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1. ABSTRACT

Accurate estimation and forecasts of net biome CO» exchange (NBE) are vital for understanding
the role of terrestrial ecosystems in a changing climate. Prior efforts to improve NBE predictions
have predominantly focused on increasing models’ structural realism (and thus complexity), but
parametric error and uncertainty are also key determinants of model skill. Here, we investigate
how different parameterization assumptions propagate into NBE prediction errors across the globe,
pitting the traditional plant functional type (PFT)-based approach against a novel top-down,
machine learning-based “environmental filtering” (EF) approach. To do so, we simulate these
contrasting methods for parameter assignment within a flexible model—data fusion framework of
the terrestrial carbon cycle (CARDAMOM) at global scale. In the PFT-based approach, model
parameters from a small number of select locations are applied uniformly within regions sharing
similar land cover characteristics. In the EF-based approach, a pixel’s parameters are predicted
based on underlying relationships with climate, soil, and canopy properties. To isolate the role of
parametric from structural uncertainty in our analysis, we benchmark the resulting PFT-based and
EF-based NBE predictions with estimates from CARDAMOM’s Bayesian optimization approach
(whereby “true” parameters consistent with a suite of data constraints are retrieved on a pixel-by-
pixel basis). When considering the mean absolute error of NBE predictions across time, we find
that the EF-based approach matches or outperforms the PFT-based approach at 55% of pixels—a
narrow majority. However, NBE estimates from the EF-based approach are susceptible to
compensation between errors in component flux predictions, and predicted parameters can align
poorly with the assumed “true” values. Overall, though, the EF-based approach is comparable to
conventional approaches and merits further investigation to better understand and resolve these
limitations. This work provides insight into the relationship between TBM performance and
parametric uncertainty, informing efforts to improve model parameterization via PFT-free and

trait-based approaches.
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2. INTRODUCTION

The balance of carbon (C) fluxes entering and exiting the terrestrial biosphere—represented by net
biome exchange, or NBE—directly influences the magnitude of future climate change by
controlling how quickly carbon dioxide accumulates in the atmosphere (Tans et al., 1990;
Heimann & Reichstein, 2008). Projections of terrestrial ecosystems’ behavior by process-based
models can therefore play vital roles in setting future land management, conservation, and
restoration priorities. However, such projections remain highly uncertain, as evidenced by the
inability of most state-of-the-art terrestrial biosphere models (TBMs) to converge even on whether
the land surface will act as a net sink or source of carbon by the end of the century (Friedlingstein
etal., 2013; Arora et al., 2020).

This spread in future TBM projections is the result of several factors, including uncertainty in
the future trajectory of anthropogenic emissions and poor characterization of the climate system’s
internal variability. However, both are overshadowed by the role of model uncertainty itself
(Lovenduski & Bonan, 2017, Bonan & Doney, 2018). Indeed, how best to structure (e.g.,
mathematically represent the functional forms of different ecological or hydrological processes
and feedbacks; Huntzinger et al., 2017) and parameterize (e.g., assign ecosystem “traits”, such as
leaf lifespan or leaf mass per area) a given model such that both realism and computational
tractability are adequately preserved is a persistent and much debated challenge. (For simplicity,
we will use the terms fraits and parameters interchangeably throughout the remainder of this
paper, although the former can be considered a subset of the latter, which encapsulates any time-
invariant model coefficient.)

Most model development efforts have traditionally focused on increasing the realism of

models' process representations (e.g., by increasing structural complexity; Luo et al., 2015; Fisher
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& Koven, 2020), but over-generalized and/or poorly determined model parameters also contribute
to model uncertainty (Prentice et al., 2015; Raczka et al., 2018). For example, in a model
intercomparison across several biomes, Famiglietti et al. (2021) showed that making C cycle
models more structurally realistic can actually decrease predictive accuracy if parameters are not
accurately determined. Furthermore, using the ORCHIDEE TBM, Mahmud et al. (2021) found
that optimizing parameters corrects the underestimation of modeled dryland net ecosystem CO»
exchange. Parametric uncertainty has also been shown to dominate over structural uncertainty in
model forecasts of both biomass and forest succession on regional scales (Shiklomanov et al.,
2020; Smallman et al., 2021). Thus, the need for improvements in model parameterization is
becoming increasingly apparent. However, how best to do so remains opaque, in part because of
the technical challenges and computational needs involved in optimizing parameters in complex
land models (MacBean et al., 2016, Ma et al., 2022).

Indeed, given the overwhelming inter- and intra-ecosystem diversity present across the land
surface, parameterizing a global model requires making simplifying assumptions. Perhaps the most
common parameterization assumption employed in nearly all current TBMs involves the use of
plant functional types (PFTs), whereby parameters are assumed to be identical within regions
sharing similar vegetation or land cover characteristics (DeFries et al., 1995; Wullschleger et al.,
2014, Poulter et al., 2015). This approach has clear and nontrivial benefits from a computational
efficiency/tractability standpoint but is far from realistic. Research shows that actual plant traits
can vary as much within a single PFT as between many different ones (van Bodegom et al., 2012).
Accordingly, carbon residence times and plant allocation strategies are poorly characterized by
PFTs (Bloom et al, 2016). While awareness of the uncertainties resulting from this

overgeneralization is growing (e.g., van Bodegom et al., 2014, Hartley et al., 2017; Thomas et al.,
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2019; Anderegg et al., 2021, C. G. Jung & Hararuk, 2022), underlying PFT-based hypotheses still
remain ubiquitous in today’s large-scale models.

