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ABBREVIATED ABSTRACT 21 
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1. ABSTRACT 32 

Accurate estimation and forecasts of net biome CO2 exchange (NBE) are vital for understanding 33 

the role of terrestrial ecosystems in a changing climate. Prior efforts to improve NBE predictions 34 

have predominantly focused on increasing models’ structural realism (and thus complexity), but 35 

parametric error and uncertainty are also key determinants of model skill. Here, we investigate 36 

how different parameterization assumptions propagate into NBE prediction errors across the globe, 37 

pitting the traditional plant functional type (PFT)-based approach against a novel top-down, 38 

machine learning-based “environmental filtering” (EF) approach. To do so, we simulate these 39 

contrasting methods for parameter assignment within a flexible model–data fusion framework of 40 

the terrestrial carbon cycle (CARDAMOM) at global scale. In the PFT-based approach, model 41 

parameters from a small number of select locations are applied uniformly within regions sharing 42 

similar land cover characteristics. In the EF-based approach, a pixel’s parameters are predicted 43 

based on underlying relationships with climate, soil, and canopy properties. To isolate the role of 44 

parametric from structural uncertainty in our analysis, we benchmark the resulting PFT-based and 45 

EF-based NBE predictions with estimates from CARDAMOM’s Bayesian optimization approach 46 

(whereby “true” parameters consistent with a suite of data constraints are retrieved on a pixel-by-47 

pixel basis). When considering the mean absolute error of NBE predictions across time, we find 48 

that the EF-based approach matches or outperforms the PFT-based approach at 55% of pixels—a 49 

narrow majority. However, NBE estimates from the EF-based approach are susceptible to 50 

compensation between errors in component flux predictions, and predicted parameters can align 51 

poorly with the assumed “true” values. Overall, though, the EF-based approach is comparable to 52 

conventional approaches and merits further investigation to better understand and resolve these 53 

limitations. This work provides insight into the relationship between TBM performance and 54 

parametric uncertainty, informing efforts to improve model parameterization via PFT-free and 55 

trait-based approaches.   56 
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2. INTRODUCTION 57 

The balance of carbon (C) fluxes entering and exiting the terrestrial biosphere—represented by net 58 

biome exchange, or NBE—directly influences the magnitude of future climate change by 59 

controlling how quickly carbon dioxide accumulates in the atmosphere (Tans et al., 1990; 60 

Heimann & Reichstein, 2008). Projections of terrestrial ecosystems’ behavior by process-based 61 

models can therefore play vital roles in setting future land management, conservation, and 62 

restoration priorities. However, such projections remain highly uncertain, as evidenced by the 63 

inability of most state-of-the-art terrestrial biosphere models (TBMs) to converge even on whether 64 

the land surface will act as a net sink or source of carbon by the end of the century (Friedlingstein 65 

et al., 2013; Arora et al., 2020). 66 

This spread in future TBM projections is the result of several factors, including uncertainty in 67 

the future trajectory of anthropogenic emissions and poor characterization of the climate system’s 68 

internal variability. However, both are overshadowed by the role of model uncertainty itself 69 

(Lovenduski & Bonan, 2017; Bonan & Doney, 2018). Indeed, how best to structure (e.g., 70 

mathematically represent the functional forms of different ecological or hydrological processes 71 

and feedbacks; Huntzinger et al., 2017) and parameterize (e.g., assign ecosystem “traits”, such as 72 

leaf lifespan or leaf mass per area) a given model such that both realism and computational 73 

tractability are adequately preserved is a persistent and much debated challenge. (For simplicity, 74 

we will use the terms traits and parameters interchangeably throughout the remainder of this 75 

paper, although the former can be considered a subset of the latter, which encapsulates any time-76 

invariant model coefficient.) 77 

Most model development efforts have traditionally focused on increasing the realism of 78 

models' process representations (e.g., by increasing structural complexity; Luo et al., 2015; Fisher 79 
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& Koven, 2020), but over-generalized and/or poorly determined model parameters also contribute 80 

to model uncertainty (Prentice et al., 2015; Raczka et al., 2018). For example, in a model 81 

intercomparison across several biomes, Famiglietti et al. (2021) showed that making C cycle 82 

models more structurally realistic can actually decrease predictive accuracy if parameters are not 83 

accurately determined. Furthermore, using the ORCHIDEE TBM, Mahmud et al. (2021) found 84 

that optimizing parameters corrects the underestimation of modeled dryland net ecosystem CO2 85 

exchange. Parametric uncertainty has also been shown to dominate over structural uncertainty in 86 

model forecasts of both biomass and forest succession on regional scales (Shiklomanov et al., 87 

2020; Smallman et al., 2021). Thus, the need for improvements in model parameterization is 88 

becoming increasingly apparent. However, how best to do so remains opaque, in part because of 89 

the technical challenges and computational needs involved in optimizing parameters in complex 90 

land models (MacBean et al., 2016; Ma et al., 2022).  91 

Indeed, given the overwhelming inter- and intra-ecosystem diversity present across the land 92 

surface, parameterizing a global model requires making simplifying assumptions. Perhaps the most 93 

common parameterization assumption employed in nearly all current TBMs involves the use of 94 

plant functional types (PFTs), whereby parameters are assumed to be identical within regions 95 

sharing similar vegetation or land cover characteristics (DeFries et al., 1995; Wullschleger et al., 96 

2014; Poulter et al., 2015). This approach has clear and nontrivial benefits from a computational 97 

efficiency/tractability standpoint but is far from realistic. Research shows that actual plant traits 98 

can vary as much within a single PFT as between many different ones (van Bodegom et al., 2012). 99 

Accordingly, carbon residence times and plant allocation strategies are poorly characterized by 100 

PFTs (Bloom et al., 2016). While awareness of the uncertainties resulting from this 101 

overgeneralization is growing (e.g., van Bodegom et al., 2014; Hartley et al., 2017; Thomas et al., 102 
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2019; Anderegg et al., 2021; C. G. Jung & Hararuk, 2022), underlying PFT-based hypotheses still 103 

remain ubiquitous in today’s large-scale models. 104 

Recently, novel approaches for generating spatially variable estimates of model parameters 105 

have been proposed to counter the limitations of static PFTs. In particular, the theory of 106 

“environmental filtering” (EF) posits that parameters are inherently predictable based on local 107 

climate, soil, and canopy properties—that is, the environment “filters” the vegetation traits that 108 

can exist in any particular place (e.g., Joswig et al., 2022). Indeed, macroclimatic and biophysical 109 

factors like temperature, atmospheric aridity, water supply and nutrient availability strongly impact 110 

the strategies by which plants grow, allocate resources, and respond to stress (e.g., Woodward, 111 

