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ABSTRACT

In this study, we investigate the air temperature response to land use and land cover change
(LULCC; cropland expansion and deforestation) using subgrid land model output generated
by a set of CMIP6 model simulations. Our study is motivated by the fact that ongoing land
use activities are occurring at local scales, typically significantly smaller than the resolvable
scale of a gridcell in earth system models. It aims to explore the potential for a multi-model
approach to better characterize LULCC local climatic effects. On annual scale, the CMIP6
models are in general agreement that croplands are warmer than primary and secondary land
(psl; mainly forests, grasslands and bare ground) in the tropics and cooler in the mid- to high
latitudes, except for one model. The transition from warming to cooling occurs at
approximately 40°N. Although the surface heating potential, which combines albedo and
latent heat flux effects, can explain reasonably well the zonal mean latitudinal subgrid
temperature variations between crop and psl tiles in the historical simulations, it does not
provide a good prediction on subgrid temperature for other land tile configurations (crop
versus forest; grass versus forest) under SSP5-8.5 forcing scenarios. A subsect of simulations
with the CESM2 model reveals that latitudinal subgrid temperature variation is positively
related with variation in net surface shortwave radiation and negatively related with variation
in the surface energy redistribution factor, with a dominant role from the latter south of 30°N.
We suggest that this emergent relationship can be used to benchmark the performance of land

surface parameterizations and for prediction of local temperature response to LULCC.
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1. Introduction

Land use activities contribute to climate change via biogeochemical and biophysical
effects (e. g., Bonan, 2008; Lee et al., 2011; Boysen et al., 2020). The former is associated
with the release of carbon to the atmosphere, lifting atmospheric CO> concentration (e. g.,
Pan et al., 2011), while the latter is related to the change of surface properties (e.g., albedo
and roughness) and latent heat (LE) flux (e. g., Davin & de Noblet-Ducoudr¢, 2010; Li et al.,
2015). Traditionally, modeling investigations of land use and land cover change (LULCC)
are conducted by running two sets of earth system model (ESM) simulations: the first with
pre-industrial land cover distributions and the second with a present-day or a prescribed
future land cover map. One difficulty with this modeling strategy is how to properly
disentangle LULCC climate signals from unforced model variability and nonlocal feedback
effects via changes to atmospheric and oceanic circulations (Pitman et al., 2009; Pielke Sr et
al., 2011; Chen & Dirmeyer, 2020). It is possible to better characterize the variability and
enlarge the signal-to-noise ratio by performing a large number of perturbation and control

simulations, but the computing cost is prohibitive.

An alternative approach detects the biophysical effects of LULCC in “all-forcing”
modeling experiments (Kumar et al., 2013; Lejeune et al., 2017) using a space-for-time
substitution (Lee et al., 2011). It searches iteratively for gridcells affected and neighboring
gridcells unaffected by LULCC. The temperature and energy flux contrasts between these
two groups of gridcells are regarded as the climatic signal of LULCC. This method has been
used successfully in the investigation of regional LULCC effects (Li, et al., 2016b).

A third approach uses a chessboard method to investigate deforestation climate effects
(Winckler et al., 2017; Prevedello et al., 2019; Robertson, 2019). In these studies, deforested
gridcells are scattered in a chessboard pattern across the globe. Model simulation is
performed only once. The deforestation signal is obtained by comparing deforested gridcells
with neighboring forested gridcells in the same model run. The space-for-time analogy is
tacitly assumed in data interpretation. This method provides more spatially refined insights
than the other two methods. Common to all the three methods is that results are reported as

gridcell means.

In this study, we investigate the climate effects of LULCC by evaluating model output at
the subgrid-scale, following Malyshev et al (2015) and others. One reason for doing this is
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that ongoing land use activities are occurring at local scales that are typically smaller than the
resolvable scale of a gridcell in ESMs (on the order of 100 km). ESMs typically represent
land surface heterogeneity by dividing land gridcells into subgrid tiles, with each tile having
similar physical, ecological, and biogeochemical characteristics (Malyshev et al., 2015;
Lawrence et al., 2016; Lawrence et al., 2019). Generally, each tile within a gridcell receives
the same forcing from the atmosphere, including incoming solar radiation, incoming
longwave radiation, precipitation, temperature, humidity and wind, at the first model grid
height, but the biophysical and biogeochemical state and flux variables are simulated at each
subgrid level and then aggregated to produce grid-averaged values that are passed back to the
atmosphere. Since the same atmospheric forcing is applied to all subgrid tiles within the same
grideell, the differing responses of land cover types to the same atmospheric conditions can
be examined (Malyshev et al., 2015). By focusing on subgrid variations, it may be possible to
generate process-level information at the scales at which land use activities — urbanization,
deforestation, afforestation, agricultural intensification, and other land management — are
occurring. An additional benefit is that the geographical region of study is not limited solely
to regions that have undergone large-scale land-use transitions. Instead, this method can be
used to quantify potential impacts of proposed land-use changes virtually anywhere on the

globe, as long as multiple land-use types exist within a single gridcell.

