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ABSTRACT 

In this study, we investigate the air temperature response to land use and land cover change 

(LULCC; cropland expansion and deforestation) using subgrid land model output generated 

by a set of CMIP6 model simulations. Our study is motivated by the fact that ongoing land 

use activities are occurring at local scales, typically significantly smaller than the resolvable 

scale of a gridcell in earth system models. It aims to explore the potential for a multi-model 

approach to better characterize LULCC local climatic effects. On annual scale, the CMIP6 

models are in general agreement that croplands are warmer than primary and secondary land 

(psl; mainly forests, grasslands and bare ground) in the tropics and cooler in the mid- to high 

latitudes, except for one model. The transition from warming to cooling occurs at 

approximately 40°N. Although the surface heating potential, which combines albedo and 

latent heat flux effects, can explain reasonably well the zonal mean latitudinal subgrid 

temperature variations between crop and psl tiles in the historical simulations, it does not 

provide a good prediction on subgrid temperature for other land tile configurations (crop 

versus forest; grass versus forest) under SSP5-8.5 forcing scenarios. A subsect of simulations 

with the CESM2 model reveals that latitudinal subgrid temperature variation is positively 

related with variation in net surface shortwave radiation and negatively related with variation 

in the surface energy redistribution factor, with a dominant role from the latter south of 30°N. 

We suggest that this emergent relationship can be used to benchmark the performance of land 

surface parameterizations and for prediction of local temperature response to LULCC.  
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1. Introduction 

Land use activities contribute to climate change via biogeochemical and biophysical 

effects (e. g., Bonan, 2008; Lee et al., 2011; Boysen et al., 2020). The former is associated 

with the release of carbon to the atmosphere, lifting atmospheric CO2 concentration (e. g., 

Pan et al., 2011), while the latter is related to the change of surface properties (e.g., albedo 

and roughness) and latent heat (LE) flux (e. g., Davin & de Noblet-Ducoudré, 2010; Li et al., 

2015). Traditionally, modeling investigations of land use and land cover change (LULCC) 

are conducted by running two sets of earth system model (ESM) simulations: the first with 

pre-industrial land cover distributions and the second with a present-day or a prescribed 

future land cover map. One difficulty with this modeling strategy is how to properly 

disentangle LULCC climate signals from unforced model variability and nonlocal feedback 

effects via changes to atmospheric and oceanic circulations (Pitman et al., 2009; Pielke Sr et 

al., 2011; Chen & Dirmeyer, 2020). It is possible to better characterize the variability and 

enlarge the signal-to-noise ratio by performing a large number of perturbation and control 

simulations, but the computing cost is prohibitive.  

An alternative approach detects the biophysical effects of LULCC in “all-forcing” 

modeling experiments (Kumar et al., 2013; Lejeune et al., 2017) using a space-for-time 

substitution (Lee et al., 2011). It searches iteratively for gridcells affected and neighboring 

gridcells unaffected by LULCC. The temperature and energy flux contrasts between these 

two groups of gridcells are regarded as the climatic signal of LULCC. This method has been 

used successfully in the investigation of regional LULCC effects (Li, et al., 2016b).    

A third approach uses a chessboard method to investigate deforestation climate effects 

(Winckler et al., 2017; Prevedello et al., 2019; Robertson, 2019). In these studies, deforested 

gridcells are scattered in a chessboard pattern across the globe. Model simulation is 

performed only once. The deforestation signal is obtained by comparing deforested gridcells 

with neighboring forested gridcells in the same model run. The space-for-time analogy is 

tacitly assumed in data interpretation. This method provides more spatially refined insights 

than the other two methods. Common to all the three methods is that results are reported as 

gridcell means.   

In this study, we investigate the climate effects of LULCC by evaluating model output at 

the subgrid-scale, following Malyshev et al (2015) and others. One reason for doing this is 
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that ongoing land use activities are occurring at local scales that are typically smaller than the 

resolvable scale of a gridcell in ESMs (on the order of 100 km). ESMs typically represent 

land surface heterogeneity by dividing land gridcells into subgrid tiles, with each tile having 

similar physical, ecological, and biogeochemical characteristics (Malyshev et al., 2015; 

Lawrence et al., 2016; Lawrence et al., 2019). Generally, each tile within a gridcell receives 

the same forcing from the atmosphere, including incoming solar radiation, incoming 

longwave radiation, precipitation, temperature, humidity and wind, at the first model grid 

height, but the biophysical and biogeochemical state and flux variables are simulated at each 

subgrid level and then aggregated to produce grid-averaged values that are passed back to the 

atmosphere. Since the same atmospheric forcing is applied to all subgrid tiles within the same 

gridcell, the differing responses of land cover types to the same atmospheric conditions can 

be examined (Malyshev et al., 2015). By focusing on subgrid variations, it may be possible to 

generate process-level information at the scales at which land use activities – urbanization, 

deforestation, afforestation, agricultural intensification, and other land management – are 

occurring. An additional benefit is that the geographical region of study is not limited solely 

to regions that have undergone large-scale land-use transitions. Instead, this method can be 

used to quantify potential impacts of proposed land-use changes virtually anywhere on the 

globe, as long as multiple land-use types exist within a single gridcell.  

