
Leaky Frontends: Security Vulnerabilities in Processor Frontends

Shuwen Deng
Yale University

New Haven, CT, USA
shuwen.deng@yale.edu

Bowen Huang
Yale University

New Haven, CT, USA
bowen.huang@yale.edu

Jakub Szefer
Yale University

New Haven, CT, USA
jakub.szefer@yale.edu

Abstract—This paper evaluates new security threats due
to the processor frontend in modern Intel processors. The
root causes of the security threats are the multiple paths in
the processor frontend that the micro-operations can take:
through the Micro-Instruction Translation Engine (MITE),
through the Decode Stream Buffer (DSB), also called the Micro-
operation Cache, or through the Loop Stream Detector (LSD).
Each path has its own unique timing and power signatures,
which lead to the side- and covert-channel attacks presented
in this work. Especially, the switching between the different
paths leads to observable timing or power differences which,
as this work demonstrates, could be exploited by attackers.
Because of the different paths, the switching, and way the
components are shared in the frontend between hardware
threads, two separate threads are able to be mutually influenced
and timing or power can reveal activity on the other thread.
The security threats are not limited to multi-threading, and
this work further demonstrates new ways for leaking execution
information about SGX enclaves or a new in-domain Spectre
variant in single-thread setting. Finally, this work demonstrates
a new method for fingerprinting the microcode patches of
the processor by analyzing the behavior of different paths in
the frontend. The findings of this work highlight the security
threats associated with the processor frontend and the need for
deployment of defenses for the modern processor frontend.

Keywords-processor frontend, micro-operation cache, covert-
channel attacks, side-channel attacks

I. INTRODUCTION

The processor frontend is responsible for fetching, de-
coding and delivering micro-ops to the rest of the processor
pipeline. To achieve efficient decoding and delivery, mul-
tiple paths, and corresponding functional units, are widely
adopted in today’s processor designs, such as from Intel [1].
The existence of these multiple paths can lead to security
issues, which are explored in this work.

In particular, we study security of the multiple paths in
Intel processor frontend that micro-operations, also called
micro-ops, can take: through the Micro-Instruction Trans-
lation Engine (MITE), through the Decode Stream Buffer
(DSB), also called the Micro-op Cache, or through the
Loop Stream Detector (LSD). The LSD was first intro-
duced starting from Intel Core microarchitecture and the
DSB was first introduced starting from Intel SandyBridge

This work was supported in part by NSF grant 1813797. Shuwen Deng
was supported through the Google PhD Fellowship.

microarchitecture to improve performance and power and to
augment the previously existing MITE. Due to the existence
of the different units, the instruction decoding in a modern
processor frontend then has a unique feature where the
same instruction decoding and delivery of micro-ops can
take three different paths: through MITE, DSB, or LSD.
The execution timing and power depend on the exact path
taken in the frontend. In addition, different events can cause
switching of the paths based on the activity in other hyper
threads, code loop sizes, or instruction prefixes used, which
further affects timing and power differences. These different
behaviors are basis of the vulnerabilities that we demon-
strate.

In this work we demonstrate numerous attacks in both
multi-threading (MT) and non-multithreading (non-MT) set-
tings. Unlike majority of existing attacks which happen
after the instructions have already been decoded, our work
demonstrates new security problems due to the behavior of
the frontend paths.

Our MT attacks use different threads for the sender and
the receiver, and leverage evictions or misalignments in DSB
or LSD to create different timing or power variations that
can be measured by the receiver. For all the covert-channel
attacks, the attacks only affect the frontend and do not,
for example, cause interference in the L1 instruction (L1I)
caches. The MT attacks can further be applied to attack SGX
enclaves. We also show MT side-channel attack where the
receiver is able to identify the type of victim application
running. The receiver of side-channel attack is a modified
covert-channel receiver that has limited L1I footprint.

We also present attacks that do not require multi-
threading. Our non-MT attacks mainly use internal-
interference among the sender’s own code to cause timing or
power variations that the attacker can measure. The non-MT
attacks can be applied to both SGX or as a new in-domain
Spectre attack.

In addition to new attacks on the frontend itself, we
demonstrate fingerprinting approach that can use frontend
behavior to determine which processor microcode patches
have been applied. Knowing which microcode patches have
been applied can make the attacker stage further attacks by
knowing which patch has or has not been applied.

For the different attacks and fingerprinting, timing can be

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1813797

measured by unprivileged attackers. The power meanwhile
can be measured by attackers that can access energy coun-
ters, e.g., Intel’s Running Average Power Limit (RAPL) [1],
available in today’s processors. The attacks can thus be done
in software and remotely, and part of our evaluation uses
public, cloud-based servers for attack demonstration.

Having presented new microarchitectural vulnerabilities,
this paper highlights the need to develop protections for
the processor frontend. In particular, the already partitioned
DSB and LSB in Intel processors [1] do not provide a full
protection as all our attacks work despite the partitioning.

A. Contributions

The contributions of this paper are:
• Development of the frontend attacks which can covertly

send bits between hyper-threads or on the same thread
using internal-interference.

• Design of both timing-based and power-based variants
of the attacks.

• Development of attacks leveraging special instruction
prefixes to force frontend path switches.

• Demonstration of the frontend attacks’ ability to leak
information from Intel SGX enclaves.

• Demonstration of the use of the frontend covert-
channels as part of a new Spectre attack variant.

• Development of frontend fingerprinting to detect which
microcode patch has been applied.

• Demonstration of practical frontend-based side-channel
used to leak information about victim application type.

B. Responsible Disclosure and Open-Source Code

Our research findings have been shared with Intel. The
code used in this paper will be released under open-source
license at https://caslab.csl.yale.edu/code/leaky-frontends.

II. BACKGROUND

In the past, researchers have focused mainly on attacks
leveraging features in the processor backend, while this work
focuses on processor frontend. Especially, we show timing-
based and power-based attacks to bring awareness that
processor frontend needs to be considered when ensuring
security of processor architectures.

Previously, security vulnerabilities have been uncovered
in all the different levels of caches [2]–[5], as well as
due to port contention in the execution engine [6], branch
predictors [7], [8], or memory controllers [9], for example.
Security community has especially focused on the specula-
tive execution attacks, following disclosure of Spectre [10]
and Meltdown [11]. Other recently explored vulnerabilities
include attacks that abuse branch prediction, but not for
Spectre-like attacks. This includes BranchScope vulnerabil-
ity [7] or Jump over ASLR type vulnerabilities [8]. There are
also attacks that leverage prefetchers [12] and value predic-
tors [13]. Most recently, researchers have also demonstrated

microarchitectural replay attacks [14] and attacks abusing
network-on-chip (NoC) [15].

The vulnerabilities that we present meanwhile focus on
the frontend. To the best of our knowledge, there is one prior
work that has explored frontend and the micro-op cache (also
called the DSB) for security attacks [16]. The work focused
on studying eviction of DSB and how it can cause timing
differences that attackers can exploit. Compared to the
work [16], we are able to 1) present both eviction-based and
misalignment-based attacks that leverage the DSB, LSD, and
MITE, 2) show new power attacks, 3) evaluate SGX attacks,
4) analyze LSD influence, 5) use frontend behavior for mi-
crocode patch fingerprinting, 6) analyze instruction prefixes
causing switching in the frontend paths for new attacks, and
7) present a new side-channel attack that identifies victim
application type. There is also one concurrent work [17]
which focuses on reverse-engineering the operation of the
frontend in Intel and AMD processors. We believe our work
complements existing work by providing new attacks and
security insights, including, to the best of our knowledge,
fastest frontend attack reaching 1.4Mbps.

III. THREAT MODEL AND ASSUMPTIONS

We assume there is one sender (victim) that holds
security-critical information and one receiver (attacker) that
tries to extract the secret information by measuring timing or
power changes. For covert-channels, the sender and receiver
cooperate and modulate usage of the DSB, LSB, and MITE
to achieve the covert transmission. For side-channels, the
attacker performs operations to interfere with the victim
or monitor power or timing, while the victim is unaware
of the attacker and operates on sensitive data. Our attack
on SGX assumes that the attacker can trigger execution of
the enclave and measure its timing or power. Our Spectre
attack assumes an in-domain attack scenario: the attacker
is within same thread, e.g., as a sandboxed code where
the disclosure gadget is executed. Our fingerprinting attack
assumes attacker has prior access to the same CPU as the
target one, so they can measure frontend performance under
different microcode patches. All of the timing-based attacks
can be performed fully from the user-level privilege using
the rdtscp instruction for measuring timing. The power
channels require access to Intel’s RAPL [1] to get energy
information. Even if the RAPL access is disabled for user-
level code, privileged code can still use the power channels
against SGX enclaves, for example.

