conducted on the FEM beam model described in Section 4 with the same training and testing
ases. As discussed in Section 4, the performance WDMD depends on the number of available measurements and the decomposition
evel. Thus, the number of available measurements is varied as one of the parameters.
The input–output trajectories of the FEM beam model are utilized by WDMD and Delay-DMD towards building a SIMO, data-

riven, state-space model. For comparison purposes, both WDMD and Delay-DMD model are excited with the same chirp signal to
eproduce the system’s behavior during the training phase and the quality of the fit is assessed. Since both of these methods utilize
nly the measured input–output trajectories, the quality of the fit depends on the total number of measured responses, 𝑑. While
DMD results in a state-space model order of dimension 𝑑(𝐽 + 1), Delay-DMD results in a model order of 𝑑 × 𝜏. Thus, Delay-DMD
an lead to a bigger observable space even with a small number of measured outputs if the embedding dimension 𝜏 is large enough,
hich lends Delay-DMD an advantage compared to WDMD. By introducing additional lag terms in the state-space, Delay-DMD can
onstruct models with enhanced levels of complexity, for cases with a handful of measured outputs [3,40,91]. In the case of WDMD,
his arbitrary enhancing is not possible, as the level of decomposition 𝐽 is limited by the sampling frequency of the signal.
As explained in Section 2.2, apart from the number of responses measured, the performance of the algorithm also depends on

he regularization parameter 𝛽. Therefore, for every training data set (i.e., for each value of 𝑑), the parameter 𝛽 is varied in both
DMD and Delay-DMD and the quality of the fit evaluated using 𝜖𝑟𝑒𝑙𝑡𝑑 . Therefore, for both WDMD and Delay-DMD the relative error
𝑟𝑒𝑙
𝑡𝑑 is plotted in the form of surface contours with 𝑑 and 𝛽 being the two axes, as shown in Fig. 9(a) and Fig. 9(b), respectively.
In Figs. 9(a) and 9(b), three distinct regions are observed: (i) 𝛽 > 10−8, (ii) 10−8 > 𝛽 > 10−12, and (iii) 𝛽 < 10−12. For the

irst region, both the training and testing errors are large for both methodologies, and this is attributed to the higher value of the
egularization parameter, thus leading to an oversimplified model with significant singular values being truncated. However, in the
econd region, both methodologies demonstrate better performance, with WDMD having lower training and testing error compared
o Delay-DMD. Finally, in the third region, Delay-DMD shows lower training error compared to the WDMD.
For most practical situations, the signal obtained from the sensors will be corrupted with noise. This warrants repeating the

ame set of simulations in the presence of added noise. Towards this goal, simulations are realized to study the performance of
oth methodologies in the presence of added noise. Zero-mean Gaussian white noise with amplitude corresponding to 0.5% of
he measured signal is artificially added to all the outputs recorded from the FEM simulations and both methods are repeated. As
xpected, both methodologies perform poorly for 𝛽 greater than 10−5 as seen in the surface plots in Fig. 10. However, it is observed
from Figs. 10(a) and 10(b) that for lower values of regularization parameter the training errors in WDMD algorithm are orders of
magnitude smaller than Delay-DMD. We point out that prior to creating Fig. 9, an error convergence study was conducted with the
varying 𝜏 to select the (near-)optimal 𝜏 value for Delay-DMD. The 𝜏 value that resulted in the lowest relative error was selected and
the comparison study with WDMD was done, thereby producing Fig. 9; thus Fig. 9 uses the best 𝜏 for Delay-DMD. However for the
oisy case in Fig. 10, in order to have a fair comparison with WDMD algorithm (whose 𝐽 value was not changed between Figs. 9
nd 10), we used the same 𝜏 that gave the lowest relative error in the previous case. Thus Fig. 10 uses the same value of 𝜏 as that
f Fig. 9.
However, by no means this one numerical example claims to show that in the case of noisy data WDMD performs better in
14
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Fig. 10. Comparison of WDMD with Delay-DMD for the 0.5% additive noise case using the 𝜖𝑟𝑒𝑙𝑡𝑑 measure as 𝛽 and 𝑑 vary.

proper tuning of hyper-parameters, even though tuning these parameters for every possible case of noise could be challenging
in practice [39,40]. The main goal of this numerical study was simply to see how WDMD might behave under noise if it was
tuned, i.e., the level of decomposition 𝐽 , for the noise-free data. It is possible that the smoothing operation inherent to the wavelet
observables used in WDMD might naturally help with the noisy data. However, a detailed theoretical analysis of WDMD for the
noisy case is beyond the scope of this paper and will be done in a future work.

