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Abstract | Plant hormones are signalling compounds that regulate crucial aspects of growth,
development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat,
cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance
to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this
Review, we discuss recent advances in understanding how diverse plant hormones control abiotic
stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling.
Control mechanisms and stress responses mediated by plant hormones including abscisic acid,
auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights
into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and
plant development during stress, hormone-regulated submergence tolerance and stomatal
movements. We further explore how innovative imaging approaches are providing insights into
single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens
new opportunities for agricultural applications.

Abiotic stresses
Environmental stresses that are
associated with the non-living
environment, such as weather
conditions or the quality of the
soil in which plants grow.
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Plants are a major source for food, fuel and fibre, and
are important contributors to the ecological diversity
and sustainability of our planet. To optimize growth and
productivity under changing environmental conditions,
which are intensified as a result of climate change, plants
have developed sophisticated mechanisms to sense and
respond to external stresses'”. Among them, abiotic stresses
appear in various forms, associated either with changes
in weather conditions such as rainfall, temperature and
irradiation from the Sun or with the quality of the soil
in which plants grow (for example, the content of water,
nutrients and soil contaminants)'. In particular, changes
in water availability and temperature leading to drought
and heat stress have been associated with climate change’.

To develop concepts and approaches for protecting
plants from the negative effects of abiotic stresses, and
to secure the future demands for plant products, we need to
understand the mechanisms of plant stress responses at
the molecular level. Plant hormones — that is, abscisic
acid (ABA), auxin, brassinosteroid, cytokinin, ethylene,
gibberellin, jasmonate, salicylic acid and strigolactone —
are well-known plant growth regulators that mediate adap-
tations to environmental conditions. For an overview of
their functions and respective signalling mechanisms, see
arecent review’. The most notable roles of phytohormones
in abiotic stress responses are listed in TABLE 1.

In this Review, we describe the current understanding
of how plant hormones and other signalling compounds

mediate plant responses to abiotic stresses, including
drought, osmotic stress and flooding. We discuss the
current view on how osmotic stress is sensed by plants,
and how this leads to the activation of SUCROSE
NON-FERMENTING 1-RELATED PROTEIN KINASE 2
(SnRK2)-type protein kinases and interactions with
plant hormone signalling modules. Then, we elaborate
on phytohormone-dependent gene regulatory mech-
anisms that mediate abiotic stress responses in plants.
We also highlight the effects of stress-dependent hor-
mone responses on seed germination and flowering time,
how ABA and auxin coordinate root growth under stress,
the ethylene-mediated and gibberellin-mediated regu-
lation of plant responses to flooding, and the ABA and
abiotic stress sensing mechanisms regulating the aper-
ture of stomata. Abiotic stresses also cause bud dormancy,
leaf senescence and organ abscission, which are reviewed
elsewhere®. Finally, we review how biosensor-based hor-
mone imaging techniques are contributing to the eluci-
dation of hormone dynamics under abiotic stress, and
discuss how understanding stress tolerance mechanisms
might open new avenues for agricultural applications.

Osmotic stress sensing and signalling

Water uptake from the soil and water movements
within plants are driven by water potential gradients.
Hypo-osmotic stress, such as flooding, leads to cell
swelling, whereas hyperosmotic stress, such as drought
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Phytohormones
Plant-derived compounds

that function as plant growth
regulators either locally or over
long distances and at low

(submicromolar) concentrations.

Osmotic stress

A sudden change in the
ambient solute concentration
resulting in the water potential
difference between cells and
environments effects the
tendency of water movement
across cell membranes.
Hypo-osmotic stress leads to
water influx into cells, whereas
hyper-osmotic stress leads to
water efflux from cells.

Stomata

Small pores in the leaf
epidermis that are formed by
guard cells to allow the uptake
of CO, for photosynthesis in
exchange for water loss.

Table 1| Examples of roles of phytohormones in abiotic stress responses

Stress type
ABA

Drought and osmotic stress in roots

Osmotic stress and salt stress

Drought stress and osmotic stress in roots
(uneven distribution of water in the soil)

Salt stress

Salt stress, K* and SO,?~ deficiency

Cold stress

Heat stress
Auxin

Salt stress

Drought stress in roots (uneven
distribution of water in the soil)
Drought stress

Heat stress

Brassinosteroids

Drought stress

Cold and freezing stress

Increased temperature

Cytokinins

Drought stress and salt stress

Osmotic stress (uneven distribution

of water in the soil)

Ethylene
Salt stress

Flooding or submergence

Metal deficiency
Gibberellin

Drought stress
Salt stress
Cold stress
Heat stress

Water submergence

Adaptive responses

Induction of ABA biosynthesis in shoots via hydraulic signals
and CLE25 peptide-mediated induction of NCED3 expression

Activation of SnRK2-type protein kinases, which is mediated
by subgroup B Raf-like kinases

Root hydrotropism, which requires ABA signalling in the cortex
of the elongation zone

Inhibition of lateral root development, which depends on ABA
synthesis and endodermal ABA signalling; ABA interferes with
auxin signalling

Endodermal suberization

Phosphorylation of the transcription factor ICE1 by SnRK2.6
(also known as OST1)

Promotion of seedling survival

Root bending to promote halotropism, the preferential growth
away from areas of high salinity

Hydropatterning, the preferential formation of lateral roots near
water, which is mediated by the auxin response factor ARF7

Expression of IAA5 and IAA19, two transcriptional repressors
of auxin responses

Hypocotyl elongation via PIF4-mediated induction of auxin
biosynthesis, the stabilization of auxin co-receptors and the
regulation of gene expression by auxin response factors

Crosstalk with ABA signalling at the level of BES1-mediated
and RD26-mediated transcriptional regulation

Modulation of COR and CBF expression

Thermomorphogenesis via PIF4-mediated induction of BR
biosynthesis; the BR-activated transcription factor BZR1
functions in a feedforward loop downstream of auxin and PIF4
to further induce PIF4 expression

Reduction of CK content and signalling, leading to increased
ABA sensitivity; crosstalk with ABA signalling via interaction
of SnRK2s with Type-A and Type-B ARR proteins

Root hydrotropism, which depends on the asymmetric
distribution of CK signalling in the root tip; CK signalling
is enhanced at the lower water potential side

Induction of ET and ET signalling

ET production; group VII ERF genes in Arabidopsis and other
related ERF genes in rice (SUBMERGENCE TOLERANCE 1,
SNORKEL1 and SNORKEL?) likely induce gibberellin biosynthesis

Reduction of endodermal suberization

Interference with ABA signalling via DELLA protein interactions
with the ABA-regulated transcription factor ABF2

Reduction of bioactive gibberellin levels likely via ABA signalling;
della quadruple mutants are hypersensitive to salt stress

Accumulation of DELLA proteins, which interact with GRF-type
transcription factors, leading to altered gene expression

Hypocotyl elongation via induction of gibberellin biosynthesis
and degradation of DELLA proteins in a COP1-dependent manner

Internode elongation in rice, which is mediated by the
induction of gibberellin production
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Mechanosensitive ion
channels
lon channels that respond to

mechanical forces, for example,
induced by membrane tension.
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Table 1 (cont.) | Examples of roles of phytohormones in abiotic stress responses

Stress type Adaptive responses Refs

Jasmonic acid

Cold stress Induction of JA production; JAZ degradation releases ICE1 2
and ICE2 from JAZ-mediated repression

Heat stress Accumulation of the JA receptor COI1 to enhance downstream Ees
JA responses

Strigolactones

Drought stress and salt stress

Modulation of stomatal development and function via

179,222

ABA-dependent and ABA-independent pathways

ABA, abscisic acid; ABF2, ABSCISIC ACID BINDING ELEMENT-BINDING FACTOR 2; ARF7, AUXIN RESPONSE FACTOR 7; ARR,
ARABIDOPSIS RESPONSE REGULATOR; BES1, BRI1-EMS-SUPPRESSOR 1; BR, brassinosteroid; CK, cytokinin; CLE25, CLAVATA3/
ESR-RELATED 25; COI1, CORONATINE-INSENSITIVE 1; COP1, CONSTITUTIVE PHOTOMORPHOGENETIC 1; DELLA, plant-specific
GRAS family proteins functioning as repressors of the gibberellin signalling pathway; ET, ethylene; GRF, GROWTH REGULATORY
FACTOR; ICE1, INDUCER OF CBF EXPRESSION 1; ICE2, INDUCER OF CBF EXPRESSION 2; JA, jasmonic acid; JAZ, JASMONATE ZIM
DOMAIN PROTEIN; PIF4, PHYTOCHROME-INTERACTING FACTOR 4; RD26, RESPONSIVE TO DESICCATION 26; SnRK2, SUCROSE

NON-FERMENTING 1-RELATED PROTEIN KINASE 2.

and salinity, leads to plant wilting. Plants have evolved
osmotic stress adaptive mechanisms, including the
regulation of cellular osmoticum concentrations, sto-
matal movements and plant development through
ABA-dependent and ABA-independent pathways'”.
Here, we summarize the current understanding of
osmotic sensory and signalling mechanisms in plants
that lead to stress adaptation.