IV. ANALYSIS OF THE OPERATION OF THE FRONTEND

Within the processor frontend, instruction decoding and
delivery to the backend has multiple paths: through the
Micro-Instruction Translation Engine (MITE), the Decoded
Stream Buffer (DSB), also called the micro-op cache, and
the Loop Stream Detector (LSD), as is seen from Figure 1.

https://caslab.csl.yale.edu/code/leaky-frontends

EU

ALU,
…

ALU,
…

ALU,
…

ALU,
…

AGU,
load

AGU,
load

store AGU

Branch Predictor
(BPU)

L1 Instruction
Cache

Decoded
Stream Buffer

(DSB) 5-Way Decode Unit

Instruction Queue

Instruction Fetch
& Predecode

Instruction
Decode Queue

(IDQ)

Loop Stream
Detector
(LSD)

6 micro-ops

Rename/ Allocate/ Retirement/ Scheduler

Register Alias
Table (RAT)

4 micro-ops 6 micro-ops

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

5 micro-ops

Frontend

Execution Engine

Mux

Micro-Instruction
Translation Engine (MITE)

Figure 1: Microarchitecture details of the frontend and the execu-
tion engine, based on [1].

Given that MITE path has low throughput and high power
consumption, the DSB has been added and the micro-ops de-
coded by MITE are inserted into the DSB [1] in modern Intel
processors. If the micro-ops are available in the DSB, the
micro-op stream is sent directly from DSB to the Instruction
Decode Queue (IDQ), bypassing the MITE, therefore saving
power and improving throughput. The instruction delivery
path from DSB is also shorter than MITE (shorter by 2 – 4
cycles), so the pipeline latency is reduced as well [1].

Further, there is also the LSD located within the IDQ. If
the micro-op stream belongs to a qualified loop (discussed
in Section IV-D), all the micro-ops of the loop code can be
issued directly from LSD to the backend, bypassing DSB as
well. The purpose of the LSD is to help save power, but it
also can help performance by providing higher instruction
delivery throughput. When branch mis-prediction occurs,
e.g., at the end of the loop, or the number of micro-ops
within the loop exceeds the limit that the LSD can handle,
LSD is not used and micro-ops are delivered from the
DSB. Furthermore, if the micro-ops exceed the DSB limit or
belong to a newly accessed micro-ops, they are processed by
the MITE. We also note that the DSB is inclusive of LSD,
and MITE is inclusive of DSB as well [1], e.g., eviction of
micro-ops from DSB will cause their eviction from LSD.
Although DSB and LSD are partitioned in Intel processor
when two hyper-threads are actively running, our analysis
indicates that DSB in Intel processors is fully assigned to
one thread if the other is idle or not executing. When the
second thread becomes active, DSB becomes partitioned,
which forces DSB evictions of micro-ops of the first thread
to occur. Further, MITE is a shared resource, and activity of
two threads mutually affects the micro-op decoding.

A. LSD Behavior

The LSD can continuously stream the same sequence of
up to 64 micro-ops, directly from the IDQ to the backend [1].
While the LSD is active, the rest of the frontend is effectively
disabled. In order to generate detectable timing and power

difference between LSD vs. DSB and DSB vs. MITE, one
can control micro-op number within a loop to either make
it fit in the LSD where instruction delivery starts with
LSD only, or exceed the LSD limit so the processor falls
back to use DSB or MITE, creating detectable timing and
power changes.

B. DSB Behavior

The DSB is constructed as a cache-like structure with 32
sets and 8 ways per set [1]. Each line can store up to 6 micro-
ops or 32 bytes (so DSB can hold at most 1536 micro-ops
in total). Based on our reverse engineering as well as Intel
manuals [1], we find that when there is only one thread
running on the hardware core, instructions’ virtual address
bits addr[4:0] are used as the byte offset within the 32-
byte window, and addr[9:5] are the set index bits into
the 32 DSB sets. However, when two threads are running
in parallel on the hardware core, the DSB is set partitioned,
and half the sets are assigned to each thread based on our
experimental results. This means that although the DSB is
partitioned by sets when two threads are running, if there is
only one thread being active, the thread is assigned to all the
DSB sets. Whether the DSB is currently partitioned or not
can be detected by an application by checking the increased
MITE usage (when DSB is partitioned, more instructions
will conflict with each other causing DSB evictions and
increased MITE usage). The behavior was tested on Intel
Xeon E-2174G with LSD disabled to show the conflicts
are not influenced by LSD. We also tested on Intel Gold
6226 with LSD enabled, and observe similar results. Further,
we tested Intel Gold 6226 with LSD enabled, but each test
thread was set to access larger blocks of instructions which
do not fit in LSD (forcing processor to use DSB even if LSD
is enabled), and similar results are observed.

C. MITE Behavior

Regarding the MITE structure, the instruction cache,
instruction queue, and the decode unit are shared among the
two threads. Typically the instruction cache is 32 KB and
8-way associative and instruction queue contains 50 entries.
The DSB, LSD and MITE behaviors were tested on Intel
processors shown in Table I. These same processors are also
used for evaluation of our side- and covert-channel attacks.

D. Ensuring Observability of Frontend Timing

To achieve high backend throughput so that the frontend
is the bottleneck, we do not want to touch data-related
operations such as load and store because memory system
may cause unpredictable timing differences, which are not
due to frontend path changes. Load and store operations
would also likely leave traces in the caches which may make
any attacks more detectable. Based on our analysis, instruc-
tion mix sequence which maximizes the timing signature

Table I: Specifications of the tested Intel CPU models.

Model Gold
6226

Xeon E-
2174G

Xeon E-
2286G

Xeon E-
2288G

Microarchitecture Cascade
Lake

Coffee Lake

Core Number 12 4 6 8
Thread Number 24 8 12 8a

L1D Configuration 32KB, 8-way, 64 byte line size, 64 sets
DSB
Configuration

8-way, 32 byte window, 32 sets

LSD Entries 64 — b — b 64
Frequency 2.7GHz 3.8GHz 4.0GHz 3.7GHz
OS 18.04 Ubuntu
SGX Support No Yes

a We use Xeon E-2288G on Microsoft Azure cloud, this pro-
cessor model is specific for Microsoft Azure and has hyper-
threading disabled, although hyper-threading is supported by
other E-2288G processors. b LSD is disabled in these machines.

Differences mainly leveraging DSB
evictions through set collisions

Differences mainly
leveraging LSD

evictions through
misaligned accesses

Figure 2: Example time histogram of Intel Xeon Gold 6226 pro-
cessor of using LSD, DSB, or MITE+DSB paths. Timing difference
between LSD/DSB and MITE+DSB are used for collision-based
attacks (see Section V-A) and differences between LSD and DSB
paths are used for misalignment-based attacks (see Section V-B).

of the frontend for our attacks should satisfy the following
three requirements:

• Total bytes of one access block should not exceed a
32 byte window (e.g., 4 mov and 1 jmp use in total
25 bytes).

• Total micro-op number should not exceed 6 micro-op
limit that DSB can process by one DSB line (e.g., 4
mov and 1 jmp are decoded to total 5 micro-ops).

• Avoid port contention. The 4 mov instructions exploit
the ports as much as possible, plus 1 jmp instruction to
end the cache line block, while avoiding load, store, or
more complex instructions involved, which will cause
influence or noise from other microarchitectural units.

As the result, 4 mov plus 1 jmp sequence is the instruction
mix block which fits the requirement. Other instruction mix
blocks are possible, although finding sufficient type and
number of instruction mix blocks in real code may be a
limitation of the proposed attacks.

