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Abstract

By averaging over atomic details, coarse-grained (CG) models provide profound
computational and conceptual advantages for studying soft materials. In particu-
lar, bottom-up approaches develop CG models based upon information obtained from
atomically detailed models. At least in principle, a bottom-up model can reproduce
all the properties of an atomically detailed model that are observable at the resolution
of the CG model. Historically, bottom-up approaches have accurately modeled the
structure of liquids, polymers, and other amorphous soft materials, but have provided
lower structural fidelity for more complex biomolecular systems. Moreover, they have
also been plagued by unpredictable transferability and a poor description of thermo-
dynamic properties. Fortunately, recent studies have reported dramatic advances in
addressing these prior limitations. This perspective reviews this remarkable progress,
while focusing on its foundation in the basic theory of coarse-graining. In particular,
we describe recent insights and advances for treating the CG mapping, for modeling
many-body interactions, for addressing the state-point dependence of effective poten-
tials, and even for reproducing atomic observables that are beyond the resolution of
the CG model. We also outline outstanding challenges and promising directions in
the field. We anticipate that the synthesis of rigorous theory and modern computa-
tional tools will result in practical bottom-up methods that are not only accurate and

transferable, but also provide predictive insight for complex systems.



1 Introduction

Particle-based coarse-grained (CG) models provide a powerful tool for studying proteins,
polymers, - and other soft materials.” By representing systems in reduced detail, CG models
provide the necessary computational efficiency for simulating length- and time-scales that
remain far beyond the scope of conventional atomically detailed simulations. For instance,
while Bowman and coworkers effectively constructed the first exascale computer to simulate
atomically detailed models of key proteins and protein complexes from the SARS-CoV-
2 proteome,  Voth and coworkers simulated a CG model of the entire coronavirus capsid
with far fewer computational resources.” At the same time, by retaining essential molecular
details, CG models provide insight into conformations, fluctuations, and interactions that
are hidden from continuum or mean field theories. Moreover, CG models promote broader
participation in computational science by significantly reducing the resources required for
simulating compelling phenomena.

Since computational efficiency is a primary motivation, one might suspect that rapid ad-
vances in computational methods and resources will soon render low-resolution CG models
obsolete. However, CG models will likely remain important computational tools far into the
future. As Deserno eloquently discussed, the computational effort necessary for reaching
equilibria often grows extremely rapidly with system size and complexity.” For instance, the
computational effort required for equilibrating simple lipid membranes with a characteristic
length, L, scales as L' As simulations address systems of ever-increasing scale and com-
plexity, the efficiency of CG models will become increasingly important for minimizing finite
size effects, for reaching equilibrium, and for obtaining statistically significant results. ™
Furthermore, the efficiency of CG models enables large-scale, high-throughput simulation
studies for systematically and exhaustively exploring the influence of various experimental

and model parameters. By representing molecules in reduced detail and adopting a “coarse-

!The LS scaling arises because the size of the simulated system scales as L? (i.e., the area of the mem-
brane), while the time scale for equilibrating an undulation of length L decays on a time scale proportional
to L4



grained periodic table,” CG models even reduce the dimension of chemical space, which
dramatically reduces the computational effort necessary for exploring this space. """ Conse-
quently, CG models provide an ideal tool for investigating phase behavior, self-assembly, and
other emergent mesoscale phenomena, '~ for elucidating basic biophysical principles,
and for establishing functional relations between molecular and material properties. © Ac-
cordingly, we anticipate that CG models will continue to grow in popularity as long as human
imagination outpaces advances in computational capabilities.

More importantly, CG models provide profound conceptual advantages. As famously
quipped, one does not need to consider quarks when modeling bulldozers. ' Similarly, many
phenomena in chemistry and physics can be modeled without considering every atomic de-
tail. Just as cartographers employ a reduced description that indicates only the features
necessary for navigating a geographic location, in the same way, theorists adopt a reduced
representation that considers only the details necessary for predicting and, even more impor-
tantly, understanding a particular physical phenomenon. =" While atomic details tend to
obscure insight, the very process of coarse-graining liberates researchers to tailor models for
addressing specific questions. Coarse-graining empowers researchers to focus their most valu-
able resources — their time and intellectual horsepower — on identifying and understanding
the essential aspects of a phenomenon.

It is perhaps useful to distinguish several complementary, though certainly not mutually
exclusive, philosophies for constructing CG models. Generic “toy” models employ minimal
detail and exceptionally simple potentials to investigate the general consequences of basic
physical principles.”“* Conversely, “chemically specific” models are developed to investigate
particular molecular systems. Although an over-simplification, it is often convenient to
distinguish “top-down” and “bottom-up” approaches for constructing chemically specific CG
models. """ While top-down approaches typically adopt relatively simple potentials that are
tuned to match macroscopic thermodynamic properties, such as the bulk density or the

liquid-vapor surface tension, bottom-up approaches often employ more complex potentials



that are parameterized with information from atomically detailed simulations. Finally, it
is perhaps also useful to distinguish between “pragmatic” and “rigorous” approaches for
coarse-graining. While pragmatic approaches rely upon physical arguments and chemical
intuition when developing CG models, rigorous approaches adhere more closely to the exact
statistical mechanical procedure of formally averaging over atomic degrees of freedom. Of
course, it should be emphasized that these distinctions are somewhat blurry and that many
models reflect, e.g., both top-down and bottom-up aspects. For instance, the popular Martini
model exemplifies a pragmatic, hybrid approach: the intermolecular pair potentials have
been parameterized in a top-down fashion to match macroscopic thermodynamic properties,
while the bonded potentials have been parameterized in a bottom-up manner to match the
molecular conformations observed in atomically detailed simulations.

From this perspective, rigorous bottom-up approaches provide certain advantages. In
particular, rigorous bottom-up approaches benefit from a direct statistical mechanical con-
nection to a high-resolution model for the same system. This multiscale connection provides
a rigorous basis for treating the atomic details that are not explicitly present in the CG
model when parameterizing, analyzing, and systematically improving bottom-up models.
Moreover, it provides a fundamental framework for relating the observable properties of high
resolution and CG models. """ Assuming that the high resolution model accurately describes
the system of interest,” this connection anchors the predictions of the CG model in reality.
When this connection is realized, bottom-up CG models become a powerful predictive tool
because their simulated structural and thermodynamic properties are consistent with a re-
alistic microscopic model. Such bottom-up models hold unique promise for elucidating the
underlying mechanism of mesoscale phenomena because the interactions in the CG model
can be directly related to microscopic interactions.

Bottom-up approaches have not yet realized this promise. While they accurately describe
the structural properties of relatively amorphous soft materials, such as liquids and polymers,

bottom-up approaches have enjoyed less success in modeling biomolecules with complex hi-



erarchical structures.”” Even more problematically, bottom-up potentials often demonstrate
unpredictable transferability: Bottom-up potentials that accurately describe a specific in-
teraction in a particular environment and thermodynamic state point (e.g., the interaction
between amino acids that are buried in a folded protein at a given temperature and pressure)
may provide a relatively poor description of the same interaction when the thermodynamic
state point or environmental context changes. " Furthermore, and perhaps more surpris-
ingly, bottom-up models that accurately describe the structural properties of soft materials
often provide a surprisingly poor description of their thermodynamic properties, such as the
internal pressure or cohesive energy. """ Accordingly, it has been humorously suggested that,
while bottom-up approaches promise the caviar of CG models, researchers are often limited
in practice to Martini soup.” (See Fig. 1.)

Fortunately, recent studies have achieved remarkable progress in understanding and ad-
dressing these limitations of bottom-up approaches. This perspective attempts to review
and synthesize this progress. We attempt to provide a useful, though certainly not exhaus-
tive, survey of recent studies. Rather than artificially distinguishing between “physics” and
“data” driven approaches, we instead attempt to integrate these approaches and holistically
organize progress around the basic theory for coarse-graining. In so doing, we hope to clarify
the fundamental origin of challenges that arise in systematic coarse-graining. Moreover, we
hope to identify and highlight promising approaches for rigorously addressing these chal-
lenges in practice. For a more comprehensive introduction to bottom-up approaches, the
reader is referred to a number of outstanding earlier reviews.“""""” More recently, several
excellent reviews have discussed methods and theories for bottom-up coarse-graining,
as well as their application for biomolecular =" and polymeric systems.’ " Nevertheless,
it is hoped that this perspective will still provide useful insight.

The remainder of this review is organized as follows. We first discuss the choice and
consequences of the CG representation. We next discuss methods for determining the con-

servative potential that describes interactions and governs sampling in the CG model. The
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Figure 1: A perspective on coarse-graining kitchens.”” Top: Rigorous bottom-up models are
sometimes perceived as appetizing delicacies that are impractical and inaccessible to non-
experts. [Photograph courtesy of Amy Tong 1'11v.1t.] Bottom: Pragmatic top-down models
are sometimes perceived as very palatable alternatives that are both affordable and ac-

cessible. [Image from https://www.vecteezy.com /vector-art /208237-family-on-dinner-table.
Modifications by M. Lesniewski.]

following two sections then discuss the structural fidelity of bottom-up models, as well as
their transferability and thermodynamic properties. Due to space and time constraints, we
do not discuss the challenges or progress in modeling dynamical properties with bottom-up
CG models. We refer readers to several excellent recent reviews on this very interesting
topic.” " Finally, we conclude by attempting to concisely summarize the key advances and

insights of recent work, as well as highlighting a few emerging challenges and opportunities
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in the field.

2 Coarse-grained representation

The first step in constructing a CG model is to determine a CG “representation” for the
system of interest. Although several early studies proposed systematic methods for rep-
resenting systems in CG detail,” ™ in practice most researchers rely upon their intuition.
Consequently, White and coworkers constructed a dataset of annotated “expert” CG repre-
sentations and trained a graph convolutional neural network to apply this expert intuition
in determining representations for new molecules.”” Similarly, recent studies have developed
automated, high-throughput methods for determining CG representations based upon the
chemical fragments employed in Martini models.”""” In recent years, though, several studies

have critically revisited the choice and consequences of the CG representation.

2.1 Mapped ensemble

In systematic bottom-up approaches, the CG representation not only specifies the number
and character of the particles that are explicitly modeled, but also defines a (usually) linear
mapping, M : r — R = M(r), that determines a unique CG configuration, R, for each all-
atom (AA) configuration, r.? The mapping is critically important because it determines the
dynamic, structural, and thermodynamic properties that can be directly observed at the CG
resolution.”” In particular, bottom-up approaches often focus on reproducing the “mapped
ensemble” that is obtained by mapping the AA ensemble to the CG representation. Given

an AA model with an equilibrium distribution, p,(r), the “mapped distribution,”

pr(R) = /dr pr(r)6(M(r) - R), 1)

2For simplicity, we refer to the high resolution model as an all-atom (AA) model. However, the present
analysis applies to more general classical high resolution models.



gives the probability (density) that the AA model assigns to each configuration, R, in the

mapped ensemble.?
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Figure 2: Influence of M upon the mapped ensemble. The left panels indicate two different
2-site representations of a simple three helix bundle. Both representations partition the
amino acids into disjoint groups and associate a CG site with the mass center of the group.
The amino acids that are grouped into the same site are given the same color in both the
ribbon cartoon structure and also the 1-D sequence below the structure. The right panel
presents the mapped “bond distribution” obtained by mapping the AA ensemble onto each
two-site representation. Adapted with permission from Ref. 17. Copyright 2021 Springer
Nature.

Figure 2 illustrates the influence of M upon the mapped ensemble by comparing two
different 2-site CG representations for a small helical protein.”” Because the first mapping
associates the CG sites with distinct structural features that move coherently, the average
distance between the two sites is approximately 0.9 nm and the CG “bond” between the two
sites samples relatively large fluctuations. In this case, the mapped ensemble nicely preserves
large scale motions. Conversely, because the second mapping associates each CG site with
an incoherently distributed set of amino acids, the average distance between the two sites

is less than 0.1 nm and the corresponding bond distribution is much more narrow. In this

3We adopt the notation that AA and CG quantities are represented by lower case and capitalized letters,
respectively. Thus, pgr(R) is the probability that the AA model gives to the CG configuration, R.



case, the mapped ensemble appears to describe localized, high frequency fluctuations. While
these two mappings represent rather extreme possibilities, they clearly demonstrate that the
choice of CG mapping can strongly influence the properties of the mapped ensemble. Note
that these different mapped ensembles are completely specified by the mapping, M, itself

and do not reflect any approximations, e.g., in treating the interaction potential.

2.2 Large scale motions

One intuitively expects that “good” CG mappings should preserve the low frequency, large
amplitude motions that are present in AA molecular dynamics (MD) simulations. Indeed,
principal component analysis (PCA) demonstrates that the Martini mapping scheme nicely
preserves the large amplitude motions that are sampled by lipids in AA simulations.” The
essential dynamics coarse-graining (ED-CG) method provides a systematic approach for con-
structing low-resolution representations according to this intuition.”” The ED-CG method
first employs PCA to project an AA trajectory onto the “essential dynamics” subspace of
large amplitude motions.”" The ED-CG method then identifies CG sites with rigid atomic
groups that move coherently within this subspace. Recent studies with the ED-CG method
have investigated the importance of symmetry for CG representations” and developed im-
proved numerical methods for identifying these rigid atomic groups.“”

Two recent studies have applied similar intuition to construct optimal CG representa-
tions for atomically-detailed elastic network models (ENMs), which are widely adopted for
studying complex biomolecules. '~ Both studies employed “decimation” mappings that suc-
cessively eliminated atoms and then associated each CG site with a specific atom from the
high resolution ENM. Inspired by renormalization group approaches, """ Koehl and cowork-
ers constructed a hierarchy of CG ENMs by systematically eliminating high frequency atoms
from the AA network.” Conversely, Potestio and coworkers™’ determined the mapping for

which the effective interactions between the remaining atoms were best described by a CG

10



ENM.* In both cases, the resulting CG models nicely preserved the shape and low frequency
fluctuations of the underlying atomic ENM.

Other studies have employed graph-theoretic concepts to determine the CG representa-
tion for a molecule based only upon its bonded connectivity. White and coworkers developed
a hierarchical graph-based framework for encoding and organizing CG representations that
preserve underlying symmetries of the high-resolution model.” A specific mapping corre-
sponds to a “slice” through a “tree” of related maps, which can be optimized according
to various metrics. de Pablo and coworkers developed an automated graph-based coarse-
graining protocol for agglomerating atoms into CG sites by successively contracting edges
from the atomically detailed molecular graph.’® This approach appears quite promising for
constructing a hierarchy of CG representations that preserve the low-frequency motions of

complex molecules, while requiring only minimal information.

2.3 Information content

Alternatively, rather than focusing on large amplitude motions, one may consider the con-
figurational information that is preserved by the CG mapping. The Kullback-Leibler (KL)
divergence, '~ which is also known as the relative entropy, provides a useful metric for quan-
tifying this information. ™ Specifically, given two probability densities, p;(z) and py(z), the

KL divergence is defined by

Dl = [ar oy |20, )

pa(w)

By the Gibbs inequality, ™’ D[p;||p2] > 0 and only vanishes when p; = p, (almost) everywhere.

Consequently, D[p;||p2] quantifies the difference between p; and po, although it cannot be

4As discussed further below, the process of exactly integrating out a fraction of the microscopic degrees
of freedom generally results in a “renormalized” effective potential for the remaining degrees of freedom that
does not have the same form as the original microscopic potential. ' In particular, the effective potential
obtained by exactly integrating atoms out of an ENM does not have the same form as the original ENM
potential.