Osmotic and salt stress sensing. Plants can sense the
alteration of turgor pressure, the mild change of solute
concentrations in cells, and the mechanical effects on
cellular structures caused by osmotic stress. Calcium
signalling is suggested to play a key role in osmosensing
because cytosolic free calcium concentrations ([Caz*]cyl)
in plants rapidly and transiently increase within sec-
onds of exposure to osmotic shock®’. The roles of
mechanosensitive ion channels in osmotic stress sensing
have been investigated (FIG. 12). MECHANOSENSITIVE
CHANNEL OF SMALL CONDUCTANCE-LIKE (MSL)
proteins are non-selective ion channels activated by
membrane tension for osmoregulation during hypo-
osmolality in organelles, hydration and germination
in pollen, touch responses in roots and cell swelling®"°.
MID1-COMPLEMENTING ACTIVITY (MCA)-type
Ca*-permeable channels are activated by membrane
tension and are suggested to mediate hypo-osmotic
shock and touch sensing in roots''. They also function
in mediating cold tolerance and cold-induced [Ca*],,
increases'’. Another mechanosensitive ion channel,
PIEZO1 (PZO1), is required for mechanotransduc-
tion at root tips'’. Interestingly, plant PZO proteins are
localized in the vacuolar membrane to regulate [Ca™],,
oscillations and tip growth in Physcomitrium patens
caulonemal cells and to mediate vacuole tubulation in
the tips of Arabidopsis thaliana (referred to hereafter
as ‘Arabidopsis’) pollen tubes', suggesting a potential
function under hypo-osmotic stress.

REDUCED HYPEROSMOLALITY-INDUCED
[Caz*]CYt INCREASE 1 (OSCA1), a potential osmosen-
sor, is involved in hyperosmotic stress-induced [Ca**],,
increases for osmotic stress tolerance' (FIG. 1b). OSCA1
was initially characterized as a hyperosmolality-activated
Ca?-permeable cation channel". Further studies reported

that OSCA family proteins function as stretch-activated
channels'®"”. Ca**-responsive phospholipid-binding
BONZAI (BON) proteins were recently reported to
mediate hyperosmotic stress tolerance by positively
regulating osmotic stress-induced [Ca**]_, increases,
ABA accumulation and gene expression'®. These
membrane-associated Ca**-responsive BON proteins
may be involved in osmotic sensing and signalling by
regulating the initial [Ca™] , elevation together with
plasma membrane Ca?* transporters' (FIG. 1b). Defects
in plant growth and ABA accumulation under osmotic
stress in bon mutants can be restored by crossing bon
mutants with sncl-11 and pad4 mutant alleles that are
impaired in nucleotide-binding domain and leucine-rich
repeat (NLR) immune signalling'®. Therefore, BON
proteins may confer osmotic stress responses by
suppressing NLR immune signalling. Although several
osmotic stress-linked mechanisms have been char-
acterized, further research is needed to dissect their
differential functions. Notably, the activation of SnRK2-
type protein kinases in response to hyperosmotic
shock is not impaired in osca septuple and bonl bon2
bon3 triple mutants'®”, indicating the need to iden-
tify additional osmotic stress sensing and signalling
mechanisms.

Plants sense salinity and induce rapid and transient
[Ca*],,, elevations®*' to trigger salt tolerance responses
through the salt overly sensitive pathway' (FIC. 1¢).
Under salt stress, the receptor-like kinase FERONIA
may sense cell wall defects caused by salinity and elicits
cell-specific [Ca*] ,, signals for maintaining cell wall
integrity*. FERONIA potentially also interferes with
ABA signalling via interaction with the PROTEIN
PHOSPHATASE 2C (PP2C) ABA-INSENSITIVE 2
(ABI2)*. In Arabidopsis, plasma membrane glycosyl ino-
sitol phosphorylceramide (GIPC) sphingolipids func-
tion in salt sensing™. In this model, GIPC sphingolipid
formation is catalysed by the protein MONOCATION-
INDUCED [Ca?"], INCREASES 1 (MOCA1; also known
as IPUT1), and binding of Na* ions to GIPC sphingo-
lipids activates Ca®* influx channels*. Disruption of
the annexin gene ANN4, which codes for a putative
Ca**-permeable channel component, impairs salt stress-
induced [Ca**],, elevations by ~40%, while Ca**-activated
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SCaBP8(also known as CBL10) in complex with SOS2
negatively regulate ANN4 by phosphorylation to
fine-tune salt tolerance responses™.

Osmotic stress-induced ABA biosynthesis. Endogenous
ABA concentrations increase approximately 2.5-6h
after exposure to water deficiency’*. Stress-induced
de novo ABA synthesis depends on the induction of the
NCED3 gene, which encodes a 9-cis-epoxycatoteinoid
dioxygenase catalysing the rate-limiting step for
ABA biosynthesis™. Post-translational processing of
NCED3 in the chloroplast has also been reported to
regulate ABA accumulation’. In response to water
deficiency in roots, a hydraulic signal contributes to a
rapid root-to-shoot water deficiency signal to trigger