E. Exploiting Frontend Path Timing Differences

As can be seen from histogram of Intel Xeon Gold 6226
processor shown in Figure 2, the timing difference of pro-
cessing instruction mix blocks using DSB vs. MITE+DSB
or LSD vs. DSB are clearly visible. In our attacks discussed

Address Instructions from the
instruction mix LSD (micro-ops)

DSB (micro-ops)

…

…

…

…

…

…

…
0041881C
00418818
00418814
00418810
0041880C
00418808
00418804
00418800

…
0041841C
00418418
00418414
00418410
0041840C
00418408
00418404
00418400

…
0041801C
00418018
00418014
00418010
0041800C
00418008
00418004
00418000

…
…
…

32 byte

… …

32 sets

8 ways

64 micro-op slots

MITE (instr. bytes)

1 6 11 16 36 41 64

… …

…

…

…
64 sets

8 ways

: mov single byte

: jmp single byte

: mov micro-ops

: jmp micro-ops

jump to mov

jump to mov

jump to mov jump to mov

jump to mov jump to mov

jump to mov

: mov all bytes

: jmp all bytes

jump to mov

Legend:

Figure 3: Example of mapping instruction mix blocks (Sec-
tion IV-D) to MITE, DSB, and LSD. Each instruction mix block is
5 micro-ops (4 mov plus 1 jmp). If the number of chained 5 micro-
op blocks is 8 then all will fit in LSD (since 8 × 5 = 40 < 64
micro-op limit of LSD) and they can all map to the same DSB set
(since DSB is 8-way associative).

later, we will use DSB vs. MITE+DSB timing differences to
perform attacks related to DSB evictions through set colli-
sions. On the other hand, the timing difference of processing
using LSD vs. DSB will be used to perform attacks related
to LSD evictions through misaligned accesses. Both of these
also have power differences that separately can be used for
power-based attacks.

F. Generating DSB Evictions Through Set Collisions

To force frontend path changes, we set up a series of
instruction mix blocks and align the start of the instruction
address of each block to map to the same DSB set, as shown
in Figure 3. We make the jmp instructions at the end of
each instruction mix block jump to the first instruction of
next instruction mix block. In this case, executing the first
mov instruction of the first instruction mix block will trigger
a series of instruction mix block execution. If the chain of
instruction mix blocks is less than 12, all the blocks should
fit in LSD. However, at the same time, each DSB set has 8
ways, so 8 blocks can map to same set. Consequently, if the
chain of blocks is set to 8 (rather than 12), they can both
fit in LSD and same DSB set. But, as soon as the chain
is extended to 9 (or more) blocks that map to same set,
eviction occurs in DSB, and in turn force LSD eviction due
to inclusive nature of MITE, DSB, and LSD.

Inclusive feature of MITE, DSB, and LSD makes evic-
tion of lines from DSB to cause flush of the LSD unit.
Furthermore, eviction from DSB redirects micro-ops to be
processed by MITE. Combing these, eviction from DSB will
cause transition of micro-op delivery from LSD to both DSB
and MITE.

Note that changing the chain of instruction mix blocks
from 8 to 9 will not cause eviction or misses of L1

MITE: 8.4*109

DSB: 1.2*109

LCP stall: 1.2*1010 cycles
Switch
penalty:
9.0*108

cycles

MITE: 8.7*109

DSB: 1.2*109

LCP stall: 1.4*1010 cycles
Switch

penalty:
1.5*106

cycles

IPC: 0.67 IPC: 0.59

(a) Mixed Issue (b) Ordered Issue

Figure 4: Intel Xeon Gold 6226 CPU performance counter read-
ings for the different experiments with ordered-issued or mixed-
issued types of add instructions. The numbers in the call-out boxes
are the average micro-ops numbers for all the 200 rounds of
experiments.

instruction cache. L1 instruction caches for the machines we
tested are 8-way associative and contain 64 sets of 64 bytes.
Consequently, the size of the L1 instruction is 4 times of
DSB and instruction mix blocks mapping to the same DSB
set will be mapped to different L1 instruction cache sets, as
is shown in Figure 3. In other words, changing chain length
from 8 to 9 causes DSB and LSD eviction, but causes no
misses in the L1 instruction cache.

G. Generating LSD Evictions Through Misaligned Accesses

We further found that misaligned instructions will gener-
ate collisions in the LSD, even when the number of total
accessed instruction mix blocks does not exceed the DSB
way number. This can be achieved by setting up the initial
addresses of instruction mix blocks to be misaligned, e.g.,
by aligning them on 16 byte boundaries that are not multiple
of 32 bytes.

The alignment or misalignment of the blocks will cause
different frontend path changes when processing micro-
ops. When all the instruction mix blocks are misaligned,
executing 4 chained instruction mix blocks that map to the
same DSB set will trigger collisions in LSD which causes
the micro-op delivery change from LSD to DSB. At the same
time, as we discussed in Section IV-F, executing 4 chained
aligned instruction mix blocks that map to the same DSB
set will use LSD unit since the size of the 4 blocks (of 5
micro-ops each) is less than 64 micro-op limit of the LSD.

When considering accessing pattern, if accessing a chain
of 7 instruction mix blocks which are all aligned, the 8th

access will determine the path used. If the 8th access is
aligned, all of the micro-ops will still be processed by the
LSD. While if the 8th instruction mix block is misaligned,
LSD will be flushed and micro-ops will be redirected to use
DSB in the frontend. We found that {aligned + misaligned}
instruction mix block access pairs that will cause micro-ops
to be changed from the LSD to the DSB paths are: {5 aligned
+ 2 misaligned}, {6 aligned + 2 misaligned}, {3 aligned + 3
misaligned}, {4 aligned + 3 misaligned}, and {5 aligned +
3 misaligned}. Similar to DSB evictions, misalignment will
not cause L1 instruction cache misses.

H. Generating Different DSB Switch Penalties

In x86, Length Changing Prefixes (LCPs) are designed
and incorporated into the x86 ISA to identify the instructions
with non-default length, which may be used, e.g., with uni-
code processing and image processing [1]. For example, an
instruction starting with 0x66h prefix means there would be
an operand size override. Such prefix can force CPU to use
slower decoding MITE path and incur up to 3 cycles more
penalty in addition to extra DSB-to-MITE switch penalty.

To demonstrate that generating different switch penalties
is feasible, we set up two instruction mix blocks. The first
instruction mix block is filled by 16 sets of two add in-
structions, with one normal add instruction followed by one
add instruction with length changing prefixes (mixed issue),
and repeating this alternating pattern to the end. The second
one is filled with 16 normal add instructions followed by
16 add instructions with length changing prefixes (ordered
issue), In both cases there are 32 instructions within the
loop and we iterate the loop for 800 million times. Figure 4
shows the results of the measurement. The two instruction
blocks generate similar number of micro-ops from MITE and
DSB, but with detectable difference in the final performance
(measured in instructions per cycle, or IPC), which is caused
by different numbers of LCP stall cycles and DSB-to-MITE
switch penalty cycles. This shows that the same type of
frequently-used instructions can come with different front-
end path switching penalties.

We also found other possibly useful, for an attacker,
LCP behaviors including: a) use of LCP will force the
front-end to switch from issuing instructions from DSB
to issuing instructions from MITE, b) LCP instructions
are only decoded sequentially and would incur measurable
performance difference. Therefore, it is feasible to establish
a covert channel based on instructions with LCPs.

V. PROCESSOR FRONTEND VULNERABILITIES

In this section, we focus on implementation of the timing-
based covert channels and attacks. Evaluation of the timing-
based channels is in Section VI. Power-based channels and
attacks are discussed in Section VII. Meanwhile, application
of the attacks to SGX enclaves is presented in Section VIII,
and for use with Spectre attacks in Section IX. Detection of
the microcode patches, which can use both timing or power,
is presented in Section X. Finally, a new side-channel attack
used to fingerprint applications is in Section XI.

Our timing-based covert-channel attacks can be differ-
entiated based on the techniques used to covertly send
different bits by switching between different frontend paths:
using eviction (following ideas in Section IV-F), using
misalignment (following ideas in Section IV-G), or using
LCP stalls and DSB-to-MITE switch penalties (following
ideas in Section IV-H).

For our attacks, there are generally three steps that the
attacks follow:

• Init Step: A series of instruction accesses are per-
formed in this step to set the micro-ops into certain
frontend paths, for some attacks no initial step is
needed, only start timing (or power) measurements.

• Encode Step: The sender accesses certain instructions
to change frontend paths of micro-ops previously set
in the initialization step according to the secret bit to
be sent.

• Decode Step: The receiver accesses certain instructions
and, depending on attack type, timing or power is
measured to observe what changes occurred in the
frontend, or for all three steps.

In addition, some of the attacks may require timing or power
measurements in not just the last step, but the attacks still
follow the three-step pattern.