11



considered a formal “distance” metric because it is not symmetric, i.e., D[p1||p2] # D[p2||p1].?
Moreover, because In [p;(z)/ p2(x)] can be interpreted as the information available at = for
discriminating between p; and po,'” the KL divergence can be interpreted as the average
of this information weighted according to p;. If one considers the uniform distribution,
¢:(r) = V", for n atoms to contain no information, then one can quantify the information,

Haa, present in the AA equilibrium configuration distribution, p.(r), by

Has = Dlpla] = farp o |20, ®)

which corresponds to the (negative of the) excess configurational entropy of the AA model.
Similarly, one can quantify the information, Hgg, present in the mapped ensemble as
the KL divergence between the mapped distribution, pr(R), and the minimally informative,

uniform distribution, gr(R) = V=, for N CG sites

> 0, (4)

Hee = Dipr||gr] = / dR pr(R)In {gigﬂ

which corresponds to the excess entropy of the AA model when it is observed at the CG reso-
lution. Hgg increases as pg becomes less uniform and, thus, “more informative.” According
to this metric, the mapped ensemble for Map 1 in Fig. 2 is relatively “information poor”
because the corresponding mapped distribution is relatively broad and, therefore, contains
large uncertainty in the CG bond length. Conversely, the mapped ensemble for Map 2 is
more informative because the mapped distribution is much more narrow.

For any CG configuration, R, there exists an entire subensemble of AA configurations that
all map to R. This subensemble is characterized by the conditional probability distribution
prr(r|R) = pr(r)0(M(r) — R)/pr(R), which is the probability (density) for sampling an AA

5Sanov’s theorem implies another important property of the KL divergence.®' Consider n, > 1 sta-
tistically independent samples {x1,z3,..., 2, } drawn from a probability density, p(z). These ng samples
determine an empirical probability density, p(z) = n ! > 1" 6(x — z;), that corresponds to the frequency of
observing z among the n, samples. The likelihood, L[p], of observing the empirical probability distribution,
p(x), exponentially decays with ng at a rate specified by D[p||p], i.e., L[p] =~ exp [-nsD[p||p]].
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configuration r given the condition that it maps to the CG configuration R. The mapped
ensemble eliminates all information about this subensemble, effectively replacing pyr(r|R)
with the uniform distribution, gr(r|R) = V¥ "6(M(r) — R). The information lost from

this subensemble can be similarly quantified by the KL divergence between p.r and gy r:

(5)

Dipgullanl (R) = far pontriR)n [P0,

e (r|R)

Again by the Gibbs inequality, Eq. (5) is non-negative and attains its minimum (i.e., 0)
if and only if pyr(r|R) = ¢r(r|R), i.e., when all AA configurations that map to R have
equal probability. Increasing D[p,r||qr](R) corresponds to increasing the detail stored in
Py and, thus, reducing the effective degeneracy of AA configurations that map to R. The

mapping entropy, Hyap,’ is defined by averaging Eq. (5) over the mapped ensemble,

Hinep — /dRpR<R>D[pr|Rqu|R}<R> >0 (6)

which quantifies the total information lost from the mapped ensemble.
For any CG mapping, M, the total configurational information, Haa, present in the AA

distribution can be decomposed according to an entropy chain rule
HAA - HCG + Hmap- (7)

While Hog and Hy,p both depend upon the mapping, Haa is independent of M. Con-
sequently, Eq. (7) implies a fundamental trade-off regarding the impact of the mapping
upon configurational information. Specifically, the fixed information in the AA configura-
tion distribution, p;, is partitioned between the mapped distribution, pr, and the conditioned
distribution, p,r. Mapping 1 in Fig. 2 and other maps that give rise to relatively uninfor-

mative mapped ensembles (i.e., low Hcg) correspond to relatively informative conditioned

®While early studies®” “" introduced a negative mapping entropy, Smap < 0, here we follow the notation
of Potestio and coworkers™’ by defining Hynap = —Smap > 0.
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distributions (i.e., high Hy,ap) and, thus, CG configurations with relatively low degeneracy.
Conversely, mapping 2 and other maps that give rise to relatively informative mapped ensem-
bles (i.e., high Hcg) correspond to relatively uninformative conditioned distributions (i.e.,
low Hpap) and, thus, CG configurations with relatively high degeneracy. While it is generally
challenging to quantify entropic quantities, van der Vegt and coworkers recently employed
the two-phase thermodynamics (2PT) method” to estimate the information contained in the
mapped ensemble.

Potestio and coworkers have provided important insight into these considerations for dec-
imation mappings that define each site by a single atom.” By employing a second cumulant
approximation to estimate D[pyr||¢:r](R) from potential energy fluctuations, they estimated
H,ap based upon statistics from AA protein simulations. Interestingly, even though these
simulations considered single proteins, the maps with minimum information loss (i.e., with
minimum H,,,,) highlighted atoms that mediate biologically important interactions. Con-
versely, CG representations that identified sites with o carbons along the protein backbone
resulted in relatively high information loss (i.e., high Hp,,). These C-a mappings, which
are widely adopted in CG protein models,”’ presumably correspond to highly structured
conditioned distributions, p,r, since the atomic structure of the protein backbone can be
accurately reconstructed from the « carbon coordinates.””’ Subsequently, Potestio and
coworkers ' related the mapping entropy to “resolution” and “relevance” metrics that
have been employed to characterize deep learning.” As they have emphasized, " funda-
mental insights into the mapping operator may prove useful not only for determining CG
representations, but also for identifying order parameters to analyze and bias molecular sim-
ulations, and even much more generally for understanding complex interacting systems, such
as economic markets’~ or social networks. "

Conversely, Gémez-Bombarelli and coworkers have employed variational autoencoders

(VAEs) to determine CG mappings.’”" This VAE framework simultaneously determines

"The 2PT method “*°" estimates the entropic properties of liquids as a weighted combination of contri-
butions from solid-like vibrations and gas-like diffusion.
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both an encoder (i.e., a CG mapping) that transforms an AA configuration into a CG con-
figuration, as well as a decoder (i.e., a “back-mapping”) that transforms a CG configuration
into an AA configuration. In particular, these studies trained the VAE to learn a CG rep-
resentation that allowed for optimal reconstruction of given atomic structures. According
to the above reasoning, this approach likely determines representations with relatively high
H,yap that reduce the degeneracy of AA configurations mapping to a given CG configuration.
Interestingly, regularizing the VAE loss function with the magnitude of the instantaneous
mapped forces appeared important for obtaining mappings that were consistent with physi-
cal intuition. This regularization appears to favor mappings that give rise to smooth effective
potentials, which presumably correspond to relatively unstructured mapped ensembles with

relatively low Hog.

2.4 Further considerations

Foley et al. have provided a complementary perspective on the general properties of CG map-
pings.”” By adopting the Gaussian network model (GNM)"'"" as an analytically tractable
high resolution model for protein fluctuations, Foley et al. exactly assessed the intrinsic qual-
ity of any CG map, M, based upon two metrics that characterize the corresponding mapped
ensemble. Specifically, they considered the information content, I, of the mapped ensemble,
which roughly corresponds to Hgog, and also the spectral quality, @, which quantifies the
large scale motions in the mapped ensemble and roughly corresponds to the metric optimized
by the ED-CG method. By employing Monte Carlo methods to sample and characterize the
space of CG representations, they estimated a density of states quantifying the number
of maps, Q(I,Q), with a given information content and spectral quality. The information
content and spectral quality generally decreased with decreasing resolution, although Q dis-
played considerably greater sensitivity to the particular details of the mapping. The spectral

quality correlated quite strongly with the compactness of CG sites and with the modular-
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ity 'V5'%7 of the associated clustering.® Moreover, Q and I appeared weakly correlated among
high resolution representations, but more strongly anti-correlated at lower resolutions. This
is perhaps unsurprising, since Q and I tend to favor opposite ends of the vibrational density
of states. The relatively few low frequency modes generally correspond to large scale mo-
tions that are information poor, while the many high frequency modes generally correspond
to localized motions that are information rich. Most intriguingly, this study suggested the
possibility of a “critical resolution” beyond which a phase transition signifies a qualitative
distinction between good and bad CG representations. Since this study considered a re-
strictive class of CG mappings for a particularly simple microscopic model, future studies
should investigate whether these observations generalize to more realistic models. However,
Potestio and coworkers recently reported a similar phase transition in the space of CG pro-
tein representations and introduced a very promising framework for further exploring this
space.

The large majority of these studies have focused on small molecules with relatively lit-
tle conformational flexibility "'" or systems that fluctuate about a well-defined equilibrium
conformation. """ 2757570 Clementi and coworkers have provided important insights for
modeling more complex systems that transition between diverse conformational states.
By employing diffusion maps " and Markov state methods, " they identified coherent do-
mains that persist in microsecond protein simulations with global folding and unfolding
transitions. """ In such systems, the optimal mapping may dynamically vary as the sys-
tem transitions among diverse metastable conformations. Minimal assembly units, which
appear similar to “foldons” that are invoked in protein folding theories, ' may provide a

“basis set” for developing dynamically evolving CG representations of such complex systems.

8In the case that each atom is associated with a single site, the CG mapping corresponds to clustering
nodes in an atomic graph. The modularity is a common metric for assessing the “strength” of communities
in complex networks. Specifically, the modularity compares the number of edges within a cluster to the
number expected for a random graph.
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2.5 Back-mapping

Recent studies have also developed new approaches and insights for the closely related prob-
lem of back-mapping CG configurations to AA configurations. Back-mapping approaches
are practically important not only for high resolution analysis of CG simulations and struc-
tures, but also for serial and parallel multiscale schemes ' that simulate AA models to
investigate details that are below the resolution of the CG model. '~ For instance, accurate
back-mapping can significantly simplify the coupling between the low- and high-resolution
regions ' that are concurrently simulated in the Adaptive Resolution Scheme (AdResS)
method.

In comparison to the forward-mapping, M, which determines a unique CG configuration,
R = M(r), for each AA configuration, r, back-mapping schemes are necessarily more com-
plex and more ambiguous. As already discussed, a single CG configuration, R, corresponds
to an entire subensemble of AA configurations, M~!(R) = {r|M(r) = R}, which is described
by the conditional probability distribution, p,r(r|R;M). Most back-mapping schemes do
not explicitly model the degeneracy of AA configurations that map to R. Instead they typi-
cally seek a representative AA configuration, ry = M™(R), that (ideally) maximizes p.(r|R)
for the given R.? In practice, back-mapping schemes often first introduce atomic detail by
geometrically interpolating atoms between CG sites or by inserting fragments from libraries
of atomistic structures. """’ The resulting AA configuration is then typically relaxed via
energy minimization and possibly short MD simulations that are often restrained by the
initial CG configuration.

The forward-mapping, M, impacts both the practical difficulty of finding this represen-
tative configuration, ri, as well as the fundamental significance of rj. For instance, it is
likely more challenging to apply back-mapping for lower resolution representations. More

fundamentally, if the conditional probability distribution, p,r(r|R; M), is multimodal, then

9The notation M+ (R) indicates that a deterministic back-mapping operator is analogous to a “pseudo-
inverse” for M(r).
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R no longer determines a single representative configuration. In this case, many diverse
configurations may make equally important contributions to this subensemble.

Recent studies have reported several interesting back-mapping approaches for determin-
ing this representative configuration. For instance, Bussi and coworkers employed steered
molecular dynamics '~ to determine a high resolution RNA structure that was consistent with
the nucleobase arrangement predicted by their knowledge-based CG model. ~"'°° Samaey
and coworkers employed the AdResS method to gradually convert CG configurations for
complex polymer networks into AA configurations. "~ Kremer and coworkers obtained
equilibrated high resolution configurations of polystyrene melts by employing a hierarchy
of restrained simulations to back-map from a generic soft-sphere blob model to a relatively
high resolution, chemically specific bottom-up model and then to an accurate united atom
model. “’ Zheng and coworkers developed a Bayesian framework that may prove useful not
only for determining rg, but also for more generally sampling AA configurations according
to p:(r[R).

Machine learning (ML) approaches have provided a new toolbox for determining a unique
back-mapped configuration, r. In particular, An and Deshmukh investigated the use of ar-
tificial neural networks and Gaussian process regression for back-mapping gas phase config-
urations of hexane and several aromatic ring systems. ~* Laughton and coworkers developed
a rather general GLIMPS method for learning a deterministic back-mapping via linear re-
gression and principal component analysis. =~ Doxastakis and coworkers trained a generative
adversarial network (GAN) to perform deterministic back-mapping of polymer configurations
in analogy to super-resolution image reconstruction, *’ in which the CG and AA configura-
tions correspond to low- and high-resolution images, respectively. " Similarly, Harmandaris
and coworkers recently trained a convolutional neural network to predict AA configurations
for polymer chains by predicting atomic bond vectors conditioned upon the CG coordinates
and chemistry of the corresponding monomer. *' After relaxing local intermolecular inter-

actions, the resulting polymer melt quite accurately matched the equilibrium structural and
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thermodynamic properties of the AA polymer model. The fore-mentioned study by Wang
and Gémez-Bombarelli employed a VAE framework to simultaneously optimize both the
mapping, M, and also a deterministic back-mapping, M™.”" As already noted, this ap-
proach likely determines a CG mapping that corresponds to a sharply peaked conditional
distribution, p .

Perhaps the most exciting advances in back-mapping stem from employing ML ap-
proaches to (approximately) sample AA configurations according to the conditioned proba-
bility distribution, pyr, for a given CG configuration. For instance, Bereau and coworkers
developed a GAN framework for sampling p,r.'"" This deepBackmap approach introduced
each successive atom in a manner conditioned upon the pre-existing local atomic environment
and then employed Gibbs sampling to account for non-bonded interactions. The resulting
model generated AA configurations that, without additional simulations, described the local
packing and many-body structure of polystyrene melts with remarkable fidelity. Subse-
quently, they demonstrated that the use of local chemical environments and physics-based
priors enabled the deepBackmap approach to be transferable between molecular liquids and
polymer melts.'”" More recently, Gémez-Bombarelli and coworkers have employed a VAE
framework to model p,r for short peptides in implicit solvent. " Moreover, Shmilovich and
coworkers have employed a VAE to sample p,r in a Markovian fashion that generates a “tem-
porally coherent” back-mapped trajectory that is consistent with not only the structure, but

also the energetics and dynamics of the AA model.

3 Interaction potentials

Given an AA model and a CG mapping, the next step is to determine a potential for modeling

interactions in the CG model. The ideal interaction potential is the many-body potential of

10The basic notion of the GAN framework is to simultaneously train two adversarial networks - a
generator, G, and a critic, C. In the context of back-mapping, G attempts to sample atomic configurations
according to p,r, while C attempts to determine whether a given atomic configuration was generated by G
or by the underlying AA model. If successfully trained, G generates a conditioned atomic distribution that
cannot be distinguished from py|r.
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mean force (PMF), W, which may be defined "

n

exp[-fW(R)] = V"N /dr exp[—LFu(r)]5(M(r) — R). (8)

Here = 1/kgT is the inverse temperature, V' is the volume, n and N are the number of
particles in the AA and CG models, respectively, and u is the potential function of the AA
model. As analyzed further below, W is the excess Helmholtz free energy!! associated with
the subensemble of AA configurations that map to R. If W(R) is known at a single state
point, then canonical simulations with this potential will perfectly reproduce the mapped
distribution at that state point. Unfortunately, W (R) is generally a complex many-body
function that cannot be exactly determined.

In practice, bottom-up approaches typically approximate W with a relatively simple
interaction potential, U. This approximate potential can often be expressed as a sum of

terms, Uy, each of which governs a particular interaction or bonded degree of freedom:
UR) =D > Ulvar(R)): (9)
¢ A

Here ( is a label indicating a particular type of interaction, A identifies a particular instance
of this interaction, and ¢, is the mechanical degree of freedom describing this interaction.

For instance, if ¢ is a pair non-bonded interaction, then U, = U, is a pair potential, A =
(I,J) is a pair of interacting sites, and 1y = Ry, is the distance between the pair. Most
commonly, U describes non-bonded interactions with central pair potentials, while describing
the intramolecular geometry of bonded CG sites with additive bond, angle, and torsion
potentials. ML approaches also often adopt a similar form for the approximate potential.