ABA biosynthesis in Arabidopsis leaves and stomatal
closure®. In addition, a small peptide, CLAVATA3/
ESR-RELATED 25 (CLE25), is induced in the root
vasculature during drought stress and moves to aerial
tissues to induce NCED3 expression likely through
BARELY ANY MERISTEM 1 (BAM1) and BAM3
receptor-like kinases® (FIG. 1b). At the transcriptional
level, an Arabidopsis NAC transcription factor, ATAFI,
was suggested to regulate NCED3 expression to enhance
ABA accumulation®. Moreover, the NGATHA (NGA)
protein family, including four members in Arabidopsis,
were identified as transcriptional activators regulat-
ing NCED3 expression through direct binding to a
cis-acting element (CACTTG) in the 5’ untranslated
region of the NCED3 promoter™.
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Fig. 1| Osmotic stress and salinity sensing and signalling in plants.
a| Mechanosensitive channels have been proposed to be involved in sensing
the alterations of membrane tension caused by hypo-osmotic stress and
other abiotic stresses. MID1-COMPLEMENTING ACTIVITY 1 (MCA1)
and MCA2 mediate hypo-osmotic and cold-induced [Ca“]Cyl increases and
promote cold tolerance’”. MECHANOSENSITIVE CHANNEL OF SMALL
CONDUCTANCE-LIKE 8 (MSL8) prevents bursting of pollen during hydration
and germination®. MSL10 potentiates hypo-osmotic stress-induced and cell
swelling-induced transient cytosolic free calcium concentration ([Ca“]cyt)
increases, reactive oxygen species (ROS) production and programmed cell
death'®, MSL1, MSL2 and MSL3 control mitochondrial and plastidial osmotic
pressure’”. PIEZO (PZO) proteins are required for [Caz*]cyt oscillations in
tip-growing cells'* and mechanical stress-induced [Ca*"],, increases in the
root tip to regulate root penetration into denser barriers'’. b | Hyperosmotic
stress-induced [Ca“]Cyt increases have been reported to function in early
hyperosmotic stress signalling. REDUCED HYPEROSMOLALITY-INDUCED
[Caz"]cyt INCREASE 1 (OSCA1) is an osmotic stress-sensitive and mechanical
stress-sensitive channel required for hyperosmotic stress-induced [Ca*"],
increases’”. Ca’*-responsive phospholipid-binding BONZAI (BON) proteins
regulate hyperosmotic stress-induced [Ca*'] , increases and suppress
nucleotide-binding domain and leucine-rich repeat (NLR) immune signalling
to trigger a hyperosmotic stress response’®. Drought induces abscisic acid
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(ABA) biosynthesis via induction of NCED3 expression. Root-derived
CLAVATA3/ESR-RELATED 25 (CLE25) peptides activate NCED3 expression in
the shoot in response to dehydration likely through the receptor-like kinases
BARELY ANY MERISTEM 1 (BAM1) and BAM3 (REF.*’). NGATHA (NGA)
transcription factors are responsible for the drought-induced transcriptional
activation of NCED3 (REF.*°). Hyperosmotic stress activates Raf-like
mitogen-activated protein kinase kinase kinases (M3Ks) via phosphorylation
through an unknown osmotic stress sensor-mediated signal transduction
mechanism. Members of the B2 and B3 subgroups of Raf-like M3Ks mediate
both the rapid osmotic stress-induced and the slower, post-ABA-synthesis,
activation of SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 2.2
(SnRK2.2), SnRK2.3 and SnRK2.6, whereas the B4 subgroup of Raf-like M3Ks
activate only osmotic stress-responsive SnRK2.1, SnRK2.4, SnRK2.5, SnRK2.9
and SnRK2.10 (REFS?#>*). ¢ | A salt-induced [Ca“]cyt increase triggers tolerance
responses through the salt overly sensitive (SOS) pathway. Glycosyl inositol
phosphorylceramide (GIPC) sphingolipids synthesized by MONOCATION-
INDUCED [Ca®],INCREASES 1 (MOCAT1; also known as IPUT1) are involved in
Na* sensing’®. The ANNEXIN 4 (ANN4)-mediated [Caz*]cyt increase is feedback
inhibited by the SOS pathway for fine-tuning salt tolerance’. FERONIA (FER)
is required for maintenance of cell wall integrity under salt stress*.. PP2C,
PROTEIN PHOSPHATASE 2C; PYL, PYR1-LIKE; PYR1, PYRABACTIN
RESISTANCE 1; RCAR, REGULATORY COMPONENT OF ABA RECEPTOR.
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An emerging role of Raf-like M3Ks. An ABA-independent
rapid osmotic stress signal transduction pathway and an
ABA-dependent pathway converge at the level of SnRK2-
type protein kinase activation. The Arabidopsis genome
encodes ten SnRK2 genes. Except for SnRK2.9, the other
SnRK?2 proteins are activated by osmotic stress, whereas
SnRK2.2, SnRK2.3 and SnRK2.6 (also known as OST1)
are clearly activated by ABA*~". ABA-dependent SnRK2
activation through the PYRABACTIN RESISTANCE 1
(PYR1)/PYR1-LIKE (PYL)/REGULATORY
COMPONENT OF ABA RECEPTOR (RCAR) and
PP2C ABA sensing module has been well described*.
Since SnRK2 activation by osmotic stress is not impaired
in ABA-insensitive dominant negative PP2C Arabidopsis
mutants***’, osmotic stress uses other signalling mecha-
nisms to activate SnRK2 kinases. This ABA-independent
pathway is still largely unknown, including the identity
of the contributing osmotic stress sensors.

SnRK2 proteins have an autophosphorylation activity
that enhances the kinase activity itself". In vitro studies
identified a key phosphorylation site at Ser175 within the
activation loop of the SnRK2.6/OST1 kinase domain®.
In vivo analyses revealed that both ABA and osmotic
stress induce phosphorylation at residues Ser171 and
Ser175 (REF*).

Recent studies identified Raf-like mitogen-activated
protein kinase kinase kinases (M3Ks) to be required
for phosphorylation-dependent SnRK2 activation
via osmotic stress and ABA signalling®>*>~** (FIC. 1D).
SnRK2.6/0OST1 was found to be impaired in autoac-
tivation after dephosphorylation by PP2C proteins*.
The reactivation of SnRK2.6/OST1 requires the initial
transphosphorylation at Ser171 or Ser175 by members
of the Arabidopsis B2 and B3 subgroups of Raf-like
M3Ks'>*. Moreover, the raf-like m3ké1 m3ké6 m3ké7
triple-knockout mutant exhibited not only a reduced
SnRK2 kinase activation by ABA but also impairment
in SnRK2 activation by osmotic stress*’. Important
functions of B4 subgroup Raf-like M3Ks in osmotic
stress-induced but not in ABA-induced rapid SnRK2
activation were identified”* (FIG. 1b).

Roles for Raf-like M3Ks in ABA responses were
initially identified in genetic ABA response and stress
response mutant screens in Arabidopsis and in moss*>*¢.
In the moss Physcomitrium patens, the ABA and abi-
otic stress-responsive Raf-like kinase ARK (also known
as ANR), which is encoded by a single ancestral gene
similar to the Arabidopsis B3 subgroup, has a role
in osmotic stress signalling and ABA signalling**-*.
A recent study reported that ARK is activated by ABA”.
The Arabidopsis B3 Raf-like M3K subgroup contains
another well-studied gene, CONSTITUTIVE TRIPLE
RESPONSE 1 (CTR1), functioning as a negative regu-
lator of ethylene signalling. Ethylene deactivates
CTRI through ethylene receptors, a family of histidine
kinases including ETHYLENE RESPONSE 1 (ETR1),
which directly binds to CTR1 (REF.*). Interestingly,
Physcomitrium patens ARK/ANR (also known as
CTRIL) mediates not only ABA signalling in moss but
also ethylene responses®, which might suggest a role
of Raf-like M3Ks as a signalling ‘hub. How osmotic
stress sensors are linked to Raf-like M3Ks, SnRK2
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activation and downstream components remains to
be determined.

Gene regulation under abiotic stress

Changes in gene expression mediate many of the effects
of phytohormones. Early genomic technologies revealed
that abiotic stress-linked ABA level increases change the
mRNA levels of thousands of genes®'. This, together with
the discovery that many classic ABA-insensitive muta-
tions were mapped to transcriptional regulators, sug-
gested a prominent role for gene regulation in abiotic
stress resistance™.

ABA-mediated transcriptional regulation and hormone
crosstalk. Early studies discovered a conserved cis-acting
regulatory element known as the ABA-responsive
element (ABRE) in the promoters of drought-induced
genes™. ABREs are recognized by basic leucine
zipper-type transcription factors, including a family
of four ABRE-binding proteins/ABRE-binding factors
(AREBs/ABFs)*, and the closely related ABI5 (REFS*>*>*)
(FIG. 2). During ABA signalling, ABA-dependent SnRK2-
type protein kinases directly phosphorylate and acti-
vate AREBs/ABFs and ABI5 (REFS*’~*). In Arabidopsis,
the four partially redundant AREBs/ABFs are respon-
sible for most of the transcriptional responses to ABA
during vegetative growth®, whereas ABI5 is more
important during seed germination® (see later). Many
of the AREB/ABEF targets are other transcription fac-
tor genes, implying that a multilevel transcription
factor hierarchy controls ABA-dependent transcrip-
tome remodelling®-*. A seminal study using chromatin
immunoprecipitation followed by sequencing to pro-
file the genome-wide binding sites of 21 transcription
factors during the ABA response revealed that many
binding events are dynamic, and that multiple tran-
scription factors can target the same gene®. Crucially,
the ABA-induced binding of some transcription factors
was positively correlated with the presence of adjacent
ABRE sites, suggesting that some transcription fac-
tors may act cooperatively with AREBs/ABFs. Indeed,
several NAC family transcription factors are required
for ABA-dependent transcription events, including
ANACO096, which interacts with ABF2 to activate RD29A
transcription®>%<7,

In the absence of abiotic stress, repression of ABA
signalling promotes optimal growth. For instance,
under non-stress conditions, mRNA levels of ABI5 are
low, and ABI5 transcription is increased upon expo-
sure to ABA or osmotic stress™. This repression of
ABI5 requires the SWI2/SNF2 chromatin remodelling
ATPase BRAHMA®. In the absence of ABA, BRAHMA
inhibits the transcription of ABI5 by promoting nucle-
osome occupancy at the transcription start site of the
ABI5 gene. Interestingly, phosphorylation of BRAHMA
by SnRK2.2, SnRK2.3 and SnRK2.6 appears to inhibit its
action and, in turn, this inhibitory phosphate is removed
by group A PP2C proteins® (FIC. 2).