So far, subgrid data have been used in quantification of and adaptation to urban heat
stress using data from urban tiles (Zhao et al., 2014; Oleson et al., 2015, Li et al., 2016),
projection of global lake evaporation changes using data from lake tiles (Wang et al., 2018),
evaluation of deforestation on local surface climate using forest and grass plant functional
types (PFTs) (Schultz et al., 2016; Liao et al., 2020), assessment of vulnerability of food
production to climate change using subgrid data generated for crop tiles (Ren et al., 2018),
evaluation of land-atmosphere parameterizations (Hao et al. 2022), and effects of nitrogen
deposition on LULCC-modified lands (Paulot et al., 2018). These studies have revealed the
dominant roles of albedo and LE in controlling subgrid temperature variations, in agreement
with observed deforestation effects (da Rocha et al., 2004; von Randow et al., 2004) and with
model simulations of large-scale deforestation (Bonan, 2008; Li et al., 2016b). Specifically,
in low latitudes, open land (e.g., cropland and grassland) is warmer than forests because of
reduced LE. In mid-to-high latitude regions, the pattern is reversed because open land has

higher albedo than forests. A reduction of LE through transpiration and an increase in
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sensible heat flux was identified as a primary cause for the summertime northern mid-latitude
temperature response to cropland expansion (Findell et al., 2017). Li et al. (2016a) proposed
that the combined effect of albedo and LE can be predicted by the heating potential
difference between land use types, as

AHp = AnetSW — ALE (1)
where Hp (= netSW — LE) denotes heating potential, netSW is net shortwave radiation at the
surface, and A denotes difference between two land use types. The H,, difference can explain
reasonably well the latitudinal dependence of satellite-observed surface temperature (skin

temperature) contrast between forests and grasslands (Schultz et al., 2017).

Understanding how air temperature responds to LULCC is highly relevant to human and
ecological health. It is not known if AH,, has the same predictive power for 2-m air
temperature variations between forests and grasslands or for variations between other land
use types (e. g., forest versus cropland). One concern is that the LULCC climate effect is also
controlled by the efficiency of energy redistribution between the surface and the atmospheric
boundary layer. In a future CO;-enriched world, the stomatal conductance of land ecosystems
is projected to decrease (Yang et al., 2019), leading to decreased efficiency of turbulent flux
and therefore may enlarge subgrid variations in temperature. Even though crops and grasses
are both considered open land (with low surface roughness, similar albedos and relatively low
lead area index (LAI)), cropland expansion (at the expense of primary and secondary land) is
known to cause different temperature responses than replacement of forests by grasslands
(Bonan, 2001), partly because of the differences in seasonal LAI patterns and greenness

(Lamchin et al., 2020).

Multi-model approaches have become a central component to national and international
assessments to understand past, present and future climates (Taylor et al., 2012; Eyring et al.,
2016, Jia et al., 2019). To date, published studies on subgrid scale temperature responses to
LULCC have relied on one or at most two models (Malyshev et al., 2015; Schultz et al.,
2016; Liao et al., 2020), and no attempt has been made to evaluate the subgrid scale
temperature response using a multi-model ensemble. A multi-model approach has the
potential to obtain a more robust estimate of the climate effects of LULCC, including a range
of projected outcomes and the drivers of these outcomes, and also may uncover limitations in

land parameterization schemes.
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In this study, we analyzed the subgrid results from seven simulations produced by four
CMIP6 models. These simulations were conducted under three CO» forcing scenarios
(historical, SSP5-8.5 and 4xCO.). We focus on three types of subgrid variations (crop versus
primary and secondary land or psl, grass versus forest, and crop versus forest) across
latitudes. By examining latitudinal patterns of subgrid screen-height (2-m) air temperature
response and model-to-model variations, we hope to generate insights that can help to
improve LSM performance. Another specific goal is to evaluate if heating potential can form
an emergent relationship on the subgrid temperature response to LULCC in this ensemble of
model simulations. Process-based emergent relationships, established with multi-model
ensembles and constrained by observations, have been shown to enable credible projections
on many other aspects of the climate system, such as the snow albedo and the carbon cycle
feedback (Hall et al., 2019). A robust emergent relationship for subgrid surface climate may
improve our ability to predict the climate effect of local LULCC.

2. Model descriptions and simulations

This historical climate simulations were made with four ESMs: CESM2, NorESM2-LM,
GFDL-ESM4 and UKESM1-0-LL. These models are participants of the Land Use Model
Intercomparsion Project (LUMIP) (Lawrence et al., 2016). LUMIP is one the 21 endorsed
MIPs under the CMIP6 protocol (Eyring et al., 2016), with the aim to advance our
understanding of the impacts of LULCC on the climate and the biogeochemical cycle. The
experiment employed in this study, labeled as hist-noLu, was forced by anthropogenic and
natural forcing from 1850 to 2014, while the land use and land cover were held constant at
the year of 1850. In other words, the fraction of cropland and pastureland, the crop type
distribution, land management regimes, wood harvesting, fire ignition/suppression rates, and
so on, did not vary during the simulation period. In CESM2, vegetation structure (leaf area
index, stem area index, canopy top and bottom heights) were calculated prognostically with
its BGC model. The basic configurations of these models and their LSM schemes are

summarized in Table 1.

Table 1 Models and simulations used in this study.
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Resolution

Land

Soil

Model surface Forcing Tile pair Irrigation Reference
(lat x lon) configuration
model
Lawrence et
NCAR-
al. (2019)
CESM2 0.9 x 1.25 CLMS5 Shared Hist-noLu Crop - psl on
Danabasoglu
(default)
et al. (2020)
NorESM22- Seland et al.
1.9 x2.5 CLM5 Shared Hist-noLu Crop -psl on
LM (2020)
Zhao et al.
GFDL- (2018)
1.0 x 1.25 LM4 Individual Hist-noLu Crop - psl off
ESM4 Dunne et al.
(2020)
Sellar et al.
UKESM11- JULES- (2019)
1.25 x 1.9 Shared Hist-noLu Crop - psl off
0-LL GL7.0 Wiltshire et
al. (2020)
NCAR-
CESM2 Schultz et al.
0.9 x 1.25 CLMS5 Individual Hist-noLu on
(individual Crop - psl (2016)
soil)
NCAR-
CESM2 o )
o 0.9 x1.25 CLM5 Individual 4xCO2 off This study
(individual Crop-psl
soil)
NCAR-
CESM2 Zhang et al.
o 0.9 x1.25 CLM5 Individual SSP5-8.5 Crop-forest on
(individual (2022)
) Grass-forest
soil)