5. Experimental study

We now present an experimental case study to validate the efficacy of the WDMD in modeling the dynamical response of a beam
excited by an external forcing. The experimental set up used to measure the time domain response of the beam is depicted in Fig. 11.
A 30 in. long aluminum beam with a rectangular cross-section of 1.5 in. × 0.1 in. (bxh) has been selected for this study. free–free
boundary conditions are approximated by suspending the beam under test with fishing line wires. Two Macro Fiber Composites
(MFCs), model number 29K06-005B, are bonded to either end of the beam for excitation purposes. The MFCs are actuated by
supplying a Matlab generated signal delivered using an NI DAQ, and amplified through a power amplifier (Trek PZD350A-2-L). A
scanning laser doppler vibrometer (SLDV), Polytec PSV-400, is used to measure the beam’s dynamic response when excited with the
MFC’s. In the present set of experiments, 67 equally spaced scanning points are defined along the beam’s length. The SLDV measures
the velocity response of all the scanning points in the beam. The whole assembly has been placed on top of a Newport ST series
smart table to isolate the effects of ground vibrations and other random excitations.

Using this setup, two sets of experiments are realized: (i) Single-input multiple-output (SIMO) and (ii) Multi-input multi-output
(MIMO). Similar to the finite element simulations, the beam under study is excited using two sets of inputs for both of these cases:
(i) Chirp signal over the frequency range 100 - 500 Hz to train the algorithm, and (ii) Sine burst to validate the model. The SLDV
measures the output response (velocity) at a sampling rate of 5000 Hz from multiple locations along the beam. Measurement locations
are densely selected to have enough data to study the effect of number of measurement points on the quality of the fit. In this
experimental case study, the input corresponds to the voltage supplied to the MFC, while the output to the measured velocity
responses.

5.1. Data-driven SIMO model

In this section, a SIMO, data-driven, state-space model is developed using WDMD based on the measured responses along the
beam, valid over the frequency range of 100 to 500 Hz. The WDMD methodology utilizes the measured the velocity responses at
10 equidistant points along the beam and chirp input voltage supplied to the MFCs for building the data-driven SIMO model. It is
pertinent to note that, although we measured velocity at 66 scanning points in the beam, we utilize only 10 output responses to
develop the data-driven model. The level of wavelet decomposition (𝐽 ) is set as 𝐽 = 13. Hence, WDMD outputs a linear discrete
state-space form with the following dimensions: 𝐀𝐖 ∈ ℜ140×140, 𝐁𝐰 ∈ ℜ140×1, 𝐂𝐰 ∈ ℜ10×140, and 𝐃𝐰 ∈ ℜ10×1. The singular value
truncation tolerance 𝛽 is set to 𝛽 = 10−12.

Once the data-driven, SIMO, state-space model is developed, the behavior of the free–free beam during the training phase is
15
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Fig. 11. Experimental setup used for the study (a) the picture of the free–free beam attached with MFC-1 and MFC-2, (b) schematic displaying the locations of
MFC’s on the beam and node 33.

Fig. 12. Comparison of predicted WDMD response with the actual experimental data in (a) time domain and (b) frequency domain.

ten measured locations (nodal point 33) is compared with the SLDV measured velocity (solid blue line) in Fig. 12(a). Fig. 12(b)
depicts the magnitude of the predicted FRF (̃𝑤𝑑𝑚𝑑 (𝜔)) compared to the experimentally measured FRF (𝐻(𝜔)) corresponding the
same node. The high-fidelity fits in Figs. 12(a) and 12(b) demonstrate the efficacy of the algorithm in accurately reproducing the
time domain and frequency domain characteristics of the beam under test. The relative error 𝜖𝑟𝑒𝑙𝑡𝑑 = 2.17 × 10−1 is higher compared
to the simulated data cases of the previous section, but this is expected because of the unfiltered experimental noise. Further studies
are needed to further improve the robustness of WDMD methodology in cases with high experimental noise. It is important to note
that employing ioDMD for the present experimental case study is not feasible since the internal states of the structure under test is
unknown.