Recently, novel approaches for generating spatially variable estimates of model parameters
have been proposed to counter the limitations of static PFTs. In particular, the theory of
“environmental filtering” (EF) posits that parameters are inherently predictable based on local
climate, soil, and canopy properties—that is, the environment “filters” the vegetation traits that
can exist in any particular place (e.g., Joswig et al., 2022). Indeed, macroclimatic and biophysical
factors like temperature, atmospheric aridity, water supply and nutrient availability strongly impact
the strategies by which plants grow, allocate resources, and respond to stress (e.g., Woodward,
1987). In practice, this concept—which broadly underlies certain large-scale predictive ecological
frameworks like FLUXCOM (M. Jung et al., 2020)—is implemented by deriving mathematical
relationships between community mean traits and environmental covariates (e.g., Ordoiiez et al.,
2009; Chaney et al., 2016, Butler et al., 2017; Moreno-Martinez et al., 2018, Peaucelle et al.,
2019; Boonman et al., 2020, Qian et al., 2021). However, while recent work focusing on a small
subset of model parameters shows that these flexible, data-driven EF relationships can be feasibly
implemented directly within large-scale TBMs (Verheijen et al., 2013, 2015; Walker et al., 2017),
the degree to which such an approach may impact the quality of simulated carbon fluxes—
including NBE predictions—is not known. For example, although Walker et al. (2017) compared
modeled photosynthesis rates resulting from an EF-based parameterization of the maximum
photosynthetic carboxylation capacity (Vemax) to three indirect proxies of gross primary
productivity (GPP), those proxies are themselves highly uncertain, and only a single trait and a

single carbon flux were considered.
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While implementations of the EF hypothesis represent a promising avenue for introducing
more realistic trait variation within TBMs, they face several key challenges (4nderegg et al.,
2021). First, the consistency of these relationships across taxonomic and ecological scales has been
questioned (Anderegg et al., 2018), and their ability to capture true ecological niche differences
may be limited (Kraft et al., 2015). A second issue involves the representativeness of the trait
observations used to derive the EF relationships themselves. In situ parameter observations are
useful but not a panacea. Measurements of plant traits are sparse relative to the heterogeneity and
extent of terrestrial ecosystems (Sandel et al., 2015), and some measurements are not compatible
or easily reconcilable with model structure (i.e., limited model representations of natural vertical
heterogeneity, functional diversity, and more can make direct comparison nearly impossible).
Other parameters are physically unobservable (e.g., empirical coefficients such as the fraction of
carbon lost to growth respiration; Shiklomanov et al., 2020, Smith et al., 2020). Because of this,
prior studies—which we classify as “bottom-up” (e.g., Verheijen et al., 2013, 2015)—were
restricted by the availability and coverage of training data needed for model development. Most
built EF relationships using in situ trait measurements from the TRY database (Kattge et al., 2020),
which, while expansive and ever-growing, contains significant spatial and species-related biases
(e.g., relatively few observations in the tropics and boreal regions; Sandel et al., 2015; Schimel et
al., 2015). Thus, it is not immediately clear whether EF-based predictions can reliably outperform
those resulting from more classical PFT-based assumptions. Addressing this question, however, is
necessary to determine if and how EF approaches can support the development of the next
generation of TBMs.

To do so, we leverage the CARbon Data MOdel framework (CARDAMOM; Bloom &

Williams, 2015, Bloom et al., 2016), a Bayesian model-data fusion system built around an
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intermediate-complexity ecosystem model (DALEC; Williams et al., 1997, 2005) that is
conceptually like most TBMs and produces similar carbon dynamics (Quetin et al., 2020). Here,
CARDAMOM provides dual benefits. First, CARDAMOM'’s flexible structure allows for
straightforward implementation of either PFT-based or EF-based parameterization assumptions
into DALEC. Second, it can retrieve the model’s “true”, or optimal, parameters at every pixel
across the land surface—specifically, those consistent with a suite of remotely sensed and other
global observational constraints (and their uncertainties) synthesized in a Bayesian inversion
approach. CARDAMOM therefore provides a set of realistic “top-down”, observationally
informed parameter estimates across the globe, avoiding the large spatial biases of bottom-up trait
datasets. Taken together, these two features allow us to benchmark PFT-based and EF-based
DALEC models using CARDAMOM’s wall-to-wall parameter retrievals and corresponding
monthly, observationally constrained NBE predictions over the period 2000-2015. Hereafter, we
refer to these CARDAMOM-derived benchmarks as “optimal”. Because DALEC’s model
structure and forcing data remain fixed across all three simulations, NBE errors can be interpreted
as wholly attributable to differences in parameterization. Overall, this study tests the dependence
of C cycle prediction accuracy on parameterization assumption in a global context and
demonstrates the potential of trait-based and PFT-free alternatives for reducing parametric

uncertainty.
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3. MATERIALS & METHODS

3.1

3.2.

Overview. Using a set of realistic, observationally informed parameter retrievals and
corresponding optimal C cycle stock and flux estimates, we performed a global, multi-
decadal simulation experiment (4°x5° spatial resolution over the record 2000-2015) that
tested the predictive capacity of PFT- and EF-based DALEC models to estimate NBE.

Modeling framework and parameter optimization. We used CARDAMOM (Bloom &
Williams, 2015; Bloom et al., 2016) to conduct our parameterization experiments.
CARDAMOM is a model-data fusion (MDF) system that uses a Bayesian inversion
approach to constrain the parameters and initial conditions of an intermediate-complexity
terrestrial ecosystem model with a suite of available satellite remote sensing observations
(Table 1). CARDAMOM’s underlying ecosystem model is called Data Assimilation Linked
Ecosystem Carbon (DALEC; Williams et al., 1997). Here, we use DALEC version C2
(Bloom et al., 2020, Quetin et al., 2020, Famiglietti et al., 2021) as the basis for our analysis.
The model includes a coupled water cycle and uses 33 parameters governing ecosystem
processes and defining the initial conditions of four live biomass pools and two dead organic
matter pools. Further details of the model’s structure are provided in Famiglietti et al. (2021).

CARDAMOM’s MDF approach is summarized by Bayes’ theorem:
r(¥10) < p(y) - p(0ly), (1)

where p(y|0) is the posterior probability distribution of model parameters y as informed by
observations O, p(y) is the prior probability distribution of parameters y, and p(0|y) is
proportional to the likelihood of the observations O given y. The posterior distribution
p(¥|0) is sampled using an adaptive proposal Metropolis-Hastings Markov Chain Monte

Carlo (MCMC) approach. The prior distribution p(y) encapsulates each model parameter’s
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prior probability density function alongside a set of ecological and dynamical constraints
(EDCs) that impose conditions on inter-relationships between parameters based on known
ecological theory, as described in Bloom & Williams (2015) and Famiglietti et al. (2021).
The likelihood is derived such that

p(0]y) = ¢ 25 Mi=00%/oF (2)
where O; is the ith observation, M; is the corresponding modeled quantity at timestep 7, and
o is the ith error variance for each observation.

