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Abstract
Accurate representation of pore space is essential for predicting fluid flow through sub-
surface porous media. Pore volume fraction, geometry, and topology determine transport 
characteristics at the pore scale and are used to make upscaled projections about reservoir 
behavior. X-ray computed tomography (XCT) allows for nondestructive 3D imaging of 
rock core samples and can therefore provide valuable information about the pore network 
in  situ, but segmentation of XCT datasets into pore and mineral space is not trivial. In 
this study, three filters (contrast enhancement, noise reduction, and beam hardening correc-
tion) were applied to XCT datasets of rock core samples prior to training class definition 
for machine learning-based segmentation. Porosities derived from segmented datasets with 
and without filtering were compared and were validated with experimental values. XCT-
derived porosity had reduced variance and was closer to experimental data when all three 
filters were applied. A case study of one rock core sample compared pore size distribution 
and simulated permeability to experimental data. Computational fluid dynamics simula-
tions of flow through the pore network using OpenFOAM showed improved consistency 
in permeability values when all three filters had been applied. This suggests that the appli-
cation of these filters prior to machine learning training class definition can improve the 
reproducibility of the segmentation results and reduce user bias, thereby increasing confi-
dence in digitally derived rock parameters. Reliable initial porosity and permeability data 
are critical for improving fluid transport and fate projections in a broad range of subsurface 
systems.

Article Highlights  .

•	 Filtered datasets were less affected by user bias in definition of training classes
•	 Image filtering before segmentation improved consistency of simulated permeabil-

ity
•	 Image filtering improved reproducibility of digitally derived rock parameters
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1  Introduction

Reliable prediction of fluid flow through the subsurface is essential for numerous appli-
cations including subsurface energy technologies such as geothermal energy production, 
enhanced oil recovery, and geologic carbon sequestration. In systems where percolation 
through porous media dominates transport, core sample porosity is a primary character-
istic that is used to predict upscaled reservoir parameters including permeability and flow 
dynamics and is a starting point for forecasting changes in formation behavior over time 
(Hommel et al. 2018; Ma 2015; Mostaghimi et al. 2013). Consistent, accurate determina-
tion of core porosity is therefore an imperative first step in modeling fluid transport in these 
systems.

X-ray computed tomography (XCT) allows nondestructive 3D imaging of rock material, 
making it an exceedingly useful tool for visualizing pore structures in situ. XCT imagery 
can provide geometric and topological information about the pore space that is crucial 
to predicting flow behavior in porous media, like pore throat size and pore connectivity 
(Bazaikin et al. 2017; Lindquist et al. 2000). The rise in availability of bench-scale XCT 
instruments has led to great advances in 3D characterization of geomaterials (Wildenschild 
and Sheppard 2013). Yet, reliable segmentation of XCT datasets into pore- and non-pore 
voxels, or individual mineral species, remains challenging. Traditional thresholding-based 
approaches to segmentation (e.g., global thresholding, watershed, and hysteresis) are sen-
sitive to user bias (Iassonov et al. 2009). Ample research into the efficacy of various seg-
mentation methods suggests that the optimal segmentation technique would minimize user 
supervision to reduce the influence of user subjectivity (Deng et al. 2016; Iassonov et al. 
2009; Leu et  al. 2014; Pini and Madonna 2016). Machine learning has therefore gained 
popularity as a method for XCT segmentation and analysis.

Trainable Weka Segmentation (TWS) is an open-source machine learning tool devel-
oped for Fiji (Schindelin et al. 2012) that leverages multiple image parameters to segment 
a dataset based on user-defined training classes (Arganda-Carreras et al. 2017). Originally 
developed for biological sciences research, TWS is also very useful in geoscience applica-
tions because it can segment large 3D datasets efficiently and with reduced user oversight. 
It has been used, for example, for classification of wetting phases in XCT scans of saturated 
reservoir rock (Alhammadi et al. 2018), as well as for in situ contact angle and fluid–fluid 
interfacial angle measurements (Garfi et  al. 2020). Others have used TWS to determine 
crystal size distribution from scanning electron microscope (SEM) images of volcanic rock 
(Lormand et al. 2018).

