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Abstract:

Strain localization is central to the transition between continental rifting and seafloor spreading.
In the East African Rift System (EARS) there is an emerging understanding of the link between
extensional pulses and magmatic episodes. We investigate modern magmatism located within
the Turkana Depression and its relationship to the distribution of extensional strain. We probe
the source of magmatism at South Island volcano using bulk rock, melt inclusion, and olivine
geochemical data and find that the magmas are derived from sub-lithospheric sources
equivalent to magmatism in the more mature sectors of the rift. The depth extent of the
magmatic plumbing system of South Island is constrained using vapor saturation pressures
derived from bubble-corrected H.O and CO, concentrations in melt inclusions, and results
indicate a magmatic system resembling modern axial volcanic systems observed in other parts
of the EARS. The zone of focused axial magmatism that South Island represents has evolved
contemporaneously with a region of focused axial faulting that has accommodated the majority
of regional Holocene extension and subsidence at this latitude. We conclude that at South
Island there has been a migration of magmatic and tectonic strain towards the modern zone of
focused intrusion along this portion of the EARS.

Supplementary material: S1-S2 image files, data table files S3-S6, and caption file S7 are

available at http://geolsoc.figshare.com.
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The localization of strain within a continental rift environment is central to the transition between
continental rifting and sea-floor spreading (e.g., Naliboff et al., 2017). Tectonic extension, which
may initially result in more diffuse thinning of the brittle continental lithosphere (e.g., Autin et al.,
2010), become progressively more concentrated within rift valleys as they evolve towards an
oceanic rift (e.g., lllsley-Kemp et al., 2018). Magmatism and associated lithospheric weakening
(e.g., Buck, 2006; Bialas et al., 2010) play an important role localizing extensional strain during
rift development (Behn et al., 2006; Beutel et al., 2010; Muirhead et al., 2016) and controlling
the transition from thinning continental lithosphere to the formation of new oceanic lithosphere
(e.g., Bastow and Keir, 2011). However, key unknowns in this transitional process are the
timing, distribution, and volume of magmatism in relation to extension (e.g., Peron-Pinvidic et

al., 2019).

The East African Rift System (EARS) represents the premier example of modern
continental rifting, displaying a range of rift conditions from relatively magma-poor basins in
southern rift sectors (e.g., Lake Malawi Rift), to magma-rich basins (e.g., Main Ethiopian Rift)
farther north (e.g., Ebinger, 1989; Chorowicz, 2005; Macgregor, 2015; Morley and Ngenoh,
1999; Purcell, 2018). In the Eastern Branch of the East African Rift System (Fig. 1) there is an
emerging understanding of the link between extensional pulses and associated magmatic
episodes over both short (e.g., Wright et al., 2006; Ayele et al., 2009; Ebinger et al., 2010;
Belachew et al., 2012) and longer timescales (Macgregor, 2015; Purcell, 2018; Rooney, 2020b,
2020a). Modern magmatic activity in the Eastern Branch manifests within the rift as axial zones
of focused magmatic-tectonic activity (Ebinger and Casey, 2001; Keranen et al., 2004; Keir et
al., 2006), extending from Afar in the north to southern regions of the Kenya Rift (Weinstein et
al., 2017). Throughout much of its length, the Eastern Branch is characterized by narrow rift

valleys where the migration of strain from rift border faults to zones of focused magmatism and
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tectonism is well-characterized (e.g., Boccaletti et al., 1998; Ebinger and Casey, 2001;
Wolfenden et al., 2004; Casey et al., 2006; Rooney et al., 2011; Muirhead et al., 2016).
However, where the Eastern Branch intersects pre-thinned lithosphere, either resulting from
earlier phases of Mesozoic to Paleogene rifting in Turkana or Miocene rifting in Afar (e.g., Red
Sea Rift), wider depressions can form that exhibit more complex rift basin geometries and
segmentation styles (e.g., Dunkelman et al., 1988; Hendrie et al., 1994; Morley et al., 1999;
Manighetti et al., 2001; Tesfaye et al., 2003; Le Gall et al., 2005, 2010; Vétel et al., 2005;
Koptev et al., 2018). Locating the current loci of magmatic and tectonic strain accommodation
can be challenging in these broad depressions (e.g., Brune et al., 2017; Corti et al., 2019;

Knappe et al., 2020; Wang et al., 2021).

Here, we investigate the nature of modern magmatism within the broadly rifted Turkana
Depression in East Africa, and its relationship to the evolving distribution of extensional strain.
We present a geochemical and volatile element study of South Island, the most mature volcanic
edifice within the modern axial center traversing Lake Turkana (Bloomer et al., 1989; Karson
and Curtis, 1994; Furman et al., 2004). We probe the source of magmatism using major and
trace element data derived from both whole-rocks and melt inclusions and provide laser-ablation
ICPMS analysis of olivine phenocrysts. We constrain the depth extent of the magmatic plumbing
system of South Island using vapor saturation pressures derived from bubble-corrected H.O
and CO; concentrations in olivine-hosted melt inclusions. We find that magmas from South
Island exhibit sub-lithospheric sources that closely resemble the modern axial volcanic systems
observed in the Eastern Branch (e.g. Quaternary volcanic segments of the Main Ethiopian Rift)
(Rooney, 2020d). Furthermore, we find that the magmatic plumbing system situated below
South Island is located in the mid-crust and has evolved contemporaneously with a region of
focused axial faulting that has accommodated the majority of Quaternary — Recent regional

extension (Muirhead et al., this volume). We conclude that at South Island there has been a
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migration of magmatic and tectonic strain towards the modern zone of focused intrusion along

this portion of the East African Rift System in Turkana.

2. Background

2.1 East African Rift System

South Island is located within the South Turkana basin of Lake Turkana, an important
geographic feature of the Turkana Depression (Fig. 1;2). The Turkana Depression is a region of
diffuse extension within the Cenozoic EARS, lying between the significantly narrower Kenya Rift
to the south, and Main Ethiopian Rift to the north (e.g., Ebinger and Ibrahim, 1994; Mechie et
al., 1997; Keranen et al., 2004; Mackenzie et al., 2005; Mariita and Keller, 2007). The low
elevation of the Turkana Depression is in contrast to the uplifted domes evident to the north and
south and may relate to the extended interval over which lithospheric extension has been
operating in this region and the isostatic response of the thin crust (e.g., Benoit et al., 2006;
Boone et al., 2019). Beginning in the early Cretaceous, the area of the future Turkana
Depression became part of the Anza rift, which linked other Mesozoic rift basins in Kenya and
Sudan (Bosworth, 1992; Bosworth and Morley, 1994). These Mesozoic rifting events
presumably thinned the continental lithosphere prior to the initiation of the EARS. It is therefore
unsurprising that the Turkana Depression marks some of the earliest manifestations of rifting
within the EARS and acted as a nexus for various pulses of extensional activity and associated
magmatism throughout the Cenozoic (Macgregor, 2015; Purcell, 2018; Boone et al., 2019).
These protracted phases of rifting have significantly attenuated the crust (20 km) compared to
other parts of the Kenya Rift (35 km) (Mechie et al., 1997; Prodehl et al., 1997; Benoit et al.,
2006), with the crustal thickness of the Turkana Depression resembling the highly extended

crust of the modern Afar Depression (Maguire et al., 2006).
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2.2 Cenozoic Magmatism of the East African Rift System