1987). In practice, this concept—which broadly underlies certain large-scale predictive ecological 112 

frameworks like FLUXCOM (M. Jung et al., 2020)—is implemented by deriving mathematical 113 

relationships between community mean traits and environmental covariates (e.g., Ordoñez et al., 114 

2009; Chaney et al., 2016; Butler et al., 2017; Moreno-Martínez et al., 2018; Peaucelle et al., 115 

2019; Boonman et al., 2020; Qian et al., 2021). However, while recent work focusing on a small 116 

subset of model parameters shows that these flexible, data-driven EF relationships can be feasibly 117 

implemented directly within large-scale TBMs (Verheijen et al., 2013, 2015; Walker et al., 2017), 118 

the degree to which such an approach may impact the quality of simulated carbon fluxes—119 

including NBE predictions—is not known. For example, although Walker et al. (2017) compared 120 

modeled photosynthesis rates resulting from an EF-based parameterization of the maximum 121 

photosynthetic carboxylation capacity (Vcmax) to three indirect proxies of gross primary 122 

productivity (GPP), those proxies are themselves highly uncertain, and only a single trait and a 123 

single carbon flux were considered. 124 
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While implementations of the EF hypothesis represent a promising avenue for introducing 125 

more realistic trait variation within TBMs, they face several key challenges (Anderegg et al., 126 

2021). First, the consistency of these relationships across taxonomic and ecological scales has been 127 

questioned (Anderegg et al., 2018), and their ability to capture true ecological niche differences 128 

may be limited (Kraft et al., 2015). A second issue involves the representativeness of the trait 129 

observations used to derive the EF relationships themselves. In situ parameter observations are 130 

useful but not a panacea. Measurements of plant traits are sparse relative to the heterogeneity and 131 

extent of terrestrial ecosystems (Sandel et al., 2015), and some measurements are not compatible 132 

or easily reconcilable with model structure (i.e., limited model representations of natural vertical 133 

heterogeneity, functional diversity, and more can make direct comparison nearly impossible). 134 

Other parameters are physically unobservable (e.g., empirical coefficients such as the fraction of 135 

carbon lost to growth respiration; Shiklomanov et al., 2020; Smith et al., 2020).  Because of this, 136 

prior studies—which we classify as “bottom-up” (e.g., Verheijen et al., 2013, 2015)—were 137 

restricted by the availability and coverage of training data needed for model development. Most 138 

built EF relationships using in situ trait measurements from the TRY database (Kattge et al., 2020), 139 

which, while expansive and ever-growing, contains significant spatial and species-related biases 140 

(e.g., relatively few observations in the tropics and boreal regions; Sandel et al., 2015; Schimel et 141 

al., 2015). Thus, it is not immediately clear whether EF-based predictions can reliably outperform 142 

those resulting from more classical PFT-based assumptions. Addressing this question, however, is 143 

necessary to determine if and how EF approaches can support the development of the next 144 

generation of TBMs. 145 

To do so, we leverage the CARbon Data MOdel framework (CARDAMOM; Bloom & 146 

Williams, 2015; Bloom et al., 2016), a Bayesian model–data fusion system built around an 147 
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intermediate-complexity ecosystem model (DALEC; Williams et al., 1997, 2005) that is 148 

conceptually like most TBMs and produces similar carbon dynamics (Quetin et al., 2020). Here, 149 

CARDAMOM provides dual benefits. First, CARDAMOM’s flexible structure allows for 150 

straightforward implementation of either PFT-based or EF-based parameterization assumptions 151 

into DALEC. Second, it can retrieve the model’s “true”, or optimal, parameters at every pixel 152 

across the land surface—specifically, those consistent with a suite of remotely sensed and other 153 

global observational constraints (and their uncertainties) synthesized in a Bayesian inversion 154 

approach. CARDAMOM therefore provides a set of realistic “top-down”, observationally 155 

informed parameter estimates across the globe, avoiding the large spatial biases of bottom-up trait 156 

datasets. Taken together, these two features allow us to benchmark PFT-based and EF-based 157 

DALEC models using CARDAMOM’s wall-to-wall parameter retrievals and corresponding 158 

monthly, observationally constrained NBE predictions over the period 2000–2015. Hereafter, we 159 

refer to these CARDAMOM-derived benchmarks as “optimal”. Because DALEC’s model 160 

structure and forcing data remain fixed across all three simulations, NBE errors can be interpreted 161 

as wholly attributable to differences in parameterization. Overall, this study tests the dependence 162 

of C cycle prediction accuracy on parameterization assumption in a global context and 163 

demonstrates the potential of trait-based and PFT-free alternatives for reducing parametric 164 

uncertainty.   165 



 8 

3. MATERIALS & METHODS 166 

3.1. Overview. Using a set of realistic, observationally informed parameter retrievals and 167 

corresponding optimal C cycle stock and flux estimates, we performed a global, multi-168 

decadal simulation experiment (45 spatial resolution over the record 2000–2015) that 169 

tested the predictive capacity of PFT- and EF-based DALEC models to estimate NBE.  170 

3.2. Modeling framework and parameter optimization. We used CARDAMOM (Bloom & 171 

Williams, 2015; Bloom et al., 2016) to conduct our parameterization experiments. 172 

CARDAMOM is a model–data fusion (MDF) system that uses a Bayesian inversion 173 

approach to constrain the parameters and initial conditions of an intermediate-complexity 174 

terrestrial ecosystem model with a suite of available satellite remote sensing observations 175 

(Table 1). CARDAMOM’s underlying ecosystem model is called Data Assimilation Linked 176 

Ecosystem Carbon (DALEC; Williams et al., 1997). Here, we use DALEC version C2 177 

(Bloom et al., 2020; Quetin et al., 2020; Famiglietti et al., 2021) as the basis for our analysis. 178 

The model includes a coupled water cycle and uses 33 parameters governing ecosystem 179 

processes and defining the initial conditions of four live biomass pools and two dead organic 180 

matter pools. Further details of the model’s structure are provided in Famiglietti et al. (2021). 181 

CARDAMOM’s MDF approach is summarized by Bayes’ theorem:  182 

𝑝(𝒚|𝑶) ∝ 𝑝(𝒚) ∙ 𝑝(𝑶|𝒚), (1) 

where 𝑝(𝒚|𝑶) is the posterior probability distribution of model parameters y as informed by 183 

observations O, 𝑝(𝒚) is the prior probability distribution of parameters y, and 𝑝(𝑶|𝒚) is 184 

proportional to the likelihood of the observations O given y. The posterior distribution 185 

𝑝(𝒚|𝑶) is sampled using an adaptive proposal Metropolis-Hastings Markov Chain Monte 186 

Carlo (MCMC) approach. The prior distribution 𝑝(𝒚) encapsulates each model parameter’s 187 
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prior probability density function alongside a set of ecological and dynamical constraints 188 