We performed one extra hist-noLu simulation using CESM2 with a modified version of

its land scheme. In CLMS5, the land component of CESM2 (Lawrence et al., 2019), the land

surface is represented as a nested hierarchy of subgrid levels. The first subgrid level is the

land unit, including vegetation, lake, urban, glaciers and crop, with a fraction assigned to

each land unit. The crop tile contains managed, unmanaged, rainfed and irrigated crops. The

irrigation option is enabled in both hist-noLu simulations. In irrigated croplands, a check is

made once per day to determine whether irrigation is required on that day. Irrigation is

required if crop leaf area is positive and the available soil water is below a specific threshold

(Lawrence et al., 2018). The second subgrid level is the column, which intends to capture
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variability in the soil and snow state variables within a single land unit. The key characteristic
of the column level is that this is where the state variables for water and energy in the soil and
snow are defined. The third subgrid level is PFT, which captures the biophysical and
biogeochemical differences between broad categories of plants. In the default CLM5
configuration, the vegetated land unit is assigned a single column whereby all the PFTs in the
unit share the same soil column in terms of water, nutrient use and soil heat exchange. Recent
studies have shown that this shared soil column configuration can lead to unrealistic ground
heat fluxes because a common soil temperature is artificially maintained for all PFTs within a
column (Schultz et al., 2016; Meier et al., 2018). In this new hist-noLu simulation, each PFT
in the vegetation unit was assigned its own soil column, following the method described by
Schultz et al. (2016). We note that UKESM1 and NorESM2 are configured with shared soil
column and GFDL has an individual soil column for different vegetation and land use types

(Table 1).

Although CESM2-CLMS5.0 (and presumably the other models) can output data at the PFT
level, the LUMIP protocol only requested subgrid data for up to four subgrid tiles (psl, crop,
urban and pastureland), and only two tiles (psl and crop) have complete data across the four
LUMIP models assessed here. For this reason, our multi-model analysis is restricted to
subgrid variations between these two tiles. In LUMIP, the psl tile is an area-weighted

aggregation of forest, unmanaged grassland, and shrub.

The NorESM2 model uses CLMS as its land component (Seland et al., 2020). All

vegetation PFTs share a single soil column.

The land component of GFDL model, LM4, is based on the LM3 model (Shevliakova et
al., 2009; Zhao et al., 2018). In LM4, each gridcell consists up to 15 tiles (including a bare
soil tile) to represent subgrid differences in hydrology and carbon states. Each tile has its own
soil column. Changes in tile types and areas occur annually according to the LUH data set.
The physical and biogeochemical fluxes between the land and the atmosphere are calculated
separately for each tile. There is no real crop in GFDL model; instead, cropland is
approximated by Cs and C4 grass (Shevliakova et al., 2009). For LUMIP subgrid tile
reporting, all secondary and natural tiles are aggregated into the psl tile (Lawrence et al.,

2016). Croplands are unirrigated.

The land component of UKESM1 model, JULES-GL7, uses a surface tiling scheme to

represent subgrid heterogeneity. Tiles in a gridcell share a single soil column. Each tile has its
8
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own albedo, surface conductance, turbulent fluxes, ground heat flux, radiation fluxes, snow
mass and melt, as well as surface temperature. There are nine surface tiles consisting of five
PFTs (broadleaf trees, needleleaf trees, Cs grass, Cs4 grass and shrubs) and four non-vegetated
surface types (urban, inland water, bare soil and ice). The tile fractions are spatially varying
and produced by a remapping of the 17 IGBP types. The crop and pasture are physiologically
identical to the natural grasses. For example, a cropland tile consists of 75% C3 grass, 5% Ca
grass and 20% bare soil. (Wiltshire et al., 2020). Irrigation in the UKESMI is turned off in
the CMIP6 simulations.

The spatial distribution of psl and crop fractions are shown in Figure S1. The psl tile takes
up over 50% of the land surface in all models. The differences across the models are due to
different treatments of the psl tile. For example, desert (bare ground) is included in psl tile of

CESM2 and GFDL model, but not in UKESM1.

To investigate how atmospheric CO:z influences subgrid temperature variations and to
increase the number of subgrid tile configurations, we performed two more simulations with
CESM2 using the individual soil column setup (Table 1). The first simulation was an instant
quadrupling of the preindustrial CO; concentration (4xCO.) with the same land use and land
cover as in hist-noLu. This simulation was run in coupled mode for 120 years. Subgrid data
were aggregated to four land tiles according to the LUMIP protocol and only the psl and the
crop data were analyzed here. The second simulation was forced by the SSP5-8.5 scenario
from 2015 to 2100. This is a high emission transient scenario, with atmospheric CO>
increasing from about 400 ppm in 2015 to about 1135 ppm in 2100 resulting in radiative
forcing of 8.5 W m in 2100 relative to the preindustrial level (Meinshausen et al., 2020).
Atmospheric CO; can impact the surface climate directly via stomatal control on transpiration
and indirectly via snow phenology change induced by changes in temperature. The multiple
COz scenarios allow us to determine which impact is stronger. The land use of year 2015 was
used throughout the simulation. Subgrid data were archived for eight land tiles (Zhang et al.,

2022). In this study, we analyzed the data for forest, crop and grass tiles.