Cenozoic magmatism in East Africa is thought to be related to the overlapping effects of
lithospheric extension and the upwelling of thermo-chemically anomalous material from the
African Large Low Shear Velocity Province (Rooney, 2020d). The earliest manifestations of
East African Cenozoic magmatism (Initial Eocene Phase: Rooney, 2017) were centered on
Southern Ethiopian basins and the Turkana Depression from ca. 45-34 Ma (e.qg., Ebinger et al.,
1993, 2000; George et al., 1998; Furman et al., 2006b; Rooney, 2017), and were volumetrically
dominated by flood basalts with intervals of more evolved compositions (Davidson, 1983;
Steiner et al., 2021). The subsequent Oligocene Traps phase (33.9-27 Ma: Rooney, 2017)
resulted in the expansion of volcanism throughout East Africa and Yemen and the notable
formation of the flood basalts of the NW Ethiopian plateau (e.g., Mohr and Zanettin, 1988; Baker
et al., 1996; Krans et al., 2018; Pik et al., 1999; Rooney et al., 2018). The Early Miocene
Resurgence phase (ca. 28 Ma — 20 Ma: Rooney, 2017, 2020b) manifests as another
geographically widespread (though volumetrically smaller) pulse of dominantly basaltic
volcanism occurring throughout East Africa. There then followed two more pulses of basaltic
volcanism at ca. 12-9 Ma (Mid-Miocene Resurgence Phase) and ca. 4 Ma (Stratoid Phase),
which are considered to have originated in Turkana and Afar (Rooney, 2020b). Modern volcanic
activity in the Eastern Branch of the EARS dominantly occurs within axial or rift marginal graben

and is dominated by large silicic volcanoes and small cinder cones and associated flows.

2.3 Quaternary magmatism in Turkana

Quaternary magmatic activity in Turkana broadly bifurcates into magmatism associated with the
Mega/Megado area and Dilo-Dukana area in the Ririba Rift (Conticelli et al., 1999; Orlando et

al., 2006; Shinjo et al., 2011; Corti et al., 2019; Franceschini et al., 2020) and the axial volcanic
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islands of Lake Turkana in the Kenyan Rift (the focus of this study) (Fig. 2). Pliocene to
Quaternary activity also occurs on the Huri Hill shield (Class et al., 1994). The main axial
volcanic centers of the Kenyan rift in Turkana and adjacent areas are (from north to south) the
Korath Range in southern Ethiopia (Brown and Carmichael, 1969; Jicha and Brown, 2014),
North Island (Brown and Carmichael, 1971; Karson and Curtis, 1994; Furman et al., 2006b),
Central Island (including Birds Nest) (Dunkelman et al., 1988; Karson and Curtis, 1994; Furman
et al., 2006b), South Island (Brown and Carmichael, 1971; Karson and Curtis, 1994; Furman et
al., 2006b), and the Barrier, Namarunu, and Emuruangogolak in the very south (Ochieng et al.,
1988; Dunkley et al., 1993) (Fig. 2). These main volcanic centers are located within several half
graben segments that are kinematically linked along the rift (Karson and Curtis, 1994) and
produced a wide range of magma compositions that are dominantly basalts and trachytes with
subordinate silicic pyroclastics and rhyolites (Ochieng et al., 1988; Dunkley et al., 1993). Since
the mid-Pliocene, faulting and subsidence in Turkana has primarily focused within the lake-
basin segments that now host three main volcanic islands in Lake Turkana (Karson and Curtis,
1994; Morley et al., 1999). These basins are linked by accommodation fault zones and have
accumulated significant volumes of Plio-Pleistocene sediments (e.g., 1-2 km of sediments in
South Turkana basin). The Islands of Turkana are spaced approximately 43+5 km apart (Mohr
and Wood, 1976) and each lies within the center of a graben or half graben (Dunkelman et al.,
1988). Similarities between the islands exist in terms of structure, stratigraphy, and lithologic
history, with minor variation evident in terms of composition and mineralogy. South Island is the
most mafic and heavily faulted member of the three islands, and has the greatest subaerial
volume (4 km®) and total volume above the lake floor (14 km®), which is several times that of the
other Turkana volcanic islands (Karson and Curtis, 1994). Axial faults associated with these
volcanic islands run parallel to the rift, and the morphologies of smaller volcanic cones support

rift parallel axial diking below the South Island (See Figure 2 of Muirhead et al., this volume),
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with these dike intrusions possibly extending into lakebed sediments (Karson and Curtis, 1994;

Muirhead et al., this volume).

2.4 South Island

The absolute age range of products of the South Island volcano is unclear; however, it has been
hypothesized to be Quaternary, with much of the activity post-dating 3.2 ka (Dunkley et al.,
1993). Karson & Curtis (1994) observed South Island flows on the eastern side of the island are
the freshest in the region, with the exception of the historic 1888 eruption of Teleki’s Cone of the
Barrier. Fumarolic activity from one of the South Island craters was observed in 1888 by Teleki’s
expedition (von Héhnel, 1894), consistent with the young age of the lavas and active solfataras
(Fig. S1). The most pronounced feature of the island are the cinder cones that are associated

with a series of vents running north to south across the length of the Island.

Following the stratigraphic nomenclature of Karson & Curtis (1994), the earliest eruptions of
the South Island volcano were basaltic flows of unit S1 (Fig. 3), followed by two eruptions
producing tuff units S2 and S3, which are separated by an unconformity. Recent seismic
stratigraphic investigations of the South Turkana basin (Morrissey and Scholz, 2014) reveal that
this unconformity is likely associated with uplift and relative lake level drop, which is also evident
in terraces at the north end of the island (Garcin et al., 2012; Melnick et al., 2012). The next
volcanic eruption produced a second unit, S4, of basaltic flows. South Island’s surface is dotted
with spatter cones associated with lavas of unit S4, which can reach up to 400 m high and are
made of scoria, agglutinate, lava flows, and have rare basaltic dikes cross cutting them (Karson

and Curtis, 1994). The most recent deposit is an unconsolidated ashfall unit, S5.

2.5 Sources of Quaternary magmatism in Turkana



182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

There exists a spatial heterogeneity in the composition of basaltic lavas occurring along the
length of this rift sector that was initially identified by Furman et al. (2004) in terms of an
amphibole-bearing lithospheric mantle source for many lavas at Bird’s Nest and Central Island,
and a fertile peridotite for other lavas (including South Island). Furman et al. (2004) notes that
the isotopic composition of lavas from these islands is also consistent with a strong contribution
from the Afar Plume, in particular in lavas from South Island where hydrous mantle phases were
not likely present in the source of these lavas (based on trace element patterns) and the source
is interpreted as a plume-influenced upper mantle. There is no existing interpretation as to the
specific source of lavas from Korath, though Bloomer et al. (1989) using the limited data from
Brown & Carmichael (1969) hypothesized a veined mantle source for Korath, and for all the

Quaternary Islands of Lake Turkana.