In this case, though, the scalar variable, ¢y, may be replaced with a multidimensional

UThe canonical partition function, ¢, of a classical model may be expressed ¢ =
¢ [dpexp[— >, p?/2m;kpT]z where c is a constant, while 2 = [drexp[—pu(r)] is the configuration
integral. By defining an ideal reference state u;q(r) = 0, the ideal configuration integral is z;,q = V™ and the
excess contribution to the AA free energy, ays, is given by exp[—f axs] = z/ziq = V™™ [ drexp[—Pu(r)].
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feature vector that contains more detailed many-body information about the configuration.
Moreover, the sum over interaction potentials, Us, may be replaced by a sum over one-body

potentials, U;, for each site I.

3.1 Structure-based optimization

Researchers continue to invest considerable effort in developing and refining bottom-up ap-
proaches for determining interaction potentials that accurately reproduce structural proper-
ties of the mapped ensemble. """ The venerable Inverse Monte Carlo (IMC) """ and Iterative
Boltzmann inversion (IBI)'"* methods remain two of the most useful approaches for solving
this inverse problem. For instance, Nordenskiold and coworkers recently employed the IMC
method to parameterize a CG model that realistically describes the structure and interactions
of nucleosomal core particles.'” Both IBI and IMC systematically refine each interaction
potential, Ug(x), until simulations with the CG model reproduce the mapped probability
distribution, p¢(z), for the corresponding degree of freedom, ¢, i.e., Pr(x;U) = pe(x).'?
While IMC explicitly treats the correlations between interactions when updating these po-
tentials, IBI does not account for these correlations, which can lead to practical difficulties
in converging the myriad potentials that are necessary for modeling complex systems with
many distinct site types. " Because the resulting pair potentials tend to dramatically
over-estimate the internal pressure, they are often modified with a linear pressure correc-
tion'® that can be tuned to match the AA internal pressure while minimally impacting the
structural fidelity of the CG model. "~ Recent studies indicate that integral equation methods
can improve the efficiency and convergence properties of IBI and IMC. "

While ML methods have proven useful for parameterizing top-down models to reproduce

thermodynamic properties, "~ they have also recently been harnessed to parameterize

12 As noted earlier, we adopt the convention that probabilities determined by the AA model are represented
by lower case letters, e.g., p¢ or pr, while probabilities determined by a CG model are represented by upper
case letters, e.g., P:(U) or Pr(U), where U is the interaction potential for the CG model.

13This correction modifies the pair potential, Us(r) — Usa(r) + A(1 — 7/Tcut), Where 7cyt is the cut-off of
U; and A is an adjustable parameter that directly contributes to the pressure.
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physics-based potentials in a bottom-up fashion. For instance, Hajizadeh and coworkers em-
ployed a genetic algorithm to parameterize top-down non-bonded potentials that matched
temperature-dependent density measurements, while employing an artificial neural network
(ANN) to parameterize bottom-up bonded potentials based upon information from united
atom polymer simulations. " In this work, iterative simulations of trial CG models were
avoided by training independent ANNs to predict the conformational and thermodynamic
properties of the CG model as a function of the potential parameters. Similarly, Pavan and
coworkers combined top-down nonbonded potentials from the Martini model with bottom-
up bonded potentials that were optimized via particle swarm optimization (PSO)."”” Sub-
sequently, they employed PSO to optimize a CG lipid model according to a multi-objective
function that included both experimentally measured thermodynamic properties (i.e., bi-
layer thickness and area per lipid) and also structural metrics that were determined from
AA simulations. """ Interestingly, they employed the Wasserstein distance'* for comparing
the structural distributions sampled by the AA and CG models. By combining ML tools
for automatic differentiation along with statistical reweighting methods, Differentiable Tra-
jectory Reweighting provides another promising framework for extending structure-based
bottom-up methods to incorporate additional information about higher-order structural ob-
servables or thermodynamic properties. *° Conversely, several recent studies have employed
ML approaches to determine bottom-up potentials that distinguish the mapped AA ensem-
ble from a “fake” noise distribution. *"~°" In this vein, Jumper et al. parameterized the
Upside CG protein model with a contrastive divergence approach °~ that employs Newton’s
method in a manner reminiscent of the IMC method.

The preceding approaches often rely upon a series of CG simulations to iteratively re-
fine CG potentials. In contrast, several other approaches determine these potentials directly
(i.e., noniteratively) from AA simulations or mapped structural distributions. For instance,

approaches based upon the Ornstein-Zernicke integral equation " can deduce interaction

14The Wasserstein distance is commonly employed in modeling mass transport as a quantitative measure
of the effort required to transform one mass (or probability) distribution into another.
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potentials for molecular and polymeric liquids directly from structural correlations within
the mapped ensemble. "'""=°" By employing approximate closures to account for many-
body correlations, these approaches obtain approximate, analytic relationships between pair
potentials and the corresponding equilibrium pair correlations for homogeneous, isotropic lig-
uids. """ ANNs have also been employed to directly deduce effective pair potentials from
radial distribution functions (rdfs).'“>'"” In this case, ANNs are trained to determine the
exact, nonlinear relationship between pair potentials and corresponding rdfs. In contrast,
the effective force coarse-graining (EFCG) method determines each pair potential by simply
averaging the force between the corresponding atomic groups in condensed phase simula-
tions. '’ The conditioned reversible work (CRW) method adopts a similar, but even simpler
approach by employing constrained gas phase AA simulations of molecular fragments. "

While the simplicity and computational efficiency of the CRW method are very appealing,
practical problems can arise when these gas phase AA simulations do not sample the rele-
vant conformations or, more generally, do not properly describe the local environment that

is relevant for condensed phase interactions. '~

3.2 Variational approaches

Two variational principles provide a central foundation for developing and relating a wide
range of bottom-up approaches. In the limit that the approximate CG potential, U, is
sufficiently flexible, both variational principles achieve their global solution when U equals the
exact PMF, W to within an additive, configuration-independent constant. More generally,
these variational principles provide a rigorous framework for calculating, understanding, and

systematically improving approximate potentials for bottom-up models.

3.2.1 Relative entropy

The relative entropy (RE) variational principle " determines the approximate potential,

U, by minimizing the KL divergence © between the reference mapped distribution, pr(R),
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and the equilibrium distribution for U, Pr(R;U), i.e., by minimizing

Sult7] = Dlpal| Pu(0)] = [ R pn(R)n | LA > s 0. (o)

As in Eq. (4), S[U] is always nonnegative and vanishes only if Pr(R;U) = pr(R) for all
R, in which case U equals W to within an additive constant. According to footnote 5,
minimizing S, corresponds to maximizing the likelihood that the CG model will reproduce
the mapped distribution, pr(R).”""*" Moreover, if U adopts the simple form of Eq. (9), then
minimizing S, with respect to the interaction potential, U, leads to the “self-consistent”

condition:

Fe(a;U) = pe(x), (11)

which ensures that simulations with the CG model will reproduce the distribution along the
corresponding degree of freedom in the mapped ensemble. """

In practice, S, is minimized by performing a series of CG simulations with trial ap-
proximate potentials and successively revising, e.g., Us until simulations with the CG model
accurately reproduce the mapped AA rdf. "> " Thus, the RE variational principle provides a
unifying formalism for iterative structure-based methods that target specific structural corre-
lations. """ Although the Henderson uniqueness theorem ' '* and its generalizations™ "
indicate that the resulting pair potentials should be unique, in many cases a wide range of
pair potentials can accurately reproduce a target mapped AA rdf. "' Consequently, Shen
et al. suggested employing the Fisher information,” K (r,r";U) = 62S:a[U]/6Us(r)6Us(r"),
to identify more informative ensembles for determining the CG potential. *’ This is an intu-
itively appealing idea because K is closely related to a susceptibility matrix, dgo(r; U) /dUs(r'),
that quantifies the sensitivity of the CG rdf to Us, and moreover plays a central role in the
IMC method. """

Recent studies have developed several interesting extensions of the RE approach. For

instance, Aluru and coworkers introduced thermodynamic constraints into the RE variational
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principle to reproduce the thermodynamic pressure. = Katsoulakis and coworkers developed
a path-space RE formalism to optimize CG models for describing equilibrium and non-
equilibrium dynamics. *” Subsequently, they developed an intriguing “predictive” framework
that treats the CG coordinates as latent variables in order to model AA properties that
are beyond the resolution of the CG model, i.e., properties that cannot be expressed as a
function of CG coordinates. *° Moreover, Pretti and Shell extended the RE formalism to
approximate the mapped joint configuration-energy probability distribution, prg(R, E), in

an elegant microcanonical formalism that is discussed further below.

3.2.2 Force-matching

The multiscale coarse-graining (MS-CG) force-matching (FM) variational principle ™
determines U by minimizing the difference between the instantaneous AA force, f;(r), acting
on each site'® and the force, F;(R) = —9U/0R;, determined by U in the corresponding

mapped configuration, i.e., by minimizing

] = <3iNZ\fz<r>—Fz<M<r>>|2> (12)
= W] +AngR(R)3LN;]E(R) —FI(R)\2 > W), (13)

Here the angular brackets denote an average over the AA canonical ensemble and f;(R) =
(fi(r))g = —OW(R)/OR; is the conditioned mean AA force, which equals the (negative)
gradient of the exact PMF.""""""*" Since the first term in Eq. (13) is independent of U and
the second term compares the gradients of W and U, x?[U] attains its global minimum when
U differs from W only by an additive constant. ' In the more general case that U adopts the

simple form of Eq. (9), then the condition for minimizing x* may be expressed as a simple

15Tn the common case that the mapping is linear and each atom contributes to at most one CG site, f; is
simply the net force on the atoms contributing to site I, i.e., fr(r) = >, ; fi(r)."”" More generally, one can
define '’ """ - and even optimize '’ - a mapping from AA forces to CG forces.
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system of linear equations for the MS-CG force functions, Fi(x) = —dU¢(x)/dx:
be(z) =Y / Az’ Geor(x, 2 ) Fe(2), (14)
C/

where b.(z) and G (x,2") are quantities that can be directly computed from the mapped
ensemble. Equation (14) may be considered a generalization of the Yvon-Born-Green (YBG)
integral equation theory '*" for arbitrarily complex potentials. '/*~""* The generalized-YBG (g-
YBG) framework " interprets b (x) as an average force along the 1) degree of freedom in the
mapped ensemble when ¢(R) = x.*° Similarly, G¢¢(z, ) describes structural correlations
between the ¢ and ¢ degrees of freedom in the mapped ensemble when ¢¢(R) = x and
e (R) = 2’. The condition for minimizing x? then corresponds to a force-balance relation
between the AA and CG models. Specifically, when the MS-CG potentials are applied to the
mapped ensemble, they reproduce the average AA force, b(x), along each relevant degree
of freedom, t;.!7

It is important to emphasize that the MS-CG variational principle does not seek to
reproduce fluctuating atomic forces or dynamical properties. Rather these fluctuating atomic
forces are used as noisy samples for estimating the conditioned mean force, f;, which gives the
gradient of the PMF. Indeed, least squares variational principles of fluctuating AA properties
provide a rather general framework for approximating conditioned averages at the resolution
of the CG model. """

Several recent studies have provided insight into the numerical properties of the MS-CG
variational principle. The first term in Eq. (13), which can be interpreted as statistical
noise, quantifies the fluctuations in the AA forces about their conditioned mean.”"” This

term is somewhat analogous to the mapping entropy, Hyap, which quantifies the information

16In particular, if Us(x) = Uz(Ryy) is a pair potential, then b is closely related to the pair mean force,
—wh(r), that is determined by the pair potential of mean force, wo(r) = —kgT In g(r).

17This condition is not self-consistent because the right hand side of the force-balance equation., Eq. (14),
applies the MS-CG potentials to the mapped ensemble and not to the ensemble generated by simulations of
the MS-CG model.
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lost when viewing the AA ensemble at the CG resolution. Recent studies suggest that this
noise term can dominate x? and may become increasingly dominant with coarsening.”"*
Conversely, the second term in Eq. (13), can be interpreted as the error in the CG potential.
This error can be decomposed into bias and variance contributions, which can be used to
avoid over-fitting when constructing complex many-body potentials.

Recent studies have also extended the MS-CG formalism in several interesting directions.
For instance, Kalligiannaki et al. extended the FM variational principle for non-linear CG
mappings. ~ Voth and coworkers generalized the MS-CG formalism to parameterize interac-
tions involving virtual sites that do not correspond to explicit atomic groups, """ as well
as sites that switch between distinct states in the “ultra” coarse-graining approach. ="
Dequidt and coworkers introduced a Bayesian trajectory-matching approach that performs
force-matching with time-averaged, rather than instantaneous, forces. '~~~ Moreover, Nguyen
and Huang extended the MS-CG formalism to optimize orientation-dependent interactions

between anisotropic CG sites via both force- and torque-matching variational principles.

3.2.3 Further considerations

Although they initially appear rather distinct, the RE and MS-CG FM variational principles
share many similarities. Since the minimizing condition for y? corresponds to a generaliza-
tion of the YBG integral equation, "~ both variational principles can be applied from

structural information. Moreover, the FM variational principle can also be given an in-

formation theoretic interpretation'® that is closely related to the RE."*’" Both formalisms
have been applied to parameterize polymer field theories” *“'~ and both have been extended
to parameterize CG models for the constant NPT ensemble. "»*'"~'° In particular, the

pressure-matching approach of Das and Andersen is a natural extension of FM that treats

the pressure as the force on the system volume.”" Similarly, minimizing S, with respect

18As noted when discussing the KL divergence in Eq. (2), ®(R) = In[pr(R)/Pr(R;U)] quantifies the
information available in CG configuration R for distinguishing the mapped ensemble from the equilibrium
ensemble for the approximate CG model. ® Then S,q is the average of ®(R), while x? is essentially the
average of [V®(R)|%.
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to a configuration-independent volume potential, Uy (V'), leads to a self-consistent condition
ensuring that the CG model reproduces the AA pressure-volume equation of state.” "
Furthermore, recent numerical calculations suggest structure-based potentials that minimize
S,e1 are also nearly optimal with respect to x2.””* The similarities are perhaps most striking
when considering dynamics, since dynamic generalizations of the RE variational principle
result in force-matching conditions. =~

There are also important distinctions between the two approaches. In particular, the
condition for minimizing S, is a self-consistent criterion ensuring that simulations with the
CG model reproduce specific mapped distribution functions. In contrast, the minimizing
condition for y? is not self-consistent and only employs information that is present in the
mapped ensemble. ' Consequently, one can determine the MS-CG potential directly from
the mapped ensemble without performing any CG simulations, which is particularly conve-
nient for optimizing the complex many-body ML potentials discussed later. However, due to
this lack of self-consistency, the MS-CG potential is not guaranteed to reproduce mapped rdfs
or any other structural features present in the mapped ensemble. ””**” Thus, high structural
fidelity is a requisite part of calibrating the CG potential in the RE approach, but provides
an independent assessment of the CG potential in the FM approach.