Some ESMs deploy a land parameterization that considers sub-grid topographic effects
(Tesfa et al. 2017; Hao et al. 2022). In the ESMs shown in Table 1, there is no elevation

change between different land uses within the same model grid.

3. Data analysis
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The 2-m air temperature (T) variations are the main focus in this study. These variations
were quantified as the difference, denoted by A, in T between three pairs of subgrid tiles,
including (1) crop versus psl from the hist-noLu simulations and the 4xCO; simulation, (2)
crop versus forest from the SSP5-8.5 simulation, and (3) grass versus forest from the SSP5-
8.5 simulation. In these paired calculations, psl and forest tiles are the baseline land use, and
crop and grass are the perturbations. For example, when examining the data from hist-noLu
simulations, AT is the difference in the 2-m air temperature between crop and psl (crop minus
psl). The A values of other subgrid variables were calculated similarly (crop minus forest and
grass minus forest). Unless stated otherwise, results are presented as seasonal and annual
means of the last 20 years of each simulation. They are year 1995-2014 for the hist-noLu
simulations, year 100-120 for the 4xCO; simulation and 2081-2100 for the SSP5-8.5

simulation.

Using the space-for-time substitution, the contrast in temperature between the crop and
the psl or forest tile can be regarded as the local climate effect of agricultural expansion.
Likewise, the contrast between the grass and the forest tile is equivalent to the local climate
effect of deforestation. This approach considers direct impact only. It does not include
indirect impact due to atmospheric changes (e.g., cloud feedback) or effects of local terrain

variations (Hao et al., 2022).

The subgrid temperature variations are related to subgrid variations in Hp, which were
calculated according to Equation (1). Subgrid variations in several biophysical properties and

surface fluxes, including LAIL netSW and LE, were also examined.

For a subset of model simulations, we investigated the dependence of AT on the
efficiency of energy redistribution between each land tile and the overlaying atmosphere.
This efficiency was quantified using the dimensionless energy redistribution factor f.
Following Lee et al. (2011) and Bright et al. (2017), f was calculated from the diagnostic

equation:

f =75 R -0 -1 2

where T; and T}, represent surface temperature and air temperature at the blending height (or

the lowest atmospheric grid), respectively, A is the local climate sensitivity given by
1/(40T3) with o being the Stefan-Boltzmann constant, G denotes the ground heat flux, and

R;, is apparent net radiation given as

10
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R, = |SW-1SW + |LW - ¢T} (3)

where |SW is the incoming shortwave radiation, 1SW is the outgoing shortwave radiation,
and |[LW is the incoming longwave radiation. Higher f values indicate more efficient
convection exchange or energy dissipation from the surface to the lower boundary layer. The
daytime f ranges from about 2 to 30 and the nighttime f from about 0.3 to 4 (Chakraborty and
Lee 2019). Calculation of f'was made for three simulations, all using CESM2 (hist-noLu with
independent soil column, 4xCO and SSP5-8.5), but was not done for other simulations

because the blend-height air temperature was not available.

4. Results

a. Climatic effects of cropland expansion: geographic pattern

Figure 1 maps the differences of annual mean temperature and Hj, terms between crop and
psl tiles for each model. In the space-for-time framework, these subgrid variations can be
interpreted as local climatic effects of cropland expansion. Cropland-induced cooling (AT <
0) in mid-to-high latitudes of Northern Hemisphere (NH) and warming in the tropics (AT > 0)
are observed in all models with varying magnitudes, except for UKESM1. The UKESM1
model, on the other hand, shows a wide-spread cooling across the globe. The AT patterns are
broadly consistent with previous studies using remote sensing data (Li et al., 2015; Li et al.,
2016a; Duveiller et al., 2018; Boysen et al., 2020) and can be largely explained by AH,
(Figure 1p-t), in which grids with positive AH, generally show positive AT, and vice versa.
The spatial correlation coefficient r between AT and AHj,, is higher than 0.74 (p < 0.001)
except for GFDL model with r = 0.23 (p < 0.001). The result for GFDL is noisy compared
with the CLM-based models.

11
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CESM2 default NorESM2 UKESM1 CESM2 indv. soil
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Figure 1: Changes of annual mean temperature and heating potential terms for each
model (crop minus psl). (a-e) for temperature (T), (f-)) for net SW radiation, (k-o) for latent
heat flux (LE) and (p-t) for heating potential (Hp). Gray dots indicate that the changes are
significant at 0.05 level based a two-sided student’s t test. The dots are shown every 5 grids

for clarity.

On the whole, cropland expansion leads to a widespread decrease of net SW radiation,
with a stronger drop in high latitudes, which is a result of an increase in albedo (Figure 1{-).
There are two reasons for the difference: (i) In the growing season, croplands generally have
a higher albedo than forests and therefore reflect more SW radiation (Peilke et al., 2011; Li et
al., 2015; Duveiller et al., 2018); (i1) During the winter, snow can mask croplands but has
smaller impact on forests, leading to a larger albedo effect at high latitudes (Robinson &

Kukla, 1984).