3. Methods

3.1 Samples

During a field expedition undertaken by Jeffrey Karson and Patchin Curtis to South Island in
1992, 18 samples (S192-1 through S192-18) that represented the diversity of lithologies present
on the island were collected. Lithologies identified on South Island include two flow units S1 and
S4, two tuff units S2 and S3, and a top layer of unconsolidated ash, S5 (Fig. 3). Unit names
follow a stratigraphic arrangement as represented in Figure 3 with S1 at the base, to S5 at top.
Samples examined in this study are from S4 and are typically phenocryst-rich scoria with up to
55% volume phenocrysts (e.g., SI92-12). The dominant mineral assemblage in most samples is
plagioclase + augite + olivine, however, plagioclase in most samples exhibits a degree of
instability, demonstrated by anhedral phenocrysts exhibiting sieve texture. In samples S192-12

and S192-16 olivine phenocrysts can range up to 1 cm in size. Samples showed no obvious
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weathering or other secondary alteration. We have undertaken bulk rock analyses on scoria
samples SI192-12 through SI92-18, collected from what we interpret as the spatter cones related
to unit S4 (precise location information is unavailable). In addition, we selected a sample (SI192-

16) for the analysis of melt inclusions.

3.2 Bulk sample processing and analytical techniques

Bulk rock analyses of samples S192-12 through SI92-18 were undertaken at Michigan State
University. Whole rock samples were cut, polished, washed in deionized water and the resulting
billets were powdered in a BICO disk mill fitted with ceramic contamination control grinding
plates. Sample powders were fused into homogenous glass disks using a lithium tetraborate
fluxing agent. These disks were then analyzed for major elements by X-ray fluorescence (XRF)
with a Bruker S4 PIONEER X-ray fluorescence spectrometer, using methods described
elsewhere (Rooney et al., 2012b). The same sample disks were then analyzed in triplicate for
trace elements using laser-ablation inductively coupled plasma mass spectrometer (LA-ICPMS)
with a Photon-Machines Analyte G2 excimer laser and Thermo Scientific ICAP Q quadrupole
ICP-MS using methods described elsewhere (Rooney et al., 2015). The XRF and LA-ICPMS
sample analyses, in addition to quality assurance information, are presented in the

supplementary data files S3 and S4.

3.3 Melt inclusion analysis — volatile elements
Olivine was separated from whole rock sample SI92-16 by crushing and handpicking. Olivine
and one augite crystal (melt inclusion MSU — 01) containing melt inclusions were then selected
for further processing. Melt inclusions were doubly intersected by grinding of the crystal host at
the University of Oregon, and photographs were taken of whole crystals and their polished

crystal wafers (Fig. S2). Nine melt inclusion samples from eight discrete crystals were prepared:
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MSU - 01, 02, 03, 04, 05, 06, 07a, 07b, 08. The melt inclusions were glassy, with no daughter

crystals. All melt inclusions contained vapor bubbles.

Melt inclusions were analyzed on a Thermo-Nicolet Nexus 670 Fourier-transform infrared
(FT-IR) spectrometer interfaced with a Continuum IR microscope at the University of Oregon.
H.O concentrations were calculated from IR peak absorbance values using the Beer-Lambert
Law. H.O concentration was determined using the 3570 cm™ OH- peak, with molar absorption
coefficient € = 63 from Dixon et al. (1995). The molar absorption coefficient for CO; as
carbonate is compositionally dependent. We used the major element composition of each melt
inclusion to calculate the appropriate value based on Dixon and Pan (1995). The absorbance of
CO:; as carbonate was measured using a peak-fitting program that uses a background
subtraction of carbonate-free basaltic glass (S. Newman, unpublished). Thickness was
determined using the interference fringe method (e.g. Wysoczanski and Tani, 2006). Hydrous
glass densities were determined by iteration between calculated glass densities (Luhr, 2001)

and Beer-Lambert calculations.

The effect of post-entrapment bubble formation on the original volatile content of trapped
melt inclusions was corrected using the MIMiC software (Rasmussen et al., 2020). Input
parameters are listed in the supplement (Table S6) and assume a 5°C/sec cooling rate. Both
bubble-corrected (solid color) and uncorrected values (partially transparent) are shown in

subsequent plots.

3.4 Olivine and Melt inclusion compositional analysis — major and trace elements

Following FTIR measurement of CO. and H.O (where applicable as noted above), melt
inclusions and host olivine crystals (and a single augite) were analyzed for major and trace
elements using LA-ICPMS (Table S5). Crystals and melt inclusions analyzed were MSU-01, 02,

04, 05, 06, 07a, 07b, 08. Analysis of melt inclusion MSU-08 was not successful, and for
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processing of the volatile data an average of the other glass compositions was used. The
analyses, conducted at Michigan State University, used the same equipment and standards as
the bulk rock data methods described above, but implemented a slightly modified method
wherein multiple spots per inclusion were characterized. Laser spot size was set at 30 pm. .
Laser fluence was 4.11 J/cm?; the instrument was placed in energy stability mode with energy
set point of 3.5 mJ with a repetition rate of 10 Hz. Major and trace element data were calibrated
and processed using the Thermo-Fisher data reduction software — QTegra, and normalized to
an internal standard of 100% sum of the major element oxides. Spot analysis averaged about
four per melt inclusion and seven per olivine. Bubbles and rims of melt inclusions were avoided
during analysis. Drift was monitored by the repeated analysis of fused powder standards JB-2
and natural basalt glass standard BHVO-2G, data were corrected for drift. The NMNH Standard
111312-77 ‘San Carlos’ olivine was also analyzed as an unknown to monitor matrix effects.
Major and trace element data for individual spot analyses of melt inclusions and olivine are
presented in the supplemental data tables. The average value per olivine crystal is illustrated in
the accompanying figures. The average value for each melt inclusion was corrected for post-
entrapment crystallization (PEC) using MIMiC (Rasmussen et al., 2020; see details below), and
the corrected major element values are shown in the figures. Because the melt inclusions were
all close to equilibrium with their host olivine (maximum PEC = 2.5% olivine), the corrected
values are very close to the analyzed values. No major element PEC correction was made to
the clinopyroxene-hosted melt inclusion (MSU-01). A bubble correction for CO; in this inclusion
was made by using the median value for percent CO; lost to bubble (from MIMIC) in the other

seven olivine-hosted inclusions.

4. Results
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4.1 Bulk rock major and trace element geochemistry

Assuming Fe*" /3Fe of 0.15, the samples being nominally volatile free, and using the methods of
Le Maitre (2002), all bulk rock samples classify as nepheline-normative (2.3 to 4.6% Ne) alkali
basalts, with the exception of the more evolved sample in the dataset S192-17 (mugearite). Our
new major and trace element data plot in the same fields as previous studies from South Island
(Brown and Carmichael, 1971; Furman et al., 2004) (Fig. 4). When considered collectively,
whole rock compositional data from the Quaternary volcanoes of Lake Turkana (Barrier, South
Island, Birds Nest, Central Island, North Island) form coherent arrays versus an index of
differentiation (i.e., MgO), which suggest similarities in magmatic process occurring throughout

this region, despite being discrete systems.