(EDCs) that impose conditions on inter-relationships between parameters based on known 189 

ecological theory, as described in Bloom & Williams (2015) and Famiglietti et al. (2021). 190 

The likelihood is derived such that 191 

𝑝(𝑶|𝒚) = 𝑒−
1

2
∑ (𝑀𝑖−𝑂𝑖)

2/𝜎𝑖
2𝑛

𝑖=1 , (2) 

where Oi is the ith observation, Mi is the corresponding modeled quantity at timestep i, and 192 

𝜎𝑖
2 is the ith error variance for each observation.  193 

The set of observational constraints used in this analysis (i.e., for the retrieval of 194 

DALEC’s optimal model parameters), along with corresponding uncertainties, is listed in 195 

Table 1. It consists of several independent datasets aimed to constrain different carbon fluxes 196 

and pools. These include net biome exchange (NBE) estimates from the CMS-Flux 197 

atmospheric inversion system (J. Liu et al., 2017, 2021), leaf area index (LAI) from MODIS 198 

(Myneni et al., 2002), solar induced fluorescence (SIF) from GOSAT (Frankenberg et al., 199 

2011), soil organic matter (SOM) from SoilGrids (Poggio et al., 2021), above- and below-200 

ground biomass (ABGB) from Saatchi et al. (2011), and fire C emissions from an inversion 201 

approach (Bowman et al., 2017; Worden et al., 2017). Our analysis is performed at 45 202 

spatial resolution (928 total land pixels), which is the scale of the CMS-Flux NBE dataset. 203 

We chose to include the CMS-Flux dataset at the expense of higher spatial resolution because 204 

NBE integrates all aspects of the carbon cycle and, due to its connection to several model 205 

processes, is expected to exert a primary control over CARDAMOM’s parameter retrievals 206 

and corresponding carbon fluxes (Famiglietti et al., 2021).  207 

To characterize the observational uncertainty of the NBE data, we took a novel approach 208 

compared to previous CARDAMOM studies (e.g., Bloom et al., 2020; Quetin et al., 2020). 209 
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Rather than assigning a single, global average value to represent the observational 210 

uncertainty of NBE, here we introduced an additional model “parameter” to retrieve pixel-211 

by-pixel uncertainty values (bringing the total number of parameters to 34). Further details 212 

of the uncertainty retrieval approach are provided in the supporting information (Text S1).  213 

CARDAMOM typically runs in a two-stage process. First, in the “parameter assignment” 214 

stage, CARDAMOM retrieves location-specific optimal parameters (with uncertainty) for 215 

the DALEC model according to a suite of data constraints, as described above. Second, in 216 

the “forward run” stage, it produces monthly time series of carbon fluxes and pools by 217 

running DALEC forward in time with those parameter ensembles (i.e., 1000 parameter 218 

samples from 𝑝(𝒚|𝑶)). The forward runs are forced by a set of meteorological drivers from 219 

the combined data sets from Climate Research Unit (CRU) and reanalysis data from National 220 

Centers for Environmental Prediction (NCEP), or CRUNCEP (Kalnay et al., 1996).  221 

As described, CARDAMOM’s inversion approach allows for the robust retrieval of a 222 

range of C cycle outcomes integrating the information content, quantity, and quality of its 223 

available data constraints. Due to this dependence, however, there is potential for its 224 

estimates to be poorly constrained when observations are temporally sparse and/or uncertain. 225 

For this reason, we introduced a filter requiring that the 25th-75th percentile range of a given 226 

pixel’s optimal NBE ensemble not exceed the local NBE variability (i.e., standard deviation 227 

across time). Pixels not satisfying this filter were omitted from the analysis (n = 138). 228 

We used the resulting, strongly constrained optimal NBE predictions as benchmarks for 229 

estimates from alternatively parameterized (i.e., EF-based and PFT-based) DALEC models. 230 

To derive and implement the EF-based and PFT-based parameterization assumptions, we 231 
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amended CARDAMOM’s first stage (parameter assignment) as described in the following 232 

sections, and then conducted additional forward runs with those alternative parameter sets.   233 

 234 

3.3. EF-based parameterization approach. The environmental filtering approach relies on the 235 

expectation that climate, soil, and canopy properties determine the distribution of ecological 236 

traits—and therefore model parameters—across space, so that they can be used as predictors 237 

in a statistical model. Here, we implemented such assumptions across the globe using climate 238 

data from CRUNCEP, soil information from the SoilGrids project, and remotely sensed 239 

canopy and other data (Table 2). These predictors, or input features, are chosen to describe 240 

as many aspects of ecosystem structure and function as possible, and largely align with those 241 

used in previous environmental filtering applications (e.g., Verheijen et al., 2013, 2015).  242 

We aimed to produce highly skilled EF predictions that could result from complex, 243 

potentially nonlinear inter-relationships between features and targets. Accordingly, we 244 

trained a set of random forest regression models to learn the relationships between these 245 

environmental covariates and model parameters. Here, each of DALEC’s model parameters 246 

was predicted independently (e.g., one random forest model per parameter). Although these 247 

relationships may not be sufficiently parsimonious for straightforward inclusion in TBMs, 248 

they represent a meaningful upper bound on the potential complexity of EF-based 249 

assumptions and predictive schemes. Furthermore, this approach also reduces the need to 250 

rigorously determine the optimal balance between an EF-based model’s tractability and 251 

predictive skill, which is beyond the scope of this study. 252 

For each parameter (regression model), our model selection approach consisted of a 253 

feature selection analysis, a grid search-based hyperparameter tuning step, and a 10-fold 254 
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cross-validation procedure. The feature selection analysis allowed us to assess train/test error 255 

as a function of the number of features available to the EF model (Fig. S1). Specifically, we 256 

determined the optimal number of features for each regression model. For example, the 257 

minimum test error for the SOM turnover rate parameter is observed when 18 features are 258 

included in the model. To derive an EF-based parameter set for a given pixel, we extracted 259 

the corresponding parameter prediction from each optimal regression model. Note that initial 260 

conditions for each carbon or water pool, as well as dates of leaf onset and leaf fall, are 261 

treated differently than other parameters, as described in Sec. 3.5.  262 

 263 

3.4. PFT-based parameterization approach. Plant functional types (PFTs) are broad groupings 264 

of vegetation into classes with similar characteristics (e.g., needle-leaf evergreen, broad-leaf 265 

deciduous, tundra, and so on; DeFries et al., 1995). Here we emulated a common approach 266 

for PFT-based parameterization in large-scale models, whereby ecosystem parameters 267 

observed at a select number of ground locations are assumed to be sufficiently representative 268 

of the entire PFT (e.g., Bonan et al., 2012). Specifically, we employed what we refer to as a 269 