Different hormone pathways interact to control
numerous aspects of plant life in the absence of abiotic
stress, and we direct readers to a review’’ for an over-
view of this topic. Here, we focus on how transcriptional
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regulation enables hormone crosstalk during drought
stress responses. For instance, the ABA-induced tran-
scription factor RESPONSIVE TO DESICCATION 26
(RD26) represses a subset of brassinosteroid-induced
genes®>’!. Furthermore, brassinosteroid-activated tran-
scription factors repress the expression of RD26, suggest-
ing that antagonistic crosstalk between ABA signalling
and brassinosteroid signalling contributes to drought
stress responses’® (FIG. 2). Intriguingly, overexpres-
sion of the vascular-enriched brassinosteroid receptor
BRL3 causes constitutive expression of some drought-
induced genes, including RD26, and promotes drought
resistance”’. The cytokinin and ABA pathways also
converge on the level of transcriptional control. SnRK2-
mediated phosphorylation of the Type-A ARABIDOPSIS
RESPONSE REGULATOR 5 (ARR5), a negative regula-
tor of cytokinin signalling, promotes its protein stabil-
ity, thereby downregulating cytokinin responses during
drought stress”. Oppositely, cytokinin can trigger the
degradation of ABI5 to promote seed germination”
(FIC. 2). Furthermore, dehydration induces the expression
of IAA5 and IAA19, two transcriptional repressors of the
auxin signalling pathway, indicating that auxin responses
are repressed during drought stress™.

mRNA decapping

The removal of the 5
methylguanosine cap,

a key step in the regulated
degradation of mRNAs.

Brassinosteroid

PR Cytokinin | ARRS Growth rassin meemee .

: signalling A signalling ]

: ,A(TOR) ----* : :

1 (PP2C y ' :
: P I A
L prARMA —— (SnRK2): CAREB/ABF> :
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R |@I§IQ ------------- 1 Gibberellin biosynthesis

ABRE Target genes

Fig. 2 | Hormonal crosstalk through transcriptional regulation. Plant hormones
control abiotic stress responses by altering transcriptional programmes. The abscisic
acid (ABA) signalling system intersects with many other hormone pathways during
transcription. This figure summarizes the relationships between ABA signalling and key
transcriptional regulators during hormonal signalling. During ABA responses, SUCROSE
NON-FERMENTING 1-RELATED PROTEIN KINASE 2 (SnRK2)-type protein kinases
phosphorylate ABA-RESPONSIVE ELEMENT (ABRE)-binding proteins/ABRE-binding
factors (AREBs/ABFs) and the transcription factor ABA-INSENSITIVE 5 (ABI5). AREBs/
ABFs and ABI5 activate target genes with ABREs in their promotors to drive ABA
responses. For instance, during drought stress AREBs/ABFs activate transcription of
RESPONSIVE TO DESICCATION 26 (RD26), which encodes a transcription factor that
can repress brassinosteroid signalling. SnRK2-type protein kinases further promote
ABI5 expression by phosphorylating and inhibiting the SWI2/SNF2-type chromatin
remodelling ATPase BRAHMA, which represses ABI5 transcription. Oppositely,
PROTEIN PHOSPHATASE 2C (PP2C)-type phosphatases activate BRAHMA through
dephosphorylation. Additionally, in dormant seeds, ABI5 target genes repress gibberellin
biosynthesis and thereby block germination. Cytokinin signalling can repress ABA
responses possibly by triggering the degradation of ABI5. ABA-activated SnRK2-type
protein kinases promote transcriptional ABA responses by phosphorylating Type-A
ARABIDOPSIS RESPONSE REGULATOR 5 (ARR5), a negative regulator of the cytokinin
pathway. Finally, in unstressed conditions the protein kinase TARGET OF RAPAMYCIN
(TOR) promotes plant growth by inhibiting SnRK2-type protein kinase-mediated

ABA responses through phosphorylation of ABA receptors. Conversely, during stress,
SnRK2-type protein kinases phosphorylate and inhibit the TOR regulatory protein
REGULATORY-ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), leading to growth
repression. Not all mechanisms shown here are necessarily present at the same time

or in the same cell or tissue. Dashed lines indicate indirect mechanisms.

Post-transcriptional abiotic stress responses. Post-
transcriptional processes expand gene regulatory pos-
sibilities beyond transcriptional control, and recent
research has uncovered the contributions of such
mechanisms in shaping ABA responses. The discov-
ery of an ABA hypersensitive mutant of a gene encod-
ing an mRNA cap-binding protein known as ABA
HYPERSENSITIVE 1 (ABH1) established an early
link between mRNA processing and ABA signalling”’.
Alternative mRNA splicing is modulated by abiotic
stress and regulates ABA responses” . HABI, for
instance, a group A PP2C gene, encodes multiple splice
isoforms, of which HABI.2 retains an intron leading to
a non-functional protein and ABA hypersensitivity”>®.

Recently mRNA decay has emerged as an additional
mechanism contributing to abiotic stress responses.
The degradation of mRNA molecules is mediated
by mRNA decapping®. During osmotic stress, ABA-
independent subclass I SnRK2-type protein kinases phos-
phorylate the decapping activator VARICOSE (VCS),
leading to the destabilization of some transcripts®.
The 5’ end of mRNAs can be alternatively modified
by the addition of nicotinamide adenine dinucleotide
(NAD"). In plants, the NAD* cap occurs on many tran-
scripts and is thought to downregulate gene expression
by promoting the degradation of marked mRNAs®**.
A recent study demonstrated that the NAD*-capped
transcriptome undergoes extensive changes in response
to ABA and that many ABA-induced transcripts lose
their NAD" caps following ABA treatment, possibly
promoting their stability®’.

Growth regulation under abiotic stress
Phytohormones regulate many aspects of plant growth
and development. Recent discoveries have begun to
illuminate how they control different strategies of plant
growth and development in response to abiotic stress.

TOR interaction with abiotic stress responses. The pro-
tein kinase TARGET OF RAPAMYCIN (TOR) is a cen-
tral developmental and metabolic regulator in plants®.
A reciprocal regulation between the ABA pathway and
the TOR pathway has been proposed to coordinate
plant growth and abiotic stress responses®. TOR phos-
phorylates PYL/RCAR ABA receptors to inhibit ABA
signalling and promote growth under non-stress con-
ditions, whereas ABA-activated SnRK2-type protein
kinases phosphorylate REGULATORY-ASSOCIATED
PROTEIN OF TOR 1B (RAPTORI1B) to inhibit TOR
kinase activity and repress growth in response to abiotic
stress conditions (FIC. 2).

Gibberellin, ABA and the decision to germinate. The reg-
ulation of seed germination promotes seedling survival
by coordinating embryo development and emergence
with environmental conditions. The balance of two
competing hormone signalling pathways, gibberellin
and ABA, dominates the decision to germinate®. During
seed maturation, a network of transcription factors,
including the ABA-regulated transcription factors ABI3,
ABI4 and ABIS5, induce genes required for seed desic-
cation and ABA biosynthesis and repress gibberellin
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a ABA and gibberellin crosstalk
during seed germination

b ABA and auxin regulate root
development during osmotic stress
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Fig. 3| Hormonal control of growth and development during abiotic stress. a| Abscisic
acid (ABA) and gibberellin signalling pathways antagonistically control germination. In
dormant seeds, DELLA proteins and ABA-INSENSITIVE 5 (ABI5) promote ABA signalling by
stimulating expression of ABA biosynthesis genes and the ABI5 gene and inhibit gibberellin
responses by repressing gibberellin biosynthesis. INDUCER OF CBF EXPRESSION 1 (ICE1)
antagonizes DELLA and ABI5 activity to promote germination. During germination, gibber-
ellin levels increase, and gibberellin triggers the degradation of DELLA proteins, leading
to decreased ABA signalling. b | Water is unevenly distributed in soil, and large air pockets
form between soil particles. Primary roots display hydrotropism or biased growth towards
areas of higher water content. This process depends on SUCROSE NON-FERMENTING 1-
RELATED PROTEIN KINASE 2.2 (SnRK2.2) activity in cortex cells of the elongation zone.
When roots enter air spaces, lateral root formation is repressed (xerobranching), a process
that depends on the ABA inhibition of auxin signalling. Roots growing in areas where water
is asymmetrically distributed display a growth programme known as hydropatterning,
where lateral roots preferentially form on the water-contacting side. In hydropatterning,
the auxin response factor ARF7 stimulates preferential lateral root initiation. ¢ | During
prolonged drought, plants accelerate flowering to reproduce in a process called drought
escape. Under drought stress, the ABA-activated transcription factors ABA-RESPONSIVE
ELEMENT-BINDING FACTOR 3 (ABF3) and ABF4 and the floral regulator GIGANTEA (Gl)
stimulate expression of the flowering inducers SUPPRESSOR OF OVEREXPRESSION OF CO 1
(SOC1) and FLOWERING LOCUS T (FT) to promote flowering. d | Submerged plant tissues
experience hypoxia and elevated levels of ethylene gas. These cues activate transcription
factors known as group VIIETHYLENE RESPONSE FACTORS (ERFs). Group VII ERFs initiate
a conserved hypoxia-induced transcriptional programme. In deepwater rice varieties, ele-
vated ethylene concentration activates the ERFs SNORKEL1 and SNORKEL2 (SK1/2), which
induce gibberellin biosynthesis. Gibberellin signalling promotes a flood escape strategy
where stems elongate to emerge into the air. Dashed lines indicate indirect mechanisms.
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biosynthesis genes. Environmental signals, such as cold
and light, that trigger seeds to break seed dormancy do so
by flipping the balance towards gibberellin™. This antag-
onistic relationship between ABA and gibberellin arises
at multiple points in their respective pathways (FIG. 3a).