Machine learning reduces subjectivity but does not completely eliminate user bias from 
the segmentation process; a classified dataset is only as good as its training data. Seg-
mentation of the same core with different input training data can result in variable overall 
porosity estimates. Prior work suggests that other downstream parameters, including per-
meability, are even more sensitive than porosity to differences in the initial binary seg-
mentation (Leu et al. 2014). It is therefore critical to improve the reproducibility of initial 
segmentation in order to make meaningful predictions of flow and transport through a rock 
system from XCT sample data.
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Image filtering of XCT datasets can reduce the impact of scan artifacts on the segmenta-
tion process. Binary classification of the XCT dataset into pore space and non-pore space 
is complicated by the presence of sub-voxel-sized features. This results in partial volume 
effects: middling grayscale values in voxels that contain both pore and rock material (e.g., 
at pore boundaries), and interpretation of these poorly defined edges can be highly subjec-
tive. Noise from a number of sources (the X-ray source, the detector, the sample holder, 
etc.) is inherent to XCT image collection (Leu et  al. 2014). High noise levels can cause 
misclassification, particularly if global thresholding is used for segmentation and image 
contrast is low. Filters attempt to correct for these factors in order to improve image quality 
and simplify the segmentation process.

Prior works have analyzed the impact of image enhancement protocols on digital rock 
properties. Müter et  al. (2012) found that segmentation using Otsu thresholding was 
improved by the application of edge-enhancing and noise-reducing filters, especially at 
high levels of Gaussian blurring. Sell et  al. (2016) tested numerous noise reduction and 
edge detection filters and found that gas hydrate saturation levels calculated from CT 
imagery were significantly impacted by the image enhancement protocols prior to seg-
mentation by combined watershed and region growing techniques. Shulakova et al. (2013) 
compared signal-to-noise ratios after application of various noise suppression filters and 
found that an edge-preserving filter optimized noise reduction while maintaining important 
feature boundaries.

In this study, a dual filter approach was employed to address these CT imaging artifacts, 
coupling contrast enhancement and noise reduction filters. Prior work suggests that dual 
filtering can improve segmentation results in rocks with complex pore networks and feature 
sizes near voxel resolution and that applying a noise reduction filter without first applying 
a contrast enhancement filter leads to erasure of small features (Müter et al. 2012). Here, 
an unsharp mask was used to enhance contrast at pore-rock boundaries, followed by an 
edge-preserving bilateral filter to reduce blur and noise (Ushizima et al. 2011). Anisotropic 
diffusion and median filtering were also considered as noise reduction filter options, but 
both can suffer instability and inefficiency because they solve partial differential equations 
iteratively. Bilateral filtering uses range and domain filtering and is therefore a preferred 
method for large datasets (Tomasi and Manduchi 1998). In a comparative study using 
images with a resolution of less than 5 μm, a bilateral filter outperformed a median filter 
(med3) when Gaussian noise had low variance (σ < 75), and at three times the speed (Ushi-
zima et al. 2011). Because of the low Gaussian noise variance and large size of the XCT 
dataset used in this study, a bilateral filter was selected.

Beam hardening is another inherent artifact of bench-scale XCT imaging. Bench-scale 
XCT instruments use a polychromatic beam of X-rays, and the beam’s lower frequencies 
are preferentially attenuated as it passes through the sample material. The result is a rela-
tively high-frequency, high-energy (hardened) beam. A beam passing through the center 
of a sample (i.e., a greater amount of material in a cylindrical sample) has hardened by the 
time it passes through the bulk of the material, reducing the effective attenuation coefficient 
of the center material compared to that of the edges. Upon reconstruction, this manifests 
as brightening near the edges of the sample. The segmented dataset then shows artificial 
radial variation in local porosity. Reconstruction XCT software can reduce beam harden-
ing, but programs often over- or under-correct. Synchrotron XCT instruments, which use 
a monochromatic beam, do not produce this artifact (Wildenschild and Sheppard 2013). 
But because synchrotron facilities are not widely available, beam hardening correction is 
important for most XCT users. Khan et al. (2015) developed an algorithm specifically for 
cylindrical rock cores that fits a 2D quadratic polynomial for removal of beam hardening 
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artifacts in classically filtered back-production reconstructed slices. Their code was adapted 
for the scans used in this study.