“representative pixel” approach, using the European Space Agency’s GlobCover land cover 270 

map (V2.3) as the basis for our PFTs.  271 

The GlobCover product, available at 300m spatial resolution, provides a discrete 272 

classification of each land surface pixel into one of 23 land cover classes, or PFTs (Arino et 273 

al., 2012). To more closely align with the level of detail in many current TBMs (Bastrikov 274 

et al., 2018; Harper et al., 2018; Reick et al., 2021), we reduced these 23 classes to 9 broad 275 

groupings (Table S2). We first determined each 45 pixel’s fractional PFT composition by 276 

summing the (aggregated) GlobCover classifications contained within it. That is, we 277 
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computed PFT fractions for each coarse-scale analysis pixel based on the fine-resolution 278 

GlobCover data. We then identified the pixels with the largest fractional cover of each PFT. 279 

For example, for the evergreen needleleaf forest class, we found the CARDAMOM pixels 280 

with the greatest percentage of area covered by evergreen needleleaf vegetation. We refer to 281 

these relatively homogeneous locations as “representative pixels”. In the main results of this 282 

study, we used a maximum of 5 representative pixels for each PFT. The representative pixels’ 283 

relevant PFT fractions generally ranged between 60-100%—a strong majority (Fig. S2). The 284 

sole exception is the mixed forest class, whose representative pixels contained only 30-45%; 285 

we only used those pixels containing a plurality of mixed forest. The mixed forest class is 286 

relatively rare, comprising less than 10% of any given pixel (not shown).  287 

Finally, following the assumption that parameter estimates can be retrieved locally and 288 

applied broadly among similar sites, we aggregated CARDAMOM’s observationally 289 

constrained ensembles by randomly sampling 1000 members (with the exception of initial 290 

conditions and phenological dates; see Sec. 3.5) across each group of representative pixels 291 

to yield parameter sets for each PFT. Note that our approach can be viewed as relatively 292 

generous given that it relies on pixel homogeneity (rather than on ground data availability, 293 

as in a typical TBM, which may not ensure representativeness) for the assignment of PFT-294 

based parameter sets. 295 

 296 

3.5. Calculation of initial conditions (ICs) and phenological dates for EF and PFT approaches. 297 

Most land surface and terrestrial biosphere models set the initial states of their carbon pools 298 

based on a “spin-up” to steady state, which can be unrealistic and introduce uncertainty 299 

(Schwalm et al., 2019; Bonan et al., 2021). To isolate only the effects of alternative 300 
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parameterization approaches on NBE predictions, here we leveraged CARDAMOM’s ability 301 

to statistically derive realistic ICs for any set of model parameters. Specifically, after 302 

developing the EF- and PFT-based parameter sets as described in Secs. 3.3 and 3.4, we 303 

performed additional CARDAMOM optimization runs while holding all non-IC parameters 304 

constant at their EF- or PFT-predicted values (i.e., so that only ICs are estimated; 7 of 305 

DALEC’s 34 parameters). For the EF case, this amounted to one optimization run at each 306 

pixel, but for the PFT case, this necessitated one optimization run per PFT at each pixel. 307 

We also took the same approach to re-optimize each pixel’s leaf onset and leaf fall date 308 

parameters, which influence DALEC’s simulation of phenology, in both the PFT- and EF-309 

based models. To understand why this is necessary, consider the case in which two 310 

representative pixels for a given PFT exist in different hemispheres. Simply aggregating leaf 311 

onset or leaf fall dates (numeric values between 0 and 365) across these two pixels would be 312 

problematic due to the reversal of growing seasons between hemispheres. 313 

Overall, then, the remaining 25 of DALEC’s 34 parameters (74%) are the result of a 314 

random forest prediction (in the EF-based model) or an aggregation across representative 315 

pixels (in the PFT-based model).  316 

 317 

3.6. Analysis. Monthly NBE time series used in our analysis were created by running DALEC 318 

forward with the retrieved ICs and corresponding optimal, EF-based, or PFT-based 319 

parameter set for all vegetated pixels satisfying the ensemble range filter (Sec. 3.2) across 320 

the land surface over the period 2000–2015. We defined vegetated pixels as those containing 321 

less than 50% barren or sparse land cover. In the PFT case, we took weighted averages of 322 

the resulting flux predictions based on each pixel’s PFT fractions to yield the final time series 323 



 15 

for analysis. Schematic diagrams summarizing the EF-based (Sec. 3.3) and PFT-based (Sec. 324 

3.4) modeling approaches are presented in Fig. 1, and an example of a pixel’s simulated NBE 325 

time series resulting from the optimal, EF-based, and PFT-based approaches is shown in Fig. 326 

2.  327 

To parse the relative strengths and weaknesses of the alternatively parameterized models, 328 

we first evaluated the mean absolute error and Pearson correlation of a pixel’s NBE time 329 

series (relative to the optimal predictions rather than to observations, so that errors are 330 

attributable only to parametric and not structural uncertainties). We also performed time 331 

series decomposition analyses using moving averages (implemented using Python’s 332 

StatsModels package) to compare the ability of each model to capture features like the 333 

interannual variability, trend, and seasonal cycle of NBE. We then investigated several 334 

potential controls on the models’ NBE error distributions across space using measures of 335 

variance explained (i.e., coefficient of determination in a regression framework). These 336 

controls included parameter prediction accuracy (for the EF-based model), as well as the 337 

uncertainty of CARDAMOM’s retrievals. For this analysis, we decomposed NBE into its 338 

component fluxes to understand the frequency and mode of interacting errors (i.e., whether 339 

errors in component flux predictions tend to compound or compensate in yielding the net 340 

flux, NBE). Note that NBE in DALEC and other ecosystem models is determined by 341 

calculating the difference between Reco (carbon release through both autotrophic and 342 

heterotrophic respiration) and GPP (carbon uptake by plants), along with the potential flux 343 

of carbon to the atmosphere resulting from fires.  344 

 345 

  346 
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4. RESULTS 347 

4.1. Skill of EF-based parameter prediction 348 

We observed significant variability in the ability of EF to predict CARDAMOM’s optimal 349 

model parameters. Across all parameters, the average percent RMSE for EF predictions 350 

(relative to the optimal parameter retrievals) is 44% with a standard deviation of 33% 351 

(average R2 = 0.41 ± 0.18). This relatively high average error is largely driven by parameters 352 

describing fire and combustion, which, at ~84%, are nearly twice as poorly predicted as any 353 

other parameter (Fig. 3a). These error-prone parameters include combustion fractions for 354 