In the attack descriptions we use the following variables
to describe parameters of the system: N is the number of
ways in the DSB. m is a 1-bit message to be transferred
on the channel. d is the different number of instruction mix
blocks used for an attack step, d < N + 1. M , only used
for misalignment-based attacks, is the parameters of the re-
ceiver, M < N+1. p is the number of iterations the receiver
runs for initialization step and also for decoding step. q is
the number of iterations the sender runs for encoding step.
We note that use of multiple iteration increases time, but
helps to reliably observe timing result with a low error rate.
r, only used for attacks leveraging LCP, is the number of
LCP instructions.

A. Eviction-Based Timing Attack with Multi-Threading

For the eviction-based attack, in a multi-thread (MT)
setting, we deploy a sender thread and a receiver thread
on the same physical processor core, but different hardware
threads, which causes them to share the frontend. When
the instruction stream from the sender executes, the DSB
will be partitioned and some of the receiver’s instructions
will be evicted from DSB, further triggering eviction from
LSD so that the delivery of instructions falls back from the
LSD to DSB+MITE, therefore generating detectable timing
signature that the receiver can measure. When the instruction
stream from the sender is not executing, the receiver thread
will use whole DSB and the evictions will not happen. This
process leaves no interference in traditional instruction and
data caches.

In the MT Eviction-Based Attack, the sender and the
receiver use in total N + 1 instruction mix blocks, denoted
as lines 0 - N . For the MT eviction-based attack shown
in Figure 5, in the Init Step, d (d ≤ N) instruction mix
blocks that map to a DSB set x are accessed for p times
by the receiver. In the Encode Step, the sender will execute
different instruction series according to the secret bit m.
When sending m = 1, the sender will execute N + 1 − d
instruction mix blocks q times, these blocks map to DSB set
x. In this case, the total number of ways accessed is larger

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=0
Execute
N+1-d way
of x set

instructions
Do nothingRS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQMux

MITE

Init and set up states

Execute d way of
x set instructions

(a) init (b) encode

(c) decode

RS

BPU

IDQ

LSD
Mux

Decode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Decode secret_bit=0

LSD

Execute d way
of x set

instructions,
measure

access timing
L1I Cache,

Decode
Unit, IFDSB

MITE

Execute d way
of x set

instructions,
measure

access timing

Fast
access

Slow
access

RS

Initiate and set
up states

Encode to
channel

Decode from
channel

Figure 5: Overview of the MT Eviction-Based Attack.

than N , which causes eviction of DSB within the receiver
and directs the micro-op delivery from LSD to DSB and
MITE. When sending m = 0, the sender does nothing. In the
Decode Step, the receiver will access the same d instruction
mix blocks accessed in the Init Step and time the Decode
Step’s access for p iterations. If eviction occurs, receiver’s
micro-ops in the Decode Step will be delivered from DSB
and MITE, where longer timing will be measured, indicating
message m = 1 was sent from the sender. On the other
hand, if no evictions happen, receiver’s micro-ops in the
Decode Step will still be delivered from LSD, where much
shorter timing is observed compared to the MITE+DSB path,
indicating message m = 0 was sent from the sender.

For example, take d = 6 and N = 8, the instruction access
sequences when sending m = 1 and m = 0 are as follows:

• Init: access blocks 1− 6 mapping to set x
• Encode: access blocks 7− 9 mapping to set x (if m =

1); no access (if m = 0)
• Decode: access blocks 1−6 mapping to set x (if m = 1,

DSB and MITE are used; if m = 0, LSD access is used)

B. Misalignment-Based Timing Attack with Multi-Threading

To achieve misaligned instruction access, sender and
receiver first find virtual addresses of instructions that map
to the same target set as what eviction-based attacks do,
and then offset the initial address of every instruction mix
block by 16 bytes (half of the DSB line size), to misalign
the address.

For this type of attack, the total number of instruction mix
blocks of the sender and the receiver are equal to or less than
the N ways of the DSB, which has an advantage as it reduces
the number of accesses and increases the transmission rate
compared with eviction-based attacks.

The MT Misalignment-Based Attack is shown in Figure 6.
Here, the sender and the receiver use in total M (M ≤ N)
instruction mix blocks. In the Init Step and the Decode Step,

RS

BPU

DSB

IDQ

LSD
Mux

Encode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=0

Do nothing
Execute M-d
way of

misaligned x set
instructions

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQMux

MITE

Init and set up states

Execute d way of
x set instructions

(a) init (b) encode

(c) decode

RS

BPU

IDQ

LSD
Mux

Decode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Decode secret_bit=0

LSD

Execute d way
of x set

instructions,
measure

access timing

DSB

Execute d way
of x set

instructions,
measure

access timing

Fast
access

Slow
access

RS

Initiate and set
up states

Encode to
channel

Decode from
channel

L1I Cache,
Decode
Unit, IF

MITE

L1I Cache,
Decode
Unit, IF

MITE

Figure 6: Overview of the MT Misalignment-Based Attack.

the receiver will access in total d (where d < N) sets of
instructions mix blocks that map to one DSB set, this is
repeated for p times. In this case, the receiver’s instructions
accessed in the Init Step will be processed by the LSD. For
the sender, in the Encode Step, when sending m = 1, the
sender will execute (M − d) (where M < N + 1) sets of
misaligned instructions that map to the same DSB set as
the receiver for q iterations. In this case, misalignment of
the DSB causes the micro-op delivery to be redirected to
DSB from LSD, which leads to faster access of receiver’s
instruction in the Decode Step. When sending m = 0, the
sender does nothing. In this case, all the micro-ops will still
be delivered by the LSD and the receiver’s instruction access
in the Decode Step will observe slower access time. We note
that LSD is indeed slower in delivery which is demonstrated
by the evaluation shown in Figure 2.

For example, take d = 5, N = 8,M = 8, the access
sequences when sending m = 1 and m = 0 are as follows:

• Init: access instruction mix blocks 1 − 5 mapping to
set x

• Encode: access misaligned instruction mix blocks 6−8
mapping to set x (if m = 1); no access (if m = 0)

• Decode: access blocks 1−5 mapping to set x (if m = 1,
DSB access is used; if m = 0, LSD access is used)

C. Non-MT Eviction-Based Attack without Multi-Threading

Our attack using internal-interference of the sender is
shown in Figure 7. The number of iterations (q) of sender’s
encoding step and number of iterations (p) of receiver’s
initialization and decoding steps will be the same in this
attack (i.e. p = q) in order to reliably observe one timing
result with a low error rate. For one iteration, in the Init Step,
the receiver starts the timer in order to measure total time of
the sender. The sender then executes d (d ≤ N) instructions
mix blocks that map to DSB set x. The instructions will be
processed by the LSD. In the Encode Step, When sending

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=0
Execute
N+1-d way
of x set

instructions

Execute
N+1-d way
of y set

instructions
RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQMux

MITE

Init and set up states

Execute d way of
x set instructions

(a) init (b) encode

(c) decode

RS

BPU

IDQ

LSD
Mux

Decode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Decode secret_bit=0

LSD

Measure
total
access
timing

L1I Cache,
Decode
Unit, IFDSB MITE

Fast
access

Slow
access

RS

Initiate and set
up states

Encode to
channel

Decode from
channel

Start
timer

Start the
timer

Measure
total
access
timing

Execute d
way of x set
instructions

Execute d
way of x set
instructions

Figure 7: Overview of Non-MT Stealthy Eviction-Based Attack.

m = 1, the sender will execute N + 1 − d instruction mix
blocks that map to the same DSB set as the receiver. When
sending m = 0, the sender will execute the same number
of instruction mix blocks but ones that map to a different
DSB set y. (stealthier for security) or do nothing (faster for
bandwidth). In the Decode Step, the sender will access the
same number d of instruction mix blocks accessed in the Init
Step. Then the receiver will end the timer and calculate the
total timing of the sender’s accesses to derive the information
sent. If the Encode Step’s access causes evictions, sender’s
micro-ops in the Decode Step will be delivered from DSB
and MITE, where longer timing will be measured, indicating
m = 1 was sent from the sender. Otherwise, m = 0 was
transmitted from the sender.

For example, take d = 6 and N = 8, the instruction access
sequences when sending m = 1 and m = 0 are as follows:

• Init: access instruction mix blocks 1 − 6 mapping to
set x

• Encode: access instruction mix blocks 7 − 9 mapping
to set x (if m = 1); 7−9 of set y (if m = 0) (Stealthy)
/ no access (Fast)

• Decode: access instruction mix blocks 1 − 6 mapping
to set x (if m = 1, DSB and MITE are used; if m = 0,
LSD access is used)

D. Non-MT Misalignment-Based Attack without Multi-
Threading

Similar to eviction-based non-MT attack shown in Sec-
tion V-C, misalignment can also be used to generate inter-
ference without multi-threading. Details of this attack are
not provided due to limited space.