The purpose of this study is to introduce and assess a pre-segmentation image filtering 
workflow to improve the reproducibility of the TWS output and therefore the confidence 
in rock behavior predictions based on XCT data. To evaluate the effectiveness of the pro-
posed workflow, XCT scans of three rock core samples were examined. Porosities were 
computed from the dataset after various filter combinations were applied, and those values 
were compared to experimental measurements. Further investigation into additional rock 
parameters—pore size distribution and permeability—was performed in a case study of 
one rock core scan. From the segmented dataset, a computational mesh of the pore space 
was generated, and flow was simulated using OpenFOAM to estimate permeability (Open-
FOAM 2019). Digitally derived values were validated using an experimental flow-through 
permeability test. The results of this study support the hypothesis that the application of 
these three filters prior to the definition of training sets for TWS results in improved output 
consistency.

2 � Methods

2.1 � Laboratory Methods

This study analyzed three core samples of 5.1 cm length × 2.5 cm diameter, all purchased 
from Kocurek Industries. The cores included: Indiana Limestone, a carbonate from the 
Mississippian period; Edwards Limestone, a more heterogeneous carbonate from the 
Lower Cretaceous; and Upper Devonian Berea Sandstone. Kocurek provided expected 
mineral characteristics for the samples based on analysis of other cores in their inventory 
(Table 1).

An XCT scan of each core was taken in the Computed Tomography in Earth and Envi-
ronmental Sciences (CTEES) facility at the University of Michigan, using a Nikon XT H 
225 ST industrial CT scanner. The voxel resolution of each scan was 28 μm; additional 
scan parameters are included in the Supplementary Information. The XCT dataset was 
reconstructed using Nikon CT Pro 3D software, and the built-in beam hardening correction 
was applied.

Mercury intrusion porosimetry (MIP) was used to determine porosity and pore size dis-
tribution experimentally. MIP was performed on material of the same type and from the 
same supplier using a Micromeritics AutoPore V in the Biointerfaces Institute at the Uni-
versity of Michigan. Two to three intact cubes of rock material, each roughly 1 cm3, were 
inserted into the penetrometer bulb. The total sample mass was 3.102  g, 3.2441  g, and 

Table 1   Expected rock properties provided by sample supplier

Sample Expected porosity 
(%)

Expected permeabil-
ity (mD)

Mineral content

Indiana limestone 14–18 16–20 97% Calcite, 3% Montmorillonite
Edwards limestone 33–35 65–85 100% Calcite
Berea sandstone 20–22 370–400 91% Quartz, 9% Kaolinite
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1.8954 g for Indiana Limestone, Edwards Limestone, and Berea Sandstone, respectively. 
The porosimeter took measurements at 50 different target pressures ranging from 3400 Pa 
to 4.2 × 108 Pa. Volume distribution results were compared to digital results.

Core permeability for the Indiana Limestone sample was determined experimentally 
using a high-pressure flow-through apparatus. Water maintained a confining pressure of 
13.8  MPa around the core at ambient temperature. Deionized water flowed through the 
core at a constant flow rate of 1 mL/min. Upstream and downstream pressure transducers 
continuously monitored fluid pressure upstream and downstream of the core. Permeability 
was calculated based on this pressure differential using Darcy’s Law.

2.2 � Image Preparation, Filtering, and Segmentation

Each CT dataset was first prepared for filtering. All steps of initial image preparation were 
performed using Fiji, an install of ImageJ bundled with many image processing plugins 
(Schindelin et al. 2012). The incomplete image slices at the very ends of the cores were 
cropped out of the dataset, resulting in a 1050-slice TIFF stack with 1000 × 1000 pixels 
per slice. The Analyze Particles function generated a silhouette mask of the core for each 
image slice. When this mask was multiplied by the original dataset and the threshold was 
adjusted, the background voxels all assumed a grayscale value of 0. This allowed analysis 
of the core in isolation from background interference.

Following initial image preparation, eight different combinations of filters were applied 
to the dataset prior to training class definition in order to assess their influence on the 
variability of segmentation results. The combinations tested are listed in Table 2 and are 
described in more detail below. For each filter combination, eight repetitions of training set 
definition and TWS classification were performed.