DELLA proteins are members of the plant-specific
GRAS (GIBBERELLIN-INSENSITIVE, REPRESSOR
of gal-3, SCARECROW) family of transcriptional reg-
ulators, which lack DNA-binding activity and function
by interacting with other transcription factors”. DELLA
proteins inhibit gibberellin responses, and gibberellin
signalling inactivates DELLA proteins in part by trigger-
ing their proteasomal degradation®'. DELLA proteins
interact with ABI3 and ABI5, and together these pro-
tein complexes stimulate the transcription of SOMNUS,
a key dormancy-promoting factor that activates ABA
biosynthesis genes and represses gibberellin biosynthe-
sis genes’. Interestingly, the action of the DELLA-ABI5
complex is inhibited by the basic helix-loop-helix tran-
scription factor INDUCER OF CBF EXPRESSION 1
(ICE1)*. Binding of ICE1 blocks the DNA-binding
activity of ABI5, and this interaction is stimulated by
gibberellin treatment, possibly due to the degradation
of DELLA proteins, providing a possible mechanism
through which prior exposure to low temperatures may
promote germination.

The control of ABI5 expression appears to be a major
regulatory point for multiple environmental signals
during germination. The light signalling component
ELONGATED HYPCOTYL 5 (HY5) directly activates
ABI5 transcription in response to light”. The DELLA
protein RGL2 further promotes ABA signalling by
enhancing the transcription of ABI5. Gibberellin pro-
duction during germination initiation could then reduce
ABI5 expression through RGL2 degradation®. High
salinity inhibits seed germination, and two different
transcription factors, AGL21 and RSM1, were reported
recently to enhance ABI5 expression during exposure
to NaCl (REFS™*).

Auxin, ABA and root growth under stress. Root devel-
opment is shaped by environmental conditions, and this
topic has been the subject of multiple excellent reviews™.
Here, we focus on the mechanisms by which auxin and
ABA control the architecture of the root system in
response to water and salinity stresses (FIG. 3b).

While high concentrations of exogenous ABA
inhibit root growth, lower concentrations (nanomolar
range) stimulate primary root growth”. Water distri-
bution in soil is uneven, and plants partly address this
situation through hydrotropism, the directional growth
of roots towards water. Hydrotropism is impaired in
ABA-deficient mutants, and ABA accumulates in root
tissues during water stress, suggesting an important
role for ABA signalling'”. For hydrotropism the protein
kinase SnRK2.2 is required specifically in cortical cells
of the root elongation zone, where it promotes the cell
elongation necessary for differential growth'”" (FIG. 3b).
Low concentrations of ABA (100 nM) stimulate pri-
mary root growth by abating PP2C-mediated inhib-
ition of apoplastic H* efflux through AUTOINHIBITED
H*-ATPASE 2 (AHA2)'”. This mechanism provides a
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Seed dormancy

A state in which seed
germination is inhibited. ABA
signalling promotes seed
dormancy, while gibberellin
signalling can repress it.

Hydrotropism

The directional growth of roots
towards regions of the soil
environment with higher
water content.

Halotropism

The directional growth of
roots away from regions
of high salinity.

Xylem

A vascular tissue that conveys
water and nutrients from roots
to stems and leaves.

Hydropatterning

A water-responsive root
developmental programme
active when water is
asymmetrically available
around the circumference
of the root. Lateral roots
preferentially form on the
water-contacting side.

Xerobranching

A water-responsive root
developmental programme
where the formation of lateral
roots is repressed in regions
of the soil environment that
lack water.

Pericycle cells
A layer of cells that encircle
the vascular tissue.

Drought escape

An adaptive response to
prolonged drought stress
where plants accelerate the
transition to flowering in order
to reproduce.

contribution to the hydrotropic response'®. Two recent

studies have implicated brassinosteroid signalling in the
hydrotropic response as well, although the mechanism is
currently unclear’>'*. By contrast, in high-salinity envi-
ronments, lateral roots enter a prolonged growth arrest
which requires endodermal ABA signalling'*’. Roots
also exhibit preferential growth away from areas of high
salinity — a phenomenon called halotropism'®. Salt treat-
ment induces internalization of the auxin transporter
PIN-FORMED 2 (PIN2), and when roots encounter a
longitudinal salinity gradient, auxin accumulates on the
side of the root furthest from the salt source, which then
leads to root bending'*'*. Interestingly, hydrotropism
does not appear to act through auxin redistribution,
suggesting that halotropism is a distinct process'*'.
ABA also regulates root tissue patterning during
water stress. Endodermal ABA signalling stimulates
xylem differentiation by inducing the expression of the
microRNAs miR165 and miR166, two key regulators of
vascular development'*'!°. ABA functions within xylem
cells as well, where it activates expression of several
VASCULAR-RELATEDNACDOMAIN(VND)transcription
factors which promote xylem differentiation'"".
Research on two related water-dependent root-
branching strategies, hydropatterning and xerobranching,
has uncovered requirements for auxin and ABA
signalling®. Lateral roots initiate from pericycle cells
within the primary root, and this is timed by an
auxin-regulated transcriptional network''>'"*. The posi-
tion of these initiation events was shown to respond to
water availability in a process termed ‘hydropattern-
ing’"**. In hydropatterning, differences in water content
around the circumference of primary roots lead to pref-
erential lateral root initiation where water is available.
Hydropatterning was correlated with auxin biosynthesis
and signalling on the side of the root in contact with
water''. A recent study demonstrated that hydropat-
terning requires the auxin response factor ARF7 (REF.'")
(FIG. 3b). Removal of seedlings from agar plates and their
exposure to air triggered the post-translational modifi-
cation of ARF7 with a SUMO protein, and sumoylated
ARF7 had reduced DNA-binding activity. Roots can
encounter large air spaces in soil, and in these regions
lateral root formation is repressed. This repression of
branching along the entire root circumference has been
termed ‘xerobranching’ A recent study implicated ABA
signalling in the xerobranching response''®. The roots of
barley plants were found to accumulate ABA following
a transient water deficit. Short-term ABA treatment of
aeroponically grown maize and barley roots led to a zone
of lateral root repression, showing that ABA can mimic
a xerobranching response. Furthermore, ABA treatment
disrupted auxin signalling in roots, suggesting a possible
mechanism for lateral root repression'' (FIC. 3Db).

Gibberellins, ABA and ethylene regulate flowering dur-
ing abiotic stress. A core genetic network regulates flow-
ering time in plants, and this network receives inputs
from endogenous, environmental and seasonal cues'"”.
Here, we explore how hormone signalling intersects with
core flowering regulators to mediate the effects of abiotic
stress on flowering time.

During periods of prolonged drought many spe-
cies will accelerate the flowering transition to repro-
duce before death, and this response is known as
drought escape''®. The exact role of ABA during the
flowering transition is currently unclear, and puz-
zlingly snrk2.2 snrk2.3 snrk2.6 triple mutants are early
flowering'"’, while ABA-deficient mutants and arebl
areb2 abf3 abfl quadruple mutants are late flowering®>'*%.
Here, we focus on the case of drought-accelerated flow-
ering, where emerging evidence suggests a positive role
for ABA signalling. Under long-day conditions, flower-
ing time is delayed in ABA biosynthesis mutants and
advanced in an ABA-hypersensitive pp2c triple mutant'*®,
Crucially, drought stress magnifies this delay, suggest-
ing that ABA is required to promote drought escape'**.
This positive role of ABA in drought-induced flowering
requires the core photoperiod-dependent flowering reg-
ulatory protein GIGANTEA (GI)"'*'*". Additionally, the
drought escape response is abolished in abf3 abf4 double
mutants, and ABF3 and ABF4 can directly induce the
transcription of SUPPRESSOR OF OVEREXPRESSION
OF CO 1 (SOCl), another key flowering gene® (FIG. 3c).