DALEC’s different carbon pools, which the model couples with observations of burned area 355 

to predict total fire carbon emissions (Quetin et al., 2020). By contrast, parameters related to 356 

phenology (e.g., leaf lifespan), canopy structure (e.g., leaf carbon mass per area) and canopy 357 

function (e.g., canopy efficiency, a proxy for nitrogen use efficiency) are the most 358 

predictable, with errors on the order of 20%. Parameters describing soil respiration, carbon 359 

allocation, water cycling, and turnover are predicted with intermediate skill (i.e., in the range 360 

of 30-50%). These patterns across parameters and parameter groups reflect the differential 361 

descriptiveness of available environmental covariates used as predictors in the random forest 362 

framework (Sec. 3.3). Still, only a minority of parameters are predicted with R2 ≥ 0.5 (Fig. 363 

3b), which is consistent with prior EF studies. Verheijen et al. (2013) achieved an average 364 

adjusted R2 of 0.40 for bottom-up predictions of specific leaf area (SLA), Vcmax, and the 365 

maximum electron transport rate (Jmax) across 8 vegetation types, while Butler et al. (2017) 366 

found an average pseudo-R2 of 0.34 when predicting SLA, leaf nitrogen concentration, and 367 

leaf phosphorus concentration with 9 increasingly complex predictive models. Taken 368 
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together, these results demonstrate that EF-based parameter errors can remain stubbornly 369 

large despite comprehensive training information and a nonlinear predictive scheme.  370 

 371 

4.2. Effects of EF-based and PFT-based parameterization assumptions on NBE performance 372 

On average, the EF-based assumptions yield comparable modeled NBE performance to the 373 

PFT-based assumptions, based on mean absolute error (MAE) relative to a given pixel’s 374 

optimal predictions across the entire time series (Fig. 4). The global average NBE MAE is 375 

0.42 ± 0.34 gC m-2 day-1 for the EF-based model and 0.39 ± 0.28 gC m-2 day-1 for the PFT-376 

based model. The two approaches produce some similar error hotspots, such as in Northeast 377 

China and parts of the eastern United States (Fig. 4a-b). Indeed, NBE errors tend to scale 378 

with gradients of climate and vegetation (Fig. S3). Specifically, higher errors are observed 379 

in warmer, wetter places, and errors increase as the variability in month-to-month 380 

temperature and radiation declines. Ecosystems with denser vegetation (e.g., greater average 381 

LAI and ABGB) are also more error prone. These patterns align with the error hotspots 382 

observed across tropical Africa, for instance (Fig. 4a-b). Overall, using the MAE metric, the 383 

EF-based model can match or outperform the PFT-based model at 55% of pixels, while it 384 

produces strictly less accurate NBE predictions at 45% of pixels (Fig. 4c-d). This behavior 385 

is mirrored when considering the Pearson correlation between a given EF-based or PFT-386 

based monthly NBE time series and the optimal estimate; in that case, the EF-based model 387 

produces comparable or superior predictions at 63% of pixels and poorer estimates at 37% 388 

of pixels (Fig. S4). That is, for any given vegetated pixel and across multiple metrics, NBE 389 

simulated using an EF-based approach is likely to capture the optimally parameterized NBE 390 

fluxes just as well as—if not better than—that simulated using a PFT-based approach.  391 
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 To better understand the nature of each model’s performance, we decomposed the NBE 392 

time series at each pixel, isolating its overall mean, interannual variability, and de-trended 393 

seasonal cycle. First, by comparing the “position” (i.e., nearest percentile) of an EF-based or 394 

PFT-based mean NBE estimate within that pixel’s optimal mean NBE ensemble, we found 395 

that both the EF-based model and PFT-based model are likely to accurately capture the mean 396 

across the time series. While any given EF-based or PFT-based mean NBE estimate often 397 

aligns with the center of the optimal ensemble, indicating high accuracy, the EF-based 398 

approach is more likely to underestimate mean NBE (Fig. 5a, greater density below x = 50). 399 

The PFT-based model also approximates the interannual variability of NBE—calculated as 400 

the standard deviation of the annually averaged fluxes—more closely than the EF-based 401 

model, which is slightly too variable from year to year (Fig. 5b).  402 

 Both the EF-based and PFT-based models capture annual average NBE moderately well 403 

(Fig. 5c), and the seasonal cycle almost perfectly (Fig. 5d). To see this, we computed the 404 

Pearson correlation between a given pixel’s annually averaged optimal NBE or de-trended 405 

seasonal cycle and its EF-based or PFT-based counterpart. We find that there are pixels for 406 

which both EF-based and PFT-based NBE annual averages negatively correlate with those 407 

from the optimal model (bottom left quadrant in Fig. 5c); many such pixels align spatially 408 

with the models’ MAE hotspots (Fig. S5). However, the opposite is far more likely. 409 

Generally, both the EF-based and PFT-based estimates of annually averaged NBE correlate 410 

positively with the optimal one (greater density of points in top right quadrant than in all 411 

other quadrants in Fig. 5c). Additionally, both model variants nearly always capture the 412 

optimal model’s seasonal cycle correctly (very high point density in top right quadrant of 413 

Fig. 5d; shown across space in Fig. S6). 414 
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 415 

4.3 Controls on EF-based and PFT-based model errors 416 

Although the EF-based model shows comparable or better performance than the PFT-based 417 

model across several dimensions, the relative skill of the two models shows significant 418 

spatial variability, the driving factors of which are not clear. That is, Fig. 4d begs the 419 

question: what factors determine variations in the EF-based and PFT-based models’ relative 420 

performance, particularly across space? Understanding where—and why—the EF-based 421 

model falters in predicting NBE can help to inform future iterations of the approach.  422 

 To do so, we tested two (potentially overlapping) hypotheses as possible controls on the 423 

models’ variable performance across different pixels. These hypotheses involve (a) how 424 

precisely the EF-based model’s parameter predictions match the “truth” (i.e., the optimal 425 

parameters) at a given location, and (b) how uncertain CARDAMOM’s optimal retrievals 426 

themselves are. For this analysis, we expanded our lens to also consider the predictability of 427 

NBE’s component fluxes, which critically influence the dynamics of the net flux. We focused 428 

on GPP and Reco fluxes, given that errors in predicting fluxes from fires are far smaller in 429 

magnitude (Fig. S7). 430 

 First, it seems feasible that the more a given EF-based parameter set differs from the 431 

“true” values, the less accurate any of its resulting model predictions will be. Contrary to this 432 

hypothesis, though, we find no direct relationship between the EF model’s GPP, Reco, or NBE 433 

performance and the average precision of a given EF-based parameter set (relative to the 434 

corresponding optimal parameter set), suggesting that individual parameter accuracy is a 435 

necessary but insufficient control on its performance. Indeed, a multiple linear regression 436 

with access only to information on the quality of the EF-based prediction for each parameter 437 
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across pixels explains at most 7% of the variance in the EF-based model’s GPP, Reco, and 438 

NBE errors (coefficient of determination, R2) (Fig. 6). Here, quality is measured through the 439 