Unsharp mask filter: An unsharp mask with a Gaussian blur radius (σ) of 5 pixels and 
a mask weight of 0.4 was subtracted from the original image in order to enhance feature 
edges. These values were selected based on the conclusions of Müter et al. (2012), who 
found that segmentation results were optimal at σ values between 3 and 5, and that the 
results were not very sensitive to changes in either input parameter.

Bilateral filter: The algorithm described by Ushizima et al. (2011) was used for param-
eterization of the bilateral filter. This method turns patches of regions of interest (ROI) 
into parameters for the bilateral filter. Ten to fifteen ROIs of known material were defined, 
and Fiji was used to calculate the mean and standard deviation of XCT values within each 

Table 2   Image filter 
combinations applied prior to 
TWS

Task Unsharp 
mask filter 
(Un)

Bilateral 
filter (Bil)

Beam hardening 
correction (BH)

Trainable 
Weka segmen-
tation

1 X
2 X X
3 X X X
4 X X X X
5 X X
6 X X
7 X X X
8 X X X



498	 E. P. Thompson et al.

1 3

ROI. These were input into the Matlab script FindSigmaR (see Supplementary Information 
Sect. 4), which outputted a σr value for the bilateral filter. Here σr represents the range of 
voxel intensities, which is assumed to be equal to the largest intensity variation within any 
ROI. The bilateral filter spatial domain parameter, σd, was assigned a value of 3 (Ushizima 
et al. 2011).

Beam hardening correction: A built-in beam hardening correction was applied dur-
ing reconstruction using Nikon CT Pro 3D, but the output datasets showed beam hard-
ening overcorrection. A Matlab script (see Supplementary Information Sect. 5) adapted 
from Khan et al. (2015) was applied to fit a polynomial function to the XCT dataset and 
remove beam hardening artifacts. Figure 1 demonstrates the improvement: it shows the 
average XCT value at varying radial distances from the center of the core in one image, 
before (red triangles) and after (blue circles) this script was applied. Before the script 
was applied, the image had radially decreasing XCT values: the edge was darker than 
the center of the core. After the script was applied, the values were more uniform. Lin-
ear regressions were fit to the datasets of each to illustrate the differences in slope.

A filtering workflow diagram for the fully filtered (Un + Bil + BH) case, and an image 
showing the effects of these filters, is shown in Fig. 2.

After the beam hardening correction, training sets were defined. Using the freehand 
selection tool in TWS, a user selected three regions in each of pore and rock space and 
added them to the training classes. The user did not select the same pixels each time; 
rather, they identified features (i.e., a single pore, or a single mineral grain) from the 
dataset on a case-by-case basis in order to allow for user bias in feature selection. The 
resulting training classes were approximately 100–200 pixels each. An example demon-
strating the type of training data selected and associated segmentation results is shown 

Fig. 1   Average intensity by radial distance of one XCT image slice, with beam hardening correction done 
by XCT software (red triangles) and correction done by Khan et al. (2015) Matlab code (blue circles). Lin-
ear regressions and their 95% confidence intervals are shown for each dataset
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Fig. 2   Top: Image filtering and segmentation workflow. Completed with manual Fiji functions, Fiji filters, 
and Matlab scripts (see Supplementary Information for code). Bottom: A series of images showing the 
effects of each filter on a small section of the CT dataset

Fig. 3   An example illustrating different segmentation results (d and e) based on different sample training 
sets (a and b). The red and green regions are regions that the user defined as pore and mineral, respectively. 
c shows the differences at the pore level in pore size and connectivity, and (f) shows the difference in pore 
pixel assignment of the full image
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in Fig. 3 (note that this example is for illustrative purposes only; training data used for 
the study were selected from different spatial regions across the dataset). These training 
data were used to classify the full image using TWS.

2.3 � Indiana Limestone Pore Size Distribution

Pore volume distributions computed from the segmented Indiana Limestone datasets 
were compared to experimental results. To digitally quantify the pore volume distri-
bution, the methods described in Münch et al. (2006) were used. The Disconnect Par-
ticles plugin was used to disconnect pores at their bottlenecks, with a k value of 0.7. 
This value, k, is a nondimensional parameter between 0 and 1 that defines the allowable 
degree of constriction above which pores are defined as distinct. It is a function of the 
relative radii of the pores and their constriction points, and the value was selected based 
on visual inspection. To measure the volume and radius of each pore in 3D (assuming 
spherical pores), the Particle Size Distribution plugin was used (Münch et al. 2006). A 
substack of the first 200 image slices was used for each iteration to decrease processing 
time.