In contrast to drought, salt stress causes an ethylene-
dependent delay in flowering time in Arabidopsis'*"'*.
Salt stress leads to ethylene accumulation by inducing the
expression of ethylene biosynthesis genes'”'. Although
the underlying mechanism is unclear, ethylene interferes
with gibberellin signalling, leading to the accumulation
of DELLA proteins. DELLA proteins can then delay
flowering by inhibiting the flowering-stimulating tran-
scription factor CONSTANS'#. In addition, salt stress
also represses flowering by inducing the degradation
of GIGANTEA'*.

Ethylene and gibberellins control flooding responses.
Floods are a major cause of crop loss in agriculture and a
clear environmental challenge for some plants in natural
ecosystems'*. Plants possess an array of developmental
and physiological strategies to adapt to flooding, with
different strategies exhibited in different species. Here,
we discuss advances related to hormone signalling dur-
ing submergence and provide focused coverage of recent
work on the hormonal control of a flood-escape strategy
in rice. We further direct readers to recent reviews on the
broader topic of flooding responses'**'>".

The submergence of plant tissues impedes cellu-
lar access to O, and CO,, which can severely disrupt
metabolism. Additionally, restricted gas diffusion
underwater leads to an accumulation of ethylene
within flooded plant tissues'*. Prolonged flooding
can cause hypoxia, which activates a conserved gene
expression programme that supports plant survival in
limiting O,. In Arabidopsis, the transcription of these
hypoxia-responsive genes requires five transcription
factors known as group VII ETHYLENE RESPONSE
FACTORS (ERFs)'*. Additionally, SUBMERGENCE
TOLERANCE 1, a major quantitative trait locus asso-
ciated with increased flood tolerance in rice, contains
a cluster of three related ERF genes'”. Both hypoxia
and high concentrations of ethylene enhance the pro-
tein stability of group VII ERFs, leading to target gene
transcription'**'* (FIG. 3d). Group VII ERFs bind to
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conserved cis-regulatory elements, and the chroma-
tin accessibility at these regulatory elements increases
in response to flooding'**"**. Interestingly, accessible
group VII ERF binding sites were more prevalent in the
flood-adapted rice genome than in the dryland-adapted
tomato Solanum pennellii'**.

Some flood-adapted species display an escape strat-
egy where underwater shoots and leaves elongate to
emerge into the air'”. Research on a flooding-tolerant
rice variety known as deepwater rice has begun to reveal

Deepwater rice

Varieties of rice (Oryza sativa)
that avoid submergence stress
by activating stem and leaf
elongation to rise above

the water surface. This
developmental programme
depends on the hormones
ethylene and gibberellin.
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Fig. 4| Guard cell signal transduction and stomatal responses to environmental
stimuli. a| Schematic model of abscisic acid (ABA) signal transduction in guard cells.
ABA transporters mediate ABA import to or export from guard cells. In the presence

of ABA, the key regulator SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 2.6
(SnRK2.6; also known as OST1) phosphorylates and activates SLOW ANION CHANNEL-
ASSOCIATED 1 (SLAC1), ALUMINIUM-ACTIVATED MALATE TRANSPORTER 12 (ALMT12;
also known as QUAC1) and RESPIRATORY BURST OXIDASE HOMOLOGUE (RBOH)
proteins. Activation of the slow-type anion channel SLAC1 and the rapid-type anion
channel ALMT12/QUACT1 leads to long-term plasma membrane depolarization, which
causes K* efflux through the voltage-dependent K*  channel GUARD CELL OUTWARD
RECTIFYING K* CHANNEL (GORK). Activated RBOH NADPH oxidases produce reactive
oxygen species (ROS) that mediate HYDROGEN-PEROXIDE-INDUCED Ca?* INCREASES 1
(HPCAZ1) sensor-dependent activation of Ca**-permeable I, channels, resulting in an
elevation of the cytosolic Ca?* concentration ([Caz*]Cyt ). Elevated [Caz*]cyt activates Ca?*-
sensor proteins, including Ca**-dependent protein kinases (CPKs) that phosphorylate
and activate SLAC1. The (pseudo-)kinase GUARD CELL HYDROGEN PEROXIDE-
RESISTANT 1 (GHR1) mediates the activation of I, and SLAC1 channels through an
unknown mechanism, possibly as a scaffolding protein. SnRK2.6/OST1 inhibits the K*;
channel K CHANNEL IN ARABIDOPSIS THALIANA 1 (KAT1), which mediates K* uptake,
by direct phosphorylation. In addition, SnRK2.6/OST1 causes a long-term decrease

of KAT1 expression by inhibition of ABA-RESPONSIVE KINASE SUBSTRATE (AKS)
transcription factors. ABA also inhibits H*-ATPase activity through SnRK2.6/0OST1,

but the detailed mechanism is unknown. Dashed lines indicate steps that are inhibited

in the presence of ABA. Only guard cell ABA signalling regulating ion transport across the
plasma membrane is depicted in this figure. b | In addition to drought stress, several other
environmental stimuli can be perceived by guard cells and affect stomatal aperture though
sophisticated signalling crosstalk and integration. PP2C, PROTEIN PHOSPHATASE 2C;
PYL, PYR1-LIKE; PYR1, PYRABACTIN RESISTANCE 1.
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how ethylene signalling and gibberellin signalling control
this underwater growth response. Gibberellin stimulates
stem elongation by promoting internode growth, and
this relationship has been exploited during plant domes-
tication. In rice, ethylene accumulates in submerged
stem and leaf tissues, and this elevated ethylene con-
centration induces the expression of the ERF-encoding
genes known as SNORKEL1 and SNORKEL?2, two major
quantitative trait loci associated with deepwater rice
internode elongation'*. SNORKEL1 and SNORKEL2
may stimulate stem elongation by inducing gibberellin
biosynthesis (FIG. 3d). More recently, an additional locus
associated with internode elongation was mapped to
SEMIDWARF]I (SD1), a key gibberellin biosynthesis
gene'**. In contrast to the more common semidwarf rice
variety, which carries a null allele of SDI, deepwater
rice plants induce SDI expression in submerged tissues.
The resulting increased gibberellin levels act together
with an additional locus called ACCELERATOR OF
INTERNODE ELONGATION 1 (ACEI) to promote cell
division in the intercalary meristem'"".

Interestingly, a recent study reported that compacted
soil leads to ethylene accumulation in roots, which sub-
sequently inhibits further growth, possibly allowing
plants to avoid regions with poor soil aeration'*. This
suggests that elevated ethylene concentration may be
a common and early cue for air deficiency stress that
plants use to adapt their growth.

Regulation of stomatal movements

Stomatal pores formed by guard cells in the leaf epi-
dermis allow the uptake of CO, for photosynthesis in
exchange for water. To optimize plant water-use effi-
ciency, guard cells sense and respond to several abiotic
factors, including light, CO, and drought. ABA is a cen-
tral regulator of guard cell physiology (FIC. 4a), and here
we discuss the crosstalk with abiotic factors and other
hormones.

Stomatal response to drought. Drought stress has
been reported to trigger ABA synthesis in vascular
tissues and guard cells'*>'*. ABA signalling in guard
cells regulates plasma membrane ion channels to trig-
ger long-term efflux of anions and K*, resulting in the
reduction of guard cell turgor and stomatal closure.
Anion release from guard cells and subsequent plasma
membrane depolarization is mediated by slow-type and
rapid-type anion channels''. A major slow-type
anion channel in Arabidopsis guard cells is encoded
by SLOW ANION CHANNEL-ASSOCIATED 1
(SLACI)"*>'*, ALUMINIUM-ACTIVATED MALATE
TRANSPORTER 12 (ALMT12; also known as QUAC1)
contributes to 40% of rapid-type anion currents'*
The anion channel-triggered depolarization in turn
induces K* efflux through the voltage-dependent
outward-rectifying K* (K*_ ) channel'* GUARD CELL
OUTWARD RECTIFYING K* CHANNEL (GORK)"*.
The protein kinase SnRK2.6 (also known as OST1) is
a major positive regulator of ABA signalling in guard
cells™. SnRK2.6/OST1 phosphorylates and activates
both SLAC1 (REFS'*7*%) and ALMT12/QUACI (REF.'*).
Group A PP2C proteins, as negative ABA signalling
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Depolarization

Changes in the cell membrane
potential making it more
positive.