In all the models, cropland expansion results in a reduction of LE at low latitudes (ALE <
0, Figure 1k-0), possibly owing to the shallower root system and smaller LAI of cropland
compared with psl (Bonan, 2008; Davin & de Noblet-Ducoudré, 2010; Lawrence &
Vandecar, 2015), and reduced surface roughness (Winckler et al., 2019b). These models are
not consistent in some mid-latitude regions: ALE shows no change or slightly positive

changes in arid zones (West North America and Central Asia) in CLM-based models (two

12
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CESM2 simulations and one NorESM?2 simulation) while in GFDL and UKESM1, ALE
shows slightly negative values. Different model parameters such as root distribution and plant
water uptake (Meier et al., 2018), as well as the differing responses of precipitation and
snowfall (Li et al., 2015) may partially explain the incongruent responses of LE across the

models.

b. Seasonal pattern of cropland climate effects

Figure 2 shows the seasonal evolution of zonal mean values for AT, AnetSW and ALE
between crop and psl tiles. Crops are warmer all year round (except for UKESM1 which
produces cooling), with a slightly stronger warming in summer in CLM-based models than in
GFDL in the tropics (Figure 2, upper row). Such a warming pattern is mainly contributed by
reduced LE (Figure 2, lower row). AT in mid-to-high latitudes (e.g., around 60°N) shows
strong seasonality in all the models, with the strongest negative AT observed in February to

May (Figure 2, upper and middle rows), which is mainly attributed to the snow-masking

effect (Bonan et al., 1992).
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Figure 2: Hovmoller plot for AT (a-e), AnetSW (f-j) and ALE (k-0). Results shown are

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

zonal mean values vs. month. All results are crop minus psl. Grey dots indicate missing data

or insignificant changes at 0.05 level based on a two-sided student’s t test.

In the three CLM-based model simulations, there is a stripe of negative AT in the middle

latitudes of NH in the spring-to-summer transition (from April to June; Figure 2a, b and e).

This cooling is mainly attributed to the positive ALE (Figure 2k, I and o). The enhanced LE

appears to be a result of the crop growth in the springtime as evidenced by positive ALAI

(Figure 3).
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Figure 3: Same as Figure 2, but for ALAI in the CESM2 model default simulation. Grey
dots indicate missing data or insignificant changes at 0.05 level based on a two-sided

student’s t test.

c. Sensitivity to soil column configuration

The three CLM-based model simulations show nearly identical zonal mean patterns of the
subgrid contrasts in annual mean temperature and the Hp terms between crop and psl tiles
(Figure 4a, b and e). All show the largest drop in temperature around 60°N, with a zonal
mean value of -0.24 to -0.28 K. Then AT increases southward and switches to positive values
around 42°N, with a peak (0.61 to 0.71 K) in the tropical regions. The tropical (20°S-20°N)
mean AT is 0.44 K (CESM2 default), 0.44 K (NorESM2) and 0.39 K (CESM2 individual
soil; Figure 5). The mean AT for mid-to-high latitudes (40°N-70°N) is -0.07 K (CESM2
default), -0.09 K (NorESM2) and -0.11 K (CESM2 individual soil). In the CESM?2 default
and the NorESM2 simulations, all natural PFTs shared the same soil column, whereas in the
CESM2 individual soil simulation, each PFT was assigned its own soil column. In all three
simulations, crops had their own separate soil columns. Figures 4 and 5 indicate that the

result for the psl tile is insensitive to soil column configuration.

Individual soil configuration is preferred over shared column configuration if the interest
is subgrid variations between PFTs within the natural vegetation land unit, such as variations
between forest and grass (Schultz et al., 2016). In the present study, the psl tile is an
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aggregate of multiple PFTs (forest, grass, shrub and bare ground). The insensitivity shown in
Figures 4 and 5 indicates that the aggregation has mostly eliminated bias errors associated

with unrealistic ground heat fluxes in shared column configuration.
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Figure 4: Zonal mean changes (crop minus psl) of annual mean temperature and heating

potential (Hp) terms for each model simulation.
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Figure 5: Domain-averaged annual mean AT for tropical regions (red), mid-to-high
latitude regions (blue), and global land grids (orange, no Antarctica) for each model. Results

are crop minus psl. Each circle represents one-year value during 1995-2014.

d. Influence of atmospheric CO: on subgrid variations

Our model ensemble encompasses a wide range of CO» levels: from 285 ppm to 400 ppm
under the historical forcing, 1140 ppm in the 4xCO> scenario and from 400 ppm to 1135 ppm
under the SSP5-8.5 scenario. To examine the influence of CO; on subgrid variations, we
compare in Figure 6 the zonal mean contrasts (crop minus forest) in T, netSW and LE
between the first 20 (2015-2034) and the last 20 years (2081 to 2100) of the CESM2 model
simulation under SSP5-8.5 scenario. The mean CO: concentration is ~430 ppm in the first
period and ~1000 ppm in the last period. The grid by grid scatter plots are given in Figure S2.
The differences between these two periods can be explained by changing background climate
and indirect effects of rising CO.. For example, the magnitude of albedo effect may be
reduced in a warmer world (Figure 6b). A higher CO2 concentration may reduce stomatal
opening, resulting in a lower LE flux. The contrast in the AnetSW (crop minus forest) is less
negative at mid- to high latitudes in the second period than in the first period (Figure 6b)
because of less snowfall and a shorter snow cover duration in a warmer climate (Figure S3),
which leads to less negative AT in the high latitudes (Figure 6a). The ALE is slightly more
positive in the second than in the first period, due to more cropland irrigation (higher soil
moisture content) driven by higher temperature in the later period (Figure 6¢). The CO; effect

via stomatal regulation appears negligible on the differences between crops and forests.

a AT b AnetSW c ALE

90N

60N H

30N+

Latitude (°)

o

308 { [ ——2015-2034

--------- 2081-2100

60S

0.6 20 -15 -10 -5 0 -
(W m?)