2.4 � Indiana Limestone Permeability Simulation

From a subsection of the segmented Indiana Limestone dataset, the BoneJ plugin for 
Fiji generated a surface file for the solid (Doube et al. 2010). The boxMesh utility for 
OpenFOAM was used to create a uniform cubic grid cell structure enclosing the sur-
face file domain. The snappyHexMesh mesh generator identified and extracted surface 
features from the surface file, refined the mesh near those features, and then “snapped” 
the mesh to the surface file, thus creating a computational mesh of the negative (pore) 
space for flow simulation. The substack started at the same slice for each iteration, but 
the length of the substack varied from 50 to 500 slices (1.4–14 mm) in order to achieve 
snappyHexMesh breakthrough at a constant box mesh resolution of one grid cell per 
voxel. This mesh resolution was limited by computational processing ability. Steady-
state, nonreactive flow through the mesh was simulated using simpleFoam (OpenFOAM 
2019). Boundary conditions were defined to mimic the laboratory experimental perme-
ability conditions described in Sect.  2.1. No-slip conditions were applied to the four 
side walls and to the grain-fluid interface. Pressure at the outlet was held constant at 

Fig. 4   OpenFOAM permeability simulation setup. a Subsection was taken from binarized segmented data-
set. b Surface file of rock material was generated. c Mesh was generated in OpenFOAM using blockMesh 
and snappyHexMesh. d simpleFoam was run and pressure difference was used to infer permeability. See 
Online Resource 1–3 for animated versions
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atmospheric pressure, and pressure at the inlet was calculated during flow. Water was 
flooded through the domain at a rate of 1  mL/min. Steady-state inlet pressure was 
observed, and permeability was determined using Darcy’s Law. Figure 4 illustrates the 
model setup.

3 � Results and Discussion

3.1 � Overall Porosity

Figure 5 shows overall porosity results for the segmented datasets, grouped by filter combi-
nation. Box plots of the Indiana Limestone, Edwards Limestone, and Berea Sandstone core 
data are shown in purple, yellow, and dark blue, respectively. The median value is illus-
trated with a red line, the boxes represent the 25th–75th percentiles, and whiskers show the 
most extreme values that are not outliers. Outliers are defined here as points that fall more 
than 1.5 interquartile ranges (IQR) outside the box. Additional data from a higher-resolu-
tion scan of Berea Sandstone material (described in more detail below) are shown in light 
blue. Experimental porosity values from MIP are shown with dashed lines.

A few patterns arise that are consistent between the two limestone samples (Indi-
ana Limestone in purple and Edwards Limestone in yellow): the fully filtered 
(Un + Bil + BH) datasets show higher average porosity and reduced variance compared 
to the unfiltered (None) case. The cases closest to experimental values are the (Un + BH) 

Fig. 5   Box-and-whisker plots showing porosity values from segmented datasets processed using various fil-
ter combinations. The red line shows the median, the boxes contain the 25th–75th percentiles, and outliers 
fall more than 1.5 IQR outside the boxes. The dashed lines show experimental porosity determined by MIP. 
Un = unsharp mask, Bil = bilateral filter, and BH = beam hardening correction. n = 8 for each filter combina-
tion
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and (Un + Bil + BH) cases. The similarity between the (Un + BH) and (Un + Bil + BH) 
cases, along with the fact that the bilateral filter alone shows little change from the unfil-
tered dataset data, suggests that the bilateral filter is relatively unimportant for these 
datasets. The bilateral filter is applied to reduce noise; this suggests that noise in these 
datasets contributes less to segmentation output variability than poor edge definition 
and beam hardening artifacts do. These data also suggest that the unsharp mask is par-
ticularly important for narrowing the range of values obtained through segmentation. 
All values, regardless of filter method, are lower than the experimental value found 
using MIP. This is most likely due to the presence of sub-voxel porosity in the relatively 
low-resolution datasets. The digital method is unable to resolve pores smaller than 1 
pixel (28 μm, in this study) in radius. If a particular voxel contains, for example, 40% 
pore space and 60% mineral, it will be classified as mineral. The presence of small pores 
is therefore consistent with an underestimation of bulk porosity.