For example, take d = 5, N = 8,M = 8, the instruction
access sequences when sending m = 1 and m = 0 are
as follows:

• Init: access instruction mix blocks 1 − 5 mapping to
set x

1 2 3 4 5 6 7 8
Receiver Way Number (d)

50

100

150

200

250

Tr
an

sm
is

si
on

 R
at

e
(K

bp
s)

Gold 6226 trans. rate
Gold 6226 error rate
Gold 6226 effect. trans. rate
E-2174G trans. rate
E-2174G error rate
E-2174G effect. trans. rate
E-2286G trans. rate
E-2286G error rate
E-2286G effect. trans. rate

0.00

0.05

0.10

0.15

0.20

0.25

E
rr

or
 R

at
e

Figure 8: Evaluation of MT Eviction-Based Attack for different
values of parameter d.

• Encode: access misaligned instruction mix blocks 6−8
mapping to set x (if m = 1); aligned instruction mix
blocks 6 − 8 mapping to set x (Stealthy) / no access
(Fast) (if m = 0)

• Decode: access instruction mix blocks 1 − 5 mapping
to set x (if m = 1, DSB access is used; if m = 0, LSD
access is used)

E. Slow-Switch Attack without Multi-Threading

We now also present a covert-channel attack making use
of LCP instructions, which we call the slow-switch attack.
For slow-switch attack, the receiver (attacker) starts and
ends the timer in the Init and Decode Steps. Meanwhile,
in the Encode Step, within the loop, there will be in total r
number of LCP instructions being executed and the number
of loops is p (or q, p = q as the same setting for non-
MT eviction-based attacks). When sending m = 1, the
sender will alternatively execute one normal add instruction
followed by one add instruction with length changing prefix;
this is repeated for r times. This new type of instruction mix
can enlarge the LCP stall cycles and maximize the LSD-
to-DSB switches. When sending m = 0, the sender will
execute r normal add instructions and then execute r add
instruction with length changing prefixes. This instruction
mix has fewer LCP stalls, thus minimizing the LSD-to-DSB
switch penalties.

For example, take r = 16, the instruction access se-
quences when sending m = 1 and m = 0 are as follows:

• Init: start the timer.
• Encode: access r = 16 groups of instructions, where

each group has an add instruction with a length chang-
ing prefix and then a normal add instruction (if m = 1);
or access 16 normal add instruction and then 16 add
instruction with length changing prefixes (if m = 0);

• Decode: stop the timer.

VI. EVALUATION OF TIMING-CHANNEL ATTACKS

In this section, we evaluate the transmission rates and
error rates of all the timing-based covert-channel attacks dis-
cussed in Section V. Power attacks, SGX attacks, use of new
covert channels in Spectre, microcode patch fingerprinting,
and new side-channel attack are evaluated later.

The evaluation is conducted on 4 recent x86 64 proces-
sors from Intel Skylake’s family. The specifications of the
processors is shown in Table I. For each covert channel,
the transmitted data is compared with the received data
to compute the error rates. To evaluate the error rates of
the channel, the Wagner-Fischer algorithm [18] is used to
calculate the edit distance between the sent string and the
received string.

A. Number of Iterations (p, q) for Attack Steps

After careful tuning of the configurations, when sending
each bit m of message, non-MT attacks can have p = q =
10 (to repeat initialize, encode, and decode steps and still
reliably observe result with low error rates). To transmit each
bit, the sender does one encoding step and receiver does one
decoding step and this pattern of activity is repeated in total
10 times, hence p = q = 10. For MT attacks, for each bit to
be transmitted the receiver does 10 decoding measurements
for each encoding step, while each encoding step has to
be repeated 100 times, hence p/q = 10, where q = 100
(total encoding steps), p = 1000 (total decoding steps). The
q = 100 is due to more noise in the MT setting, compared
to q = 10 for the non-MT setting.

B. Threshold for Detecting Transmitted Bit

To establish decoding threshold for timing measurements,
to determine m = 1 vs. m = 0, an alternating pattern
of 0s and 1s is sent, and the timing (measured in cycles
using the rdtscp instruction) is averaged for 0s and 1s to
establish the threshold. Based on different covert channels,
if a measurement is 30−70% or more above the threshold, it
is judged to be a “1”, otherwise it is judged to be a “0”. The
simple encoding can be in future replaced with other channel
coding methods [19] for possibly faster transmission.

C. Influence of (d,M) Parameters

To help find the ideal transmission rate, we evaluate
the influence of d (number of DSB ways accessed by the
receiver) and its impact on the transmission rate and error
rates.1 The results of changing d for MT Eviction-Based
Attack is shown in Figure 8. When increasing d from 1 to
8 (DSB has N = 8 ways), the number of ways accessed by
the sender will decrease (number of sender’s ways accessed
is N + 1 − d). Receiver’s observation will then become
less stable (error rate increases) while on the other hand
transmission rate increases. Error rates of small d (e.g.,
d = 1, 2) are also large because when the number of
ways accessed by the receiver is small, timing difference
of sending 0 and 1 is small, which can be disrupted by the
system noise. To find a balance between the transmission
rate and error rate, we choose d = 6 for eviction-based

1This work is not aimed at achieving the highest bandwidth covert
channel. To fully optimize the transmission rate and error rate, techniques
such as the ones used in [20] can be further exploited.

Table II: Transmission rates and error rates of the covert-channel MT Eviction-Based Attack when setting d = 1 for for different message
patterns: all 0s, all 1s, alternating 0s and 1s, and random.

All 0s Message All 1s Message Alternating 0s and 1s Message Random Message
G-6226 E-2174G E-2286G G-6226 E-2174G E-2286G G-6226 E-2174G E-2286G G-6226 E-2174G E-2286G

Tr. Rate (Kbps) 42.66 49.53 87.33 55.28 61.17 102.39 50.21 58.86 64.96 18.28 21.80 25.61
Error Rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.68% 10.69% 12.56% 22.57% 18.53% 19.83%

Table III: Transmission rates and error rates of all the eviction-based and misalignment-based attacks when setting d = 6 for eviction-
based attacks and d = 5, M = 8 for misalignment-based attacks. The transmitted message is alternating pattern of 0s and 1s. Transmission
rates for the fastest attack are shown in bold. Intel Xeon E-2288G machine we tested has hyper-threading disabled so there is no MT
attack possible.

Non-MT Stealthy Eviction-Based Non-MT Stealthy Misalignment-Based MT Eviction-Based
G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G

Tr. Rate (Kbps) 419.67 851.81 1182.55 1356.43 713.01 466.02 723.15 1094.39 115.97 113.02 161.63 —
Error Rate 6.48% 3.43% 3.45% 0.36% 22.56% 11.34% 16.56% 10.08% 15.52% 14.44% 13.93% —

Non-MT Fast Eviction-Based Non-MT Fast Misalignment-Based MT Misalignment-Based
G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G

Tr. Rate (Kbps) 501.06 977.68 1205.90 1399.96 500.90 959.45 1228.35 1410.84 129.36 152.44 200.37 —
Error Rate 6.09% 0.00% 0.00% 0.00% 0.16% 0.00% 0.16% 0.00% 7.85% 2.77% 4.62% —

Table IV: Transmission rates and error rates of Slow-Switch
Attacks. The transmitted message is alternating 0s and 1s.

Non-MT Slow-Switch-Based
G6226 2288G

Tr. Rate (Kbps) 678.11 1351.43
Error Rate 6.74% 0.64%

attacks. For misalignment-based attacks, we choose d = 5,
M = 8 (M is the total number of ways accessed by the
sender and receiver for misalignment-based attacks).

D. Influence of Message Patterns

A sample evaluation of MT Eviction-Based Attack for
the four different message patterns with d = 1 is shown
in Table II. From the results it can be seen that better
transmission rate and error rate are derived for all 0s and
all 1s. This is possibly because when not changing the bits
(as is case for all 0s or all 1s), the frontend path used by
the sender accesses remains the same, generating less noise.
The random messages are the worst due to the frequent and
unstable frontend path changes.