The g-YBG formalism indicates that if the MS-CG model can reproduce the mapped
cross-correlations between the 1¢ and 1. degrees of freedom in the mapped ensemble, i.e.,
Gee(x, o), then the MS-CG model should also reproduce the corresponding mapped dis-
tributions p¢(x) and pe(x). Therefore, one expects that errors in the MS-CG model may
result from the failure of the approximate potential, U, to describe the many-body cross-
correlations present in the mapped ensemble."">"““"~ In this case, the RE approach ensures
that the CG model will reproduce lower order distribution functions, but may do so at the
expense of distorting these higher order cross-correlations. ' Conversely, when the CG po-
tential is sufficiently flexible or when many-body cross-correlations are not very significant,

then the RE and FM approaches can both provide very high structural fidelity.
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Recent studies have also provided important insight into the practical application of the
RE and FM variational principles for modeling systems with complex free energy landscapes
based upon imperfect sampling of the mapped ensemble. As already discussed, the FM
variational principle attempts to reproduce the local gradients of the PMF (i.e., the mean
forces f; = —OW/OR;), based upon information present in the mapped ensemble. "
Consequently, one expects that the MS-CG potential will accurately describe the shape (i.e.,
the gradients) of the PMF in basins that are well sampled by the AA simulation. However,
in order to accurately reproduce the relative depths of these minima in the PMF, the MS-CG
model must accurately reproduce the gradient of the PMF in the barrier region connecting
these basins. "’ In practice, one expects that the mapped ensemble may provide little infor-
mation about barrier regions that are rarely sampled. If the CG interactions in these barrier
regions are significantly different from the interactions in the well sampled basins, then one
expects that the resulting MS-CG potential may not accurately reproduce the stability of
each basin.”"" In contrast, the RE variational principle employs explicit simulations with the
CG potential, U, to ensure that the resulting CG probability distribution, P(R;U), opti-
mally matches the mapped probability distribution, pg(R). This in and of itself ensures that
the CG model properly weights each well sampled basin, while also ensuring that barrier
regions have comparably low statistical weight.

This reasoning suggests an important trade-off between data efficiency and computational
efficiency when applying the FM and RE variational principles for modeling complex sys-
tems in practice.”” " Specifically, the FM variational principle is computationally efficient
to apply because it can be directly applied from the mapped ensemble and does not require
iterative simulations with successive trial CG potentials. However, the FM variational princi-
ple has relatively large data requirements and, in particular, may require extensive sampling
of the AA model to accurately determine the mean force in rarely sampled barrier regions.
Conversely, the RE variational principle has comparatively modest data requirements and, in

particular, only requires that the mapped ensemble determine the proper statistical weight
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for each basin. At the same time, the RE variational principle may be relatively computa-
tionally expensive to apply, as it may require many simulations with trial CG potentials in
order to accurately reproduce this mapped ensemble. Another perspective on this trade-off is
that FM approaches may need to invest more computational resources in simulating the AA
model in order to obtain mapped ensembles with sufficient information about rarely sampled
barrier regions, while RE approaches may need to invest more computational resources in
simulating the CG model in order to obtain sufficiently accurate CG potentials.

This reasoning also suggests several additional considerations for modeling systems that
are characterized by distinct substates separated by large free energy barriers. In particular,
FM may prove particularly useful for optimizing potentials that are specific to distinct con-
formational states and then modulated as the system moves between regions of configuration
space. "% Moreover, it may prove beneficial to further optimize FM potentials, e.g., ei-
ther by iterative FM approaches™ " ““’ or by employing the FM potential as starting point
for minimizing the relative entropy.“”” Another possibility is that, given inadequate sampling
of barrier regions, FM approaches may benefit from employing more complex potentials that
can infer the physics governing these barrier regions based upon well-sampled basins. Future

studies should certainly further explore these considerations.

4 Structural fidelity

Ideally, the CG model should perfectly reproduce the configuration distribution that is de-

termined by the AA model and given mapping:
Pr(R;U) = pr(R). (15)

Andersen, Voth, and coworkers originally defined consistency in configuration space by this
criterion, as part of a more general criterion for consistency in phase space. "’ Subsequently,

Eq. (15) has sometimes been referred to as a “thermodynamic consistency” criterion since
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it reflects equilibrium Boltzmann statistics. (However, it is important to recognize that
Eq. (15) does not ensure that the CG model will reproduce particular thermodynamic prop-
erties.) Durumeric and Voth have elegantly extended this consistency condition to con-
sider virtual sites that cannot be explicitly defined by a mapping from atomic degrees of
freedom. " Moreover, Rotskoff and coworkers recently introduced the interesting notion of
“weak” consistency, which assesses the ability of a CG model and a back-mapping procedure
to reproduce averages of AA observables.

As already mentioned, the CG model will achieve the configurational consistency crite-
rion of Eq. (15) when the CG potential, U, equals the exact PMF, W given by Eq. (8) to
within a configuration-independent constant.!? However, in practice the exact PMF cannot
be exactly calculated and must be approximated. Accordingly, researchers continue to inves-
tigate and improve the structural fidelity of bottom-up models with approximate potentials.
In particular, several recent studies have investigated the impact of the mapping upon the
structural fidelity of bottom-up models with simple pair-additive potentials. The limitations
of pair-additive potentials have motivated more sophisticated physics-based potentials for
describing many-body structural correlations. In turn, this naturally leads to the use of

flexible ML architectures for more accurately modeling the many-body PMF.

4.1 Mapping

As discussed above, given an AA model, the CG mapping completely determines the mapped
ensemble and, thus, also the PMF. Because CG models typically approximate the PMF with
relatively simple potentials, one expects that their structural fidelity may be quite sensitive
to the choice of mapping. These considerations are particularly clear when considering in-
tramolecular degrees of freedom. Most studies employ independent potentials to govern each

bond, angle, and dihedral degree of freedom in the CG model. Consequently, these models

19Because it is independent of configuration, this “constant” is irrelevant for sampling configurations in
a given thermodynamic state. However, because this constant can depend upon thermodynamic variables,
such as volume, it can make significant contributions to the conjugate thermodynamic properties, such as
the internal pressure.
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are incapable of reproducing complex cross-correlations that may exist between these de-
grees of freedom in the mapped ensemble.”"""""""" Early studies by Kremer and coworkers
clearly demonstrated that CG models can more accurately describe (mapped) polymer con-
formations when the CG mapping simplifies the cross-correlations between bonded degrees
of freedom. "

Several recent studies have provided insight into these considerations for modeling in-
termolecular interactions. For instance, van der Vegt and coworkers demonstrated that the
CRW method provides greatest structural fidelity for small symmetric molecules when the
mapping preserves this symmetry.” Conversely, the CRW approach appears less accurate for
lower resolution representations and, moreover, may suffer from sampling difficulties when
the CG sites correspond to atomic groups with significant internal flexibility.

Recent studies have also investigated the impact of the mapping upon the structural

fidelity of CG models that have been parameterized via the MS-CG FM variational princi-
ple.”"»="5=7220 In particular, White and coworkers demonstrated that the structural fidelity
of MS-CG models does not necessarily improve when increasing either the resolution or the
symmetry of the CG mapping.”’® Savoie and coworkers demonstrated that 1-site?® MS-CG
models accurately describe the intermolecular pair structure for liquids of small alcohols.
In contrast, higher resolution MS-CG models provided relatively poor structural fidelity
when the mapping associated CG sites with isolated hydroxy groups.”" Similarly, Voth and
coworkers demonstrated that 2-site MS-CG models accurately reproduce the site-site corre-
lation functions for liquids of small carboxylic acids.””” However, conventional pair-additive
MS-CG potentials provided significantly lower structural fidelity for higher resolution 4-site
representations that associated separate sites with the carbonyl oxygen and the hydroxyl
parts of the carboxylic group.”” These studies echo early observations that the structural
fidelity of MS-CG models for methanol decreases with increasing resolution. ™

These studies suggest that bottom-up methods will generally provide greater structural

20Tn general, m-site models represent each molecule with m sites.
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Figure 3: The influence of the mapping upon the complexity of CG configurations. In-
creasing the resolution of the CG model necessarily increases the density of sites, which
likely increases both the magnitude and the the complexity of many-body correlations in the
mapped ensemble. Left: An AA configuration of acetic acid highlighting a central molecule
and its nearest neighbors. Right: 1-site (top) and 3-site (bottom) CG representations of the
same AA configuration.

fidelity when the CG representation simplifies the mapped ensemble. As illustrated in Fig. 3,
low resolution representations result in mapped ensembles with a lower density of CG sites
and generally weaker many-body correlations. One expects that pair additive potentials can
accurately describe such simple mapped ensembles. Conversely, high resolution representa-
tions that associate CG sites with small functional groups may result in complex mapped
ensembles with strong many-body correlations. In this latter case, pair additive potentials
are unlikely to accurately describe the mapped ensemble. Moreover, in this case, iterative
structure-based methods, such as IBI and IMC, may determine pair potentials that repro-

duce mapped site-site rdfs at the expense of distorting these higher order correlations. '””*""
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Indeed, Lyubartsev and Laaksonen proved that such pair-additive CG models have maxi-
mum entropy and, thus, the simplest configuration distribution that is consistent with the
target mapped rdfs.””" These considerations suggest that it may be beneficial to develop
more general frameworks that simultaneously optimize the CG mapping and approximate
potential for self-consistency with each other. The Bayesian approach of Chen and Habeck

may represent a first step towards this goal.

4.2 Advanced physics-based potentials

Given these limitations of pair-additive potentials, many studies have investigated new
classes of physically motivated potentials for improving the structural fidelity of bottom-
up models. For instance, a growing number of studies have revisited the use of anisotropic
sites 777" to model polymer backbones, conjugated organic groups, nucleic acids, and
even anisotropic small molecules.”"' """ The interactions between anisotropic sites are of-
ten modeled by extensions of the venerable Gay-Berne potential.””" Importantly, Nguyen
and Huang~'~ employed both force- and torque-matching variational principles to optimize
a considerably more general class of orientation-dependent potentials*~" for modeling in-
teractions between anisotropic sites.

Motivated by the success of the mW water model, several studies have adopted
Stillinger-Weber-type potentials®’” for modeling orientation-dependent hydrogen-bonding
and 3-body interactions.””" " Voth and coworkers developed a general framework for in-
corporating these 3-body interactions into effective pair potentials, which they employed
to parameterize an accurate 1-site water model. """’ Conversely, Jayaraman and cowork-
ers modeled hydrogen-bonding interactions in cellulose by introducing additional internal
sites””" in a manner similar to the patchy particles that are employed in top-down models
of self-assembly "' or the base-pairing sites in the OxDNA model.

Alternatively, some bottom-up models have retained the simplicity and computational

efficiency of spherical sites that interact via pair-additive potentials, but then modulated
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these pair potentials as a function of the local environment. For instance, if the confor-
mational space of a protein can be partitioned into distinct conformational substates, one
may reasonably hope that a relatively simple potential can accurately describe each sub-
state, although the potentials for distinct substates may be quite different.””" In particular,
one expects that protein side chains may interact very differently in aqueous and hydropho-
bic environments. This intuition suggests labelling CG sites with dynamic internal state
variables that reflect their local environment and then modulating the site-site potentials
as a function of this internal state. '~“"” Voth and coworkers pioneered a powerful “ultra”
coarse-graining framework for treating these internal states. '=~/%°""""%"" In recent years,
they have applied this approach to model hydrogen-bonding liquids, " liquid interfaces,
and even protein self-assembly. """ Subsequently, Bereau and Rudzinski*""""" developed a
similar approach in which the CG model “hops” between different effective potentials in
analogy to surface hopping approaches for modeling quantum dynamics.

Another interesting approach for improving the structural fidelity of bottom-up pair po-
tentials is to introduce virtual sites that do not directly correspond to any particular atomic
groups. While they have been extensively employed in Martini CG models,”"" a rigorous
bottom-up framework for parameterizing interactions between virtual sites was lacking until
quite recently. *” When properly defined and parameterized, virtual sites provide a compu-
tationally efficient means for incorporating information about the local environment that
can improve the description of complex anisotropic interactions and many-body effects. For
instance, instead of representing benzene with one spherical site that corresponds to its
mass center or with three spherical sites that correspond to specific atoms, the anistropy of
the planar ring can be efficiently captured by representing benzene with two virtual sites
that define the direction perpendicular to the ring.”"” Voth and coworkers have also em-
ployed virtual sites to describe the local solvation environment in implicit solvent models of
lipid bilayers.”’»""* Along similar lines, Lafond and Izvekov developed a bottom-up frame-

work for modeling electrostatic interactions with virtual sites that describe effective polar-
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izabilities.”" """ Moreover, the intriguing Upside protein model describes protein sidechains
with virtual sites that interact via a complex many-body function of the backbone coordi-
nates. =

These approaches generally rely upon physical intuition to identify additional terms that
should be introduced into the approximate CG potential. In contrast, Liwo and coworkers
recently revisited a cluster-cumulant approach”'" to systematically determine higher order
interactions in the effective potential for the United Resolution CG protein model.
More generally, it would be highly desirable to develop automated, systematic methods for
identifying new classes of potentials that depend upon simple, computationally efficient local
order parameters. Ideally, these order parameters should quantify important structural fea-
tures that are not properly described by central pair potentials between spherically symmet-
ric sites. """’ One anticipates that ML tools may prove particularly useful for identifying such
potentials. ”"" Indeed, Dijkstra and coworkers employed linear regression to identify structure-
property relations that informed the construction of physics-based potentials for reproducing
system-specific, many-body properties. "~ Once these potentials have been identified, they

can be optimized either in an ad hoc fashion or by existing variational approaches.

4.3 ML potentials

ML approaches also hold considerable promise for representing, parameterizing, and simu-
lating complex many-body potentials that more accurately approximate the configuration-
dependence of the exact many-body PMF. ANNs and other universal function approximators
can, at least in principle, quantitatively describe the PMF and, thus, perfectly reproduce
the mapped ensemble.

While ML approaches accurately reproduce quantum mechanical energetics with clas-
sical atomic potentials,”" new challenges arise when coarse-graining. For instance, the
Born-Oppenheimer approximation directly relates the energy of a classical AA configuration

to a quantum mechanical calculation for the corresponding nuclear coordinates. In contrast,
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the many-body PMF is not an observable that can be directly calculated from a single AA
configuration. Rather, the PMF is a free energy incorporating the statistical weight of all the
AA configurations that map to a given CG configuration. Consequently, many studies have
adopted the MS-CG FM variational principle because it provides two major advantages for
parameterizing ML potentials. In particular, the FM variational principle employs instanta-
neous atomic forces that can be directly calculated from an AA configuration. Furthermore,
FM determines the ML potential directly from the mapped ensemble without requiring sim-
ulations with a series of trial potentials. However, ML approaches that rely upon FM may
require large databases of AA configurations in order to overcome the statistical noise in the
atomic forces and, moreover, to estimate the mean forces in rarely sampled barrier regions.

John and Cséanyi first demonstrated the promise of kernel-based methods for developing
CG models of molecular liquids, such as methanol, water, and benzene. """ They employed
Gaussian process regression to predict the many-body mean force?! in a given CG con-
figuration based upon its similarity with a library of CG configurations. Importantly, they
numerically demonstrated that the mean forces for such molecular liquids are quite local, i.e.,
the mean force, f;, acting on each CG site is dominated by contributions from nearby sites.
Consequently, they approximated the PMF with a molecular cluster expansion, in which
the m-body term was an arbitrary function of all pair distances between the m-molecules.
Moreover, the locality of the mean force allowed them to model these m-body terms based
upon libraries of representative monomer, dimer, and trimer configurations. The result-
ing molecular 2-body potential provided much higher structural fidelity than conventional
pair-additive site-site potentials.

Subsequent studies have reduced the computational cost of parameterizing and simulating
kernel-based potentials.”” For instance, Scherer et al. transformed a kernel-based potential
into a more efficient tabulated potential that very accurately described the 2- and 3-body

correlations of liquid water.””" Conversely, Wang et al employed ensemble learning to train

21Because the mean forces are gradients of the PMF, canonical simulations with these mean forces will
reproduce the mapped ensemble.
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a kernel-based potential for a 6-site implicit solvent CG model of alanine dipeptide. ™" They
first trained an ensemble of kernel-based potentials to model fluctuating atomic forces. By
averaging over this ensemble of atomic force predictors, they constructed a library of mean
forces as a function of CG configuration, which was then employed to train a final predictor
for the mean force. However, since each atomic predictor required training over the entire
configuration space, it may be challenging to extend this approach to more complex systems.
More generally, the libraries of known configurations that are employed in kernel-based
methods are intriguingly reminiscent of the “memories” that have long been employed in the
associative-memory, water-mediated, structure and energy model (AWSEM) CG model for
proteins.