The set of observational constraints used in this analysis (i.e., for the retrieval of
DALEC’s optimal model parameters), along with corresponding uncertainties, is listed in
Table 1. It consists of several independent datasets aimed to constrain different carbon fluxes
and pools. These include net biome exchange (NBE) estimates from the CMS-Flux
atmospheric inversion system (J. Liu et al., 2017, 2021), leaf area index (LAI) from MODIS
(Myneni et al., 2002), solar induced fluorescence (SIF) from GOSAT (Frankenberg et al.,
2011), soil organic matter (SOM) from SoilGrids (Poggio et al., 2021), above- and below-
ground biomass (ABGB) from Saatchi et al. (2011), and fire C emissions from an inversion
approach (Bowman et al., 2017; Worden et al., 2017). Our analysis is performed at 4°x5°
spatial resolution (928 total land pixels), which is the scale of the CMS-Flux NBE dataset.
We chose to include the CMS-Flux dataset at the expense of higher spatial resolution because
NBE integrates all aspects of the carbon cycle and, due to its connection to several model
processes, is expected to exert a primary control over CARDAMOM’s parameter retrievals
and corresponding carbon fluxes (Famiglietti et al., 2021).

To characterize the observational uncertainty of the NBE data, we took a novel approach

compared to previous CARDAMOM studies (e.g., Bloom et al., 2020; Quetin et al., 2020).
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Rather than assigning a single, global average value to represent the observational
uncertainty of NBE, here we introduced an additional model “parameter” to retrieve pixel-
by-pixel uncertainty values (bringing the total number of parameters to 34). Further details
of the uncertainty retrieval approach are provided in the supporting information (Text S1).

CARDAMOM typically runs in a two-stage process. First, in the “parameter assignment”
stage, CARDAMOM retrieves location-specific optimal parameters (with uncertainty) for
the DALEC model according to a suite of data constraints, as described above. Second, in
the “forward run” stage, it produces monthly time series of carbon fluxes and pools by
running DALEC forward in time with those parameter ensembles (i.e., 1000 parameter
samples from p(y|0)). The forward runs are forced by a set of meteorological drivers from
the combined data sets from Climate Research Unit (CRU) and reanalysis data from National
Centers for Environmental Prediction (NCEP), or CRUNCEP (Kalnay et al., 1996).

As described, CARDAMOM’s inversion approach allows for the robust retrieval of a
range of C cycle outcomes integrating the information content, quantity, and quality of its
available data constraints. Due to this dependence, however, there is potential for its
estimates to be poorly constrained when observations are temporally sparse and/or uncertain.
For this reason, we introduced a filter requiring that the 251-75% percentile range of a given
pixel’s optimal NBE ensemble not exceed the local NBE variability (i.e., standard deviation
across time). Pixels not satisfying this filter were omitted from the analysis (n = 138).

We used the resulting, strongly constrained optimal NBE predictions as benchmarks for
estimates from alternatively parameterized (i.e., EF-based and PFT-based) DALEC models.

To derive and implement the EF-based and PFT-based parameterization assumptions, we
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3.3.

amended CARDAMOM’s first stage (parameter assignment) as described in the following

sections, and then conducted additional forward runs with those alternative parameter sets.

EF-based parameterization approach. The environmental filtering approach relies on the
expectation that climate, soil, and canopy properties determine the distribution of ecological
traits—and therefore model parameters—across space, so that they can be used as predictors
in a statistical model. Here, we implemented such assumptions across the globe using climate
data from CRUNCEDP, soil information from the SoilGrids project, and remotely sensed
canopy and other data (Table 2). These predictors, or input features, are chosen to describe
as many aspects of ecosystem structure and function as possible, and largely align with those
used in previous environmental filtering applications (e.g., Verheijen et al., 2013, 2015).

We aimed to produce highly skilled EF predictions that could result from complex,
potentially nonlinear inter-relationships between features and targets. Accordingly, we
trained a set of random forest regression models to learn the relationships between these
environmental covariates and model parameters. Here, each of DALEC’s model parameters
was predicted independently (e.g., one random forest model per parameter). Although these
relationships may not be sufficiently parsimonious for straightforward inclusion in TBMs,
they represent a meaningful upper bound on the potential complexity of EF-based
assumptions and predictive schemes. Furthermore, this approach also reduces the need to
rigorously determine the optimal balance between an EF-based model’s tractability and
predictive skill, which is beyond the scope of this study.

For each parameter (regression model), our model selection approach consisted of a

feature selection analysis, a grid search-based hyperparameter tuning step, and a 10-fold
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3.4.

cross-validation procedure. The feature selection analysis allowed us to assess train/test error
as a function of the number of features available to the EF model (Fig. S1). Specifically, we
determined the optimal number of features for each regression model. For example, the
minimum test error for the SOM turnover rate parameter is observed when 18 features are
included in the model. To derive an EF-based parameter set for a given pixel, we extracted
the corresponding parameter prediction from each optimal regression model. Note that initial
conditions for each carbon or water pool, as well as dates of leaf onset and leaf fall, are

treated differently than other parameters, as described in Sec. 3.5.

PFT-based parameterization approach. Plant functional types (PFTs) are broad groupings
of vegetation into classes with similar characteristics (e.g., needle-leaf evergreen, broad-leaf
deciduous, tundra, and so on; DeFries et al., 1995). Here we emulated a common approach
for PFT-based parameterization in large-scale models, whereby ecosystem parameters
observed at a select number of ground locations are assumed to be sufficiently representative
of the entire PFT (e.g., Bonan et al., 2012). Specifically, we employed what we refer to as a
“representative pixel” approach, using the European Space Agency’s GlobCover land cover
map (V2.3) as the basis for our PFTs.