Chondrite-normalized REE patterns (Boynton, 1984) exhibit parallel behavior and overlap
the existing datasets (Fig. 5). Primitive mantle normalized patterns (Sun and McDonough, 1989)
reflect the similarities in the chondrite-normalized figures and show broadly the same pattern
that is dominated by a profound peak in Nb and Ta concentrations (Fig. 6). While the use of
tungsten carbide as a grinding medium in older datasets might have resulted in anomalously
high Ta values, our newly collected whole rock data (ground in a ceramic disk mill) and melt
inclusion data confirms the magmatic nature of this Nb-Ta anomaly. The single more evolved
sample (S192-17; MgO ~ 2 wt. %), deviates from the coherent patterns evident in the more

primitive samples and has notable negative anomalies in Ti and Sr (Fig. 6).

South Island lavas share some of the same characteristics of primitive mantle normalized
patterns of other lavas in the Lake Turkana region (Fig. 6). For example, all samples from the
region are dominated by a profound peak in Nb and Ta concentrations (Fig. 6). However, there
also exist some important differences: lavas from South Island lack the prominent negative Zr-
Hf trough evident in many Barrier samples and one Birds Nest sample (Fig. 6), which suggests

some differences in the source of magmas in the region. The distinctive primitive mantle

12
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normalized trace element pattern observed in South Island is also common in basaltic magmas
found throughout the East African Rift System (Rooney, 2020d), the implications of which are

presented in the discussion.

4.2 Olivine geochemistry

The olivine hosts for melt inclusions have core compositions ranging from ~Fo74 to Foso
(Supplemental Table; Fig. 7). Ni, Ca, Mn exhibit similar patterns to other regional datasets,
though Cr is notably depleted (Fig. 7), and may be suggestive of significant pyroxene co-
fractionation. We show the South Island olivine dataset relative to high-precision olivine
datasets derived from melting of different source lithologies (Sobolev et al., 2007; Foley et al.,
2011; Rooney et al., 2017), however the relatively evolved composition of the olivine in South
Island likely renders the control on olivine composition from source as secondary to magma
evolution processes. Of note, however, is the dissimilarity of South Island olivine to those from
Gerba Guracha, a Miocene alkaline volcanic center in Ethiopia where there are resolvable
differences in olivine chemistry between sub-lithosphere derived melts (alkaline basalts),
lithosphere-derived melts (pyroxene melanephelinites), and mixtures of the two (basanites)
(Rooney et al., 2017) (Fig. 7). Accordingly, while the olivine from South Island lavas overlap
other olivine from alkaline/subalkaline lavas from East Africa, they notably do not plot in the

same fields as olivine from the lithospherically-derived Gerba Guracha lavas.

4.3 Melt inclusions

4.3.1 Major and trace element data

The mean value of multiple analyses of each melt inclusion was corrected for potential post
entrapment crystallization and Mg-Fe diffusive reequilibration using MIMiC (Rasmussen et al.,

2020). Host olivines have Fo values that range from 74 to 80. Based on a comparison with
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whole rock data, we assumed an FeO* value of 10.5 wt% for the melt inclusions at the time of
trapping, and we used the Kp model of Toplis (2005) at the QFM buffer. All melt inclusion
compositions were close to equilibrium with their olivine hosts. Because the PEC correction was

less than 2.5%, no mass corrections were applied to the trace element data.

Major and trace element data show South Island melt inclusions plot in the same fields
as the whole rock samples from South Island (Fig. 4), though they occupy a much more
restricted range of compositions (~4-6 wt.% MgQO), compared with the whole rock data (~2-12
wt.% MgO), likely due to the limited sample set. Chondrite-normalized REE values of the melt
inclusions are similar to the whole-rock data (Fig. 5) but exhibit a more limited range in
fractionation of La/Yb, which occurs at the low end of the whole rock data range (Fig. 4).
Primitive mantle normalized patterns are largely the same as the whole rock data (Fig. 6). One
exception to this is well-characterized (n = 5 spots analyzed) inclusion MI-7a, which exhibits the
most extreme depletion in the most incompatible trace elements pattern in any rock from the
Lake Turkana area (Fig. 6) yet exhibits concentrations of MgO and compatible elements (Ni, Cr)
that are in the same range as the other melt inclusions (Supplemental Information). These data
suggest that the melt inclusions trapped by the olivine mostly reflect the same melts that have

constructed South Island.

4.3.2 Water and carbon dioxide content of South Island melt inclusions

South Island melt inclusions yield a tightly constrained H.O content of 0.93 to 1.06 wt % H.O
(Fig. 8). These H.O contents are consistent with other melt inclusions in the East African Rift
System at similar values of MgO, with the exception of melt inclusions from Erta ‘Ale and some

samples from Nyamuragira, which have lower H>O as a result of diffusive loss during
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experimental rehomogenization, natural slow cooling, and/or degassing before entrapment (e.g.,

Head et al., 2011; Field et al., 2012).

Measured CO, concentrations in the South Island melt inclusions ranged from ~1140-
2240 ppm. The volatile results from South Island are the first in East Africa to include correction
for the effects of post-entrapment bubble formation on the CO. contents of the melt inclusions.
This correction resulted in CO, that was between ~250 and 760 ppm higher (median ~420 ppm)
in corrected melt inclusions in comparison to the measured values. After correction, the CO.
concentrations in the South Island melt inclusions ranged from 1386 to 2891 ppm (Fig. 8).
Considering melt inclusions from other axial magmas (<55 wt % SiO,) in the Eastern Branch of
the EARS, South Island CO, values overlap those of the well-developed Kone sector of the
Main Ethiopian Rift (Wonji Fault Belt: Mohr, 1967; Ebinger and Casey, 2001; Rooney et al.,

2007; Furman et al., 2006a) (Fig. 8).

5. Discussion

5.1 Source of Magmatism

Common patterns of occurrence of different magma types in space or time throughout East
Africa has resulted in the clustering of magmas into six distinct types based upon their primitive
mantle normalized patterns (Rooney, 2020d). (Rooney, 2020c). These patterns reveal insights
into the source heterogeneity of East African lavas and are therefore useful indicators as to the
source of the melts in this region. Three of six standard magma types have been identified in
Quaternary Turkana lavas: Type Il magma, typified by a broad enrichment in incompatible trace
elements and a distinct negative K anomaly. These melts likely originate from the destabilization
of enriched metasomes derived from the lithospheric mantle. Type Il magma, typified by

positive Ba and Nb-Ta anomalies and a negative U-Th anomaly. These melts are interpreted as
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373  being derived from a sub-lithospheric source (i.e., plume influenced upper mantle). Type IV
374  magmas, typified by a hybrid of the Type Il and Il patterns, are thought to reflect melts of an
375  enriched lithospheric mantle metasome mixing with melt derived from sub-lithospheric

376 reservoirs.

377 The whole rock and melt inclusion data all show the same trace element patterns at

378  South Island — evidence of a strong Type Ill magma signature that is indicative of predominant
379  contributions from a hybrid sub-lithospheric source (Fig. 6), equivalent to the plume-influenced
380 upper mantle suggested by Furman et al. (2004). Barrier lavas also exhibit a strong Type |l

381  signature. However, a pronounced negative Zr-Hf anomaly and mild positive Eu anomaly (also
382  noted by Furman et al. 2004) suggests additional complexity in the origin of these lavas.