Recent bottom-up models have also employed ANNs to approximate the many-body PMF
for liquids and amorphous polymers. For instance, E and coworkers developed a very accu-
rate DeePCG 1-site model for water ~’* based upon their DeePMD AA model,””” which was
parameterized from density functional theory (DFT) simulations. The DeePCG potential
approximated the PMF with a sum of one-body terms, each of which employed a detailed
description of the local environment surrounding the molecule. This DeePCG model very ac-
curately reproduced the structure of the original DFT model. Similarly, Gémez-Bombarelli
and coworkers developed ANN potentials for molecular and polymeric liquids.”"**"" Inter-
estingly, they found it necessary to develop separate networks for treating intra- and inter-
molecular interactions in ionic liquids.””" Very recently, Jaakkola and coworkers employed

graph neural networks to learn time-averaged forces for simulating CG polymer models with

very large time steps.”” It would be interesting to relate this approach to the Bayesian
trajectory-matching method,” "'~ which also approximates time-averaged forces instead of
the PMF.

Clementi, Noé, and coworkers have extensively investigated ANN potentials for implicit
solvent CG models of miniproteins. Their initial study considered the 10-residue peptide

chignolin and represented each amino acid with a single CG site located at the o carbon.
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They trained a dense ANN potential to approximate the PMF as a function of hand-selected
features, including the pair distances among the amino acids, as well as bond, angle, and
torsion degrees of freedom. The resulting CGNet model quite accurately described the free
energy landscape for chignolin, including its folded, unfolded, and misfolded basins. Sub-
sequently, they employed a SchNet~" to determine optimal features for the CGNet poten-
tial.”"" The SchNet representation not only improved the accuracy and robustness of the CG
potential, but may also open the path for developing transferable ANN protein potentials
because SchNet features can be applied to describe different protein sequences. Interest-
ingly, though, the accuracy of this CGSchNet potential did not significantly improve when
the resolution of the CG model was increased to include both a and  carbons.””” This
group also investigated the importance of many-body interactions for CG protein models by
systematically training a series of m-body ANN potentials.”"’ While the 2-body ANN poten-
tial was similar to a conventional molecular mechanics potential, the higher order m-body
ANN potentials were constructed as dense networks that depended upon all combinations
of m pair distances. In the case of chignolin, 5-body interactions were necessary to satisfac-
torily reproduce the underlying FES, which suggests it may be challenging to intuit simple
transferable potentials for CG protein models. Most recently, this group proposed an inter-
esting “flow-matching” methodology for optimizing ANN potentials.”*" This approach first
employs a relative entropy variational principle to parameterize an invertible normalizing
flow?? for modeling the mapped probability distribution, pr, and for estimating mean forces
from the gradients of pg. These mean forces are then employed to parameterize the final
ANN potential via the FM variational principle.

The early work of Lemke and Peter introduced a rather distinct approach for parame-
terizing ANN potentials based upon a discriminative classification method. "’ Lemke and

Peter interpreted the PMF as an excess free energy describing the difference between the

22Tn essence, normalizing flows are a generative ML framework that determines a 1-to-1 mapping between
a complex probability distribution (e.g., the mapped density, pr, for 3N CG coordiantes) and a much simpler
probability distribution (e.g., the distribution for 3N independent Gaussian variables).”"">*"" This mapping
allows one to use samples from the simple distribution in order to model the complex distribution.
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mapped ensemble and a uniform distribution of CG configurations. They then trained the
ANN potential to distinguish between the mapped configurations determined from AA simu-
lations and “fake” CG configurations sampled from this uniform distribution. The resulting
model quite accurately reproduced the configuration distribution of oligopeptides. This dis-
criminative approach appears quite similar to the relative entropy formalism """ and to
several contrastive approaches that have been subsequently employed to parameterize sim-
pler physics-based potentials. """ Durumeric and Voth have related these discriminative
approaches to a variational classification framework”’~ that lies at the heart of generative
adversarial networks. """ In the context of bottom-up coarse-graining, the objective is to
parameterize a CG potential, U, such that a critic can no longer distinguish whether a CG
configuration, R, has been sampled from the mapped ensemble, pgr(R), or instead from
Pr(R;U), i.e., from simulations with the CG potential, U.'""""" The variational bound is
achieved when the two distributions, pg and Pg, are no longer distinguishable, which corre-
sponds to the configurational consistency criterion of Eq. (15).

Finally, the very recent work of Zavadlav and coworkers provided considerable insight
into the application of FM and RE variational principles for parameterizing ANN poten-
tials.”*” Specifically, they developed ANN potentials for a 1-site model of water and also
an implicit solvent CG model of alanine dipeptide that treated all heavy atoms. While
both variational approaches provided very accurate models for water, the relative entropy
approach provided a much more accurate model for alanine dipeptide. As discussed above,
Zavadlav and coworkers elegantly related the inaccuracies in the FM model to a lack of
information in the mapped ensemble for determining the mean force in barrier regions that
separate conformational substates. Interestingly, the authors also observed that RE opti-
mization allowed for CG simulations with larger simulation time steps. While FM optimizes
the CG potential to reproduce the actual gradients of the PMF, the RE approach effectively
optimizes a shadow Hamiltonian that reproduces the mapped ensemble in CG simulations.

Consequently, the resulting RE potential depends upon the time step employed in the CG
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simulations that were used to optimize the potential. Future studies should further explore

these considerations.

4.4 Further considerations

These studies demonstrate that ML potentials can significantly improve the structural fidelity
of CG models. For instance, the DeePCG model for water*~ and the kernel-based model
for benzene "’ both described the many-body structure of molecular liquids with remarkable
fidelity. Similarly, the CGNets C-a model quite accurately reproduced the AA free energy
surface for chignolin.””* However, SchNet potentials for molecular and ionic liquids have
appeared somewhat less accurate,”’ """ while the inclusion of S-carbons in the more detailed
CGNets model for chignolin did not significantly improve its structural fidelity. " The reason
for this variation in accuracy is currently unclear, but it may possibly reflect the training of
the ML potential or the choice of certain hyperparameters.

It is striking that, with the notable exceptions of the early work by Lemke and Peter
and the recent study by Zavadlav and coworkers, *” almost all of these studies employed a
FM method to parameterize the ML potential. Intriguingly, the FM variational principle
is closely related to a “score-matching” method that is widely adopted for optimizing ML
models in high dimensional spaces.””” " A direct comparison of the model, Pg(R;U) =
Z7 U] exp[-BU(R)], and target, pr(R), probability densities requires knowledge of the
model normalizing constant, Z[U], which cannot be efficiently calculated.?® Score-matching
avoids calculating Z[U] by instead parameterizing the model to match the gradients of the
(logarithm of the) target probability density. Specifically, the scores for the model density are
defined ¥\ (R;U) = Vg, log Pr(R; U) = BF(R; U), which correspond to the approximate
CG forces. The scores for the target density are defined ;(R) = Vg, log pr(R) = f;(R),
which correspond to the exact many-body mean forces. The target score, ¥, cannot be

directly determined in many ML contexts. However, in the context of coarse-graining, ¢

231t is for this reason that RE minimization (and many other structure-based methods) rely upon iterative
simulations in order to estimate ¢ log Z[U]/6U when optimizing CG potentials, as discussed earlier.
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can be estimated from noisy atomic forces. The score-matching loss function,”” J(U) =
s [dRpr(R) [[¥m(R; U) — Yr(R)||?, corresponds to the Fisher divergence" and to the
second term in Eq. (13) for the FM functional, x*[U], which quantifies the difference between
U and W.

As already discussed, the FM variational principle is not guaranteed to reproduce any
particular structural correlation functions. The accuracy of the SchNet model for ionic
liquids " and Ca + Cf model for chignolin are both reminiscent of the errors that sometimes
arise in MS-CG models when the interaction potential is not sufficiently flexible to reproduce
the relevant many-body correlations present in the mapped ensemble. """ As indicated in
the work of Potestio and coworkers,”” the Ca representation likely corresponds to a relatively
simple mapped ensemble. The inclusion of C3 coordinates may significantly increase the
complexity of the mapped ensemble. As discussed above, several studies indicate that this
increased complexity can reduce the structural fidelity of MS-CG potentials. """
Because they likely describe many-body environments more effectively than pair distances,
it may be useful to include local densities, which are discussed in the next section, as features
in ANN potentials. Indeed, an early precursor of the AWSEM protein model employed local
density potentials to describe many-body solvation effects.

While the structural fidelity of physics-based potentials is usually most limited by the
flexibility of the assumed functional forms (e.g., additive central pair potentials), ML po-
tentials are more likely limited by the available data in the mapped ensemble.”"""" As
discussed earlier, because F'M variational principles determine potentials to match gradients
of the PMF, they rely upon information in rarely sampled barrier regions to determine a
CG potential that provides appropriate weight to different basins. Consequently, ML po-
tentials that are parameterized via FM variational principles may well be limited by the
lack of sampling in these barrier regions. Conversely, the RE variational principle or other
discriminative approaches that are more data efficient may prove useful for parameterizing

ML potentials to reproduce global aspects of the mapped ensemble. ”">'""»'"=“*> From this
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perspective, the flow-matching approach appears particularly promising for capitalizing upon
both the data efficiency of the RE variational principle and also the computational efficiency
of the FM variational principle.””" More generally, because the accuracy of ML approaches
likely varies with the CG mapping, it may be beneficial to use ML methods to simultane-
ously optimize the CG mapping, potential input features, and potential parameters to ensure
self-consistency between the mapped ensemble and the approximate potential. The recent

work of Rotskoff and coworkers appears a promising step in this direction.

5 Transferability and Thermodynamics

Once a CG model has been parameterized to reproduce structural properties at a single
thermodynamic state point, one hopes that the model will be “transferable,” i.e., that it will
provide similar accuracy for modeling a wide range of state points. Moreover, one hopes
that the CG model will also accurately describe thermodynamic properties. Consequently,
many recent studies have investigated the transferability and thermodynamic properties of
bottom-up models.

The most straight-forward approach is to treat the approximate interaction potential, U,
as analogous to a conventional AA potential energy that does not explicitly depend upon
thermodynamic conditions. One can then compute thermodynamic properties, such as the
energy or pressure, using conventional textbook expressions.” ' In some cases, this approach
works quite well.”" " ="~ For instance, Guo and coworkers determined IBI potentials with
pressure corrections for modeling poly-imides at 800K and 1 bar pressure.” = Quite remark-
ably, these potentials accurately modeled the polymer pair structure, thermal expansion,
and bulk modulus down to 300K, although the CG model over-estimated the compressibility
by a factor of 5-10.

Unfortunately, though, conventional bottom-up models often provide unpredictable trans-

ferability and a rather poor description of thermodynamic properties. For instance, bottom-
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up potentials often systematically vary with temperature,” " °’ which can result in poor
structural fidelity away from the reference state point~"""' and especially across phase
boundaries.”"“*°*° Bottom-up potentials also vary significantly with density """
and tend to dramatically overestimate the internal pressure.” »*” While linear pressure
corrections allow structure-based pair potentials to accurately reproduce the internal pres-
sure at a single state point, '~ they often lead to a poor description of the compressibil-
ity. "°7»7 7 Similarly, bottom-up models often fail to reproduce the coefficient of thermal
expansion.”’’“” More basically, bottom-up models generally tend to underestimate the co-
hesive energy “""°“""** and configurational entropy of AA models.”™”"” This poor description
of thermodynamic properties models stems from “representability issues” due to effective
potentials that vary with thermodynamic conditions, as first discussed by Louis and cowork-
ers. 777 Accordingly, some studies appear to suggest that these representability issues fun-
damentally preclude bottom-up methods from reproducing both structural and thermody-
namic properties.

We optimistically hypothesize that, by combining rigorous theory with robust compu-
tational methods, bottom-up approaches can and will model both structural and thermo-
dynamic properties with predictive accuracy across a range of thermodynamic state points.
We anticipate that the many-body PMF, W, holds the key for addressing the transferabil-
ity and representability limitations of bottom-up models not only in theory, but also in
practice. According to Eq. (8), W(R) is the excess Helmholtz potential associated with
the subensemble of AA configurations that map to R. Consequently, W depends upon the
temperature, volume, composition, and any other relevant thermodynamic variables. If it is
known as a function of both configuration and thermodynamic state point, then W (R, V| T')
contains the necessary information for reproducing all structural and thermodynamic prop-
erties of the AA model that can be observed at the CG resolution. This simple observation
already establishes the fundamental link between representability and transferability chal-

lenges. Specifically, if one knows how W varies with thermodynamic state point then one
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can resolve representability problems by accounting for this state-point dependence when
computing thermodynamic properties. Moreover, from knowledge of this state-point de-
pendence, one can resolve transferability problems by varying U to accurately describe W
and, thus, the mapped ensemble at each state point. Consequently, the key to overcoming
these challenges lies in developing robust computational methods for accurately calculating
and rigorously modeling the state-point dependence of W. It is important to note that this
approach fundamentally differs from the traditional approach of varying interaction poten-
tials in order to accurately model thermodynamic properties with conventional textbook
approaches.

In order to make this more concrete, let us first consider the total differential of an atomic

potential that does not explicitly depend upon the thermodynamic state point:
du=—> f;- (dr;), — pe dV, (16)
i=1

where f; is the force on atom i and (dr;),, describes variations in configuration at constant
volume.?* In the isotropic case that the volume changes while the scaled coordinates, t; =
r;/V'/3, remain fixed, the instantaneous excess pressure of the AA model is given by the

standard virial expression

_ ou\ 1
pXS —_- <W>i‘ — WZfz 'rz; (17)

which describes the force that the system applies to its walls.?> The two terms in Eq. (16)
correspond to mechanical work due to changing the configuration at constant volume and
due to isotropically compressing or expanding the system, respectively. Because we assume

that the atomic potential is state-point independent this work is independent of T'.

241f we define scaled coordinates as #; = r;/V'/3, then (dry)y, = V1/3d#;. Thus, du = —V1/3 S £
df‘z — Pxs dv.

251f u explicitly depends upon V, then py, = % Yo fi-r; — (0u/dV),. Such explicit volume depen-
dence arises in AA simulations, e.g., when accounting for the long-ranged contributions from dispersion or
electrostatic interactions.
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In contrast, W is the excess Helmholtz potential of the AA model when it is viewed at the
resolution of the CG model, i.e., the equilibrium state is specified by (R, V, T'). Consequently,
it follows that

N
dW = =Y "f; - (dRy)y — PdV — SydT. (18)

I=1

The first two contributions to Eq. (18) are analogous to Eq. (16). However, now f;(R,V,T) =
(f)ryr and P (R, V,T) = (pxs)ryr are temperature-dependent averages of the instanta-
neous force and excess pressure, respectively, evaluated over the conditioned distribution,
prr(r|R), of AA configurations that map to R. Consequently, the first two terms in Eq. (18)
correspond to temperature-dependent free energy changes (i.e., the minimum, reversible
work) associated with changing the CG configuration and volume. Moreover, p,, generally
includes both a virial contribution from the mean forces acting on the volume and also a

contribution from the explicit volume-dependence of the PMF:

oW 1 oW
]_DXS(R,V,T) = — (—) = — f;-R;— (—) . (19)
oV )y 3V Z -2 WV ) g

Similarly, W now varies with T" according to

(R, V. T) = ~FuDlpald(R.V.T) =~k [ar pon(x/R)n [%} S

which quantifies the excess configurational entropy stored in the subensemble of AA con-
figurations that map to R. Note that the average of —Sy /kp over the mapped ensemble
corresponds to the mapping entropy, Hyap. Thus, —kpHpn,p is the difference between the ex-
cess configurational entropy of the AA model and the excess configurational entropy present
in the mapped ensemble.