Initial analysis of the Berea Sandstone (dark blue) core scan shows quite different 
results. Variance is not reduced through the use of the three filters. The (Un + BH) and 
(Un + Bil + BH) cases again give the highest porosity values, but in this case, they are 
overestimates compared to the experimental data. It is suspected that these inconsistent 
results are due, at least in part, to the small grain and pore size of this rock material. All 
three core scans used the same voxel resolution, which was sufficient to identify dis-
tinct pore and mineral regions in the limestone samples. The grain size of the sandstone 
was close to the voxel resolution of the scan, making it more vulnerable to partial vol-
ume effects and therefore more challenging to identify training regions that were wholly 
made up of pore or mineral.

A small (~ 1 cm3) rough block of Berea Sandstone material was scanned at higher   
resolution (8  μm per voxel), and the study was repeated on this scan. The results are 
shown in light blue and referred to as “high-res scan.” This case shows more simi-
lar results to the limestone example. The (Un + BH) and (Un + Bil + BH) cases show 
the closest values to the MIP porosity (shown with a dark blue dashed line), with the 
(Un + BH) case providing a slightly closer value to the measured porosity. Variance is 
lower in the (Un + Bil + BH) case than the (None) case. As described above, the beam 
hardening correction used in this study was specifically written for cylindrical core sam-
ples, so it was not being used as designed when applied to a non-cylindrical sample. It 
appeared to have similar effect on this rough chunk of material as was seen in the cylin-
drical limestone samples.

The study of the Berea Sandstone highlights the importance of selecting high enough 
scan resolution to allow for precise and reliable segmentation of an XCT dataset. The 
tradeoff between sample size and scan resolution is a physical limitation of the benchtop 
XCT scanner. The voxel resolution of the core samples analyzed in this study was the high-
est-possible resolution that allowed for capture of the entire core height. These data may 
recommend a secondary, higher-resolution scan, as well as experimental methods, to vali-
date segmentation results of a low-resolution scan.

Only three regions in each of pore space and mineral space (six total regions) were used 
to define the training classes for TWS input, because increased amounts of training data 
corresponded to prohibitively high processing times. A prior work compared TWS outputs 
using varying numbers of training regions and found that 10 regions were preferable to 3 
for their segmentation of SEM data for crystal size distribution analysis (Lormand et al. 
2018). In order to ensure that the limited training dataset size used here did not falsely 
skew the porosity results, an additional analysis was performed to test varying numbers of 
training regions. A single filtered dataset of the Indiana Limestone scan (Un + Bil + BH) 
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was used and segmentation was performed using 6, 20, 30, and 40 training regions (divided 
evenly between pore and mineral regions). This process was repeated three times for each 
number of regions. Results are shown in Supplementary Information Sect. 2. A pairwise 
t-test was performed at the α = 0.05 level to compare the 6-ROI mean porosity to the 20-, 
30-, and 40-ROI mean porosities, respectively. Likewise, a pairwise f-test was performed 
at the α = 0.05 level to compare variances. No significant differences in mean or variance 
were found at this confidence level. These results suggest that the porosity results obtained 
in this study would not have differed significantly had more training regions been used.

A sensitivity analysis was performed for the Indiana Limestone (Un + Bil + BH) case 
on the three filter parameters that had been selected based on prior works. This included 
the bilateral filter spatial radius (BS), the unsharp mask Gaussian blur radius (UR), and 
the unsharp mask weight (UW). In order to reduce processing time, the analysis was per-
formed on a 100-slice substack from the center of the dataset. This substack length was 
deemed to be statistically representative of the full dataset: for n = 10 100-slice stacks, the 
coefficient of variation (i.e., the standard deviation normalized by the mean) was less than 
10% (Zhang et al. 2000). The base case (BS = 3, UR = 5, UW = 0.4) was compared to test 
cases with one changed parameter, with eight repetitions each. Results are shown in Fig. 6.