“position”, or closest percentile, of an EF-based parameter prediction within the 440 

corresponding optimal posterior distribution, where proximity to the median indicates high 441 

accuracy—a measure chosen to normalize parameter error across different pixels even as the 442 

true parameter value varies. 443 

 Second, how strongly are model errors dictated by uncertainty in CARDAMOM’s 444 

optimal retrievals? That is, because CARDAMOM has its own limitations in determining the 445 

“true” NBE (e.g., the availability and accuracy of data constraints used in the optimization 446 

can vary across space, and flows of carbon may be inherently less predictable at some pixels 447 

than others), our assessment of the alternatively parameterized models’ predictions may 448 

reflect this uncertainty.  449 

 For GPP and Reco fluxes, both the EF-based and PFT-based models perform more poorly 450 

when CARDAMOM’s optimal retrievals are less strongly constrained and more uncertain 451 

(i.e., when the ensemble of optimal flux predictions is wider). The mean interquartile range 452 

(IQR; 25th-75th percentile) of CARDAMOM’s optimal GPP ensembles across pixels explains 453 

45% of the variance in the EF-based model’s GPP errors and 64% of that in the PFT-based 454 

model’s GPP errors (Fig. 7a). Similarly, CARDAMOM’s Reco IQR explains 41% of the 455 

variance in the EF-based model’s Reco errors and 60% of that in the PFT-based model’s Reco 456 

errors (Fig. 7b). Importantly, neither model appears significantly more sensitive than the 457 

other to CARDAMOM’s IQR; for each flux, the slopes of the two regression lines are 458 

statistically indistinguishable (Fisher’s z-test; p < 0.01). This indicates that our interpretation 459 

of model errors is not biased by the relationship between model performance and 460 
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CARDAMOM uncertainty. In effect, some pixels with large errors for GPP (or Reco) may 461 

simply be those where the optimal GPP (Reco) is so uncertain that mismatches between the 462 

EF-based or PFT-based GPP (Reco) prediction and the GPP (Reco) considered optimal are as 463 

much due to uncertainty in the latter as due to imperfect parameterization in the former.    464 

 When considering NBE, however, this relationship weakens markedly, with 465 

CARDAMOM’s NBE IQR explaining only 21% and 34% of the EF-based model’s and PFT-466 

based model’s NBE MAE variance, respectively (Fig. 7c). The discrepancy between the 467 

predictability of component versus net fluxes in the two models suggests the occurrence of 468 

significant compensating errors (Fig. 8). GPP and Reco errors are generally larger in 469 

magnitude than NBE errors for both models (Fig. 8a), suggesting a greater absolute mismatch 470 

between component flux predictions than net flux predictions across approaches (Fig. 8b). 471 

On one hand, this is not unexpected given the relative sizes of the fluxes themselves. 472 

However, the skill of the EF-based model relative to the PFT-based model also declines when 473 

considering component fluxes (Fig. 8c). That is, while the EF-based model matches or 474 

outperforms the PFT-based model when predicting NBE at 55% of vegetated pixels, it does 475 

so at only 49% when predicting either GPP or Reco—no longer a majority of pixels. 476 

 Taken together, these findings indicate a persistent error compensation effect, whereby 477 

larger errors in component flux predictions tend to “cancel out” to yield comparatively 478 

smaller errors in NBE (Fig. 8d). This effect is far more prevalent than the converse, whereby 479 

smaller errors in GPP and Reco can compound to yield larger NBE errors. This suggests that 480 

the spatial pattern of NBE errors is strongly influenced by the frequency and degree of 481 

compensation between component fluxes. Critically, though, this behavior appears to impact 482 

the relative skill of EF-based and PFT-based predictions slightly differently. Indeed, the 483 
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fraction of pixels showing equivalent or superior performance shrinks for the former model 484 

when considering net versus component fluxes, and grows for the latter model (Fig. 8c).  485 

 486 

5. DISCUSSION 487 

5.1. Implications for TBMs 488 

The top-down EF-based hypotheses implemented here yielded NBE errors that matched or 489 

outperformed those from traditional PFTs at a sizable fraction of pixels (55%; Fig. 4d), 490 

suggesting that the introduction of more realistic trait variability in large-scale TBMs can 491 

help to improve predictions of its future behavior, as previously hypothesized (Scheiter et 492 

al., 2013; van Bodegom et al., 2014; Matheny et al., 2017; Xu & Trugman, 2021). Overall, 493 

our findings support the growing paradigm shift away from the representation of static PFTs 494 

and towards the incorporation of realistic trait variability into large-scale TBMs (van 495 

Bodegom et al., 2014; Bloom et al., 2016; Berzaghi et al., 2020; C. G. Jung & Hararuk, 496 

2022; Y. Liu et al., 2022). EF-based hypotheses represent one promising and flexible 497 

approach for doing so, although they are not a panacea—PFT-based assumptions are still 498 

superior at nearly half of vegetated pixels in our analysis (45%; Fig. 4d). Although the 499 

drawbacks of PFTs are well-known, they are relatively easy to implement and have been 500 

used with reasonable success in TBMs for decades.  501 

 The close performance we observed between models nevertheless suggests that EF-based 502 

assumptions merit further investigation, particularly because implementing an EF-based 503 

parameterization in a TBM would require solving several open questions. These include 504 

whether and to what degree trait covariations (e.g., Peaucelle et al., 2019) should be 505 

explicitly preserved; whether different traits should be predicted based on fully independent 506 

filters; how complex or parsimonious EF regression models themselves should be; which 507 
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environmental covariates are most relevant for predicting which traits; whether EF 508 

relationships should be included even if they contain little theoretical support; whether all 509 

traits benefit from EF-based assumptions or if a hybrid, super-predictive EF- and PFT-based 510 

approach can improve simulations; and so on. An additional consideration involves the 511 

mathematical interpretability and/or generality of EF relationships (Kyker‐Snowman et al., 512 

2022), which depends on the specific predictive framework selected for analysis (i.e., a 513 

machine learning-based approach is less interpretable than a simple linear regression). It is 514 

also not clear whether EF relationships developed offline can be used directly in different 515 

TBMs with unique structures and dependencies, or whether the parameters of the EF 516 

relationships themselves would need local tuning for each specific TBM to avoid 517 

compensating errors (Koster et al., 2009; J-F Exbrayat et al., 2013).   518 

 519 

5.2. Model performance  520 

Unlike previous (bottom-up) implementations of EF, which focused on only a select few 521 

measurable traits and still maintained a generalized PFT paradigm (Verheijen et al., 2013, 522 

2015; Butler et al., 2017), our satellite-based machine learning approach predicts every one 523 

of DALEC’s dozens of parameters independently and simultaneously. This is an extreme 524 

case in the context of large-scale TBMs, for which a step-by-step implementation may be 525 

more realistic. Indeed, it is possible that our efforts—which served as a “stress test” to 526 

understand the integrated feasibility of the EF approach—may overestimate the appropriate 527 

levels of complexity and nonlinearity required for optimal EF predictions. For example, 528 

while any potential errors stemming from inaccuracies in the EF-based parameter predictions 529 