The GlobCover product, available at 300m spatial resolution, provides a discrete
classification of each land surface pixel into one of 23 land cover classes, or PFTs (4rino et
al., 2012). To more closely align with the level of detail in many current TBMs (Bastrikov
etal, 2018; Harper et al., 2018; Reick et al., 2021), we reduced these 23 classes to 9 broad
groupings (Table S2). We first determined each 4°x5° pixel’s fractional PFT composition by

summing the (aggregated) GlobCover classifications contained within it. That is, we
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3.5.

computed PFT fractions for each coarse-scale analysis pixel based on the fine-resolution
GlobCover data. We then identified the pixels with the largest fractional cover of each PFT.
For example, for the evergreen needleleaf forest class, we found the CARDAMOM pixels
with the greatest percentage of area covered by evergreen needleleaf vegetation. We refer to
these relatively homogeneous locations as “representative pixels”. In the main results of this
study, we used a maximum of 5 representative pixels for each PFT. The representative pixels’
relevant PFT fractions generally ranged between 60-100%—a strong majority (Fig. S2). The
sole exception is the mixed forest class, whose representative pixels contained only 30-45%;
we only used those pixels containing a plurality of mixed forest. The mixed forest class is
relatively rare, comprising less than 10% of any given pixel (not shown).

Finally, following the assumption that parameter estimates can be retrieved locally and
applied broadly among similar sites, we aggregated CARDAMOM’s observationally
constrained ensembles by randomly sampling 1000 members (with the exception of initial
conditions and phenological dates; see Sec. 3.5) across each group of representative pixels
to yield parameter sets for each PFT. Note that our approach can be viewed as relatively
generous given that it relies on pixel homogeneity (rather than on ground data availability,
as in a typical TBM, which may not ensure representativeness) for the assignment of PFT-

based parameter sets.

Calculation of initial conditions (ICs) and phenological dates for EF and PFT approaches.
Most land surface and terrestrial biosphere models set the initial states of their carbon pools
based on a “spin-up” to steady state, which can be unrealistic and introduce uncertainty

(Schwalm et al., 2019; Bonan et al., 2021). To isolate only the effects of alternative
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3.6.

parameterization approaches on NBE predictions, here we leveraged CARDAMOM’s ability
to statistically derive realistic ICs for any set of model parameters. Specifically, after
developing the EF- and PFT-based parameter sets as described in Secs. 3.3 and 3.4, we
performed additional CARDAMOM optimization runs while holding all non-IC parameters
constant at their EF- or PFT-predicted values (i.e., so that only ICs are estimated; 7 of
DALEC’s 34 parameters). For the EF case, this amounted to one optimization run at each
pixel, but for the PFT case, this necessitated one optimization run per PFT at each pixel.

We also took the same approach to re-optimize each pixel’s leaf onset and leaf fall date
parameters, which influence DALEC’s simulation of phenology, in both the PFT- and EF-
based models. To understand why this is necessary, consider the case in which two
representative pixels for a given PFT exist in different hemispheres. Simply aggregating leaf
onset or leaf fall dates (numeric values between 0 and 365) across these two pixels would be
problematic due to the reversal of growing seasons between hemispheres.

Overall, then, the remaining 25 of DALEC’s 34 parameters (74%) are the result of a
random forest prediction (in the EF-based model) or an aggregation across representative

pixels (in the PFT-based model).

Analysis. Monthly NBE time series used in our analysis were created by running DALEC
forward with the retrieved ICs and corresponding optimal, EF-based, or PFT-based
parameter set for all vegetated pixels satisfying the ensemble range filter (Sec. 3.2) across
the land surface over the period 2000-2015. We defined vegetated pixels as those containing
less than 50% barren or sparse land cover. In the PFT case, we took weighted averages of

the resulting flux predictions based on each pixel’s PFT fractions to yield the final time series
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for analysis. Schematic diagrams summarizing the EF-based (Sec. 3.3) and PFT-based (Sec.
3.4) modeling approaches are presented in Fig. 1, and an example of a pixel’s simulated NBE
time series resulting from the optimal, EF-based, and PFT-based approaches is shown in Fig.
2.

To parse the relative strengths and weaknesses of the alternatively parameterized models,
we first evaluated the mean absolute error and Pearson correlation of a pixel’s NBE time
series (relative to the optimal predictions rather than to observations, so that errors are
attributable only to parametric and not structural uncertainties). We also performed time
series decomposition analyses using moving averages (implemented using Python’s
StatsModels package) to compare the ability of each model to capture features like the
interannual variability, trend, and seasonal cycle of NBE. We then investigated several
potential controls on the models’ NBE error distributions across space using measures of
variance explained (i.e., coefficient of determination in a regression framework). These
controls included parameter prediction accuracy (for the EF-based model), as well as the
uncertainty of CARDAMOM’s retrievals. For this analysis, we decomposed NBE into its
component fluxes to understand the frequency and mode of interacting errors (i.e., whether
errors in component flux predictions tend to compound or compensate in yielding the net
flux, NBE). Note that NBE in DALEC and other ecosystem models is determined by
calculating the difference between Reco (carbon release through both autotrophic and
heterotrophic respiration) and GPP (carbon uptake by plants), along with the potential flux

of carbon to the atmosphere resulting from fires.
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4. RESULTS

4.1. Skill of EF-based parameter prediction

We observed significant variability in the ability of EF to predict CARDAMOM’s optimal
model parameters. Across all parameters, the average percent RMSE for EF predictions
(relative to the optimal parameter retrievals) is 44% with a standard deviation of 33%
(average R>=0.41 4 0.18). This relatively high average error is largely driven by parameters
describing fire and combustion, which, at ~84%, are nearly twice as poorly predicted as any
other parameter (Fig. 3a). These error-prone parameters include combustion fractions for
DALEC’s different carbon pools, which the model couples with observations of burned area
to predict total fire carbon emissions (Quetin et al., 2020). By contrast, parameters related to
phenology (e.g., leaf lifespan), canopy structure (e.g., leaf carbon mass per area) and canopy
function (e.g., canopy efficiency, a proxy for nitrogen use efficiency) are the most
predictable, with errors on the order of 20%. Parameters describing soil respiration, carbon
allocation, water cycling, and turnover are predicted with intermediate skill (i.e., in the range
of 30-50%). These patterns across parameters and parameter groups reflect the differential
descriptiveness of available environmental covariates used as predictors in the random forest
framework (Sec. 3.3). Still, only a minority of parameters are predicted with R? > 0.5 (Fig.
3b), which is consistent with prior EF studies. Verheijen et al. (2013) achieved an average
adjusted R? of 0.40 for bottom-up predictions of specific leaf area (SLA), Vemax, and the
maximum electron transport rate (Jmax) across 8 vegetation types, while Butler et al. (2017)
found an average pseudo-R? of 0.34 when predicting SLA, leaf nitrogen concentration, and

leaf phosphorus concentration with 9 increasingly complex predictive models. Taken
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4.2.

together, these results demonstrate that EF-based parameter errors can remain stubbornly

large despite comprehensive training information and a nonlinear predictive scheme.