Although it is intuitively obvious and perhaps trivial, Eq. (18) explicitly establishes the
fundamental origin and intrinsic duality of representability and transferability issues. As

illustrated in Fig. 4, both stem from the transfer of thermodynamic information from the
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Figure 4: The representability and transferability challenges are two weeds that stem from
the same root. Both challenges result from thermodynamic information that is present in
the AA configuration distribution but lost from the mapped ensemble. This lost information
determines the state-point dependence of the PMF, which must be accounted for when
modeling thermodynamic properties or transferring potentials between thermodynamic state
points. Reprinted with permission from Dunn, N.J.H.; Foley, T.T.; Noid, W.G. Ref. 30.
van der Waals perspective on coarse-graining: Progress toward solving representability and
transferability problems. Acc. Chem. Res. 2016, 49, 2832-2840. Copyright 2016 American
Chemical Society.

AA configuration space into the state-point dependence of the PMF.? This state-point
dependence not only determines how the CG interaction potentials should vary with V' and
T, but also introduces new contributions to the corresponding conjugate thermodynamic

properties, i.e., the pressure and entropy, respectively.

Conventional structure-based approaches focus on reproducing the configuration-dependence

of the PMF at a single state point and do not critically consider this volume- or temperature-
dependence. Consequently, the resulting potentials cannot be expected to be transferable
to other state points or to accurately describe the conjugate thermodynamic properties.
Fortunately, recent studies have leveraged the insights from Eq. (18) to develop practical

bottom-up approaches for addressing the representability and transferability issues.
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5.1 Density-dependence and internal pressure

For instance, consider the density-dependence of the PMF, which at constant composition is
equivalent to its volume-dependence. The second term in Eq. (18) implies that, if the approx-
imate potential reproduces this density-dependence,?® then the CG model will also reproduce
the excess pressure of the AA model at the resolution of the CG model.?” Conversely, the
failure of structure-based models to reproduce the AA excess pressure implies that they do
not accurately treat the density-dependence of the PMF. "»>'%"*" Thus, the representability
issues associated with modeling the AA pressure fundamentally stem from transferability
issues in modeling the density-dependence of CG interaction potentials. """

Perhaps the simplest way to model the density-dependence of the PMF is to introduce
a configuration-independent, volume potential, Uy (V). This volume potential directly
contributes to the pressure without perturbing the equilibrium configuration distribution
at a given volume. By employing FM and RE variational principles, one can variationally
optimize Uy to reproduce the average volume-dependence of the PMF, and, consequently,
quantitively reproduce the AA pressure-density equation of state.”“~*'° Alternatively, one
can adopt an “active” approach, in which bottom-up effective pair potentials explicitly vary
with volume and introduce new contributions to the pressure. "**”°* It may be possible to
employ pressure-matching variational principles to predict this volume dependence.

Local-density (LD) potentials have recently emerged as a particularly promising avenue
for modeling the density-dependence of the PMF. LD potentials were first introduced to
describe non-ideal solutions in top-down, many-body dissipative particle dynamics (DPD)

models. " By defining the local density, p;, around each site, I, with pair-additive weighting

26 According to Eq. (19), the density-dependence of the PMF includes both an implicit virial contribution
from the mean forces acting on the volume, BLV Zjlvzl f; - Ry, and also a contribution due to the explicit
density-dependence of the PMF, — (0W/0V)g. Efforts to calculate the pressure with CG models almost
always adopt a standard virial expression that neglects this second explicit contribution.

2TThe ideal contribution to the thermodynamic pressure scales trivially with the number of missing de-
grees of freedom. Correcting for this ideal contribution slightly increases the internal pressure of CG models.
However, this ideal contribution is much smaller than the virial pressure predicted by structure-based po-
tentials.
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functions, LD potentials generate pair-additive forces and retain much of the computational
efficiency of conventional pair-additive potentials. Recent bottom-up studies have parameter-
ized LD potentials for implicit solvent models of hydrophobic self-assembly, " " as well as
for polymer melts, """ explosive materials, " liquid mixtures, " liquid interfaces, "

and liquid-liquid phase equilibria.

While they can enhance structural fidelity,””” LD potentials have an even greater impact
upon the thermodynamic properties and transferability of bottom-up models. When the
local density is defined over sufficiently long distances, LD potentials function similarly to
volume potentials and allow bottom-up models to quantitatively reproduce AA pressure-
density equations of state, but tend to introduce artifacts at interfaces.” "~ Conversely,
when the local density is defined over shorter distances, LD potentials can accurately describe
liquid-solid and liquid-vapor interfaces, while still providing a nearly quantitative description
of the pair structure and pressure-density equation of state for bulk liquids.”"""' =" This
outstanding transferability between bulk and interfacial regions has proven challenging for
conventional pair-additive bottom-up potentials.” """ Moreover, LD potentials can be re-
lated to internal energies that are employed in energy-conserving DPD methods.” """ This
suggests it may be possible to develop bottom-up CG models for accurately simulating shock-
waves, chemical reactions, and other non-equilibrium phenomena. """ "’* Finally, a recent
bottom-up model "’ introduced a potential that depends upon the square of the gradient
in the local density, i.e., |Vp;|?, which may prove useful for modeling highly inhomogeneous

systems and for connecting with classical density functional theories.

5.2 Temperature-dependence, energy, and entropy

Similarly, the last term in Eq. (18) equates the temperature-dependence of the PMF, (OW /0T )y ,
with —Sy, which quantifies the excess configurational entropy of the AA subensemble that
maps to R. In order for a CG model to properly describe AA entropies, it must not only

account for the configurational entropy present in the mapped ensemble, but also account
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for this entropic contribution from the AA degrees of freedom that have been eliminated
from the mapped ensemble. The observed temperature-dependence of bottom-up potentials,
U, that approximate W allows one to approximate Sy = —(OW/0T)r,v =~ —(OU /0T )R,y
By employing this approximation, Voth and coworkers modeled entropic properties of liquid
methanol and chloroform that reflect AA details absent from the CG representation.

Equation (20) provides useful insight into Sy,. For high resolution CG representations
that associate sites with small, rigid atomic groups, one expects that p, g will be quite sharply
peaked and will vary relatively little with configuration or thermodynamic conditions. In this
case, one anticipates Sy will be rather small?® and relatively constant across single-phase re-
gions of the phase diagram. Indeed, while nonlinear models have been proposed,” > 77~
recent studies indicate that bottom-up potentials for high resolution models often vary lin-
early across a rather wide temperature range.” """ For instance, by assuming that IMC
pair potentials were temperature-independent and that the volume potential varied linearly
with temperature, Rosenberger and van der Vegt parameterized a CG model for hexane that
accurately modeled its structure, thermal expansion, and compressibility over a tempera-
ture range of 140 K and well into the super-cooled liquid regime.”*" Conversely, for lower
resolution models in which CG sites correspond to more flexible atomic groups, one expects
that pyr will be broader, more complex, and possibly include multiple peaks corresponding
to distinct internal conformations. In this case, one expects that Sy, will be larger and will
demonstrate more complex dependence upon both configuration and temperature. Quite
generally, one expects that CG potentials will vary nonlinearly with temperature across
phase boundaries and whenever p,r significantly varies.

Because W is a configuration-dependent excess Helmholtz potential, it follows that

28 According to Eq. (20), Sw (R) increases as py g (r|R) becomes less uniform. Nevertheless, because Hyap
is the average of —Sw /kp and because Hp., systematically increases with coarsening, one expects that
|Sw (R)| will be relatively small (on average) for high resolution mappings.
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where Ew (R, V,T) = (u(r))gyr is the conditioned average of the AA potential energy® for
the subensemble of AA configurations that map to R.”""""" Since —T'Sy, > 0, structure-
based potentials, U, that accurately describe the configuration-dependence of W cannot be
naively employed for estimating atomic energetics. In particular, note that —7'Sy, system-
atically increases as details are eliminated from the CG model. In contrast, because Ey is a
conditioned average, it does not systematically increase with coarsening. Consequently, the

PMF becomes increasingly entropic with coarsening, as illustrated in Fig. 5.

o] T
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N

Figure 5: The impact of resolution upon the average energetic and entropic contributions to
the many-body PMF, i.e., (BW) = (6Ew) — (Sw) /kp. The symbols plot the average of the
dimensionless PMF, (W), as a function of the number of CG sites, N, for CG models of
ubiquitin. In order to perform exact calculations of the PMF,”" the AA model for ubiquitin
is a GNM that represents each of its 72 amino acids with the corresponding o carbon. When
N = 72, the PMF corresponds to the AA potential, i.e., W = u, such that Ey = u and
Sw/kg = 0. The dashed horizontal line indicates that (Ey ) = (u) for all resolutions. The
PMF systematically increases with decreasing resolution because — (Sy) /kp > 0 increases
as details are eliminated from the mapped ensemble. Adapted with permission from Ref.
. Copyright 2021 Springer Nature.

Since Fy is a conditioned average of u, Lebold and Noid repurposed a least squares
energy-matching variational principle”’ to determine an energetic operator, E, that pro-
vides an optimal approximation to Fy,. "> In this “dual” approach, CG models are

simulated with conventional structure-based potentials in order to accurately sample config-

29Prior studies referred to Ey as Uy .
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urational space. Atomic energetics are then estimated (at the resolution of the CG model)
by evaluating E for the sampled configurations. This approach effectively implements the
early suggestion of Louis and coworkers in addressing the most basic of representability
issues, i.e., that separate pair functions were necessary for reproducing the rdf and for mod-
eling atomic energetics. "’°’ Furthermore, given a structure-based potential, U, and an
energetic operator, E, that accurately approximate the configuration-dependence of W and
Ew, respectively, one can then approximate Sy = (Ew — W)/T with S = (E —U)/T.
This then provides a predictive estimate for the temperature dependence of the bottom-
up potentials, i.e., (OU/IT)ryv ~ (OW/OT)ry = —Sw ~ —S. Initial studies for various
molecular liquids, including water, methanol, and ortho-terphenyl, suggest that this dual
approach can not only reasonably model atomic energetics, but also accurately predict the
temperature-dependence of bottom-up potentials. "’ Moreover, Lebold and Noid intro-
duced a configuration-dependent specific-heat, Cy, to model the temperature-dependence
of Ew and Sy, as well as to estimate the variance in the atomic energy fluctuations for
each CG configuration.””" This framework provides an internally consistent framework for
bottom-up models to reproduce the atomic specific heat.

As mentioned above, Pretti and Shell recently proposed an elegant complementary ap-
proach based upon modeling the joint distribution, pre(R, E), of CG configurations and
energies that are sampled by the AA model. " Rather than approximating W and its deriva-

tives, they employed a RE variational principle to determine an optimal approximation for

QR, ) / dR 5(M(r) — R)3(u(x) — ), (22)

VN

which corresponds to a microcanonical partition function for the AA model. ™" If Q(R, F) is
known for all F/, then one can determine Ey,, Sy, and W for any temperature. Conversely,
if W(R,T) is known for all 7', then at least in principle one should be able to infer Q(R, E)

via inverse Laplace transform, although this may prove more challenging in practice.
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5.3 Composition-dependence

Unfortunately, Eq. (18) provides no insight into how the PMF varies with chemical com-
position. Moreover, relatively few studies have investigated the transferability and thermo-
dynamic properties of CG potentials as a function of composition. An interesting study by
Deichmann and van der Vegt investigated the accuracy of various bottom-up approaches for
modeling hexane-perfluorohexane mixtures. °~ Because they minimize environmental contri-
butions, the CRW and EF-CG potentials appeared independent of composition and, more-
over, quite reasonably described both structural and thermodynamic properties of the mix-
tures. In contrast, Potter and Wilson demonstrated that IBI and MS-CG potentials for
liquid mixtures of octane and benzene vary significantly as a function of composition and,
consequently, provide rather poor transferability.

One approach for improving the transferability of bottom-up potentials is to determine
a single set of potential functions, i.e., a force field, that provides an optimal compromise
for modeling a range of systems and thermodynamic state points. In particular, the mul-
tistate IBI (ms-IBI) method determines transferable pair potentials that optimally match
a set of rdfs obtained from various simulation conditions.”” Indeed, Potter and Wilson
demonstrated that ms-IBI pair-potentials provided high structural fidelity across the en-
tire range of octane-benzene mixtures.”” McCabe and coworkers have recently employed
ms-IBI to develop a transferable force field for stratum corneum membranes comprised of
sphingolipids and cholesterol.””" """ Similarly, Hall and coworkers employed ms-IBI to pa-
rameterize a transferable force field for phospholipids based upon simulated rdfs for multiple
temperatures.

Alternatively, one can employ an “extended ensemble” variational principle to determine
a set of transferable potentials that optimally describes the PMF for multiple systems across
multiple state points.””" For instance, Rudzinski et al. employed the extended ensemble ap-
proach to develop transferable potentials for modeling poly(ethyleneoxide)-based ionomers

with varying degrees of sulfonation at a range of temperatures.””" Sanyal and Shell em-
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ployed the extended ensemble framework to derive a transferable backbone potential that,
when combined with a Go-based potential for stabilizing native contacts, " accurately folded
a rather remarkable diversity of complex protein structures.””’ Kanekal and coworkers em-
ployed the extended ensemble framework in an automated high-throughput study that em-
ployed simulation data from hundreds of simulations to parameterize transferable potentials
for modeling the chemical space defined by 3,000 distinct isomers of C;O5.”"" They observed
that, in this case, the extended ensemble approach not only improved the transferability but
also the structural accuracy of the effective potentials. They concluded that averaging over
systems acted to “regularize” the model by smoothing over atomic features that could not
be accurately described by the approximate CG potential. In contrast, Shen et al. developed
a similar extended ensemble framework for the RE variational principle and demonstrated
that including statistics from multiple state points did not improve the transferability of
soft sphere models for methanol-water mixtures.”’" Rather, the authors concluded that it
was more important to ensure that the parameterization ensemble contained information
about correlated composition fluctuations. As discussed earlier, they hypothesized that the
Fisher information metric could be used to identify maximally informative ensembles for
improving the transferability of bottom-up models. Finally, Malfreyt and coworkers recently
developed an analogous extension of the statistical trajectory matching method in order to
parameterize transferable potentials for CG models of copolymer systems.

One expects that LD potentials may also significantly improve the transferability of
bottom-up models across mixture compositions.”»”"»**" In particular, bottom-up models
with LD potentials quite accurately describe the liquid-liquid phase separation of benzene
and water mixtures in two-phase regions of the phase diagram.’" Interestingly, a seemingly
diverse set of potentials performed equally well. However, it is quite likely that these poten-
tials were actually equivalent (or at least nearly so) because there exist families of distinct

pair and LD potentials®® that generate equivalent forces and distributions.** Future studies

30More explicitly, consider a pair potential, Us(r), and a LD potential, U,(ps). If one adds a linear term
to the pair potential, Us(r) — Us(r) + kr, then one can add a corresponding correction to the LD potential
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should further explore the use of LD potentials for modeling complex mixtures.

5.4 Further considerations

One expects that it should be possible to determine observable operators, A(R), for de-
scribing any AA property, a(r), at the resolution of the CG model as a conditioned average
over the AA configurations that map to the CG configuration, i.e., A(R) = (a(r))g." Re-
cent studies have developed operators for estimating various thermodynamic observables,
including the energy, pressure, surface tension, specific heat, and chemical potential, at the
resolution of the CG model. "> 72522720520 However, the “predictive” framework of Kout-
sourelakis and coworkers indicates the even more exciting possibility of probabilistically mod-
eling atomic properties that would seem beyond the resolution of the CG model. ™" Pretti
and Shell achieved a significant step in this direction by explicitly modeling the distribution
of AA energies for a given CG configuration, R.'"" The electronic coarse-graining method
takes this approach one step further by employing ML approaches to model the distribu-
tion of electronic energies that map to R.”"’"” As demonstrated by recent back-mapping
approaches that modeled the conditioned distribution, pyr, " ML approaches may prove
particularly useful for modeling conditioned distributions, p,r(a|/R), describing arbitrary
AA observables; a(r). In particular, Rotskoff and coworkers recently proposed a “weak”
consistency criterion that may prove generally useful for parameterizing such predictive CG
models.