E. Transmission Rates and Error Rates

The bit transmission rates and error rates for all types
of the timing-based attacks are presented in Table III and
Table IV, with d = 6 for eviction-based attacks, d = 5
for misalignment-based attacks and r = 16 for slow-switch
attacks. For the best attack, which is the Non-MT Fast
Misalignment-Based Attack, the transmission rate can be
as high as 1410 Kbps (1.41 Mbps) with almost 0% error
rate. Slow-switch attacks have generally similar transmission
rate compared with the non-MT misalignment-based attacks.
Non-MT attacks have better transmission rate than MT
attacks due to smaller noise.

50 60 70
Watt

0.0

0.5

1.0

1.5

D
en

si
ty

LSD delivery
DSB delivery
MITE+DSB delivery

Figure 9: Example histogram of power consumption when dif-
ferent frontend paths are used to process micro-ops in Intel Xeon
Gold 6226 processor.

VII. POWER-CHANNEL ATTACK EVALUATION

Switching between LSD or DSB and the MITE will not
only cause timing changes for instruction processing, but
also power changes. The power changes can be measured
by abusing unprivileged access to Intel’s Running Average
Power Limit (RAPL) interface [21].2

Figure 9 shows example histogram of the power consump-
tion of utilizing different frontend paths for the micro-ops
in Intel Xeon Gold 6226 processor. Based on the power
differences, we demonstrate a non-MT attack that can detect
LSD or DSB vs. MITE frontend path power differences
caused by eviction or misalignment through observing the
power changes in RAPL. Configuration of the attack is
similar to the non-MT attack demonstrated in Section V-C.
To observe the power differences, for each bit transmission
the initialize, encode, and decode steps have to be iterated
for p = q = 240, 000 times since RAPL interface update
interval is around 20kHz [22]. The power attack’s bandwidth
is limited by the update interval of RAPL, and is less than
for the timing attacks.

Table V shows the evaluation results of two power-based
non-MT attacks on Intel’s Xeon Gold 6226 processor. The

2 In power attacks, if unprivileged RAPL accesses are prevented, we can
still use privilege access and use power to attack SGX enclaves. We do not
show this type of attack due to the limited space.

Table V: Evaluation of Non-MT Power-Based attacks on Intel
Xeon Gold 6226 processor when setting d = 6.

Eviction-Based Misalignment-Based
Tr. Rate (Kbps) 0.66 0.63

Error Rate 18.87% 9.07%

bandwidth of the power attacks is around 0.6 – 0.7 Kbps.
The transmission is still above 100 bps which is considered
a high-bandwidth channel by TCSEC [23]. The power
attack bandwidth can possibly be further improved using
techniques such as the ones shown in recent PLATUPUS
work [22].

VIII. SGX ATTACK EVALUATION

The goal of Intel Software Guard Extension (SGX) is to
protect sensitive data against the untrusted user, even on
already compromised system, with the help of hardware-
implemented security and cryptographic mechanism inside
the processor [1]. Unfortunately, as we demonstrate, SGX is
also vulnerable to frontend-related attacks.3

To demonstrate our attacks in an SGX environment,
we assume a sender program is running inside the SGX
enclave and manipulates the use of the frontend paths to
communicate to a receiver outside of the SGX. We consider
both non-MT and MT SGX attacks, but for both there is
only one SGX entry and one SGX exit, while attacker
measures the execution time from the outside. Consequently,
instruction TLB flushing upon entry and exit does not impact
our attacks.

1) MT Timing-Based SGX Attacks: For MT timing-based
SGX attacks, the sender maintains its own thread and
performs the covert transmission from within the enclave.
Meanwhile, the receiver decodes bits of the sender by mea-
suring the timing of its own operations. Under this scenario,
the receiver is able to detect the performance difference of its
own instruction access based on the activity inside the SGX.
If SGX thread is running, then the receiver will observe the
partitioned DSB. If the SGX thread is idle, whole DSB is
dedicated to the receiver thread. Receiver can observe its
own internal-interference and deduce the DSB state.

Evaluation of the MT timing-based SGX attacks is shown
in Table VI. It can be seen from the table that the trans-
mission rates of SGX attacks can be roughly 6 Kbps –
15 Kbps with iteration numbers p = 1, 000, q = 10, 000,
while maintaining the similar error rates as the MT non-
SGX attacks.

2) Non-MT Timing-Based SGX Attacks: For non-MT
timing-based SGX attacks, the sender program is still inside
the enclave, while the receiver derives the information by
measuring the timing of SGX operation from outside of

3We demonstrate attacks on SGX, although there is a newer SGX2 which
extends SGX with dynamic memory management and other features, we
believe these features will not affect our attacks and our attacks can be
applied to SGX2 in future when machines with SGX2 are available.

the enclave. Under this scenario, the receiver’s observations
depend on ability to detect the internal interference of the
sender’s accesses within the enclave, to detect whether
there are frontend path changes caused by the eviction or
misalignment of the micro-ops or not. The non-MT SGX
attacks, because they do not leverage multi-threading, are
possible even when multi-threading is disabled for security.

In the non-MT setup, we assume the attacker (receiver)
is able to trigger the sender and they both execute on the
same hardware thread. To reduce overhead and noise of
enclave exits and entrances, for each transmission of a bit,
there is only one entrance and exit. Effectively the receiver
starts time measurement, then allows the enclave to run,
and then finally measures the timing of the enclave as
it was affected by the frontend paths. Compared to non-
SGX attacks, more iterations of initialization, encoding, and
decoding are necessary (p = q = 1, 000 − 5, 000 iterations
for the SGX attack compared to p = q = 10 iterations for
non-SGX attacks) in order to transmit one bit.

Evaluation of the non-MT timing-based SGX attacks is
shown in Table VI. As the table shows, the transmission
rates of non-MT SGX attacks are roughly 1/25 to 1/30 of
non-MT non-SGX attacks, while still maintaining acceptable
and even lower error rates.

3) Power-Based SGX Attacks: Power-based attacks are
also possible, but not discussed due to limited space. We
remark, however, that even if RAPL is disabled for user-
level code, power-based SGX attacks are possible because
RAPL can be accessed from the privileged, malicious OS.

IX. FRONTEND AND INSTRUCTION CACHE-BASED
SPECTRE ATTACK EVALUATION

Speculative attacks leverage transient execution to access
secret and then a covert channel to pass the secret to the
attacker [10], [11], [25]. In this section, we demonstrate
our new variants of Spectre v1. In our Spectre attacks, we
assume an in-domain attack where the victim and attacker
code are in the same thread, so only one thread is running
on the processor core. The secret message is represented
by 5 bit chunks (each chunk can have value from 0 to
31). We then use one of the 32 DSB sets to represent
each value. Similar to cache-based channels, during the
speculative execution, secret value is encoded by accessing
the corresponding set. Unlike other cache attacks, to access
a DSB set, instruction mix block mapping to that set has to
be executed. We also implemented Spectre v1 attacks using
L1I cache Flush + Reload attack and L1I Prime + Probe
attack, to compare to our frontend attacks.

Table VII shows the L1 miss rate when using our
channels compared to other channels. While our Spectre
v1 attacks have lower bandwidths than data cache-based
Spectre attacks, we are able to achieve lowest L1 miss rates.
Especially, compared with recent cache-based LRU [24]
covert channels which target stealthy attacks without causing

Table VI: Transmission rates and error rates of covert channels for leaking information from an SGX enclave when setting d = 6 for
eviction-based attacks and d = 5, M = 8 for misalignment-based attacks. The transmitted message is alternating 0s and 1s. Intel Xeon
E-2288G machine we tested has hyper-threading disabled so no MT attack data is provided for this machine.

SGX Attacks
Non-MT Stealthy Eviction-Based Non-MT Stealthy Misalignment-Based MT Eviction-Based

E-2174G E-2286G E-2288G E-2174G E-2286G E-2288G E-2174G E-2286G E-2288G
Tr. Rate (Kbps) 18.96 19.56 21.20 23.93 24.70 27.10 7.85 14.89 —
Error Rate 0.16% 1.33% 2.18% 0.32% 0.76% 0.76% 6.74% 8.02% —

SGX Attacks
Non-MT Fast Eviction-Based Non-MT Fast Misalignment-Based MT Misalignment-Based

E-2174G E-2286G E-2288G E-2174G E-2286G E-2288G E-2174G E-2286G E-2288G
Tr. Rate (Kbps) 29.35 32.01 34.48 30.36 31.18 35.20 6.39 13.62 —
Error Rate 0.04% 1.40% 0.40% 0.08% 1.08% 0.68% 2.56% 12.95% —

Table VII: L1 miss rates of our Spectre v1 version attack (run
on Intel’s Xeon Gold 6226 processor) with variants of Spectre v1
that use different covert channels. MEM F+R, L1D F+R, and L1D
LRU attacks are from work [24]. L1 miss rates in [24] are L1D
miss rates.