(Fig. 3) were not substantial enough to consistently limit the skill of the EF-based model 530 
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below that of the PFT-based one when predicting NBE, these inaccuracies indicate 531 

significant room for improvement regarding the characterization and predictability of 532 

environmental controls on parameter variability. Indeed, model parsimony (Famiglietti et 533 

al., 2021) should remain an important consideration in EF contexts, given that compensating 534 

errors can occur not only between component fluxes (Fig. 8) but also between parameters 535 

themselves (Wu et al., 2019) and/or between different modeled environmental feedbacks 536 

(Huntzinger et al., 2017).  537 

 Still, the retention of skill at the flux level by the EF-based model (Figs. 4-5) despite its 538 

parameter errors is especially notable given that the simulation of PFTs implemented here is 539 

relatively generous. For example, our PFT-based parameterization relies on pixel 540 

homogeneity rather than ground data availability for the fundamental representativeness 541 

assumption (Sec. 3.4). It also includes arguably more degrees of freedom than what may be 542 

observed in a typical TBM; that is, the total number of “representative pixels” used in the 543 

aggregation includes a relatively broad sample of locations within each PFT, although the 544 

total number of PFTs considered here (n = 9) aligns reasonably well with current approaches 545 

(Bastrikov et al., 2018; Harper et al., 2018; Reick et al., 2021). 546 

  547 

5.3. Spatial error distributions & component flux compensation 548 

We found a strong relationship between CARDAMOM’s ensemble range (i.e., uncertainty) 549 

and the predictive skill of both alternatively parameterized models (Fig. 7). On one hand, 550 

this demonstrates consistency between modeling approaches; places where even an 551 

optimally parameterized model is under-constrained are also those where the EF-based and 552 

PFT-based models perform poorly. This helps to explain why both alternatively 553 

parameterized models share error hotspots (Fig. 4a-b). Notably, though, it also indicates the 554 
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sensitivity of the EF-based approach to training data quality and that of the PFT-based 555 

approach to assumed representative parameters.  556 

 In our study, both such factors are a direct function of the uncertainty of observational 557 

constraints used in the optimization, many of which are necessarily broad and uniform across 558 

space (Table 1). Additional attention and improvements to direct constraints on modeled 559 

GPP and Reco performance, for instance, may be needed to ensure that changes to a given 560 

model’s underlying parameterization indeed map to improvements in NBE. However, 561 

directly constraining Reco requires information on its own component parts (autotrophic and 562 

heterotrophic respiration fluxes, Ra and Rh). Such data are particularly challenging to 563 

assemble across large scales due to their sparsity (Bond‐Lamberty, 2018). Accordingly, 564 

neither Ra nor Rh was directly constrained in the optimization approach used here. More 565 

broadly, for bottom-up studies (or traditional PFTs), this relationship relies on the accuracy, 566 

representativeness, and coverage of in situ trait measurements (e.g., Sandel et al., 2015; 567 

Kattge et al., 2020). Overall, alternative model parameterization approaches would benefit 568 

significantly from targeted increases in observational data that can be used for training. 569 

 Still, the frequency of error compensation between GPP and Reco fluxes in our models—570 

as also observed more broadly by Caen et al. (2021) in the JULES and INLAND land surface 571 

models—indicates that improvements in parameter realism also have the potential to yield 572 

unintended consequences, such that increases in the predictability of net fluxes are not 573 

guaranteed. Indeed, the role of error interactions appeared as strong or stronger than other 574 

potential controls on NBE performance, including parameter precision (Figs. 6-7). In 575 

particular, the performances of both the EF-based and PFT-based model were influenced by 576 

error compensation in our study (Fig. 8) despite the greater realism of the former’s 577 
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parameterization. Thus, neither model’s NBE performance can be interpreted independently 578 

from compensation (Fig. 4d). Accordingly, a focus on validating gross rather than net fluxes 579 

and on simultaneous testing with multiple independent observational datasets of different 580 

fluxes and pools (with well-defined uncertainties) is recommended when implementing 581 

novel EF-based assumptions in TBMs to reduce the effects of possible error compensation.  582 

 583 

5.4. Remaining uncertainties & limitations  584 

Fire- and combustion-related parameters and processes were particularly poorly 585 

characterized in our study (Fig. 3), despite the inclusion of data describing burned area 586 

(average and variability) within the feature space. Given the critical importance of fire in 587 

explaining the evolution and trajectory of the land carbon sink (Jean-François Exbrayat et 588 

al., 2018; Yin et al., 2020), we expect the accuracy of long-term EF-based NBE forecasts to 589 

increase with an improved representation of fire-related processes. This need dovetails with 590 

recent efforts to generate fine-resolution maps of variables describing fire risk and 591 

vulnerability (e.g., Forzieri et al., 2021), for example, which could be sourced as additional 592 

environmental covariates in future implementations of EF-based assumptions. 593 

 An additional uncertainty relates to the fact that several of DALEC’s parameters are 594 

biophysically inter-related (e.g., leaf lifespan and leaf mass per area; Wright et al., 2004) and 595 

thus co-vary, potentially indicating limitations of our EF-based approach to predict each 596 

parameter independently. Here, we derived a unique trait–environment relationship for each 597 

model parameter using a random forest regression (Sec. 3.3). This means that a true 598 

biophysical inter-relationship between parameters could theoretically be violated when EF 599 

schemes are fitted independently, leaving one parameter estimate incongruent with another. 600 
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Accordingly, future studies should consider a multi-dimensional predictive framework, 601 

wherein dependencies between parameters are inherently preserved, or an alternative 602 

approach to maintaining covariation between parameters (Peaucelle et al., 2019).  603 

 Finally, despite our efforts to robustly assign initial conditions consistent with each EF-604 

based or PFT-based parameter set, our implementation still has limitations. Given that small 605 

disparities in initial states (that is, carbon pool sizes) can produce significantly different 606 

trajectories (Hawkins & Sutton, 2009; Bonan & Doney, 2018), it is possible that remaining 607 

initial condition uncertainty—perhaps along with the influence of other poorly determined 608 

parameters—may partially explain the sometimes divergent relationships we observed 609 

between the alternative models’ and optimal model’s annual average NBE (Figs. 5c and S5a-610 

b). Such uncertainties, however, are also far from resolved in large-scale TBMs (Hurtt et al., 611 

2010; Thurner et al., 2014), where initial conditions are generally calculated based on 612 

spinning up the model to steady state, even though this assumption is likely unrealistic 613 

(Sierra et al., 2017).  614 

 615 

6. CONCLUSIONS 616 

Overall, the top-down EF relationships and corresponding parameter predictions shown here 617 

represent a significant step forward in the characterization of trait–environment associations 618 

independent of in situ measurement availability. The results of this study highlight the 619 

potential for EF approaches to reduce NBE prediction errors and may inform efforts to 620 

incorporate increasingly diverse parameter representations into next-generation TBMs and 621 

future iterations of widely used multi-model ensembles. Expansions in the quantity and 622 

quality of Earth observation data from satellite remote sensing (Schimel et al., 2019), 623 
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advancements in the development of explainable/interpretable physics-based machine 624 

learning techniques for Earth system science (Reichstein et al., 2019), and increases in 625 

computational resource efficiency (Gupta et al., 2021) may work in tandem to foster this 626 

transition.   627 

  628 
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Table 1: Observation-based datasets assimilated into CARDAMOM. Adapted from Quetin et al. (in 

revision). 