Effects of EF-based and PFT-based parameterization assumptions on NBE performance

On average, the EF-based assumptions yield comparable modeled NBE performance to the
PFT-based assumptions, based on mean absolute error (MAE) relative to a given pixel’s
optimal predictions across the entire time series (Fig. 4). The global average NBE MAE is
0.42 + 0.34 gC m™ day! for the EF-based model and 0.39 + 0.28 gC m™ day™! for the PFT-
based model. The two approaches produce some similar error hotspots, such as in Northeast
China and parts of the eastern United States (Fig. 4a-b). Indeed, NBE errors tend to scale
with gradients of climate and vegetation (Fig. S3). Specifically, higher errors are observed
in warmer, wetter places, and errors increase as the variability in month-to-month
temperature and radiation declines. Ecosystems with denser vegetation (e.g., greater average
LAI and ABGB) are also more error prone. These patterns align with the error hotspots
observed across tropical Africa, for instance (Fig. 4a-b). Overall, using the MAE metric, the
EF-based model can match or outperform the PFT-based model at 55% of pixels, while it
produces strictly less accurate NBE predictions at 45% of pixels (Fig. 4c-d). This behavior
1s mirrored when considering the Pearson correlation between a given EF-based or PFT-
based monthly NBE time series and the optimal estimate; in that case, the EF-based model
produces comparable or superior predictions at 63% of pixels and poorer estimates at 37%
of pixels (Fig. S4). That is, for any given vegetated pixel and across multiple metrics, NBE
simulated using an EF-based approach is likely to capture the optimally parameterized NBE

fluxes just as well as—if not better than—that simulated using a PFT-based approach.
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To better understand the nature of each model’s performance, we decomposed the NBE
time series at each pixel, isolating its overall mean, interannual variability, and de-trended
seasonal cycle. First, by comparing the “position” (i.e., nearest percentile) of an EF-based or
PFT-based mean NBE estimate within that pixel’s optimal mean NBE ensemble, we found
that both the EF-based model and PFT-based model are likely to accurately capture the mean
across the time series. While any given EF-based or PFT-based mean NBE estimate often
aligns with the center of the optimal ensemble, indicating high accuracy, the EF-based
approach is more likely to underestimate mean NBE (Fig. 5a, greater density below x = 50).
The PFT-based model also approximates the interannual variability of NBE—calculated as
the standard deviation of the annually averaged fluxes—more closely than the EF-based
model, which is slightly too variable from year to year (Fig. 5b).

Both the EF-based and PFT-based models capture annual average NBE moderately well
(Fig. 5¢), and the seasonal cycle almost perfectly (Fig. 5d). To see this, we computed the
Pearson correlation between a given pixel’s annually averaged optimal NBE or de-trended
seasonal cycle and its EF-based or PFT-based counterpart. We find that there are pixels for
which both EF-based and PFT-based NBE annual averages negatively correlate with those
from the optimal model (bottom left quadrant in Fig. 5c); many such pixels align spatially
with the models’ MAE hotspots (Fig. S5). However, the opposite is far more likely.
Generally, both the EF-based and PFT-based estimates of annually averaged NBE correlate
positively with the optimal one (greater density of points in top right quadrant than in all
other quadrants in Fig. 5¢). Additionally, both model variants nearly always capture the
optimal model’s seasonal cycle correctly (very high point density in top right quadrant of

Fig. 5d; shown across space in Fig. S6).
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4.3  Controls on EF-based and PFT-based model errors

Although the EF-based model shows comparable or better performance than the PFT-based
model across several dimensions, the relative skill of the two models shows significant
spatial variability, the driving factors of which are not clear. That is, Fig. 4d begs the
question: what factors determine variations in the EF-based and PFT-based models’ relative
performance, particularly across space? Understanding where—and why—the EF-based
model falters in predicting NBE can help to inform future iterations of the approach.

To do so, we tested two (potentially overlapping) hypotheses as possible controls on the
models’ variable performance across different pixels. These hypotheses involve (a) how
precisely the EF-based model’s parameter predictions match the “truth” (i.e., the optimal
parameters) at a given location, and (b) how uncertain CARDAMOM’s optimal retrievals
themselves are. For this analysis, we expanded our lens to also consider the predictability of
NBE’s component fluxes, which critically influence the dynamics of the net flux. We focused
on GPP and Rec, fluxes, given that errors in predicting fluxes from fires are far smaller in
magnitude (Fig. S7).

First, it seems feasible that the more a given EF-based parameter set differs from the
“true” values, the less accurate any of its resulting model predictions will be. Contrary to this
hypothesis, though, we find no direct relationship between the EF model’s GPP, Reco, or NBE
performance and the average precision of a given EF-based parameter set (relative to the
corresponding optimal parameter set), suggesting that individual parameter accuracy is a
necessary but insufficient control on its performance. Indeed, a multiple linear regression

with access only to information on the quality of the EF-based prediction for each parameter
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across pixels explains at most 7% of the variance in the EF-based model’s GPP, Reco, and
NBE errors (coefficient of determination, R?) (Fig. 6). Here, quality is measured through the
“position”, or closest percentile, of an EF-based parameter prediction within the
corresponding optimal posterior distribution, where proximity to the median indicates high
accuracy—a measure chosen to normalize parameter error across different pixels even as the
true parameter value varies.