Others Our
MEM
F+R [24]

L1D
F+R [24]

L1D
LRU [24]

L1I
F+R

L1I
P+P

Frontend

L1 Miss Rate 2.81% 4.79% 4.48% 0.45% 0.48% 0.21%

(a) Average Timing (b) Power

W
att
s

Cy
cle

s

Figure 10: Example comparison of frontend timing and
power for executing instruction mix blocks less or greater
than LSD capacity. All mix blocks map to the same DSB set.
If LSD is disabled execution falls back to DSB and MITE.

high data cache miss rates, our frontend attack does not
cause any cache misses at all, making the L1 miss rate
the smallest.

X. MICROCODE PATCH DETECTION EVALUATION

When evaluating the behavior of the processor fron-
tend, we also found a new type of attack where per-
formance of the frontend can be used for fingerprinting
the microcode updates of the processor. In particular, we
evaluated our Intel Xeon Gold 6226 test machine un-
der older 3.20180312.0ubuntu18.04.1 (patch1) and
newer 3.20210608.0ubuntu0.18.04.1 (patch2) In-
tel microcode patches. While neither patch explicitly men-
tions LSD, we found that with the newer patch2 LSD is
disabled while with older patch1 the LSD is enabled. To
switch between the patches, the processor has to be restarted
so the microcode in the CPU can be updated.

To detect the changes in the LSD behavior, we can
use both the timing difference and the power difference
when testing code sequences with number of instruction

mix blocks less than LSD capacity (so they would fit in
LSD and be processed by LSD) or sequences with number
of instruction mix blocks greater than LSD capacity (so
micro-ops would be forced to be handled by DSB and
MITE instead). The average timing and power difference
for LSD enabled (patch1) vs. disabled (patch2) are shown
in Figure 10. Attackers can clearly differentiate which patch
has been applied, with timing being a more reliable indicator.

Attackers can leverage this to learn of vulnerabilities of
the processor. For example, patch2 protects against CVE-
2021-24489: potential security vulnerability in some Intel
Virtualization Technology for Directed I/0 (VT-d) products
that allows for escalation of privilege.4 Knowing the patch
is applied or not allows the attacker to exploit VT-d related
attacks. The frontend timing thus cannot only be the target of
attack itself, but help attacker discover other vulnerabilities
in the system.

XI. EVALUATION OF SIDE-CHANNEL ATTACK AND
FINGERPRINTING OF APPLICATIONS

Based on the frontend characteristics, we developed a
new frontend-based fingerprinting technique utilizing a side-
channel attack to demonstrate that frontend can be not only
used for covert communication, but also for side-channel
information leakage. Our fingerprinting technique is able to
identify what type of workload a victim is running on a co-
located SMT thread. Moreover, our technique can achieve
fingerprinting using low-frequency timing measurements,
therefore, it works on platforms where access to high-
precision timers is limited. The approach does not use any
performance counters or privileged access, and depends only
on the attacker (receiver) measuring their own instructions
per cycle (IPC). The IPC is affected by the shared fron-
tend, especially the shared MITE, and interference between
attacker and victim in the frontend are the sources of the
information leakage. The attacks were tested on same CPUs
as the covert channels and work with current Intel processors
where DSB and LSD are partitioned between threads (but
MITE is not).

When compared with previous fingerprinting tech-
niques [26], [27], which are mostly based on using per-

4 The patch2 also adds protections against CVE-2021-24489, CVE-2020-
24511, CVE-2020-24512, and CVE-2020-24513.

0 25 50 75 100
Sample Number

1.8

2.0

2.2

A
tta

ck
er

's
 IP

C

Victim: AlexNet

0 25 50 75 100
Sample Number

1.8

2.0

2.2

A
tta

ck
er

's
 IP

C

Victim: SqueezeNet

0 25 50 75 100
Sample Number

1.8

2.0

2.2

A
tta

ck
er

's
 IP

C

Victim: VGG

0 25 50 75 100
Sample Number

1.8

2.0

2.2

A
tta

ck
er

's
 IP

C

Victim: DenseNet

Figure 11: Fingerprinting results of machine learning model using frontend side-channel attacks.
Baseline IPC of the attacker program is 3.58. With two threads the IPC is roughly halved. Furthermore,
due to different patterns of the victim it fluctuates between the 1.8 and 2.2.

Figure 12: Inter-distance and
intra-distance of all the mod-
els.

formance counters or contention in the backend of the
processor, our side-channel attack has number of advantages.
Our method 1) does not need to measure the performance of
the victim workload, 2) does not require usage of any perfor-
mance counters but only a low-precision timer, 3) does not
depend on eviction of lines in instruction and data caches so
it is robust against the existing defense measures on caches,
and 4) it is also robust against existing frontend resource
hardware partitioning, including DSB partitioning and LSD
partitioning implemented on Intel microarchitectures.

A. Side Channel Design
To develop the side channel, we designed a modified

receiver that uses a new mix block of nop instructions
instead of the prior instruction mix blocks used in the
covert channels. We use nop instructions in the x86 ISA
to construct our attacker thread, which naturally triggers
frontend resources to decode the nops, but it does not
generate any traffic in the backend. The attacker thread used
to perform fingerprinting loops through 100 nop instructions
which will not fit in LSD but are able to fit in DSB. The
loop takes two cache lines, which never get evicted from the
cache because of the repeated loop access within the attacker
program. Victim program will slow down the decoding
process of the MITE for the attacker which causes timing
variation of the attacker program, and when the attacker
measures its own performance variation, it is able to observe
patterns that reveal type of victim application. The attacker
measures its own performance by computing the IPC based
on the number of nops executed and time reading from the
rdtsc.

We measure only the instruction per second at a low fre-
quency of 10Hz because existing platforms limit the usage of
high-precision timers [26]. Euclidean distance [28] is used to
calculate the distance of IPC measurement traces of two test
results. If these two tests of the attacker program run with the
same victim benchmark, intra-distance is derived. Otherwise,
inter-distance is derived. Furthermore, we verified that the
contention indeed happens in the frontend by monitoring
the performance counter changes. Note that the actual attack
does not use performance counters. They were only used to
validate the results.

B. Fingerprinting of Mobile Applications

To demonstrate the fingerprinting and the side-channel
attack on mobile application usage, we performed the exper-
iments using a popular Geekbench5 benchmark suite [29].
It consists of a wide range of workloads including camera,
navigation, speech recognition, etc.

We run the attacker thread along with a Geekbench5
thread on a single SMT-enabled core. Unique IPC wave-
forms of the attacker are derived when running with different
benchmarks. We observe an average 0.232 intra-distance
vs. 4.793 inter-distance for the 10 benchmarks tested. Our
results indicate that the IPC changes of the attacker thread
can be used directly to distinguish the type of the victim ap-
plication that is running.

C. Fingerprinting of Machine Learning Algorithms

We also demonstrate the fingerprinting of different ma-
chine learning algorithms from the TVM framework. Fig-
ure 11 shows the average IPC traces of the attacker program
thread when running with different CNN model inference
threads on the same SMT core. Clear differences in the
traces are shown and these can be used to distinguish
different machine learning models based on the traces using
different convolution layers. A set of traces can thus be com-
pared to reference traces to distinguish a network. Because
of the frontend contention in the MITE, even with partitioned
LSD and DSB, the attacker can leak information about
type of victim machine learning model. As can be seen in
Figure 12, the inter distance and intra distance can be clearly
differentiated. This shows that the fingerprinting results can
clearly differentiate machine learning model architectures.
We observe an average 0.550 intra-distance vs. 1.937 inter-
distance for tested 4 CNN models.

XII. DISCUSSION

The frontend vulnerabilities do not involve interference
in traditional instruction or data caches, and they do not
involve speculation. Therefore, a large set of existing defense
mechanism will not be able to prevent them [30]–[32]. The
major difficulty of dealing with the security vulnerabilities
of the frontend paths is that the frontend is designed to give

better performance or lower power for different execution
scenarios, which inevitably creates inherent timing or power
signatures. Eliminating these timing or power signatures
would reduce the performance or power benefits. Since
frontend components such as the MITE, DSB, and LSD are
widely used in modern architecture designs. Defending the
frontend vulnerabilities will require new approaches for the
design of the frontend.