There is an important distinction between “observable operators” and “effective po-
tentials.” If operators are only used to estimate properties by post-processing simulated
configurations, then they can not ensure that simulations sample the correct fluctuations in
the conjugate thermodynamic variables. For instance, in order to properly sample volume
fluctuations in the constant NPT ensemble, the simulated effective potential and, in partic-

ular, the barostat equation of motion must accurately account for the volume dependence

such that the net force on each site is unchanged.
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of the exact PMF.””~"" Simply applying an operator to estimate the internal pressure from
sampled configurations will not ensure that the CG simulation samples the correct volume
distribution. When considering equilibrium statistics, it may be possible to reweight sampled
configurations according to observable operators. However, this requires that the operator
gives a relatively small correction to the observable, such that there is good overlap between
the simulated and reweighted distributions. Moreover, statistical reweighting cannot be ap-
plied when considering dynamical or nonequilibrium processes. For instance, while energetic
operators can provide insight in post-processing,””””"" CG models must explicitly model the
internal energy of CG sites in order to properly describe energy transfer in shock waves or
heat conduction.

Recent insights may also assist in improving the transferability of ML potentials. Quite
generally, one expects that the transferability of any potential critically relies upon iden-
tifying the proper collective variables and incorporating the relevant physical principles.
For instance, the transferability of atomic ML potential relies upon incorporating relevant
symmetries and equivariances into the potential.”*® Similarly, the state-point dependence of
the PMF is not arbitrary, but is completely determined by certain observables within the
mapped ensemble. Consequently, one expects that the transferability of ML potentials will
be dramatically improved by accounting for these observables. For instance, one expects
that ML approaches should be able to predict accurate temperature-dependent effective
potentials by properly distinguishing and treating the energetic and entropic contributions
to the PMF. """ By so doing, these ML approaches should be able to also accurately
model energetic and entropic properties of the AA model. Moreover, one expects that the
transferability of ANN potentials for modeling multiple proteins will rely upon incorporat-
ing features that govern transferable physical principles, e.g., the hydrophobic forces driving
protein collapse.”’” These hydrophobic forces are not only many-body and long-ranged, but
are also probably not well described by pair distances between CG sites. ™" Conversely, by

incorporating local densities or other features that directly measure the solvation of amino
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acids, it may be possible to develop simpler and more transferable ML potentials for proteins.

6 Conclusion: Retro- and Pro-spectives

6.1 Key advances and insights

Almost ten years ago a perspective review discussed several outstanding challenges and
promising directions for bottom-up approaches.”” It is perhaps useful to revisit this list
in order to assess recent progress, identify remaining challenges, and propose promising

directions. The prior perspective considered the following areas:

6.1.1 Basis set

The “basis set” refers to the various contributions, U, in Eq. (9) that define the form and
flexibility of the approximate potential, U. Due both to their familiarity from AA force
fields and also to their computational efficiency, early CG models relied almost exclusively
upon pair-additive site-site potentials for describing intermolecular interactions. The prior

perspective” noted that

Bottom-up approaches may greatly benefit from considering more complex poten-
tial terms to model, e.g., hydrogen-bonding, electrostatic interactions, solvation
forces, and anisotropic interactions. More generally, it would be highly desirable
to develop an algorithm or framework for systematically identifying “missing”
basis vectors that are computationally efficient to parameterize and simulate and
that would also provide significantly improved descriptions of biomolecular struc-

ture, dynamics, and thermodynamics.

Recent bottom-up studies have demonstrated remarkable progress in developing more
advanced physics-based potentials. These new potentials have significantly improved the

structural fidelity, transferability, and thermodynamic properties of bottom-up models. For
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instance, a growing number of bottom-up models have adopted orientation-dependent poten-
tials to more accurately describe interactions between anisotropic sites.” " Ultra CG
and surface hopping approaches provide promising frameworks for modeling hydrogen bonds
and for modulating pair interactions to reflect their local environment. ’==/%"""=2=00"
Similarly, bottom-up LD potentials appear promising for modeling many-body solvation
forces”” 77" and liquid interfaces, """ as well as for describing thermodynamic prop-
erties. ~~777 5275 = Moreover, ML approaches provide entirely new classes of basis func-
tions for more accurately approximating the PMF. In particular, bottom-up models with
kernel-based and ANN potentials appear capable of describing many-body structural corre-
lations with unprecedented fidelity. """

Future studies should both continue developing these promising directions and also con-
tinue inventing new classes of potentials. For instance, bottom-up approaches should develop
physically motivated many-body potentials for describing the hierarchical structures of com-
plex biomolecules,”" as well as more sophisticated approaches for modeling long-ranged
electrostatic interactions in highly charged systems.”"*”"° Moreover, by combining ultra-
CG """ or surface-hopping """’ potentials along with dynamical CG representations
that vary as a function of local environment, "°"" it may be possible to develop computa-
tionally efficient, low resolution models with unprecedented accuracy and transferability.

ML tools provide a promising framework for identifying “missing” basis vectors that
more accurately describe many-body correlations and hierarchical structures. ™~ Conversely,
one hopes that physical insights will inform the architecture and features of ML potentials
with improved accuracy and transferability, while also reducing their computational cost
and simplifying their training. More generally, one expects that outstanding physical intu-
ition may provide greater computational efficiency and more penetrating insight than the
naive application of ML tools. For instance, the prescient AWSEM model pioneered long
ago both the use of knowledge-based “memory” terms, which are strikingly similar to the

libraries employed in kernel methods, and also LD potentials for describing water-mediated
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and hydrophobic interactions.” =" Consequently, we anticipate that physical insight may
play a key role in developing computationally efficient bottom-up approaches for accurately
modeling long-range electrostatic interactions, many-body solvation forces, and hierarchical

structures.

6.1.2 Mapping
The prior perspective” noted that

The mapping significantly impacts structural, dynamic, and thermodynamic
properties of a CG model. Unfortunately, ... relatively little theoretical work
has addressed its importance. However, it seems intuitively reasonable that the
ability of a CG model to describe the correct physics governing a particular
system fundamentally relies upon the CG model capturing the key physical fea-
tures underlying this physics. It also seems intuitively reasonable that “better”

mappings will allow for a “simpler” description of this physics.

The prior perspective suggested that “practical, rigorous algorithms that apply this intu-
ition” for determining the CG representation should significantly improve the dynamical,
structural, and thermodynamic properties of bottom-up models.

Recent studies have made considerable progress in developing algorithms for optimiz-
ing CG representations to capture the “correct physics.” For instance, while the ED-CG
method remains an important framework for identifying CG representations that preserve
the collective motions present in AA simulations,”” graph-based methods appear capable
of applying this intuition without requiring explicit AA simulations or an underlying net-
work model. " Graph-based approaches also appear promising for organizing and optimizing
CG representations. " Similarly, variational autoencoders’' appear a promising framework
for simultaneously optimizing both the CG representation and also a deterministic back-
mapping operator. More generally, graph-based ML approaches provide a new framework

for representing systems in CG detail. ="

59



Perhaps even more importantly, recent studies have provided fundamental insight into
the impact of the mapping upon the properties of bottom-up models. For instance, by
employing Monte Carlo methods to systematically sample and statistically characterize the
space of CG representations, recent studies have begun to provide general insight into the
impact of the CG representation upon the mapped ensemble, as well as the differences be-
tween “good” and “bad” representations. " Recent studies also suggest that simplifying
the mapped ensemble, pr, will generally increase the structural fidelity of bottom-up mod-
els.””»=7=°" In this context, it is important to distinguish the “intrinsic” quality from the
“practical” quality of a CG representation. While the intrinsic quality of a CG represen-
tation is completely determined by the AA model and CG mapping, its practical quality
reflects the various approximations that are made in modeling interactions and in comput-
ing observable properties. In practice, one expects that the “optimal” map will depend upon
the complexity of the CG potential. It will likely be beneficial to continue exploring both
the intrinsic and practical quality of the CG mapping.

Recent studies have also begun to illuminate the impact of the mapping upon the con-
ditioned distribution, p,r, that describes the “lost” subensemble of AA configurations that
map to a given CG configuration. The entropy chain rule of Eq. (7) quantifies a funda-
mental tradeoff in how the mapping, M, partitions the complexity of the underlying AA
model between the mapped ensemble and this lost subensemble. " In particular, map-
pings that simplify pr generally increase the information content of p;r, which may render
back-mapping approaches both more feasible and more meaningful.”" This entropy chain
rule also clarifies the influence of M upon the thermodynamic properties and transferabil-
ity of bottom-up models. One expects that representations with relatively simple mapped
ensembles will correspond to softer effective potentials with relatively large entropic contri-
butions.” These large entropic contributions must be properly considered when computing
thermodynamic properties and when transferring potentials between different temperatures.

While the entropy chain rule should hold quite generally, it is important to emphasize
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that much of our practical intuition relies upon studies of relatively simple models. Most
studies of CG mappings consider either liquids of relatively rigid small molecules or sim-
plified protein models that fluctuate about a well-defined equilibrium conformation. Future
studies should further investigate the impact of the mapping for modeling more complex
molecules, such as polymers and biomolecules that sample more complex hierarchical struc-
tures and transition between multiple metastable conformations.”” "> Moreover, it may be
beneficial to investigate the physical content of more abstract graph-based or dynamical CG

representations. 7"’

6.1.3 Model optimization/assessment
The prior perspective”™ noted that

the many-body PMF is often approximated with simple potentials that are pa-
rameterized to reproduce the distributions observed in an atomistic model along
the corresponding degrees of freedom. For instance, non-bonded pair potentials
are often optimized to reproduce the corresponding pair distribution functions.

Depending upon the CG mapping, an accurate description of local or low
order structural properties may not guarantee an accurate description of global

higher-order structure, such as protein tertiary structure.

The prior perspective related this to an important early result due to Lyubartsev and Laak-
sonen (LL) regarding structure-based models that reproduce target rdfs.”’" Specifically, LL
proved that, given the family of N-particle equilibrium distributions that are consistent with
a set of target rdfs, the distribution with maximum entropy corresponds to a pair-additive
potential. In practice, this suggests that a conventional structure-based CG model will gen-
erate the most disordered configuration distribution that is consistent with the target AA
distributions. Consequently, the prior perspective suggested explicitly considering hierar-
chical many-body correlations and other global structural properties when parameterizing

and assessing bottom-up CG models. The prior perspective also suggested developing new
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tools for predicting the structural fidelity of bottom-up models without requiring explicit
simulations.

As just discussed, recent bottom-up studies have developed a wide range of advanced po-
tentials for explicitly modeling many-body correlations. Although the RE and FM variational
principles were introduced about 15 years ago, ™ *"" they remain powerful frameworks for
rigorously parameterizing these potentials to optimally approximate the many-body PMF.
In the limit of sufficient sampling and a sufficiently flexible basis set, both variational prin-
ciples will determine potentials that exactly reproduce the configuration-dependence of the
PMF. In particular, the FM variational principle has been widely adopted for parameterizing
kernel-based and ANN potentials that reproduce many-body correlations with exceptional
accuracy. °7 7777 It may be highly beneficial to further explore the intriguing relationship
between FM and score-matching.

ML approaches provide a new set of promising tools for optimizing and assessing bottom-
up models. For instance, ML methods can be used to identify relatively simple local order
parameters that distinguish higher-order structures.”~ These order parameters can then be
used both to assess structural fidelity and to identify novel potentials for accurately repro-
ducing these features. Similarly, methods that are employed to “explain” ML calculations
may prove useful for identifying and understanding errors in CG models.”"” As suggested in
the prior review, it would be highly desirable to gain general insight into the relationship
between simple interaction potentials and the higher-order structural features that they can
(and cannot) reproduce.

As discussed earlier, recent studies have provided considerable insight into the practi-
cal challenges that arise when developing CG models for systems with complex free energy
surfaces that reflect distinct conformational states, e.g., unfolded, partially misfolded, and
folded conformations of proteins.““”“*” Even if an approximate potential is capable of repro-
ducing the many-body structural correlations within each conformational state, it remains

unclear if, when, and how existing bottom-up approaches can parameterize the potential to
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give proper statistical weight to these states. Moreover, even if the CG potential is suffi-
ciently flexible to accurately approximate the PMF over the entire conformational space, the
accuracy of the CG model will depend upon the sampling available in the mapped ensemble.
Recent studies indicate that the structural fidelity of the FM approach may be quite sen-
sitive to errors in modeling the barrier regions between conformational basins. Conversely,
the RE approach may be less sensitive to the quality of the mapped ensemble, but will
generally require more computational resources to parameterize the CG potential. Future
studies should further investigate how more global properties of the mapped ensemble are
treated by the RE and FM variational principles. Contrastive or discriminative divergence
approaches, as well as approaches based upon variational classification, may prove useful
for parameterizing bottom-up potentials that accurately describe both many-body corre-
lations and global properties of the mapped ensemble. "~'"° Similarly, maximum entropy
methods, """ PSO, """ and other ML tools ™ appear promising for parameterizing
CG models that reproduce experimentally determined thermodynamic properties and higher
order structural features present in AA simulations. It would be highly desirable to rigor-
ously relate these new data-based approaches to physics-based frameworks for bottom-up
coarse-graining.

It would also be highly desirable to develop a unified, rigorous bottom-up approach
for simultaneously optimizing both the CG mapping and the interaction potential for self-
consistency with the mapped ensemble.”"""*° It may be possible to employ information-
theoretic ideas™" or ML tools " to predictively assess this self-consistency without explicit
simulations of the CG model. More pragmatically, it may be beneficial to consider simulta-
neously optimizing the CG mapping and potential not only for accuracy and transferability,
but also for computational efficiency and simplicity.

Finally, bottom-up approaches may benefit from leveraging recent advances in the en-
hanced sampling community. The CG mapping corresponds to a rather simple, albeit ex-

tremely large, set of order parameters, while the PMF is the corresponding free energy surface
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(FES).”"" Thus, the parameterization of bottom-up potentials corresponds to an approxi-
mate free energy calculation in a very high dimensional space. Consequently, bottom-up ap-
proaches may significantly benefit from variational approaches that simultaneously optimize
both these order parameters and the corresponding FES. """ Conversely, fundamental in-
sights into the CG mapping and the PMF may possibly prove useful for improving enhanced

sampling methods.

6.1.4 Representability and transferability limitations

The prior perspective”’ treated the representability and transferability problems as two

related, but distinct challenges for bottom-up approaches:

As a consequence of averaging over atomic structures, the many-body PMF incor-
porates significant entropic effects from the “hidden” atomistic degrees of free-
dom. Consequently, thermodynamic properties cannot be represented in their

conventional manner.

This motivated two challenges: (1) “formulat[ing] a consistent treatment of thermodynamic
properties” and (2) “accurately reproduc[ing] phase transitions.” The prior perspective also

commented that

the many-body PMF necessarily depends upon the system and thermodynamic
state point for which it is defined. Similarly, a potential that is optimized to
approximate the PMF will likely also depend upon system and thermodynamic

state point. However, this state point dependence remains poorly understood.