17
File generated with AMS Word template 1.0

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0073.1.
Brought to you by Yale University Library | Unauthenticated | Downloaded 01/20/23 06:20 PM UTC



Figure 6: Zonal mean differences (crop minus forest) of temperature (a), net SW radiation (b)

and LE flux (c) under SSP5-8.5 scenario in 2015-2034 (blue) and 2081-2100 (red).

e. Emergent relationship on subgrid temperature variations

Figure 7 shows the correlation between zonally-averaged AT, AnetSW, ALE, and AH,, for
crops minus psl. The correlation between AT and AnetSW is stronger for the mid-to-high
latitudes than for the tropical regions, with a correlation coefficient of 0.86 (p <0.01) and a
slope of 0.04 K per W m™ across all models (Figure 7a). This regional difference indicates a
stronger albedo effect in the mid-to-high latitudes than in low latitudes. In contrast, ALE
controls the temperature change in the tropical regions, characterized with a correlation
coefficient of -0.80 (p < 0.01) and a slope of -0.03 K per W m™? (Figure 7b, red). The impact
of ALE in the mid-to-high latitudes is relatively minor (Figure 7b, blue). The correlation
pattern with the heating potential AH, does not differ much between the two zones (Figure

7c).
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Figure 7: Linear relationship between zonally-averaged AT and AnetSW (a), AT and ALE
(b) as well as AT and AHj, (c and d) for all hist-noLu simulations (crop minus psl). In (a), (b)
and (c), red and blue symbols represent tropics and mid-to-high latitude regions, respectively.
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In (d) all latitude bands are used. Each symbol represents zonal mean value of a one-degree
latitude band. The lines represent linear regression fit, with linear correlation (r) and

confidence level (p) values shown.

The crop-versus-psl difference in the overall heating potential AHp, which combines both
AnetSW and ALE (Equation 1), as the independent variable correlates reasonably well with
AT (r=10.72, p <0.01) for all latitudes and all hist-noLu model simulations (Figure 7d). The
regression equation is given by

AT =-0.030 + 0.025 AH, 4)
where AT is in K and AH, is in W m?. In comparison, AT and AH, in a large-scale
deforestation experiment are highly correlated in latitude zone 20°S to 50°N but poorly
correlated north of 50°N (Li et al., 2016a). A small group of outliers in Figure 7d deviate
significantly from Equation 4. They occur in the GFDL model, mainly north of 45°N and
south of 40°S (Figure 4c¢), implying factors other than AnetSW and ALE, such as the energy

redistribution factor, may also play a role in modifying AT.

An open question is whether Equation 4 is a robust emergent relationship on subgrid
variations under other CO» scenarios and on variations associated with other types of land
use. To answer this question, we did three out-of-sample tests using the CESM2 model
results (crop-psl in 4xCOy, grass-forest in SSP5-8.5 and crop-forest in SSP5-8.5; Table 1).
We found that this relationship predicts AT reasonably well for the same subgrid tile
configuration (crop versus psl) under 4xCO> (Figure 8a, r = 0.92), but does not work well for
AT associated with two other tile configurations (grass versus forest, Figure 8b; crop versus
forest, Figure 8c) under the SSP5-8.5 scenario. In these two cases, most of the data points lie
above the regression line of Equation 4. In the case of crop versus forest, the relationship is
noisy with r value of 0.47 only. In other words, albedo and LE differences cannot fully

explain the range of local temperature responses to LULCC.
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Figure 8: Linear relationship between zonally-averaged AT and AH,, for three out-of-sample
tests of Equation 4. Each symbol represents zonal mean value of a one-degree latitude band.

The thick solid lines represent Equation 4.

Published modeling studies of large-scale deforestation have shown that the surface air
temperature responds to changes in surface roughness in addition to changes in albedo and
LE (e. g., Winckler et al., 2019b). In the local surface energy balance framework, this
roughness effect can be quantified with the energy redistribution factor  (Lee et al., 2011).
We analyzed the dependence of AT on various combinations of AnetSW, ALE, and Af using a
subset of the simulations with CESM2. We did not consider AnetSW - ALE - AH as predictor,
because on the annual time scale this combination is roughly equivalent to ATLW or change
in the outgoing longwave radiation. Since TLW is controlled by the surface temperature
according to the Stephan-Boltzmann law, use of ATLW as a predictor of AT would amount to
circular reasoning of explaining temperature with temperature. The best statistical model is

obtained by regressing AT against AnetSW and Af'(all as zonal mean values):

AT =0.017 x AnetSW —0.170 x Af—0.018 (5)
This linear model explains 88% of the variations (1> = 0.88) in AT between crop versus psl,
crop versus forest, and grass versus forest under three different CO> forcing scenarios
(historical, 4xCO; and SSP5-8.5; Figure 9a). Consistent with the heating potential
relationship (Equations 1 and 4), AT is positively related to AnetSW, indicating that land use
change that causes a reduction in albedo contributes to warming. On the other hand, the
relationship with Af'is negative, or land use change that increases the efficiency of surface-air
energy redistribution contributes to cooling. The zonal patterns of Af are given in Figure S4.
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In these three tile pairs, open land tiles (crop and grass) have smaller f'than their
corresponding baseline tile (psl or forest). This is because f'decreases with increasing heat
diffusion resistance in the surface layer and with increasing Bowen ratio (Lee et al., 2011)
and because open land tiles have higher diffusion resistance due to their lower roughness and

generally higher Bowen ratio.
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Figure 9: An emergent relationship on subgrid temperature variations in CESM2 model
simulations. (a) Original AT versus fitted AT (Equation 5). (b-e) zonal mean plot of original
AT, fitted AT. In (b-e), the blue and orange lines represent contribution to AT from changes in
energy redistribution factor and in netSW, respectively. The SSP5-8.5 results are for 2081 to
2100.