At the system-level, the SMT can be always disabled for
security-critical applications, which would eliminate the MT
attacks. This should be probably already done due to other
prior attacks on caches, for example.

Even with SMT disabled, the non-MT attacks are possible.
Defending these would require careful design of the code
so that there is no secret-dependent timing. This requires
writing of the code to make sure that the frontend switching
or timing is always the same, regardless of the secret data
being processed. Instruction alignment, as shown by our
misalignment-based attacks, can also cause timing differ-
ences, so not just the code, but its location in the address
space needs to be considered.

Regarding Spectre attacks, the frontend state should not
be updated due to speculative execution. Existing defenses
such as buffering cache updates could be applied to the DSB.

For power-based attack, the ability to monitor power of
other users or SGX enclaves needs to be disabled. For user-
level code, existing patches from Intel should be applied to
disable access to the power monitors. For SGX, the power
monitors can be enabled in debug mode for development,
but disabled in production mode.

Since patch detection is based on timing observation of
whether some components are enabled or disabled, there
does not seem to exist an easy solution (unless all frontend
paths have same timing, which defeats the purpose of
having different paths to get better performance). System
administrator should assume that potential attackers know
exactly which patches have been applied, and the patch level
of the system should not be considered a secret.

Although a number of attacks have been demonstrated in
our work, we do note that to perform some of the attacks
we need to find specific instruction mix blocks to minimize
the contention in the backend to allow the attacks to be
effective. The attacks may be difficult to deploy in practice,
for example, if the right instruction mix block is not available
in the code. Nevertheless, our other attacks such as the side-
channel and application fingerprinting do not depend on
specific instruction mix blocks, but overall operation of the
victim program. The frontend then can impact the system
security, and more evaluation of the defenses and how to
deploy them are needed.

XIII. CONCLUSION

This paper evaluated security vulnerabilities in the pro-
cessor frontend. The work demonstrated numerous threats

due to the timing and power signatures of MITE, DSB, and
LSD, including high bandwidth covert channels. Further this
paper showed an SGX attack, a version of Spectre attack,
a new microcode fingerprinting approach, and a new side-
channel attacks for fingerprinting applications. The evaluated
security threats demonstrated that the processor frontend
can be a security weakness in a system, even if existing
defenses for the backend components are deployed. As a
result, processor designers should pay more attention to the
frontend and its impact on security.

REFERENCES

[1] “Intel 64 and ia-32 architectures software developers manual:
Volume 3,” https://www.intel.com/content/www/us/en/
architecture-and-technology/64-ia-32-architectures-software-
developer-system-programming-manual-325384.html.

[2] D. J. Bernstein, “Cache-timing attacks on aes,” 2005, https:
//cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[3] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+
flush: a fast and stealthy cache attack,” in International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2016.

[4] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution,
low noise, l3 cache side-channel attack,” in USENIX Security
Symposium, 2014.

[5] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
level cache side-channel attacks are practical,” in Symposium
on Security and Privacy, 2015.

[6] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and
N. Tuveri, “Port contention for fun and profit,” in Symposium
on Security and Privacy, 2019.

[7] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and
D. Ponomarev, “Branchscope: A new side-channel attack
on directional branch predictor,” ACM SIGPLAN Notices,
vol. 53, no. 2, pp. 693–707, 2018.

[8] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump
over aslr: Attacking branch predictors to bypass aslr,” in
International Symposium on Microarchitecture, 2016.

[9] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel
protection for a shared memory controller,” in International
Symposium on High Performance Computer Architecture,
2014.

[10] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spec-
tre attacks: Exploiting Speculative Execution,” in Symposium
on Security and Privacy, 2019.

[11] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin et al.,
“Meltdown: Reading kernel memory from user space,” in
USENIX Security Symposium, 2018.

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[12] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,
“Prefetch side-channel attacks: Bypassing smap and kernel
aslr,” in Conference on Computer and Communications Se-
curity, 2016.

[13] S. Deng and J. Szefer, “New predictor-based attacks in
processors,” in Design Automation Conference, 2021.

[14] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas,
and C. W. Fletcher, “Microscope: enabling microarchitectural
replay attacks,” in International Symposium on Computer
Architecture, 2019.

[15] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the
ring(s): Side channel attacks on the cpu on-chip ring inter-
connect are practical,” in USENIX Security Symposium, 2021.

[16] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and
A. Venkat, “I see dead µops: Leaking secrets via intel/amd
micro-op caches,” in International Symposium on Computer
Architecture, 2021.

[17] J. Kim, H. Jang, H. Lee, S. Lee, and J. Kim, “Uc-check:
Characterizing micro-operation caches in x86 processors and
implications in security and performance,” in International
Symposium on Microarchitecture, 2021.

[18] G. Navarro, “A guided tour to approximate string matching,”
ACM Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[19] J. L. Massey, “Foundation and methods of channel encod-
ing,” in International Conference on Information Theory and
Systems, vol. 65. NTG-Fachberichte, 1978, pp. 148–157.

[20] G. Saileshwar, C. W. Fletcher, and M. Qureshi, “Streamline: a
fast, flushless cache covert-channel attack by enabling asyn-
chronous collusion,” in International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 2021.

[21] C. Gough, I. Steiner, and W. Saunders, Energy efficient
servers: blueprints for data center optimization. Springer
Nature, 2015.

[22] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon,
C. Canella, and D. Gruss, “Platypus: Software-based power
side-channel attacks on x86,” in Symposium on Security and
Privacy, 2021.

[23] “DoD 5200.28-STD, Department of Defense Trusted Com-
puter System Evaluation Criteria,” 1983, http://csrc.nist.gov/
publications/history/dod85.pdf.

[24] W. Xiong and J. Szefer, “Leaking information through cache
lru states,” in International Symposium on High Performance
Computer Architecture, 2020.

[25] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A
systematic evaluation of transient execution attacks and de-
fenses,” in USENIX Security Symposium, 2019.

[26] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mit-
tal, Y. Oren, and Y. Yarom, “Robust website fingerprinting
through the cache occupancy channel,” in USENIX Security
Symposium, 2019.

[27] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The spy in the sandbox: Practical cache attacks in
javascript and their implications,” in Conference on Computer
and Communications Security, 2015.

[28] P.-E. Danielsson, “Euclidean distance mapping,” Computer
Graphics and image processing, vol. 14, no. 3, pp. 227–248,
1980.

[29] “Introducing Geekbench 5,” 2021, https://www.geekbench.
com/.

[30] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher,
and J. Torrellas, “Invisispec: Making speculative execution
invisible in the cache hierarchy,” in International Symposium
on Microarchitecture, 2018.

[31] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache at-
tacks via encrypted-address and remapping,” in International
Symposium on Microarchitecture, 2018.

[32] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer, “Dawg: A defense against cache timing attacks in
speculative execution processors,” in International Sympo-
sium on Microarchitecture, 2018.

http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
https://www.geekbench.com/
https://www.geekbench.com/

	Introduction
	Contributions
	Responsible Disclosure and Open-Source Code

	Background
	Threat Model and Assumptions
	Analysis of the Operation of the Frontend
	LSD Behavior
	DSB Behavior
	MITE Behavior
	Ensuring Observability of Frontend Timing
	Exploiting Frontend Path Timing Differences
	Generating DSB Evictions Through Set Collisions
	Generating LSD Evictions Through Misaligned Accesses
	Generating Different DSB Switch Penalties

	Processor Frontend Vulnerabilities
	Eviction-Based Timing Attack with Multi-Threading
	Misalignment-Based Timing Attack with Multi-Threading
	Non-MT Eviction-Based Attack without Multi-Threading
	Non-MT Misalignment-Based Attack without Multi-Threading
	Slow-Switch Attack without Multi-Threading

	Evaluation of Timing-Channel Attacks
	Number of Iterations (p, q) for Attack Steps
	Threshold for Detecting Transmitted Bit
	Influence of (d, M) Parameters
	Influence of Message Patterns
	Transmission Rates and Error Rates

	Power-Channel Attack Evaluation
	SGX Attack Evaluation
	MT Timing-Based SGX Attacks
	Non-MT Timing-Based SGX Attacks
	Power-Based SGX Attacks

	Frontend and Instruction Cache-Based Spectre Attack Evaluation
	Microcode Patch Detection Evaluation
	Evaluation of Side-Channel Attack and Fingerprinting of Applications
	Side Channel Design
	Fingerprinting of Mobile Applications
	Fingerprinting of Machine Learning Algorithms

	Discussion
	Conclusion
	References