Observation Source Years Uncertainty Reference 

Net biome exchange 

(NBE) 
CMS-Flux 2010–2015 

Optimized (prior 

range = 0.001-2 

gC m-2 day-1)  

J. Liu et al., 2017, 

2021 

Leaf area index (LAI) MODIS 2010–2015 log(1.2) Myneni et al., 2002 

Solar-induced 

fluorescence (SIF) 
GOSAT 2010–2015 log(2) 

Frankenberg et al., 

2011 

Above- and below-ground 

biomass (ABGB) 
Multiple 2000 log(1.5) Saatchi et al., 2011 

Soil organic matter (SOM) SoilGrids 2000 log(1.5) Poggio et al., 2021 

Fire C emissions MOPITT 2010–2015 20% 

Bowman et al., 

2017; 

Worden et al., 2017 
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Table 2: Environmental covariates used as features in the predictive EF model framework. For 

relevant time-varying covariates, the mean and standard deviation are computed over the analysis 

period (2000–2015). 

 Environmental covariate Source 

Climate Minimum temperature (mean, std. dev.) CRUNCEP 

 Maximum temperature (mean, std. dev.) CRUNCEP 

 Shortwave radiation (mean, std. dev.) CRUNCEP 

 Vapor pressure deficit (VPD) (mean, std. dev.) CRUNCEP 

 Precipitation (mean, std. dev.) CRUNCEP 

 Burned area (mean, std. dev.) CRUNCEP 

 Aridity index Trabucco & Zomer, 2019 

Vegetation & soil LAI (mean, std. dev.) MODIS 

 ABGB (mean) Saatchi et al., 2011 

 SOM (mean) SoilGrids 

 Soil water holding capacity SoilGrids 

 Soil pH SoilGrids 

 Soil clay fraction SoilGrids 

 Soil bulk density SoilGrids 

 Depth to bedrock SoilGrids 

 Canopy height IceSat (Simard et al., 2011) 

 

  



 11 

FIGURE CAPTIONS 

Figure 1: Schematic diagrams of the (a) EF-based and (b) PFT-based parameterization approaches 

within CARDAMOM. 

Figure 2: Example NBE time series (2000–2015) for one pixel (latitude = 54, longitude = -10), 

including the optimally parameterized model estimate with 25th-75th percentile range (green), the PFT-

based model estimate (orange), and the EF-based model estimate (blue). Here, the mean absolute error 

(MAE) for the PFT-based model is 0.69 gC m-2 day-1, while that for the EF-based model is 0.36 gC m-

2 day-1.  

Figure 3: (a) Errors (calculated as normalized RMSE) and (b) R2 values for EF parameter predictions 

relative to optimal parameters. Individual DALEC parameters (gray circles) are organized into broad 

functional groups (x-axis bins), with each group’s mean shown as a black diamond (error bar indicating 

standard deviation).  

Figure 4: Maps comparing NBE performance of the PFT-based and EF-based models. (a) Mean 

absolute error (MAE) for NBE predictions from the PFT-based model; (b) MAE for NBE predictions 

from the EF-based model; (c) difference between (a) and (b); (d) best-performing model at each pixel, 

based on lowest MAE. Dark gray pixels in (d) represent cases in which NBEPFT MAE and NBEEF MAE 

are within 5% of each other. Light gray pixels are excluded from analysis either due to the ensemble 

range filter (Sec. 3.2), land cover filter (Sec. 3.6) or unavailability of NBE data. 

Figure 5: Results from time series decomposition analysis. (a) Distributions of the location of each 

pixel’s PFT-based and EF-based mean NBE within the corresponding optimal NBE ensemble. A value 

of 50 indicates that the PFT-based or EF-based mean NBE estimate aligns with the median of the 

optimal ensemble and is considered the most accurate outcome. (b) Distributions of NBE IAV for the 

PFT-based, EF-based, and optimally parameterized model. (c) Heatmap comparing Pearson 

correlations between annually averaged NBE from the optimally parameterized model and annually 

averaged NBE from the PFT-based model (x-axis) with correlations between annually averaged NBE 

from the optimally parameterized model and annually averaged NBE from the EF-based model (y-

axis). Points lying in the upper right-hand corner (first quadrant) have PFT-based and EF-based NBE 

annual averages that are both strongly correlated with those from the optimal model. (d) Heatmap 

comparing correlations between the de-trended NBE seasonal cycle from the optimally parameterized 

model and that from the PFT-based model (x-axis) with correlations between the de-trended NBE 

seasonal cycle from the optimally parameterized model and that from the EF-based model (y-axis). For 

subplots (c) and (d), coloration of grid cells corresponds to relative point density. 

Figure 6: Role of parameter precision in controlling MAE. (a) Observed GPP MAE (resulting from EF 

versus optimal comparison) versus predicted MAE (resulting from multiple linear regression with 

information on EF parameter precision). (b) Same, but for Reco. (c) Same, but for NBE. R2 is the 

coefficient of determination. The thin black line denotes a 1:1 relationship. 

Figure 7: Role of CARDAMOM’s uncertainty in controlling MAE. (a) CARDAMOM’s GPP ensemble 

interquartile range (IQR) versus predicted GPP MAE for both the EF-based (blue) and PFT-based 

(orange) models. (b) Same, but for Reco. (c) Same, but for NBE. In each subplot, regression lines are 
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plotted in blue and orange (m represents the slope of each line; R2 is the coefficient of determination). 

The thin black line denotes a 1:1 relationship.  

Figure 8: Component flux prediction skill and error compensation. (a) Boxplots comparing the EF-

based and PFT-based models’ MAE across fluxes. (b) Distributions of the difference in MAE between 

PFT-based and EF-based predictions for GPP, Reco, and NBE. (c) Bar charts showing the percentage of 

vegetated pixels for which each model’s predictions were more accurate (lower MAE). (d) Bar chart 

showing the percentage of vegetated pixels for which errors between component fluxes either 

compound or compensate to yield NBE errors.  

 