The individual contributions of AnetSW and Af to AT could be estimated by multiplying
their coefficients, respectively (Figure 9b-e). In the three tile configurations, change in the
energy redistribution factor dominates the latitudinal pattern of AT between 60°S and 30°N
(blue lines). In mid-to-high latitudes (roughly north of 40°N), change in albedo is dominant,
resulting in lower temperatures in open land (crop and grass) than in psl or forest.

21
File generated with AMS Word template 1.0

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0073.1.

Brought to you by Yale University Library | Unauthenticated | Downloaded 01/20/23 06:20 PM UTC



- Behavior of the UKESM 1 model

In contrast to warming at low latitudes and cooling at high latitudes in the other model
simulations, the UKESM1 model shows cooling due to cropland expansion across all
latitudes (Figures 1, 2 and 4). To understand this behavior, we compared the annual albedo
and LE for the crop and the psl tile and their differences among the five hist-noLu model
simulations (Figure 10, Tables 2 and 3). The albedo of the crop tile in UKESMI1 is generally
higher than other models. In the region of 40°N - 70°N, the UKESM1 model has a mean crop
albedo of 0.37 compared with 0.23 in CESM2 (default) and 0.29 in GFDL, causing a stronger
reduction of net SW radiation (-13.8 W m?) than in other models (from -6.6 W m™ to -12.5
W m2). The most negative zonal mean AT of -0.93 K occurs in the UKESM1 simulation at
60°N (Figure 4d).
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Figure 10: Zonal mean plot of mean albedo in psl (primary and secondary land) tile (a),
crop land tile (b), and their differences (c) in hist-noLu simulations. (d-f), same as (a-c) but

for latent heat (LE) flux.

The UKESM1 model shows a similar LE to CESM2 for the psl tile (Figure 10d), but a
roughly 20 W m higher LE for the crop tile in the tropics relative to CESM2. This translates
into a less negative LE change (-4.4 W m%) compared with CESM2 (-18.0 W m™) in the
tropical region (Table 3), and negative or near-zero AH, (Figure 4d) as opposed to large
positive AHp in CESM2 (Figure 4a). The combination of a stronger albedo effect and a

reduced LE change leads to the above-mentioned consistent cooling in UKESM1 model.

The GFDL model also shows a strong albedo-driven cooling effect at high latitudes and a
high LE flux in the tropics for the crop tile (Figure 10b and e). However, due to a high LE
flux of the psl tile, the LE difference between crop and psl is similar to the other models at
low latitudes and is negative at mid- to high latitudes which offsets the cooling effect from

albedo.

Table 2 albedo and AnetSW radiation in each model for the tropics and mid-to-high latitudes.

AnetSW (crop-psl,
Mean albedo (psl) Mean albedo (crop) Aalbedo (crop — psl)
W/m2)
20°S- 40°N- 20°S- 40°N- 20°S- 40°N- 20°S- 40°N-
Model
20°N 70°N 20°N 70°N 20°N 70°N 20°N 70°N
CESM2
0.16 0.19 0.16 0.23 0 0.04 -0.5 -6.6
default
NorESM2 0.16 0.19 0.16 0.24 0 0.05 -0.3 -6.6
GFDL 0.18 0.19 0.23 0.29 0.05 0.10 -10.4 -12.5
UKESM1 0.19 0.27 0.23 0.37 0.04 0.10 -8.1 -13.8
CESM2
0.16 0.19 0.16 0.24 0 0.05 -0.4 -6.8
indv. soil
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Table 3 Latent heat (LE) flux in each model for the tropics and mid-to-high latitudes (unit: W

m’?).

Mean LE (psl) Mean LE (crop) ALE (crop — psl)
Model 20°S-20°N 40°N-70°N 20°S-20°N 40°N-70°N 20°S-20°N 40°N-70°N
CESM2
72.1 30.4 54.2 29.7 -18.0 -0.8
default
NorESM2 75.4 31.2 54.5 31.5 -20.8 0.3
GFDL 85.6 443 70.2 32.8 -15.4 -11.6
UKESM1 77.7 31.8 73.3 29.1 -4.4 2.7
CESM2
68.5 28.5 54.0 29.4 -14.4 0.9
indv. soil

5. Discussion and summary

In this study, we investigated the LULCC impact on local subgird tile air temperature
with a set of CMIP6 ESMs across a large range of CO: concentrations. We found that the
subgrid temperature response to LULCC varies by latitude, and depends on the competing
effects of albedo, LE and energy redistribution. Because of this balancing act, there exists a
transitional latitude that divides warming to the south and cooling to the north from land
clearing. Satellite-based studies on land surface temperature show that deforestation leads to
cooling north of 45°N - 55°N (Alkama & Cescatti, 2016; Duveiller et al., 2018), while in
observational studies of air temperature, the transition from warming to cooling occurs
further south, at around 35°N (Lee et al., 2011; Zhang et al., 2014). In a model simulation of
local deforestation (grass versus forest) under the historical climate (1991 to 2010; Schultz et
al. 2016), the transition in air temperature change occurs at around 48°N. Winckler et al.
(2019c¢) reported a transition of 45°N to 55°N for surface temperature in the MPI-ESM

model. In the historical simulations presented here, the transition of positive AT (2-m air
24
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temperature, crop minus psl) to negative AT occurs at around 40°N (38°N - 42°N; Figure 3a,
b, ¢ & e). The simulation of a transient climate scenario suggests that under future higher CO>

conditions, the transition may shift further north (Figure 6a).

The latitudinal dependence of temperature response to LULCC can be further understood
by quantifying the relative contribution of non-radiative processes. Following Bright et al.