Hyperpolarization

Changes in the cell membrane
potential making it more
negative.

Genetically encoded
phytohormone indicators
Indicators that allow the in vivo
monitoring of hormone levels
and downstream hormone
signalling responses.

regulators, directly dephosphorylate and inactivate not
only SnRK2.6/OST1 (REFS™*"') but also SnRK2.6/OST1
substrates, such as SLAC1 (REF.'*). Ion transport at the
vacuolar membrane is also required for ABA-induced
stomatal closure, and detailed information has been
reviewed'*.

Cytosolic Ca®" fine-tunes ABA-mediated stoma-
tal closure by regulating Ca**-sensor proteins, such as
Ca?*-dependent protein kinases, which contribute to the
activation of SLAC1 (REFS'*>*%). ABA can induce eleva-
tions in [Ca®]_, in guard cells, and one of the under-
lying mechanisms is plasma membrane Ca** influx
through hyperpolarization-activated Ca**-permeable
cation (I,) channels'*>'*. ABA-activation of I, chan-
nels involves several steps. First, SnRK2.6/OST1
triggers extracellular reactive oxygen species produc-
tion, which includes SnRK2 regulation of NADPH
oxidases'””"**, Reactive oxygen species mediate I,
channel activation in the plasma membrane via the
hydrogen peroxide sensor kinase HYDROGEN
PEROXIDE-INDUCED Ca* INCREASES 1 (HPCA1)"*
and the receptor-like (pseudo-)kinase GUARD CELL
HYDROGEN PEROXIDE-RESISTANT 1 (GHR1)'®.
GHRI1 also contributes to SLAC1 activation''. In
addition to Ca®* and reactive oxygen species, other
small molecules, such as hydrogen sulfide'®>'** and
y-aminobutyric acid'*, have recently been shown to
modulate guard cell ABA signalling.

Abiotic signal integration in guard cells. Guard cells can
perceive and integrate several environmental stimuli
(FIC. 4b). Among them, light and CO, are major abi-
otic stimuli that regulate stomatal aperture. Blue light
and red light induce stomatal opening mechanisms
to maximize photosynthesis. Light-induced stomatal
opening is mediated by H*-ATPase activation and sub-
sequent K* uptake through voltage-dependent inward-
rectifying K* (K*,) channels at the guard cell plasma
membrane'*>'*% ABA suppresses light-induced sto-
matal opening via inhibition of H*-ATPases and K*,,
channels. Group D PP2C proteins and their negative
regulators, the SMALL AUXIN-UP RNAs (SAURs)
also contribute to the regulation of H*- ATPases in
Arabidopsis guard cells'*”'*®. To what extent auxin is
involved in this mechanism remains to be elucidated.
Rapid downregulation of K*; channels is mediated by
SnRK2.6/0ST1-dependent phosphorylation of the K*,_
channel KAT1 (REF.'®) and also by [Caz*]cyt elevation'”’.
On a slower timescale, the expression of K*, channel-
encoding genes, including KAT1, is inhibited via SnRK2-
dependent inactivation of ABA-RESPONSIVE KINASE
SUBSTRATE (AKS) transcription factors'”.

High CO, concentration induces stomatal closure,
whereas low CO, concentration induces stomatal
opening. In response to ABA, stomata close and do
not easily reopen in the short term. By contrast, high
CO, concentration-mediated stomatal closure is rap-
idly reversible'”2. The mechanisms by which high CO,
concentration mediates stomatal closure and activates
SLACI differ from those of ABA'”>"'7*. In contrast
to ABA signalling, elevated CO, concentration does
not rapidly activate SnRK2-type protein kinases'”>'”>.

Raf-like kinases, such as CONVERGENCE OF BLUE
LIGHT AND CO, 1 (CBC1), CBC2 (REF'**) and HIGH
LEAF TEMPERATURE 1 (HT1)"7*'”, inhibit slow-type
anion channel activation via an unknown mechanism.
CBC kinases function at a convergence point between
blue light and low CO, concentration-induced stomatal
opening signalling pathways'®.

Signalling crosstalk between ABA and other hor-
mones contributes to guard cell abiotic stress responses.
The F-box protein MORE AXILLARY GROWTH 2
(MAX2) is a central regulator of both strigolactone sig-
nalling and karrikin signalling'”®. MAX2-dependent
signalling induces the upregulation of ABA-signalling
genes, such as SnRK2.6/0ST1, thereby enhanc-
ing ABA-induced stomatal closure and drought
tolerance'””'*". The Type-B ARRs ARR1, ARR10 and
ARR12, acting as positive transcriptional regulators of
cytokinin signalling, negatively regulate stomatal clo-
sure and drought tolerance'®’. ABA and water deficit
suppress cytokinin signalling via downregulation of
Type-B ARR genes, as a proposed adaptive mechanism
to survive drought'®. It was reported that excess high
light stress triggers local and whole-plant systemic sto-
matal closure, which is likely mediated by the NADPH
oxidase RBOHD in coordination with ABA, salicylic
acid and jasmonate signalling'®’. Darkness and high
CO, concentration, however, do not induce stomatal
closure in systemic leaves of Arabidopsis'®. Under heat
stress, plants open stomata to cool the leaves by transpi-
ration. Jasmonate has been suggested to fine-tune sto-
matal apertures during a combination of heat and other
stresses, such as high light levels and wounding'®*'%.
Brassinosteroids can positively mediate stomatal
opening'®. In the brassinosteroid-biosynthesis mutant
dwarf5 (dwf5), KAT1 expression is downregulated via an
AKS-independent pathway and the light-driven activa-
tion of H*-ATPases remains intact, suggesting that brass-
inosteroid regulation of stomatal opening is independent
of ABA signalling'®.

Monitoring hormone responses in plants

To understand phytohormone signalling processes dur-
ing abiotic stress, it is important to determine under
which stress conditions and in which cell types or tis-
sues and on which time frames phytohormone responses
appear. Furthermore, it is relevant to determine at which
level (that is, biosynthesis, transport, perception, trans-
duction and transcriptional response) abiotic stresses
interfere with a certain hormone signalling pathway.
Genetically encoded phytohormone indicators are biosen-
sors that allow the in vivo monitoring of cellular hor-
mone responses at high spatiotemporal resolution and at
various levels. Their functional principles, their advan-
tages over other methods and their limitations have
been extensively discussed™'*”'** and are summarized in
BOX 1. Here, we review their contribution to abiotic stress
response analyses in plants.

Genetically encoded phytohormone indicators that
enable the direct detection of phytohormone concen-
tration changes were initially developed for ABA*'¥,
followed by reporters for gibberellin, strigolactones and
auxin'”"""*2. However, only the Forster resonance energy
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Box 1 | GEPHIs

Genetically encoded phytohormone indicators (GEPHIs) enable the in vivo analysis of
hormone concentration changes and subsequent downstream signalling processes at
tissue resolution and cellular resolution. Several GEPHIs have been developed and used
in plants, and more comprehensive information can be found elsewhere'¢"15,

FRET-based GEPHls. To directly monitor hormone concentration changes, Forster
resonance energy transfer (FRET)-based indicators have been developed for abscisic
acid (ABA) (ABACUS and ABAleon)?#°%* auxin (AuxSen)'*? and gibberellins (GPS1)*".
These indicators consist of a sensory domain that changes its structure in a
hormone-bound configuration, thereby affecting the distance, orientation and the
fluorescence ratio of a fluorescent protein FRET pair upon excitation of the FRET donor
fluorescent protein. ABAleon-type ABA indicators have recently received two updates.
Dual-reporting indicators, consisting of ABAleonSD1-3L21 fused via the self-cleaving
P2A peptide linker to the red-fluorescing Ca** indicator R-GECO1 or the pH indicator
PA-17, allow the simultaneous monitoring of ABA together with Ca?* concentration or
pH?**, whereas ABAleon2.1_Tao3s, which harbour a nanobody recognition domain and
a secretion signal, can be recruited by a subcellular targeted nanobody to either side
of the endoplasmic reticulum membrane'*. For the analysis of signalling processes
downstream of ABA perception, a FRET-based SUCROSE NON-FERMENTING
1-RELATED PROTEIN KINASE 2 (SnRK2) activity sensor (SNACS) has been developed,
providing an approach to investigate the activation of SnRK2-type protein kinases in
response to abiotic stresses and SnRK2 interaction with other hormone signalling
pathways'”.