Second, how strongly are model errors dictated by uncertainty in CARDAMOM’s
optimal retrievals? That is, because CARDAMOM has its own limitations in determining the
“true” NBE (e.g., the availability and accuracy of data constraints used in the optimization
can vary across space, and flows of carbon may be inherently less predictable at some pixels
than others), our assessment of the alternatively parameterized models’ predictions may
reflect this uncertainty.

For GPP and Rec, fluxes, both the EF-based and PFT-based models perform more poorly
when CARDAMOM’s optimal retrievals are less strongly constrained and more uncertain
(i.e., when the ensemble of optimal flux predictions is wider). The mean interquartile range
(IQR; 25"-75™ percentile) of CARDAMOM s optimal GPP ensembles across pixels explains
45% of the variance in the EF-based model’s GPP errors and 64% of that in the PFT-based
model’s GPP errors (Fig. 7a). Similarly, CARDAMOM’s Reco IQR explains 41% of the
variance in the EF-based model’s Reco errors and 60% of that in the PFT-based model’s Reco
errors (Fig. 7b). Importantly, neither model appears significantly more sensitive than the
other to CARDAMOM’s IQR; for each flux, the slopes of the two regression lines are
statistically indistinguishable (Fisher’s z-test; p < 0.01). This indicates that our interpretation

of model errors is not biased by the relationship between model performance and
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CARDAMOM uncertainty. In effect, some pixels with large errors for GPP (or Reco) may
simply be those where the optimal GPP (Reco) is so uncertain that mismatches between the
EF-based or PFT-based GPP (Reco) prediction and the GPP (Reco) considered optimal are as
much due to uncertainty in the latter as due to imperfect parameterization in the former.

When considering NBE, however, this relationship weakens markedly, with
CARDAMOM’s NBE IQR explaining only 21% and 34% of the EF-based model’s and PFT-
based model’s NBE MAE variance, respectively (Fig. 7c). The discrepancy between the
predictability of component versus net fluxes in the two models suggests the occurrence of
significant compensating errors (Fig. 8). GPP and Reco errors are generally larger in
magnitude than NBE errors for both models (Fig. 8a), suggesting a greater absolute mismatch
between component flux predictions than net flux predictions across approaches (Fig. 8b).
On one hand, this is not unexpected given the relative sizes of the fluxes themselves.
However, the skill of the EF-based model relative to the PFT-based model also declines when
considering component fluxes (Fig. 8c). That is, while the EF-based model matches or
outperforms the PFT-based model when predicting NBE at 55% of vegetated pixels, it does
so at only 49% when predicting either GPP or Reco—no longer a majority of pixels.

Taken together, these findings indicate a persistent error compensation effect, whereby
larger errors in component flux predictions tend to “cancel out” to yield comparatively
smaller errors in NBE (Fig. 8d). This effect is far more prevalent than the converse, whereby
smaller errors in GPP and Reco can compound to yield larger NBE errors. This suggests that
the spatial pattern of NBE errors is strongly influenced by the frequency and degree of
compensation between component fluxes. Critically, though, this behavior appears to impact

the relative skill of EF-based and PFT-based predictions slightly differently. Indeed, the
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fraction of pixels showing equivalent or superior performance shrinks for the former model

when considering net versus component fluxes, and grows for the latter model (Fig. 8c).

5. DISCUSSION

5.1. Implications for TBMs

The top-down EF-based hypotheses implemented here yielded NBE errors that matched or
outperformed those from traditional PFTs at a sizable fraction of pixels (55%; Fig. 4d),
suggesting that the introduction of more realistic trait variability in large-scale TBMs can
help to improve predictions of its future behavior, as previously hypothesized (Scheiter et
al., 2013, van Bodegom et al., 2014, Matheny et al., 2017; Xu & Trugman, 2021). Overall,
our findings support the growing paradigm shift away from the representation of static PFTs
and towards the incorporation of realistic trait variability into large-scale TBMs (van
Bodegom et al., 2014; Bloom et al., 2016, Berzaghi et al., 2020, C. G. Jung & Hararuk,
2022; Y. Liu et al., 2022). EF-based hypotheses represent one promising and flexible
approach for doing so, although they are not a panacea—PFT-based assumptions are still
superior at nearly half of vegetated pixels in our analysis (45%; Fig. 4d). Although the
drawbacks of PFTs are well-known, they are relatively easy to implement and have been
used with reasonable success in TBMs for decades.

The close performance we observed between models nevertheless suggests that EF-based
assumptions merit further investigation, particularly because implementing an EF-based
parameterization in a TBM would require solving several open questions. These include
whether and to what degree trait covariations (e.g., Peaucelle et al., 2019) should be
explicitly preserved; whether different traits should be predicted based on fully independent

filters; how complex or parsimonious EF regression models themselves should be; which
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environmental covariates are most relevant for predicting which traits; whether EF
relationships should be included even if they contain little theoretical support; whether all
traits benefit from EF-based assumptions or if a hybrid, super-predictive EF- and PFT-based
approach can improve simulations; and so on. An additional consideration involves the
mathematical interpretability and/or generality of EF relationships (Kyker-Snowman et al.,
2022), which depends on the specific predictive framework selected for analysis (i.e., a
machine learning-based approach is less interpretable than a simple linear regression). It is
also not clear whether EF relationships developed offline can be used directly in different
TBMs with unique structures and dependencies, or whether the parameters of the EF
relationships themselves would need local tuning for each specific TBM to avoid

compensating errors (Koster et al., 2009; J-F Exbrayat et al., 2013).

Model performance

Unlike previous (bottom-up) implementations of EF, which focused on only a select few
measurable traits and still maintained a generalized PFT paradigm (Verheijen et al., 2013,
2015, Butler et al., 2017), our satellite-based machine learning approach predicts every one
of DALEC’s dozens of parameters independently and simultaneously. This is an extreme
case in the context of large-scale TBMs, for which a step-by-step implementation may be
more realistic. Indeed, it is possible that our efforts—which served as a “stress test” to
understand the integrated feasibility of the EF approach—may overestimate the appropriate
levels of complexity and nonlinearity required for optimal EF predictions. For example,
while any potential errors stemming from inaccuracies in the EF-based parameter predictions

(Fig. 3) were not substantial enough to consistently limit the skill of the EF-based model
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below that of the PFT-based one when predicting NBE, these inaccuracies indicate
significant room for improvement regarding the characterization and predictability of
environmental controls on parameter variability. Indeed, model parsimony (Famiglietti et
al., 2021) should remain an important consideration in EF contexts, given that compensating
errors can occur not only between component fluxes (Fig. 8) but also between parameters
themselves (Wu et al., 2019) and/or between different modeled environmental feedbacks
(Huntzinger et al., 2017).