(2017), the non-radiative contribution is given as:

IRH2| % 100%

Non-radiative fraction = (6)
(IRH1|+|RH2|+|RH3))

In Equation 6, |RH1|, |[RH2| and |RH3| are the 1%, 2" and 3™ term on the right-hand side of
Equation 5. The zonal mean results (Figure 11) show that the non-radiative contribution
exceeds 50% between 45°S and 30°N, with peak values (> 80%) at tropical latitudes (15°S
and 10°N), over the ranges of the CO and land use change scenarios simulated by CESM2.
These results confirm the dominant role of non-radiative processes at these latitudes,
consistent with previous analyses (Bright et al., 2017; Ge et al., 2019). For example, in Bright
et al., (2017), the authors found that non-radiative processes dominate the local temperature
response to LULCC effect, especially in the tropics. In more northern latitudes, the non-
radiative contribution seems to be more sensitive to CO> concentration, irrigation status (the

irrigation scheme was turned off in the 4xCO; simulation) and LULCC type (Figure 11).
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Figure 11: Zonal mean fractions of AT contributed by nonradiative process in CESM2

simulations. Dashed line represents 50%.

Unlike the other models, the UKESM1 model shows cooling due to agricultural
expansion across all latitudes (Figure 4d). This different behavior arises largely from the
higher albedo and the higher LE of the crop tile in UKESM1 than in the other models (Tables
2 and 3; Figure 10). The land surface scheme in UKESMI1 is JULES (Table 1). Previous
modeling studies with JULES reveal that its albedo response to land clearing is too strong in
comparison to other models (Kumar et al., 2013; Davies-Barnard et al., 2014; Robertson,
2019; Winckler et al., 2019a). In an evaluation of JULES against an observational dataset,
Robertson (2019) found that albedo errors in JULES are a major reason for its temperature
biases. The exact cause of the albedo errors is not clear. It may be related to relative biases in
optical parameter settings, such as leaf and soil albedo, among different PFTs or to LAI
calculation and calculation of canopy radiation. They also suggest that errors in surface
roughness length may partially explain its different LE response from other models. In these
studies, performance evaluation is based on grid mean values in control versus perturbation
simulations (Dvaies-Barnard et al., 2014), “all-forcing” simulations (Kumar et al., 2013) or
“chessboard” simulations (Robertson, 2019; Winckler et al., 2019a) as described in the
Introduction. Our analysis demonstrates similar parameterization biases at the subgrid level
in JULES. This example supports the view that subgrid model data provides useful diagnostic

information on land surface model performance.

The surface heating potential (Hp) has been used to explain the land surface temperature
variations observed by satellites (Schultz et al., 2017). In the present study, H, explains
reasonably well the latitudinal dependence of the 2-m air temperature change between crop
and psl land tiles for all the five hist-noLu model simulations (including UKESM1; r=0.72,
Equation 4 & Figure 7c). However, this relationship does not hold for two other subgrid tile
configurations (grass versus forest; crop versus forest; Figure 8). An alternative formulation,
given by Equation 5, combines the contributions to subgrid temperature variations from
radiative processes via changes in the net SW radiation (primarily due to surface albedo
change) and from nonradiative processes via the energy redistribution factor, the latter of
which accounts for the surface roughness effect. Equation 5 appears more robust than the H,

relationship (Equation 4), explaining 88% of the subgrid air temperature variations between
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crop versus psl, crop versus forest, and grass versus forest tiles and under three different CO»
forcing scenarios (historical, 4xCO2 and SSP5-8.5; Figure 9a). In a pseudo validation
exercise, with the MODIS albedo product and CESM2-generated f values, we find that
Equation 5 fits reasonably well with the latitudinal variation of AT observed at 42 paired
FLUXNET sites (open land versus forest, values averaged every 5° of latitude; Lee et al.,
2011 & Zhang et al. 2014; r = 0.95, p<0.001, RMSE = 0.23 K; Figure S5). We suggest that
Equation 5 may serve as an emergent constraint for benchmarking the performance of land

surface models and for prediction of local temperature response to LULCC.

One limitation of the present study is that atmospheric temperature data at the first model
grid height (or blending height) are not available for three of the four ESMs. In keeping with
the typical practice, these models archive air temperature at fixed pressure levels (1000 hPa,
925 hPa, 850 hPa, and so on), with the lowest level being 1000 hPa, or ~100 m above the sea
level. However, the surface elevation in most land surface grids is greater than 100 m. Data at
the blending are necessary to perform diagnostic calculation of the energy redistribution
factor f. Because of this data limitation, Equation 5 is based on the data provided by CESM2
only. To check the robustness of Equation 5, we also estimated the f'values for the four hist-
noLu simulations (CESM2 default, NorESM2, GFDL, UKESM1; Table 1), using the
temperature at the lowest pressure level as a substitute for the blending height temperature.
Using the Af value obtained this way along with AnetSW, we calculated the AT from
Equation 5. The results, presented in Figure S6, show that Equation 5 performs reasonably
well across the four ESM models. As fis increasingly used in LULCC studies, it is
imperative that in future LUMIP-like projects, outputs for the blending height be archived

along with surface and 2-m height variables.

In summary, our study shows that the albedo effect and LE flux response cannot fully
explain the temperature response to LULCC activities. A new emergent relationship is
proposed that combines the albedo effect and the effect of energy redistribution between the
surface and the atmosphere. This relationship highlights the dominant role of non-radiative
processes in the temperature response. Simulations under high CO> conditions indicate that
rising atmospheric COz can alter the local climate effects of LULCC indirectly by altering
irrigation intensity and snow cover duration. These insights from a multi-model and multi-
scenario perspective may be helpful to evaluate the performance of land surface model

parameterizations.
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