383  Negative Zr-Hf anomalies seen in magmas elsewhere in East Africa correlate with elevated

384  P,Os and have been interpreted in terms of apatite in the source of these lavas (Rooney,

385  2020a). This interpretation is consistent with observations at Barrier, where lavas from this

386 edifice plot at significantly elevated P.Os in comparison with the other portions of this sector of
387 the EARS (Fig. 4). The same pattern is observed at Rungwe (southern EARS) where Type llI
388 lavas (Rooney, 2020a) exhibit an isotopic signature consistent with a deep mantle plume (Hilton
389 et al., 2011; Halldérsson et al., 2014) but have a clear metasomatic apatite overprint manifesting
390 as a pronounced negative Zr-Hf anomaly (Furman, 1995; lvanov et al., 1999). These

391 observations suggest that Barrier magmas may have assimilated apatite enroute to the surface,
392 likely in a metasome within the lithospheric mantle (lacking amphibole). One sample from Birds
393  Nest also contains a negative Zr-Hf anomaly, and some samples from this edifice are

394 interpreted to be derived from melting of an amphibole-bearing source in the lithospheric mantle
395 (Furman et al., 2004). The origin of this apatite-bearing metasome remains unknown but it is
396 notable that lavas with this signature exhibit radiogenic 2°®Pb/2**Pb, forming a continuum with

397 samples from Central and North Island (Fig. 9); South Island does not fall on this continuum.
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The prior observation by Furman et al. (2004) that Central Island lavas are derived from
an amphibole-bearing source is consistent with the Type IV magma patterns exhibited by these
samples (Fig. 4) and suggestive of a hybrid signature of plume influenced upper mantle (Type
[II) mixing with a metasome-derived melt (Type Il). It is important to note that this metasomatic
source is quite distinct from those discussed above in that it lacks evidence of apatite and has
less radiogenic 2°Pb/2**Pb (Fig. 9). The existence of two metasomatic signatures, both with
distinct isotopic fingerprints, potentially resolves an unanswered question posed in previous
studies (Furman et al., 2004). The few data points available from North Island suggest a Type Il
pattern, though it remains unclear if apatite also affects these magmas as observed at Barrier.
Korath has insufficient data available to construct a primitive mantle normalized figure, however
the extreme enrichment in incompatible trace elements (e.g., Nb; Fig. 4) is suggestive of a
lithospheric mantle contribution (either Type Il or IV). When considered collectively, the extant
data from the Quaternary volcanism associated with Lake Turkana demonstrates that
magmatism is derived from diverse sources that span the lithosphere and asthenosphere; there
is no clear evidence for the development of a dominantly sub-lithosphere derived magmatism
like that observed in the central and northern Main Ethiopian Rift (e.g., Furman et al., 2006a;
Rooney et al., 2012a). This is somewhat counterintuitive given the long history of magmatism
and rifting within the Turkana Depression that extends over at least 35 Myr (Morley et al., 1999;

Brown and McDougall, 2011; Boone et al., 2019).

Type Il magmas from East Africa exhibit elevated He isotope ratios consistent with
volatile contributions from a deeply-sourced mantle plume (Marty et al., 1993, 1996; Scarsi and
Craig, 1996; Pik et al., 2006; Hilton et al., 2011; Rooney et al., 2012a; Halldérsson et al., 2014;
Rooney, 2020d). H.O/Ce ratios for South Island melt inclusions are highly constrained (237-
264) with one outlier caused by low Ce concentrations (Fig. 8). The values are similar to that

anticipated for a “C”/FOZO plume-influenced mantle (200-250: Dixon et al., 2002), consistent
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with the model of Type Ill magma generation. However, it should be noted when comparing
different regions in the EARS that large heterogeneity in Ce concentrations appears to be the
predominant influence on H,O/Ce ratios (Fig. 8). Notably, Type V lavas from Bufumbira
(Virunga), which are derived from a metasomatically-enriched lithospheric mantle, exhibit
extreme depletion in H.O/Ce (Fig. 8), an observation inconsistent with the suggestion by Dixon
et al. (2002) that the addition of hydrous fluid phases to the mantle should increase H,O/Ce in
derivative melt. While some portion of the low H.O/Ce at Bufumbira may result from H.O
diffusive loss during both original slow cooling in lava and laboratory melt inclusion
rehomogenization (Hudgins et al., 2015), Ce concentrations roughly 400% higher than Type Il
magmas (Fig. 8) may also point to REE-enriched nominally anhydrous phases in the metasome.
Indeed, experimental results of melting of a hornblendite lithology yield lower H.O/Ce (72-155:
Pilet et al., 2008) than melts derived from N-MORB (~200: Dixon et al., 2002). In contrast, the
significantly enriched values of H,O/Ce evident at Butajira (Main Ethiopian Rift) (Fig. 8) appear
related to a Ce (and other incompatible trace element) depletion of uncertain origin. Accordingly,
caution should be exercised in the interpretation of H,O/Ce values in East African magmas (as
noted by other authors in the region, e.g., Iddon and Edmonds, 2020). Despite these
complexities, for relatively undegassed melt inclusions (those over ~1800 ppm CQO,), it would
appear that Type Ill magmas in East Africa contain between about 0.9 and 1.6 wt % H.O (Fig.
8). Some latitudinal heterogeneity in the H.O content of Type Ill magmas is also apparent, as
South Island H.O concentrations are lower than those of the Main Ethiopian Rift, despite the

South Island samples being typically more evolved.

5.2 Volatile Content of South Island and Depth of Mafic Magma Fractionation

There are limited existing datasets reporting the volatile content in olivine-hosted mafic rift lavas

in East Africa, however studies from Quaternary axial volcanic centers in the Main Ethiopian Rift
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(lddon and Edmonds, 2020), Afar at Erta ‘Ale (Field et al., 2012) and Nabro (Donovan et al.,
2018), and the Virunga Volcanic Province at Nyamuragira (Head et al., 2011) and Bufumbira
(Hudgins et al., 2015) provide suitable comparator suites for the Quaternary axial volcanic
center of South Island. The pressure of melt inclusion entrapment along the modern East
African Rift System has some commonalities that depend on the location of the volcanic edifice
— specifically there exists a correlation between depths of magma ponding and whether a
volcano is located on or off the primary axis of strain accommodation. Nabro volcano is located
off-axis, along the transverse structures in Afar (Wiart and Oppenheimer, 2005; Rooney, 2020c;
Donovan et al., 2018) and is inferred to have a vertically extensive magmatic plumbing system,
extending from ~100 to ~500 MPa, with most melt inclusions trapped at 5-10 km depth but
some extending to the base of the crust at 20 km (Donovan et al., 2018). Most of the Nabro melt
inclusions do not contain vapor bubbles. The data for Nabro contrast to the very shallow
crystallization pressures of the axial Erta ‘Ale volcano where pressures of 7-42 MPa (0.2 - 1.4
km) have been inferred to result from very shallow crystallization in the upper 1.5 km of the
magma column, consistent with the persistently active lava lake there (Field et al., 2012). Such
low pressures of crystallization are seen in other volcanoes with open conduits and persistently

active lava lakes (e.g., Erebus: Oppenheimer et al., 2011; Kilauea: Lerner et al., 2021).