This motivated the challenge of developing predictive methods for determining potentials
that accurately approximate the system- and state-point dependence of the PMF. The per-
spective also posed the challenge of developing “accurate and efficient CG models that ac-

curately treat changes in the local environment.”
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The bottom-up community has achieved outstanding progress in addressing these chal-
lenges. Careful analyses have provided important insight into the temperature- and density-
dependence of the PMF.”""" This insight not only clarified the fundamental origin and
intrinsic duality of representability and transferability challenges,” but has also lead to ro-
bust computational methods for rigorously addressing these challenges. For instance, the
dual and microcanonical approaches accurately describe AA energetics and also predict the
temperature-dependence of bottom-up potentials. ~"7"%77"°"" By properly treating the lost
subensemble of AA fluctuations, these methods provide an internally consistent treatment of
energetic fluctuations and the specific heat. """ Voth and coworkers have demonstrated that
the temperature-dependence of bottom-up potentials can be employed to predict entropic
properties that would seem beyond the resolution of the CG model.”” Volume~"~" """ and
LD potentials” 777" H7"% provide robust tools for accurately approximating the density-
dependence of the PMF and, consequently, reproducing the AA pressure-density equation
of state. Moreover, LD potentials,”""" """ ultra-CG models, """ and surface-hopping
approaches """’ modulate interactions to reflect their local environment and, in particular,
demonstrate outstanding transferability between bulk and interfacial environments. Future
studies should further investigate practical methods for predicting the density-dependence of
bottom-up pair potentials. > """ We anticipate that an analogous dual approach may
prove useful.

Given these advances, we optimistically anticipate that bottom-up approaches will soon
completely resolve the representability and transferability challenges associated with model-
ing one-component systems of molecular liquids or polymeric melts. Specifically, we antici-
pate that practical bottom-up approaches will accurately describe both structural features
and also the pressure-density equation of state across the entire liquid region of the phase
diagram. Moreover, these bottom-up models should reproduce energetic and entropic prop-
erties, as well as the compressibility, bulk density, and coefficient of thermal expansion. This

suggests the somewhat ironic possibility that rigorous bottom-up approaches may potentially
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improve the thermodynamic properties of pragmatic top-down models. For instance, if one
considers the Martini potential as a pragmatic approximation to the PMF,”""" then one
could imagine employing the dual approach to decompose Martini potentials into energetic
and entropic contributions in order to properly distinguish energetic and entropic driving
forces. ™"

Several challenges remain for completely resolving the representability and transferability
problems that have long plagued bottom-up models. Since much of the recent progress has
been realized for relatively simple liquid systems, these advances need to be extended to more
complex systems. While LD potentials appear promising for describing the coexistence and
interfaces between liquid and vapor phases,” future studies need to further investigate their
transferability between condensed phases”™ and their ability to reproduce corresponding
phase boundaries. Similarly, although bottom-up models can quite accurately reproduce the

liquid-vapor interfacial profile, it is not clear that these models accurately reproduce the

surface tension. """ Future studies should also investigate how the PMF reflects spatial
inhomogenities.” """ More fundamentally, relatively little progress has been achieved in
understanding or modeling the composition-dependence of the PMF.”*"""" %" From our

perspective, the most pressing representability /transferability challenges involve accurately
modeling the chemical potentials of complex mixtures and achieving predictive transferability

as a function of chemical composition.

6.2 Emergent challenges and promising directions

Recent studies also indicate several new challenges and promising directions that have

emerged.

6.2.1 Beyond the resolution of CG models

Bottom-up approaches have achieved remarkable advances in treating the subensemble of

AA configurations that map to a given CG configuration. For instance, recent studies have
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developed variational approaches for optimizing observable operators, A(R), that model an
arbitrary AA property, a(r), at the resolution of the CG model as a conditioned average,
ie., A(R) ~ (a(r))g, over this subensemble.”"»*""**%"0L7" Even more remarkably, re-
cent studies have developed probabilistic models, pyr(a|R), for AA properties, ™" such as
classical " and quantum mechanical***” energies, that would seem fundamentally beyond
the resolution of the CG model. Similarly, new back-mapping approaches have harnessed
ML tools to directly sample this subensemble according to the conditioned distribution,
prr- 7 These are extremely exciting advances that dramatically enhance the predictive
power of CG models by describing fluctuating microscopic properties that seemed completely
inaccessible only a few years ago. We anticipate that the combination of probabilistic in-
ference with ML tools for modeling complicated dependencies may enable CG models to

accurately describe increasingly complex high resolution observables.

6.2.2 ML potentials

Classical ML potentials provide a very accurate tool for calculating many quantum mechan-
ical properties. Recently, ML potentials have also emerged as a powerful tool for improving
the structural fidelity of bottom-up models for both liquids and miniproteins. 7»"""="%==%
We anticipate it would be beneficial to further investigate the factors that influence their
structural accuracy, including the impact of the data, optimization strategy, and hyper-
parameters involved in training the potential.”’>""" As discussed earlier, the accuracy of
bottom-up ML potentials may be more limited by the quality of the training data than by
the flexibility of the potential. ~“” Moreover, it would be interesting to consider the impact of
regularization upon the coarse-graining formalism. It will certainly be beneficial for future
studies to develop ML potentials for increasingly complex systems, " as well as to more
carefully consider their transferability and thermodynamic properties.

However, the application of ML potentials for bottom-up CG models presents new chal-

lenges and considerations. Classical ML potentials accurately describe quantum mechanical
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properties at a fraction of the computational cost of, e.g., density functional theory (DFT)
methods. In particular, while conventional DFT methods scale quite poorly with system
size (e.g., as N3 where N, is the number of electrons), classical ML potentials for atomically
detailed models scale nearly linearly with the number of atoms, n, in the system (i.e., as
nlnn if one employs efficient methods to treat long-ranged electrostatics). In the context
of developing CG models, though, the computational advantages of ML potentials become
less clear. While one expects that the computational cost of CG ML potentials will scale
nearly linearly with the number of CG sites, N, in the system, this scaling comes with a
very large prefactor due to the complexity of the ML potential. Given the remarkable ac-
curacy, simplicity, transferability, and computational efficiency of AA models, the cost of
CG ML potentials may limit their application to particularly coarse representations.' Such
coarse representations may suffer from particularly acute representability and transferability
challenges.

Because ML potentials adopt an extremely flexible form with a very large number of
parameters, they can accurately reproduce many-body correlations and free energy surfaces
for complex systems. However, this high structural fidelity does not necessarily guarantee
that the ML potential is actually capturing the physical principles that are necessary for
achieving transferability between different systems, environments, or thermodynamic states.
For instance, deep ML potentials for bulk water can very accurately describe structural and
thermodynamic properties over a wide temperature range, yet fail to describe liquid-vapor
interfaces or phase coexistence.””” In this case, the ML potential captures the total aggre-
gate potential of bulk water but fails to capture the physics that determines this potential,
e.g., in terms of 2- and 3-body interactions, as well as polarization effects. As CG mod-
els adopt increasingly abstract representations and increasingly complex ML potentials, one

expects they may increasingly suffer from over-fitting and, thus, limited transferability.

31For simplicity, let us assume that the cost of AA and CG models scale nearly linearly with system size,
i.e., as kn and KN, respectively. Then CG models will only provide significant efficiency gains if the degree
of coarsening, n/N, is much greater than the ratio of computational prefactors, K/k, i.e., n/N > K/k.
While K/k ~ 1 for conventional physics-based potentials, this ratio may be much larger for ML potentials.
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Moreover, the use of complex black-box ML potentials also endangers the conceptual advan-
tages of CG models. Consequently, it may be useful to investigate methods for transforming
many-body ML potentials into comparatively simpler, but still many-body, physics-based
potentials. """ Alternatively, it may be beneficial to describe CG potentials with simpler
ML architectures that are more transparent and, presumably, also more computationally
efficient. Similarly, it may be useful to develop more concise descriptors for modeling the lo-
cal many-body environment. In particular, local densities, which bear resemblance to radial
symmetry functions commonly employed in ANN potentials, """ may prove useful as features
for efficiently modeling many-body hydrophobic forces. Finally, we anticipate that recent
insights into the representability and transferability challenges may also prove useful for ML
potentials. For instance, it may be beneficial to develop ML architectures that explicitly
account for the energetic and entropic contributions to the PMF. We anticipate that phys-
ical insight and rigorous theory may play key roles in improving the accuracy, efficiency,

transferability, and utility of ML potentials.

6.2.3 Modeling Complexity

Recent studies have reported remarkable progress in developing fundamental insight and
practical computational approaches for resolving prior limitations of bottom-up approaches.
Many of these advances have been achieved by considering relatively simple systems, such as
molecular liquids or short peptides, that are not intrinsically interesting per se. Nevertheless,
because AA models for these systems can be readily characterized with great statistical
precision, they provide an ideal environment for elucidating general principles and rigorously
assessing new computational methods. We anticipate these simple systems will continue to
provide an important testbed for developing theories and computational methods for bottom-
up models.

As recent advances become increasingly mature, though, we hope that they will be in-

creasingly transferred to model more complex systems and phenomena of greater interest.

69



This presents several new practical challenges. Because they fundamentally rely upon statis-
tical properties of high resolution models, there are significant computational and logistical
difficulties associated with applying bottom-up methods to complex multi-component sys-
tems. For instance, there are logistical challenges associated with obtaining and storing
large quantities of AA simulation data. There are sampling challenges associated with en-
suring that this data adequately characterizes the AA configurational space. Moreover, while
bottom-up methods provide rigorous frameworks for determining complex potentials with
many parameters, there are practical challenges associated with optimizing the corresponding
high dimensional objective functions. We anticipate that continuing advances in computa-
tional resources, high-throughput methods, automated workflows and infrastructure,
as well as ML approaches may prove useful for surmounting many of these practical difficul-
ties. In particular, bottom-up methods will greatly benefit from standardized repositories
that provide access to large scale AA simulation data """ and, thus, eliminate a key acti-
vation barrier in developing and testing bottom-up methods for complex systems. However,
new fundamental challenges will also arise because the intuition and approximations that
apply well for simple systems may not necessarily transfer to the more complex systems
that are of interest. For instance, although recent physics-based and ML potentials appear
extremely promising, it remains challenging to accurately model hierarchical biomolecular
structures without invoking elastic network or Go type potentials. =

As suggested in Fig. 1, bottom-up methods are often perceived as appetizing, but imprac-
tical approaches that require resources, capabilities, and experience that are not accessible
to “non-expert” users. It is worth noting that almost ten years the pragmatic Martini model
was already employed to study the organization of lipid membranes consisting of more than
60 distinct types of lipids. "~ While Voth and coworkers recently employed bottom-up meth-
ods in developing a CG model for the coronavirus capsid’ and Lyubartsev and coworkers
recently developed a bottom-up model for nucelosomal self-assembly, "~ one may reasonably

ask when — and for what systems — the broader simulation community will be able to
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savor bottom-up delicacies. Consequently, it is important for the bottom-up community to
surmount these practical challenges in order to provide useful, predictive tools for modeling
such complex systems and investigating pressing research questions.

It is perhaps instructive to briefly consider the electronic structure field in this con-
text. In some sense, semi-empirical quantum chemical methods and highly parameterized
DFT methods are loosely analogous to pragmatic top-down approaches. Similarly, wave
function and truly ab initio methods are perhaps loosely analogous to rigorous bottom-up
approaches. Because they are computationally efficient and readily accessible, semi-empirical
quantum methods have become standard tools that are widely employed by both expert and
non-expert users. Conversely, more rigorous quantum methods can provide much greater
accuracy, e.g., for transition metal complexes, but are computationally expensive and have
historically been rather inaccessible to non-experts. """ The electronic structure commu-
nity has greatly benefited from an understanding of the regimes in which pragmatic methods
are reliable, as well as the identification, critical assessment, and rigorous analysis of simple
test cases, e.g., the dissociation of Hy, for which computationally efficient, semiempirical
methods fail.”"”” Moreover, benchmarking studies have played an important role both for
establishing standardized protocols and also for quantitatively comparing various methods
for a range of representative systems. """ Furthermore, the electronic structure commu-
nity has greatly benefited from the recent development of high quality, user-friendly, open
source software that allows non-experts to expertly apply rigorous quantum methods with
confidence. "

Similarly, we anticipate that pragmatic top-down and rigorous bottom-up approaches
will provide important, complementary frameworks for simulating soft materials. We antic-
ipate that the simulation community will benefit from greater understanding of the regimes
in which top-down approaches are reliable, as well as the identification, critical assessment,
and rigorous analysis of simple test cases for which pragmatic top-down approaches fail.

While the bottom-up community should continue developing diverse approaches, we believe
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it will also be useful to perform comprehensive benchmarking studies of existing bottom-up
methods for a diverse range of model systems with varying characteristics and complexity.
These benchmarking studies should not only compare the computational cost and perfor-
mance of different bottom-up methods but also standardize protocols for applying bottom-up
methods to various classes of soft materials. In so doing, these benchmarking studies will
make the “zoo” of bottom-up approaches both more comprehensible and also more accessible
to the simulation community. One important step in this direction is the further development
of new and existing ""“""" 7' open source software for bottom-up methods that is not only
rigorous and robust, but also well documented and easily used by other groups. As in much
of computational chemistry, the community will greatly benefit from the development and
distribution of automated work-flows for applying bottom-up methods.

Another approach to addressing these practical challenges may be collaborations between
groups that develop bottom-up methods and those that focus on applications to particular
systems. More generally, the bottom-up community must continue to attract, develop, and
retain talented new researchers in order to continue advancing the field. It is essential to
convey to new researchers both the practical relevance and the intrinsic elegance of this field,
which represents a unique confluence at the frontiers of fundamental statistical mechanics,
modern computational methods, and contemporary chemical physics.

Despite the challenges, we anticipate that efforts to extend rigorous bottom-up methods
to more complex systems will be well worth the effort. As argued at the outset, bottom-up
models provide efficiency that far exceeds AA models and realism that surpasses existing
top-down models, while providing insight into fluctuations and interactions that cannot be
resolved with analytic or mean field theories. Consequently, bottom-up models hold unique
promise for, e.g., investigating the liquid-liquid phase separation of intrinsically disordered
proteins, " designing improved organic semiconductors,” ' and answering many other com-
pelling molecular questions.

Ultimately, both the premise and the promise of bottom-up methods rely upon the many-
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body PMF. Importantly, the PMF is not simply an abstract or mathematical quantity.
Rather, it is a physical quantity that describes the consequences of molecular interactions
when perceived at the CG resolution. If the CG representation is properly chosen, the PMF
should reflect relatively simple, transferable physical principles. In this case, it should be
possible to accurately approximate the PMF with relatively simple interaction potentials
that properly describe these physical principles. Moreover, one expects that these interac-
tions potentials should be as widely as transferable as the underlying physical principles.
Consequently, if one can identify the proper CG representation and develop appropriate in-
teraction potentials, then bottom-up models should be both accurate and predictive. We
anticipate that the remarkable progress achieved in recent years, as well as the analysis
and directions outlined herein will lead to bottom-up models that realize this tremendous

promise.

6.3 Closing thoughts

The bottom-up community has achieved remarkable progress in recent years. Recent studies
have provided fundamental insight into the CG representation, as well as the representability
and transferability challenges that have long plagued bottom-up approaches. While there still
remain fundamental challenges for treating, e.g., the composition- and density-dependence of
bottom-up potentials, we anticipate that existing bottom-up methods will very soon provide
predictive accuracy and transferability for modeling liquids and polymers. Simultaneously,
the development of advanced physics-based and ML potentials have dramatically improved
the structural fidelity of bottom-up models for proteins and other complex biological sys-
tems. We hope that future studies will not only increasingly extend these recent advances for
increasingly complex systems, but also make these advances more accessible to the broader
scientific community. We anticipate that the combination of rigorous theory and modern
computational methods will continue to rapidly propel the field into the future. Conse-

quently, we anticipate that rigorous bottom-up methods are approaching the threshold of
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Figure 6: At the threshold of predictive bottom-up CG models. [Photograph courtesy of A.
Noid.]
providing predictive accuracy and transferability for modeling complex phenomena in soft

materials. We hope this perspective will contribute usefully to this progress.
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