Pairwise t- and f-tests at the α = 0.05 were used to compare mean and variances of the 
base case against each test case. The bilateral filter spatial radius (red) had no significant 
difference in mean or variance at this confidence level for any of the tested values. As dis-
cussed above, the bilateral filter had little effect on the results from the full core analyses, 
and this sensitivity analysis suggests that this finding would hold true even after changing 

Fig. 6   Box-and-whisker plot results of filter parameter sensitivity analysis. A base case (yellow) was com-
pared to cases in which one parameter value was changed: bilateral filter spatial radius (red), unsharp mask 
blur radius (blue), or unsharp mask weight (green). Red lines show medians, boxes show 25th–75th percen-
tiles, and whiskers show most extreme values that are not outliers. Outliers (red plus signs) are points that 
fall further than 1.5 IQR outside of the box
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the bilateral filter parameters. The unsharp blur radius (blue) had significantly differ-
ent mean values for the UR = 2 and UR = 3 cases, but at UR ≥ 4 no significant difference 
from the base case was observed. The variance was lower in the UR = 3 case, higher in 
the UR = 8 case (due to one far outlier), and otherwise not significantly different from the 
base case. These results suggest that using a blur radius above a minimum value is impor-
tant, but above that point, the value does not make a difference. The largest difference was 
observed in the unsharp mask weight (green) test cases. Each case had a different mean 
value from the base case, increasing from the lowest value for the lowest mask weight to 
the highest value for the highest mask weight. Variance was consistent across all cases. 
These data suggest that a mask weight of 0.5 would have been better suited for this particu-
lar rock core, as the mean of the UW = 0.5 test case was closest to the experimental poros-
ity of 0.10. This highlights the value of a pre-analysis testing different filter parameters on 
a representative sub-volume in order to optimize filtering on a case-by-case basis.

3.2 � Indiana Limestone Pore Size Distribution

As a case study on the Indiana Limestone core scan, pore volume distributions were gener-
ated based on the digitally derived data and experimental MIP data (Fig. 7). Digital data 
were binned based on the size thresholds of the porosimeter in order to compare volume 
fractions. The distributions calculated from the XCT data show little variance compared to 
the experimental data. Pores with radii around 50–500 μm (roughly 2–18 voxels) dominate 
the pore volume fraction. The full MIP dataset (black dotted line) shows a much wider 
distribution of sizes, with approximately 23% of the pore volume fraction made up of sub-
micron pores. This figure highlights that, as expected, comparison between digital and 

Fig. 7   Pore volume distribution as a function of pore radius. Digitally derived distributions for each filtered 
combination are shown in solid lines. Experimental MIP data are shown including all pores (black dotted 
line) and only pores bigger than the voxel size of the XCT data (black dashed line)
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experimental data is hampered by difference in resolution (Nimmo 2004). Digital analysis 
is unable to resolve pores smaller than 1 XCT voxel, whereas MIP can detect pores down 
to 10 s of nm. We see very little difference between the XCT datasets with different fil-
ter combinations. Image filtering cannot overcome the loss of resolution from bench-scale 
XCT imaging. Even when MIP data are truncated to only include those pores that the XCT 
data could possibly resolve (radius greater than 1 XCT voxel), they still have greater vari-
ance because of that difference in resolution.

A single-case sensitivity analysis was performed on the impact of the Disconnect Parti-
cles parameter, k. The (Un + Bil + BH) datasets were aggregated and analyzed with k val-
ues ranging from 0.0 to 1.0 (Fig. 8). More detailed data from this analysis are provided 
in the Supplementary Information, Sect. 3. The resulting data show that pore size distri-
butions begin to converge at k values above ~ 0.5. Low k values (i.e., low disconnection) 
correspond with a poorer approximation of the most abundant pore radii found using MIP 
but a better representation of the largest pores (> 500  μm radius), except for the k = 0.0 
case (dark red), which severely overestimates the abundance of pores > 1 mm in diameter. 
These data suggest that k value selection is a tradeoff between nearer estimation of the peak 
values in the experimental pore size distribution curve and improved representation of the 
distribution of macropores. Either option could be preferable depending on the use case. 
The selection of k = 0.7 in this study prioritized representation of smaller pores in an effort 
to represent the pore sizes that dominate the pore volume fraction. No alternative k value 
selection offers a substantial improvement towards this goal, as this parameter cannot cor-
rect for the difference in resolution between experimental data and XCT-derived data.