Still, the retention of skill at the flux level by the EF-based model (Figs. 4-5) despite its
parameter errors is especially notable given that the simulation of PFTs implemented here is
relatively generous. For example, our PFT-based parameterization relies on pixel
homogeneity rather than ground data availability for the fundamental representativeness
assumption (Sec. 3.4). It also includes arguably more degrees of freedom than what may be
observed in a typical TBM; that is, the total number of “representative pixels” used in the
aggregation includes a relatively broad sample of locations within each PFT, although the
total number of PFTs considered here (n = 9) aligns reasonably well with current approaches

(Bastrikov et al., 2018, Harper et al., 2018; Reick et al., 2021).

Spatial error distributions & component flux compensation

We found a strong relationship between CARDAMOM’s ensemble range (i.e., uncertainty)
and the predictive skill of both alternatively parameterized models (Fig. 7). On one hand,
this demonstrates consistency between modeling approaches; places where even an
optimally parameterized model is under-constrained are also those where the EF-based and
PFT-based models perform poorly. This helps to explain why both alternatively

parameterized models share error hotspots (Fig. 4a-b). Notably, though, it also indicates the
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sensitivity of the EF-based approach to training data quality and that of the PFT-based
approach to assumed representative parameters.

In our study, both such factors are a direct function of the uncertainty of observational
constraints used in the optimization, many of which are necessarily broad and uniform across
space (Table 1). Additional attention and improvements to direct constraints on modeled
GPP and Reco performance, for instance, may be needed to ensure that changes to a given
model’s underlying parameterization indeed map to improvements in NBE. However,
directly constraining Reco requires information on its own component parts (autotrophic and
heterotrophic respiration fluxes, R. and Rp). Such data are particularly challenging to
assemble across large scales due to their sparsity (Bond-Lamberty, 2018). Accordingly,
neither R, nor Ry was directly constrained in the optimization approach used here. More
broadly, for bottom-up studies (or traditional PFTs), this relationship relies on the accuracy,
representativeness, and coverage of in situ trait measurements (e.g., Sandel et al., 2015;
Kattge et al., 2020). Overall, alternative model parameterization approaches would benefit
significantly from targeted increases in observational data that can be used for training.

Still, the frequency of error compensation between GPP and Reco fluxes in our models—
as also observed more broadly by Caen et al. (2021) in the JULES and INLAND land surface
models—indicates that improvements in parameter realism also have the potential to yield
unintended consequences, such that increases in the predictability of net fluxes are not
guaranteed. Indeed, the role of error interactions appeared as strong or stronger than other
potential controls on NBE performance, including parameter precision (Figs. 6-7). In
particular, the performances of both the EF-based and PFT-based model were influenced by

error compensation in our study (Fig. 8) despite the greater realism of the former’s
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parameterization. Thus, neither model’s NBE performance can be interpreted independently
from compensation (Fig. 4d). Accordingly, a focus on validating gross rather than net fluxes
and on simultaneous testing with multiple independent observational datasets of different
fluxes and pools (with well-defined uncertainties) is recommended when implementing

novel EF-based assumptions in TBMs to reduce the effects of possible error compensation.

Remaining uncertainties & limitations

Fire- and combustion-related parameters and processes were particularly poorly
characterized in our study (Fig. 3), despite the inclusion of data describing burned area
(average and variability) within the feature space. Given the critical importance of fire in
explaining the evolution and trajectory of the land carbon sink (Jean-Frangois Exbrayat et
al., 2018; Yin et al., 2020), we expect the accuracy of long-term EF-based NBE forecasts to
increase with an improved representation of fire-related processes. This need dovetails with
recent efforts to generate fine-resolution maps of variables describing fire risk and
vulnerability (e.g., Forzieri et al., 2021), for example, which could be sourced as additional
environmental covariates in future implementations of EF-based assumptions.

An additional uncertainty relates to the fact that several of DALEC’s parameters are
biophysically inter-related (e.g., leaf lifespan and leaf mass per area; Wright et al., 2004) and
thus co-vary, potentially indicating limitations of our EF-based approach to predict each
parameter independently. Here, we derived a unique trait-environment relationship for each
model parameter using a random forest regression (Sec. 3.3). This means that a true
biophysical inter-relationship between parameters could theoretically be violated when EF

schemes are fitted independently, leaving one parameter estimate incongruent with another.
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Accordingly, future studies should consider a multi-dimensional predictive framework,
wherein dependencies between parameters are inherently preserved, or an alternative
approach to maintaining covariation between parameters (Peaucelle et al., 2019).

Finally, despite our efforts to robustly assign initial conditions consistent with each EF-
based or PFT-based parameter set, our implementation still has limitations. Given that small
disparities in initial states (that is, carbon pool sizes) can produce significantly different
trajectories (Hawkins & Sutton, 2009, Bonan & Doney, 2018), it is possible that remaining
initial condition uncertainty—perhaps along with the influence of other poorly determined
parameters—may partially explain the sometimes divergent relationships we observed
between the alternative models’ and optimal model’s annual average NBE (Figs. 5¢ and S5a-
b). Such uncertainties, however, are also far from resolved in large-scale TBMs (Hurtt et al.,
2010; Thurner et al., 2014), where initial conditions are generally calculated based on
spinning up the model to steady state, even though this assumption is likely unrealistic

(Sierra et al., 2017).