In the Main Ethiopian Rift, strain has migrated from rift border faults to zones of focused
intrusion located on the rift floor that are characterized by intense faulting, linear chains of cinder
cones, and large silicic centers (Mohr, 1967; WoldeGabriel et al., 1990; Ebinger and Casey,
2001; Casey et al., 2006). The most significant of these zones of focused intrusion is the Woniji
Fault Belt (WFB), which extends from Afar through the northern Main Ethiopian Rift (Mohr,
1967). The WFB extends into the central Main Ethiopian Rift, but is joined by a parallel belt of
focused magmatic intrusion — the Silti-Debre Zeyit Fault Zone (SDFZ) (Rooney et al., 2011).

The WFB is typically regarded as the primary belt of focused intrusuion (axial), while the SDFZ
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is viewed as subordinate (off-axis) (e.g., Iddon and Edmonds, 2020), though the specifics of
strain accomodation in each belt are complex (Rooney et al., 2011). While both the WFB and
SDFZ exhibit broadly similar morphological characteristics, mafic magmas in each system may
reveal differences where magmas pond. At Kone volcano along the axial WFB in the northern
Main Ethiopian Rift, storage pressures for mafic melt inclusions are <50 to 350 MPa (<~13 km),
exhibiting bimodal clustering at <100 MPa and 250-350 MPa (Iddon and Edmonds, 2020).
However, these should be regarded as minimum pressures because melt inclusions with vapor
bubbles were not analyzed, so the data could be biased towards lower pressure, bubble-free
inclusions. At Butajira along the subordinate (or off-axis) SDFZ in the central Main Ethiopian
Rift, the volatile data is more distributed than for Kone, though trapping pressures for mafic melt
inclusions cover a nearly identical range, with two values extending higher to ~500 MPa (~18
km) (Iddon and Edmonds, 2020). The low-pressure mode at Kone likely is the result of some
low pressure degassing-driven crystallization in the conduit system (e.g., Mordensky and
Wallace, 2018). Pyroxene barometry, thermodynamic models of melt evolution, and dike self-
similar clustering all suggest polybaric fractionation systems in this region, but that in volcanoes
along the rift axis, magmas may rise and differentiate at shallower levels in comparison to off-
axis volcanoes (Trua et al., 1999; Rooney et al., 2005, 2007; Iddon and Edmonds, 2020;
Mazzarini et al., 2013). This dichotomy in the averge depth of at which magmas may pond is
also consistent with magma fractionation trends — lavas from on-axis and off-axis rift sectors
exhibit distinct CaO/Al,O; and Sr patterns indicative of significant plagioclase (shallow) or
pyroxene (deep) fractionation respectively (e.g., Trua et al., 1999; Peccerillo et al., 2003;

Rooney et al., 2007) (Fig. 10).

Magmas represented by the melt inclusions at South Island in Turkana exhibit major and
trace element similarities to magmas from the axial vocanic center of Kone in the northern Main

Ethiopian Rift, and are distinct from magmas from the off-axis SDFZ in the central Main

20



498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Ethiopian Rift (Fig. 10). Given the prior discussion demonstrating that there are broadly similar
mantle sources generating South Island and Quaternary MER magmas, this observation may
reflect magma ponding depth similarities between South Island and axial centers in the MER.
South Island volatile data exhibit vapor saturation pressures with a median value of 342 MPa
(Supplemental Information), similar to the higher-pressure mode at Kone. Presuming a crustal
density of ~2850 kg/m?* (roughly equivalent to the middle crust assumed for Turkana from
Emishaw & Abdelsalem (2019)), a conversion of ~28 MPa per kilometer is calculated,
equivalent to a median magma ponding depth of ~12 km. This value virtually identical to the
maximum value of ~13 km calculated for Kone (Ilddon and Edmonds, 2020). These data are
consistent with a broadly equivalent mafic magma plumbing system at depth for both Kone and

South Island.

Establishing the plate context of this ponding depth requires independent estimates of
the crustal thickness and structure. In the central Main Ethiopian Rift and Kenya Rift, active
source seismic campaigns have established that crustal thickness is ~35 km (Mechie et al.,
1997; Maguire et al., 2006). However, within the two broad depressions in the EARS (Turkana
and Afar), crustal thickness estimates are much thinner. In the central part of the Turkana Basin
under Lake Turkana, crustal thickness is ~20 km (Mechie et al., 1994). Along the northern Main
Ethiopian Rift and into southern Afar, the crust progressively thins northward: ~30 km at Kone to
23-26 km-thick further north (Maguire et al., 2006; Lavayssiere et al., 2018), eventually reaching
16 km in portions of the triple junction (Hammond et al., 2011). Crustal structure beneath Kone
volcano in the northern Main Ethiopian Rift is dominated by a boundary between the upper and
lower crust at ~10 km, defined by a change in seismic velocity from 6.4 to 6.7 km s (Maguire et
al., 2006). In Turkana, the upper-lower crust boundary also occurs at ~10 km, but here
separates an upper crust with a seismic velocity of 6.1 km s from the lower crust with a seismic

velocity of 6.4 km s (Mechie et al., 1997). Based on these existing constraints, the lower crust
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at Kone (~20 km) is much thicker than that at South Island (10 km), yet the ponding depths of
magmas at South Island (12 km) and Kone (13 km) are similar. However, given the transition
between the lower and upper crust occurs at the same depth in both locations (10 km), it is
possible that the depth of magma storage is in part controlled by crustal density, as magmas in

both volcanic systems pond just below the lower to upper crust transition.

5.3 Implications for strain distribution

The results of this study may have implications for understanding modern strain distribution
within the Turkana Depression and its relationship with the development of axial magmatism in
much of the Eastern Branch of the EARS over the past 1 Myr (Rooney, 2020b). Since the
Pliocene, magmatism in the Eastern Branch of the EARS has transitioned from large, basin
filling eruptions of trachytic magmas towards becoming progressively more focused into linear
belts of relatively small-volume bi-modal magmatism (Mohr, 1967; Rooney et al., 2011; Rooney,
2020b). The development of these linear belts was concomitant with the migration of strain
towards these new intra-rift axes of extension (Boccaletti et al., 1998; Hayward and Ebinger,
1996; Ebinger and Casey, 2001; Casey et al., 2006). However, the existence of overlapping
intra-rift axes may create ambiguity in interpreting the current locus of strain in some parts of the

EARS (e.g., Rooney et al., 2011).