Fig. 8   Sensitivity case study on Disconnect Particles parameter, k, ranging from k = 0.0 in dark red (no dis-
connection of adjacent pores) to k = 1.0 in violet (high disconnection)
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3.3 � Indiana Limestone Simulated Permeability

A case study of permeability simulations was performed on the Indiana Limestone core. In 
order to explore the reproducibility of simulated permeability values from these segmented 
datasets, the segmented datasets associated with the maximum, median, and minimum 
porosity were used to generate computational meshes with which to simulate permeability 
using OpenFOAM. The range of these values is shown in Fig. 9.

The dataset with all three filters applied shows the smallest range of simulated perme-
ability values. This is likely due to the small range of porosity values derived from this 
dataset and illustrates that variation in the initial segmentation process can amplify the dif-
ferences in simulated downstream processes. Porosity variances were also very small for 
the Un, BH, and Un + Bil datasets, yet these do not show much reduction in simulated per-
meability range. This discrepancy may be related to differences in pore connectivity rather 
than porosity itself, which is a topic for further exploration.

These data suggest that the application of the three filters did improve reproducibil-
ity of permeability simulations but did not improve estimation of the permeability value 
itself. The overestimation of permeability compared to experimental data could be partially 
attributed to the difference in pore size distribution. The higher fraction of larger pore radii 
seen in the digital pore size distribution is consistent with an overestimation of perme-
ability. This is further evidence that rock parameter predictions derived from bench-scale 
CT data are affected by low voxel resolution. We would still expect to see improved repro-
ducibility with a higher-resolution scan and may also see an improved permeability value 

Fig. 9   Simulated permeability ranges from segmented datasets processed using various filter combinations. 
The markers indicate permeabilities simulated from the maximum, median, and minimum porosity datasets 
from each filter combination. The asterisk on the Un + BH range shows an outlier value. The dashed purple 
line shows experimental permeability. Un=unsharp mask, Bil=bilateral filter, and BH=beam hardening cor-
rection
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estimate. The overestimation of permeability could also be an illustration of limitations of 
the OpenFOAM simulation. This method seeks to predict permeability, an upscaled param-
eter, from a subsection of an already small-scale sample. Heterogeneity within the core 
(which would be likely in a carbonate due to the presence of fossil fragments) could intro-
duce error to the simulated estimates because a substack was used instead of the whole 
core length. The mesh resolution and subsection length used here were at the upper lim-
its of the computing capability currently in place. Future work will implement high-per-
formance computing resources in order to explore whether increased subsection size and 
mesh resolution promote agreement between simulated and experimental results.

4 � Conclusions

The results of this study support a recommendation to use image filtering prior to the defi-
nition of training classes for XCT segmentation by machine learning algorithm. Here, a 
three-stage workflow was considered for binary segmentation of three core samples: an 
unsharp mask for contrast enhancement, an edge-preserving bilateral filter for noise reduc-
tion, and a beam hardening correction.

In the two limestone samples, the datasets that had all three filters applied had reduced 
variability in overall porosity and a closer porosity value to the experimental MIP value 
compared to the unfiltered cases. The XCT data from the sandstone core showed incon-
clusive results, but segmentation was made difficult due to the scan resolution being close 
to pore and grain size. A higher-resolution scan of a small sample of the Berea Sandstone 
showed the same variance reduction and prediction improvement seen in the limestone 
samples.

Simulated permeability on the Indiana Limestone core also showed an improvement in 
reproducibility after the application of these three filters. Pore size distribution was stud-
ied for the Indiana Limestone core, but the ability to compare these data to experimen-
tal results was hampered by differences in resolution between the XCT and MIP analyses. 
Access to higher-resolution synchrotron XCT instruments is limited for most researchers, 
and thus there is value in improving the results that can be obtained using the widely avail-
able bench-scale XCT.

Improving the reproducibility of XCT segmentation results is essential for many sub-
surface applications, as this step is critical for the prediction of subsurface fluid behavior. 
Here, identification of the pore network and its applications for fluid flow were studied in 
mineralogically simple rock samples. These methods may also assist in the segmentation 
of different mineral species, which could identify mineral species accessible to fluid-rock 
interactions. For any application, increasing XCT segmentation consistency and limiting 
user bias would improve the confidence in any downstream predictions made using those 
data, as modeling flow through porous media at the reservoir scale depends strongly on 
information gathered from rock core samples.
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