Degradation-based hormone reporters. Several plant hormones induce downstream
responses by regulating the ubiquitination and proteasomal degradation of
transcriptional repressors’. Degradation-based GEPHIs monitor their protein levels
using fluorescent protein fusions. More sophisticated reporters use only a hormone-
dependent degradation domain (degron motif) fused to a fluorescent protein to
report an increased hormone concentration and signalling strength via a decrease in
fluorescent protein stability. To achieve a ratiometric readout, reporters for auxin, such
as R2D2 (REF.***) and gDII?*, co-express a non-degradable fluorescent protein as a
reference.

Synthetic hormone-activated Cas9-based repressors. Synthetic hormone-activated
Cas9-based repressors (HACRs) consist of a deactivated Cas9 (dCas9) fused to a
hormone-dependent degradation domain and a fragment of the repressor TOPLESS.
The dCas9 component associates with a guide RNA and recruits the HACR to a target
promoter. Hormone-dependent degradation of the HACR then leads to a derepression
of the target (reporter) gene?”’.

A reporter for ethylene-dependent translational regulation. The ethylene signalling
pathway involves the EIN2 carboxy-terminal domain (CEND) association with 3’
untranslated regions of EIN3-binding F-box protein (EBF) mRNAs to repress their
translation””*??°. On the basis of this mechanism, a translational reporter has been
designed consisting of a fluorescent protein coding sequence followed by three
tandems of ethylene responsive RNA elements containing polyuridylates (EPUs).
Upon induction of EIN2, the translation of this 6x EPU reporter is inhibited, and
transgenic plants expressing this construct are insensitive to ethylene?”®.

Hormone-activated transcriptional reporters. Several marker genes for plant
hormone signalling have been identified, and their promoters have been used to
drive the expression of reporter genes. In addition, the identification of cis elements
that are targeted by hormone-specific transcriptional regulators led to the
development of synthetic promoters. Synthetic promoters contain multiple repeats
of cis element-containing promoter fragments upstream of a minimal 35S promoter
to drive reporter gene expression. They have been developed for almost any plant
hormone?'#7%,

transfer (FRET)-based ABA indicators ABACUS1-2p
and ABAleon have thus far been used in research

28,189

related to abiotic stress’®'®. Analyses in Arabidopsis
using ABAleon2.1 under non-stress conditions revealed
the existence of an ABA gradient in roots and compa-
rably higher basal ABA concentrations in guard cells,
in the root-hypocotyl junction and in the root tip*'*.
Experiments using ABAleon2.1_Tao3s, which were tar-
geted to either side of the endoplasmic reticulum mem-
brane, indicated that in tobacco protoplasts, ABA levels
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might be higher in the endoplasmic reticulum than in
the cytosol'*!. How ABA gradients are maintained, and
to what extent ABA biosynthesis and transport pathways
contribute to distinct ABA concentration patterns, could
be further analysed with use of ABA biosensors, sim-
ilar to research conducted on gibberellin gradients in
Arabidopsis roots'”. There is increasing evidence that
water deficit in Arabidopsis roots first induces the bio-
synthesis of ABA in leaves, via long-distance signals,
before ABA accumulation is detected in roots®**2.
Consistent with these findings, ABA indicator analyses
could not detect rapid osmotic stress-induced or salt
stress-induced ABA concentration elevations in roots
under imposed experimental conditions. Instead, ABA
concentration elevations were observed only several
hours after exposure to stress’>'®. Further analyses in
Arabidopsis also revealed that sulfate and cysteine trig-
ger ABA level increases in guard cells', whereas CO,
concentration elevation did not cause a rapid ABA con-
centration increase'’>'”>. More detailed analyses are
required to determine the spatiotemporal parameters of
ABA concentration elevation in response to water deficit
and the intercellular transport routes of ABA. It will also
be interesting to investigate whether recently developed
indicators for auxin'®, gibberellin'*’ and strigolactones'"
can detect respective hormone dynamics in response to
abiotic stress.

Complementary to direct ABA indicators, the
FRET-based SNACS reporter monitors downstream
SnRK2-type protein kinase activity'””. In Arabidopsis
guard cells, SNACS responded to ABA, but not to ele-
vated CO, concentrations or treatments with methyl jas-
monate. These results were consistent with a lack of ABA
accumulation under the same experimental conditions,
providing evidence for the hypothesis that basal ABA
signalling rather than further SnRK2 activation contrib-
utes to elevated CO, and methyl jasmonate responses in
guard cells'”>'”.

Early on, promoter fragments of marker genes, or
synthetic hormone-responsive promoters, were used
to drive reporter gene expression as a readout for the
detection of phytohormone signalling patterns>'*-'%¢
(BOX 1). Although several transcriptional reporters were
used for the analyses of abiotic stress responses, most of
the research related to abiotic stress focused on ABA. In
this context, ABA signalling reporters were used for the
analyses of drought stress, osmotic stress, salt stress, cold
stress and high CO, concentration responses®'7>!%1%7,
contributing to the hypothesis that in response to
water shortage, ABA is largely synthesized in shoots
rather than in roots of Arabidopsis®. Furthermore, the
proRD29A-based ABA signalling reporter was used
as a readout in genetic screens'”’, contributing to the
identification of ABA synthesis genes in Arabidopsis'®.
Also synthetic hormone-responsive promoter reporters
were recently used for the reconstitution of ABA sig-
nalling in yeast'” and for the analysis of ABA-mediated
transcriptional regulation in Arabidopsis*®. The lat-
ter 6xABRE synthetic promoters reported basal
ABA-independent activity in the root quiescent centre,
and ABA-, salt- and osmotic stress-dependent increases
in other root tissues””, albeit with an apparent relatively
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low dynamic range compared with the proRAB18:GFP
reporter'®.

Reporters for other phytohormones also contributed
to important observations on the roles of auxin, cytokin-
ins and gibberellins in osmotic stress™”', the contribution
of cytokinin signalling to the hydrotropic response””
and the involvement of gibberellin signalling in the salt
stress response'?’. The use of hormone reporters in spe-
cies other than Arabidopsis is beginning to emerge”” and
will likely aid in determining differences and similarities
in hormone signalling between different taxa.

Conclusions

Due to climate change, abiotic stresses, such as drought,
salt, heat and flooding, are becoming increasingly chal-
lenging for plants'~. Climate change and abiotic stresses
can also intensify plant diseases®”. Such alarming con-
ditions demand innovative approaches. Recent advances
in plant biology are providing crucial new insights into
how plants sense and respond to abiotic stresses. While
translating such findings into field applications remains
challenging®”, the advanced understanding of individual
hormone-regulated abiotic stress responses, reviewed
here, has the potential to provide key insights for devel-
oping more resilient crops through both engineering and
mining of traits from more resistant wild crop relatives'*.
The elucidation of the mechanisms, genes and pathways
that control these traits can provide road maps for appli-
cations and translational research into enhancing or pro-
tecting yields in response to abiotic stressors. Many of the
advances we have discussed in this Review were made

in the model system Arabidopsis thaliana. Therefore,
research will be needed to determine whether similar
or divergent mechanisms are used in crops. Moreover,
it has become clear that specific cell types have spe-
cific hormone signalling pathways and outputs, and
therefore alteration of cell-targeted or tissue-targeted
traits will require investigation of hormone signalling
mechanisms in those cell types. New tools, including
hormone reporters, protein complex identifications,
single-cell sequencing and other approaches, will enable
the dissection of abiotic stress-linked cell type-specific
and species-specific signal transduction mechanisms.
Genetic approaches, including genomics-accelerated
breeding and CRISPR-Cas9 gene editing, provide
new opportunities to accelerate the development of
abiotic stress-resilient traits. Furthermore, the genom-
ics revolution combined with automated phenotyp-
ing is enhancing our ability to understand or predict
which of these genes and mechanisms could be pri-
marily used by resilient wild relatives. This could lead
to targeted breeding of improved traits into crops.
Moreover, enhancing yields of climate change-resilient
wild varieties through knowledge-guided de novo
domestication of crops™® provides an important new
avenue for incorporating beneficial hormone signal-
ling traits. Continued advances in understanding the
interplay of plant hormones in diverse responses to
abiotic stress will be important for developing abiotic
stress-resilient crops.
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