In the Main Ethiopian Rift, the relative Nubia-Somalia plate velocity is accommodated by
extension that is a function of two distinct components: (A) distributed strain within the Ethiopian
highlands, and (B) focused strain within the rift (Stamps et al., 2008, 2018; Birhanu et al., 2016;
Knappe et al., 2020). While some strain continues to be accommodated on the rift border faults
(Pizzi et al., 2006; Agostini et al., 2011; Molin and Corti, 2015), the extension is preferentially
accommodated in zones of focused magmatic-tectonic activity within the rift (e.g., Bilham et al.,

1999). Where these zones of focused magmatic-tectonic activity overlap, one zone may
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become dominant over the other, resulting in what is termed ‘axial’ systems that are
characterized by largely shallow fractionation of sub-lithosphere derived magmas, whereas the
sub-ordinate belt (off-axis) is characterized by magmatism that experiences a greater degree of
deeper fractionation (Rooney, 2010; Rooney et al., 2011; Iddon and Edmonds, 2020). Shallow
fractionation, attributed to a more well-developed magma plumbing system, results from a
greater magma flux into the lithosphere that is able to generate greater magma overpressure to
overcome the surrounding lithospheric stresses (Rubin, 1990; Parsons and Thompson, 1991).
This greater magma flux into the lithosphere adds volume to the lithosphere in greater
proportion than at a less well-developed magma plumbing system, thereby accommodating

more strain (Rubin and Pollard, 1988; Rooney et al., 2014).

Pliocene to recent magmatism in Turkana exhibits some of the same styles of magmatic
activity to that of the narrow rifts to the north (Main Ethiopian Rift) and south (Kenya Rift)
(Rooney, 2020b). Notably, large volume relatively evolved lavas of the Pliocene Gombe Stratoid
Series (Hackman, 1988; Key and Watkins, 1988; Haileab et al., 2004) were followed by shield
volcanoes (Key et al., 1987; Ochieng et al., 1988; Furman et al., 2006b; Gathogo et al., 2008),
and then with modern small volume basaltic cinder cones occurring along linear alignments
(Fig. 2) (Class et al., 1994; Furman et al., 2004; Corti et al., 2019; Rooney, 2020b).2) Modern
magmatism associated with these cinder cone belts is distributed into two regions — magmatism
associated with Lake Turkana (Karson and Curtis, 1994; Furman et al., 2004; Brown and
Carmichael, 1971, 1969), and that occurring to the east of the Lake (Fig. 2) (Key et al., 1987;
Ebinger et al., 2000; Shinjo et al., 2011; Corti et al., 2019; Franceschini et al., 2020). The Lake
Turkana Basin (Fig. 2) has recently been suggested to represent the axial linkage region
between the Kenya Rift and Main Ethiopian Rift — a process that has been hypothesized to have

initiated in the Pliocene (Corti et al., 2019). The inference that the Lake Turkana Basin is
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currently being impacted by strain focusing and rifting processes is consistent with historical or
very young volcanism reported for this area in both the south (von Héhnel, 1894) and north of
the Basin (Jicha and Brown, 2014). However, the presence of zero aged “°Ar/**Ar dates for
volcanism located east of the Turkana Basin (Franceschini et al., 2020) make it apparent that
there are at least two zones of magmatic activity in the Turkana Depression that are active
contemporaneously. Might this suggest, as in the central Main Ethiopian Rift, a more complex
evolution of strain accommodation? Existing structural studies instead suggest that volcanic
vents located east of the Lake are unrelated to regional extension — the vents exhibit alignments
that are at a high-angle to rift-related faults and developed after the abandonment of the rift in

that region (Corti et al., 2019; Franceschini et al., 2020).

Geodetic constraints within the Turkana Basin add further clarity as to the modern loci of
strain and show a strong correlation between the presence of magmatism and extension in the
Lake Turkana Basin. Along the northern portions of Turkana, extensional strain is broadly
distributed with a component occurring within the Omo basin or Ethiopian Highlands, and also
the Chew Babhir/Teltele Plateau (Fig. 2) (Knappe et al., 2020) for a total rate of 4.4 mm/year,
consistent with existing regional models (Stamps et al., 2008; Saria et al., 2013). Current GPS
extension rates in Southern Turkana are estimated to be 4.7 + 0.4 mm/yr, with extensional
strain focused in a ~20-30 km wide zone (Knappe et al., 2020). These values are consistent
with time-average Holocene extension rates of 3.5-5.8 mm/yr estimated from reflection seismic
analysis of axial normal faults in South Turkana basin, which are aligned with South Island
volcano (Muirhead et al., this volume). In all, these observations suggest that the locus of
extensional strain at this latitude is currently centered around South Island. Combined analysis
of both single- and multi-channel seismic data, considered in the context of the evolving lake
stratigraphy (Feibel, 2011; Nutz et al., 2020), also suggest that this transition to focused axial

extension likely initiated in the Late Pleistocene (Muirhead et al., this volume) and later than
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similar transitions observed farther north in the Main Ethiopian Rift (Boccaletti et al., 1998;

Ebinger and Casey, 2001; Wolfenden et al., 2004).

These geodetic and structural observations suggesting that the Lake Turkana Basin is
the current locus of strain supports the results of this study. At South Island, the occurrence of
sub-lithospheric derived Type Ill magmas and a crustal differentiation system that resembles
that of the axial systems from the Main Ethiopian Rift is consistent with the Lake Turkana Basin
being the current axial sector of the rift. In contrast, magmatism to the east of the Turkana basin
contains abundant mantle nodules (e.g., Conticelli et al., 1999; Casagli et al., 2017; Orlando et
al., 2006) with a very immature magmatic system that undergoes little crustal fractionation
(Franceschini et al., 2020). These observations further reveal that the development of axial
magmatism in Lake Turkana also occurred during a period of extensional strain focusing into
the axial fault system, suggesting that strain localization was intimately linked with evolving

magmatic processes in the region.

6. Conclusions

Lavas at South Island represent melts of the upper mantle beneath the Turkana Depression.
These lavas are compositionally equivalent to Quaternary axial magmas from along the Eastern
Branch of the East African Rift System and are interpreted as a melt of a plume-influenced
upper mantle. The volatile element systematics of South Island show that bubble-corrected CO,
concentrations are also similar to other Quaternary axial volcanoes within the East African Rift
System and magma ponding occurred at depths of ~12 km. We interpret these data in the
context of new structural constraints (Muirhead et al., this volume) to suggest that South Island
represents a zone of focused tectonic-magmatic extension similar to those identified within the

Main Ethiopian Rift (e.g., Ebinger and Casey, 2001). Moreover, when considered within the

25



622

623

624

625

626

627
628
629
630
631
632

633

634
635

636

637

638
639

640
641

642
643
644

645
646
647
648
649
650
651

652

regional geodetic framework (e.g., Knappe et al., 2020), it is apparent that the modern
partitioning of strain in the Turkana Depression, at this latitude, occurs in the Lake Turkana

Basin.
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Figure Captions:

Figure 1: Map showing the location of South Island relative to other Quaternary volcanic centers
in the East African Rift System. Place names mentioned in the text are also shown on this
figure. Features are adapted from the maps presented in Rooney (2020b, 2020a, 2020c).

Figure 2: Regional map of the Turkana Depression and surrounding areas. Volcanic features
are shown in yellow, tectonic features are shown in italics as off-white. The extent of volcanic
activity from the Stratoid Phase until present is also shown. Shapes adapted from the maps
presented in Rooney (2020b, 2020a, 2020c) which were compiled from other sources (Kazmin
et al., 1981; Haileab et al., 2004; Guth, 2013; Erbello and Kidane, 2018), and also from
Franceschini et al. (2020). Note that all volcanics of the Huri Hills (including Quaternary cones)
are subsumed into a single unit.