6. CONCLUSIONS

Overall, the top-down EF relationships and corresponding parameter predictions shown here
represent a significant step forward in the characterization of trait-environment associations
independent of in situ measurement availability. The results of this study highlight the
potential for EF approaches to reduce NBE prediction errors and may inform efforts to
incorporate increasingly diverse parameter representations into next-generation TBMs and
future iterations of widely used multi-model ensembles. Expansions in the quantity and

quality of Earth observation data from satellite remote sensing (Schimel et al., 2019),
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624 advancements in the development of explainable/interpretable physics-based machine

625 learning techniques for Earth system science (Reichstein et al., 2019), and increases in
626 computational resource efficiency (Gupta et al., 2021) may work in tandem to foster this
627 transition.
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Table 1: Observation-based datasets assimilated into CARDAMOM. Adapted from Quetin et al. (in
revision).

Observation Source Years Uncertainty Reference

Optimized (prior

CMS-Flux | 2010-2015 | range =0.001-2 | Liwetal, 2017,

Net biome exchange

(NBE) oC m? day"!) 2021

Leaf area index (LAI) MODIS 2010-2015 | £log(1.2) Mpyneni et al., 2002
Solar-induced Frankenberg et al.,
fluorescence (SIF) GOSAT 2010-2015 | +log(2) 2011

Above- and below-ground . .

biomass (ABGB) Multiple 2000 >+log(1.5) Saatchi et al., 2011
Soil organic matter (SOM) | SoilGrids 2000 +log(1.5) Poggio et al., 2021

Bowman et al.,
Fire C emissions MOPITT 2010-2015 | £20% 2017;
Worden et al., 2017




Table 2: Environmental covariates used as features in the predictive EF model framework. For

relevant time-varying covariates, the mean and standard deviation are computed over the analysis
period (2000-2015).

Environmental covariate Source
Climate | Minimum temperature (mean, std. dev.) CRUNCEP
Maximum temperature (mean, std. dev.) CRUNCEP
Shortwave radiation (mean, std. dev.) CRUNCEP
Vapor pressure deficit (VPD) (mean, std. dev.) | CRUNCEP
Precipitation (mean, std. dev.) CRUNCEP
Burned area (mean, std. dev.) CRUNCEP
Aridity index Trabucco & Zomer, 2019
Vegetation & soil | LAl (mean, std. dev.) MODIS
ABGB (mean) Saatchi et al., 2011
SOM (mean) SoilGrids
Soil water holding capacity SoilGrids
Soil pH SoilGrids
Soil clay fraction SoilGrids
Soil bulk density SoilGrids
Depth to bedrock SoilGrids
Canopy height IceSat (Simard et al., 2011)
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FIGURE CAPTIONS

Figure 1: Schematic diagrams of the (a) EF-based and (b) PFT-based parameterization approaches
within CARDAMOM.

Figure 2: Example NBE time series (2000-2015) for one pixel (latitude = 54, longitude = -10),
including the optimally parameterized model estimate with 25%-75" percentile range (green), the PFT-
based model estimate (orange), and the EF-based model estimate (blue). Here, the mean absolute error
(MAE) for the PFT-based model is 0.69 gC m? day’!, while that for the EF-based model is 0.36 gC m-
2 day™.

Figure 3: (a) Errors (calculated as normalized RMSE) and (b) R? values for EF parameter predictions
relative to optimal parameters. Individual DALEC parameters (gray circles) are organized into broad
functional groups (x-axis bins), with each group’s mean shown as a black diamond (error bar indicating
standard deviation).

Figure 4: Maps comparing NBE performance of the PFT-based and EF-based models. (a) Mean
absolute error (MAE) for NBE predictions from the PFT-based model; (b) MAE for NBE predictions
from the EF-based model; (c) difference between (a) and (b); (d) best-performing model at each pixel,
based on lowest MAE. Dark gray pixels in (d) represent cases in which NBEprr MAE and NBEgr MAE
are within 5% of each other. Light gray pixels are excluded from analysis either due to the ensemble
range filter (Sec. 3.2), land cover filter (Sec. 3.6) or unavailability of NBE data.

Figure 5: Results from time series decomposition analysis. (a) Distributions of the location of each
pixel’s PFT-based and EF-based mean NBE within the corresponding optimal NBE ensemble. A value
of 50 indicates that the PFT-based or EF-based mean NBE estimate aligns with the median of the
optimal ensemble and is considered the most accurate outcome. (b) Distributions of NBE IAV for the
PFT-based, EF-based, and optimally parameterized model. (c) Heatmap comparing Pearson
correlations between annually averaged NBE from the optimally parameterized model and annually
averaged NBE from the PFT-based model (x-axis) with correlations between annually averaged NBE
from the optimally parameterized model and annually averaged NBE from the EF-based model (y-
axis). Points lying in the upper right-hand corner (first quadrant) have PFT-based and EF-based NBE
annual averages that are both strongly correlated with those from the optimal model. (d) Heatmap
comparing correlations between the de-trended NBE seasonal cycle from the optimally parameterized
model and that from the PFT-based model (x-axis) with correlations between the de-trended NBE
seasonal cycle from the optimally parameterized model and that from the EF-based model (y-axis). For
subplots (¢) and (d), coloration of grid cells corresponds to relative point density.

Figure 6: Role of parameter precision in controlling MAE. (a) Observed GPP MAE (resulting from EF
versus optimal comparison) versus predicted MAE (resulting from multiple linear regression with
information on EF parameter precision). (b) Same, but for Rec. (c) Same, but for NBE. R? is the
coefficient of determination. The thin black line denotes a 1:1 relationship.

Figure 7: Role of CARDAMOM’s uncertainty in controlling MAE. (a) CARDAMOM’s GPP ensemble
interquartile range (IQR) versus predicted GPP MAE for both the EF-based (blue) and PFT-based
(orange) models. (b) Same, but for Re.,. (c) Same, but for NBE. In each subplot, regression lines are
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plotted in blue and orange (m represents the slope of each line; R? is the coefficient of determination).
The thin black line denotes a 1:1 relationship.

Figure 8: Component flux prediction skill and error compensation. (a) Boxplots comparing the EF-
based and PFT-based models’ MAE across fluxes. (b) Distributions of the difference in MAE between
PFT-based and EF-based predictions for GPP, R..,, and NBE. (c) Bar charts showing the percentage of
vegetated pixels for which each model’s predictions were more accurate (lower MAE). (d) Bar chart
showing the percentage of vegetated pixels for which errors between component fluxes either
compound or compensate to yield NBE errors.
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