Similar to Section 4, we perform error convergence studies to evaluate the quality of the fit as a function of the number of output
responses available to the algorithm. As before, the data-driven model’s quality of the fit is evaluated using 𝜖𝑟𝑒𝑙𝑡𝑑 and 𝜖𝑟𝑒𝑙𝑓𝑑 in time and
frequency domain, respectively. The error convergence study is carried out by sequentially varying the number of outputs provided
to the WDMD from 2 to 30. Fig. 13 shows the error convergence in both time and frequency domains. The relative error metrics
𝜖𝑟𝑒𝑙𝑡𝑑 and 𝜖𝑟𝑒𝑙𝑓𝑑 converges at 2.17 × 10−1 and 1.64 × 10−1, respectively, at 𝑑 = 9 and no further significant improvement in the quality of
the fit is observed for 𝑑 ≥ 9. Nevertheless, the experimental studies clearly show the efficacy of WDMD methodology in accurately
modeling the dynamic response of a beam.

5.2. Data-driven MIMO model

The algorithm is now experimentally tested for a MIMO case study using the same free–free beam excited by applying an input
voltage to both MFC’s simultaneously. The experimental setup and the procedure adopted follows a similar approach to the SIMO
case with the only difference being multiple excitations.

Uncorrelated input chirp voltage signals provided to MFC 1 and MFC 2 excite the beam simultaneously. The chirp is designed
to have different cycles of frequency sweeping to remove the mode cancellation arising due to correlated input signals. The WDMD
16
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Fig. 13. Error convergence results for the experimental SIMO case study: (a) Relative time domain error for training phase and (b) Relative frequency domain
error.

Fig. 14. Error convergence results for the experimental MIMO case study: (a) Relative time domain error for training phase and (b) Relative frequency domain
rror.

tate-space dimensions 𝐀𝐰 ∈ ℜ140×140,𝐁𝐰 ∈ ℜ140×2,𝐂𝐰 ∈ ℜ10×140 and 𝐃𝐰 ∈ ℜ10×2. The number of columns in matrix 𝐁 matrix
represents the number of inputs in the system, which in the present MIMO example is two.

As in Section 5.1, the MIMO state-space model is excited with the training inputs to reproduce the results of the training phase.
For brevity, the time domain and frequency domain fitting results for the model are not shown. Fig. 14 shows the time domain error
𝜖𝑟𝑒𝑙𝑡𝑑 , and the frequency domain 𝜖

𝑟𝑒𝑙
𝑓𝑑 as a function of the number of outputs recorded and made available to the WDMD methodology.

The lowest relative error value recorded is around 0.25, which is slightly higher than the SIMO case. Similar is the case for 𝜖𝑟𝑒𝑙𝑓𝑑 ,
which has a lowest recorded value of 0.19, which is slightly higher than the SIMO case.

6. Conclusions and future work

The current study presented a novel data-driven methodology to model dynamical systems from its input–output trajectories,
without having access to governing physical equations or full internal state dynamics. This was achieved using wavelets in
conjunction with the ioDMD approach, leading to the proposed methodology, wavelet based DMD (WDMD). The numerical case
study involving the dynamical response of a finite element cantilever beam was performed to demonstrate the effectiveness of
WDMD. WDMD was utilized to develop a data-driven SIMO state-space dynamical model of the FEM beam based on measured
input–output response. The WDMD methodology utilizes a subset of these measurements and approximates the underlying dynamics
via a linear model using the maximal overlap discrete wavelet transform (MODWT) coefficients of the measured outputs as the
auxiliary state-vector. The error convergence studies illustrated that even with a few measured outputs, WDMD was able to model
the underlying dynamical system accurately. The experimental case study on a simple free–free beam, demonstrated the efficacy
of WDMD methodology as an appropriate candidate for modeling practical dynamical systems despite having no access to internal
state measurements.

The work presented herein demonstrates the feasibility of approximating the input–output dynamics of a vibrating beam based on
measured input–output data using this new data-driven modeling approach. Although the WDMD algorithm performed reasonably
17
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well in the presence of noise, additional analysis and numerical studies are required to better understand the performance of WDMD
in the case of noisy data and to improve its robustness. Furthermore, issues such as effect of sensor placement, input excitation
requirements, sampling frequency, and the selection of wavelet decomposition level warrant further research.
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