Figure 3:
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A. Modified version of the map of South Island presented by Karson & Curtis 1994. Mapped
geologic units of South Island are: S1 — Basaltic flows, pillow lavas, and hyaloclastites; S2 —
Undifferentiated, massive, poorly-sorted light olive-brown tuffs; S3 — Undifferentiated tan to gold,
massive to fine bedded tuffs and lapilli-tuffs with subordinate aggluntinate; S4 — Undifferentiated
basaltic lavas; S5 — Fine, black to reddish-gray ash. Map was overlain on ESRI World Hill
Shade basemap that used the following sources: Esri, Airbus DS, USGS, NGA, NASA, CGIAR,
N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland,
FEMA, Intermap, and the GIS user community. The map has been simplified and cones
associated with S4 have been subsumed.

B. 3D image of South Island with the units from part A. above shown draped over Google
Satellite imagery © 2021 Maxar Technologies and rendered into 3D with a NASA SRTM DEM
with a 1.5x vertical exaggeration using QGIS and QGIS2threejs plugin. North arrow shows in
red on lower left.

Figure 4: Variation of major and trace elements for the Quaternary volcanic centers in the Lake
Turkana Basin. Data sources are: Barrier (Brown and Carmichael, 1971; Koyaguchi, 1984;
Tatsumi and Kimura, 1991; Rogers et al., 2000, 2006; MacDonald et al., 2001; Kabeto et al.,
2001; Furman et al., 2004); Birds Nest and Central Island (Furman et al., 2004); Korath (Brown
and Carmichael, 1969); North Island (Brown and Carmichael, 1971; Bloomer et al., 1989;
Furman et al., 2004); South Island (existing) (Brown and Carmichael, 1971; Furman et al.,
2004). The data show the relatively wide distribution range in P.Os but strong correlation in
other major elements. Incompatible trace elements show a significant enrichment in Korath
samples in Nb and La. Ba is enriched for Korath samples and some Barrier and Bird’s Nest
samples. Whole rock chondrite normalized (CN) La/Yb values for South Island vary from 4.6 to
10.6; melt inclusions occupy the lower part of this range (4.4-5.7) but also include an
anomalously low value from MI-7a of 2.9 (discussed in the main text). Our new whole rock and
melt inclusion data plot among the existing South Island whole rock data and are presented in
the supplementary information.

Figure 5: Chondrite normalized rare earth element values (Boynton, 1984) for the Quaternary
volcanic centers in the Lake Turkana Basin. Data sources are the same as for Figure 4. The
Korath dataset lacks sufficient rare earth element data to construct this plot. South Island melt
inclusions plot among the existing regional data with the exception of the one sample noted in
the main text to have a depletion in the most incompatible rare earth elements. The grey
background lines represent the full dataset that is shown on this figure and provides a
comparison between each unit and the overall dataset.

Figure 6: Primitive mantle normalized values (Sun and McDonough, 1989) for the Quaternary
volcanic centers in the Lake Turkana Basin. Data sources are the same as for Figure 4. The
Korath dataset lacks sufficient rare earth element data to construct this plot. New South Island
data show the strong Type lll magma pattern in both the whole rock and melt inclusion data.
Barrier shows a similar pattern but with a strong negative Zr-Hf anomaly indicative of interaction
with a metasomatic source. Similarly, Central Island shows a Type IV lava pattern that is
indicative of interaction with the lithospheric mantle. The grey background lines represent the
full dataset that is shown on this figure and provides a comparison between each unit and the
overall dataset.

Figure 7: High precision olivine minor and trace element data for South Island compared with
other datasets: MORB, Afar, Within Plate Basalt (WPM — thick) (Sobolev et al., 2007);
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Ugandites (Foley et al., 2011); Melanephelinite, basanite, and alkali basalts are from the
Miocene Gerba Guracha Shield volcano on the Ethiopian highlands (Rooney et al., 2017);
Ethiopian Flood Basalt (Rooney et al., 2017). South Island data are distinct from olivine derived
from metasomatically enriched sources. The low Cr values in South Island olivine in comparison
to the other datasets is notable.

Figure 8: Melt inclusion volatile data plotted versus MgO and other elements for olivine-hosted
mafic melt inclusions from the East African Rift System for more mafic magmas (<55 wt. %
SiO,). The volatile data include both experimentally rehomogenized and naturally quenched
glasses and are discussed in the main text. H.O/Ce is used as a measure of the relative
enrichment of the mantle source in H>O (e.g., Dixon et al., 2002). For East African Rift System
lavas derived from metasomatic sources, the Ce concentration of the mantle source is the
dominant control on the H,O/Ce values. Where reported, MgO is the post entrapment
crystallization (PEC) corrected value of the melt inclusion. Data for South Island are bubble-
corrected. Aluto, Butajira, and Kone are from the Main Ethiopian Rift (Iddon and Edmonds,
2020); Bufumbira and Nyamuragira are from the Virunga Volcanic Province from the Western
Branch of the East African Rift System and are derived from a metasomatically enriched source
in the lithospheric mantle (Head et al., 2011; Hudgins et al., 2015); Nabro and Erta ‘Ale
volcanoes are in Afar (Field et al., 2012; Donovan et al., 2018).

Figure 9: Variation in Quaternary volcanic centers in the Lake Turkana Basin of 2°Pb/2%Pb with
an indicator of a source with metasomatic amphibole denoted by low primitive mantle
normalized (Sun and McDonough, 1989) ratio of Hf/Sm. All data, including South Island, are
from existing publications (MacDonald et al., 2001; Furman et al., 2004; Rogers et al., 2006).
Note the continuum between Barrier, North Island, and Central Island in terms of isotopic ratios
and an indicator of metasomatic enrichment. It is also apparent that South Island does not fall
on this continuum, consistent with the hypothesis of a sub-lithospheric origin for these lavas.

Figure 10: Co-variation of whole-rock CaO/Al,Os; and Sr (ppm) with MgO in the Wonijii Fault Belt
(WFB), Silti-Debre Zeyit Fault Zone (SDFZ), and South Island melt inclusion data. The
distinction between the SDFZ and WFB data is interpreted in terms of a greater proportion of
clinopyroxene fractionation at deeper levels within the crust in the SDFZ, in comparison to the
WFB where plagioclase is more dominant at shallower levels (e.g., Rooney et al., 2005, 2007).
The South Island melt inclusion data plot with the WFB data, suggesting a fractionation of a
mineral assemblage with a greater proportion of plagioclase. Data sources for the WFB and
SDFZ are fully presented elsewhere (Rooney, 2020b).

Figure 11: Volatile element variation for East African melt inclusions overlain on an isobar
volatile saturation grid derived from VolatileCalc 1.1 (Newman and Lowenstern, 2002). Model
conditions assumed 48.5 % SiO, at 1115°C, the average for the South Island melt inclusions.
Volatile data for South Island is presented as bubble corrected, however we also show the
uncorrected data. Data sources are the same as Figure 8.
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Figure 6
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Figure 9
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