So far, subgrid data have been used in quantification of and adaptation to urban heat 

stress using data from urban tiles (Zhao et al., 2014; Oleson et al., 2015, Li et al., 2016), 

projection of global lake evaporation changes using data from lake tiles (Wang et al., 2018), 

evaluation of deforestation on local surface climate using forest and grass plant functional 

types (PFTs) (Schultz et al., 2016; Liao et al., 2020), assessment of vulnerability of food 

production to climate change using subgrid data generated for crop tiles (Ren et al., 2018), 

evaluation of land-atmosphere parameterizations (Hao et al. 2022), and effects of nitrogen 

deposition on LULCC-modified lands (Paulot et al., 2018). These studies have revealed the 

dominant roles of albedo and LE in controlling subgrid temperature variations, in agreement 

with observed deforestation effects (da Rocha et al., 2004; von Randow et al., 2004) and with 

model simulations of large-scale deforestation (Bonan, 2008; Li et al., 2016b). Specifically, 

in low latitudes, open land (e.g., cropland and grassland) is warmer than forests because of 

reduced LE. In mid-to-high latitude regions, the pattern is reversed because open land has 

higher albedo than forests. A reduction of LE through transpiration and an increase in 
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sensible heat flux was identified as a primary cause for the summertime northern mid-latitude 

temperature response to cropland expansion (Findell et al., 2017).  Li et al. (2016a) proposed 

that the combined effect of albedo and LE can be predicted by the heating potential 

difference between land use types, as 

ΔHp = ΔnetSW – ΔLE                                (1) 

where Hp (= netSW – LE) denotes heating potential, netSW is net shortwave radiation at the 

surface, and Δ denotes difference between two land use types. The Hp difference can explain 

reasonably well the latitudinal dependence of satellite-observed surface temperature (skin 

temperature) contrast between forests and grasslands (Schultz et al., 2017).    

Understanding how air temperature responds to LULCC is highly relevant to human and 

ecological health. It is not known if ΔHp has the same predictive power for 2-m air 

temperature variations between forests and grasslands or for variations between other land 

use types (e. g., forest versus cropland). One concern is that the LULCC climate effect is also 

controlled by the efficiency of energy redistribution between the surface and the atmospheric 

boundary layer. In a future CO2-enriched world, the stomatal conductance of land ecosystems 

is projected to decrease (Yang et al., 2019), leading to decreased efficiency of turbulent flux 

and therefore may enlarge subgrid variations in temperature. Even though crops and grasses 

are both considered open land (with low surface roughness, similar albedos and relatively low 

lead area index (LAI)), cropland expansion (at the expense of primary and secondary land) is 

known to cause different temperature responses than replacement of forests by grasslands 

(Bonan, 2001), partly because of the differences in seasonal LAI patterns and greenness 

(Lamchin et al., 2020).       

Multi-model approaches have become a central component to national and international 

assessments to understand past, present and future climates (Taylor et al., 2012; Eyring et al., 

2016, Jia et al., 2019). To date, published studies on subgrid scale temperature responses to 

LULCC have relied on one or at most two models (Malyshev et al., 2015; Schultz et al., 

2016; Liao et al., 2020), and no attempt has been made to evaluate the subgrid scale 

temperature response using a multi-model ensemble. A multi-model approach has the 

potential to obtain a more robust estimate of the climate effects of LULCC, including a range 

of projected outcomes and the drivers of these outcomes, and also may uncover limitations in 

land parameterization schemes.  
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In this study, we analyzed the subgrid results from seven simulations produced by four 

CMIP6 models. These simulations were conducted under three CO2 forcing scenarios 

(historical, SSP5-8.5 and 4×CO2). We focus on three types of subgrid variations (crop versus 

primary and secondary land or psl, grass versus forest, and crop versus forest) across 

latitudes. By examining latitudinal patterns of subgrid screen-height (2-m) air temperature 

response and model-to-model variations, we hope to generate insights that can help to 

improve LSM performance. Another specific goal is to evaluate if heating potential can form 

an emergent relationship on the subgrid temperature response to LULCC in this ensemble of 

model simulations. Process-based emergent relationships, established with multi-model 

ensembles and constrained by observations, have been shown to enable credible projections 

on many other aspects of the climate system, such as the snow albedo and the carbon cycle 

feedback (Hall et al., 2019).  A robust emergent relationship for subgrid surface climate may 

improve our ability to predict the climate effect of local LULCC.  

 

2. Model descriptions and simulations 

This historical climate simulations were made with four ESMs: CESM2, NorESM2-LM, 

GFDL-ESM4 and UKESM1-0-LL. These models are participants of the Land Use Model 

Intercomparsion Project (LUMIP) (Lawrence et al., 2016). LUMIP is one the 21 endorsed 

MIPs under the CMIP6 protocol (Eyring et al., 2016), with the aim to advance our 

understanding of the impacts of LULCC on the climate and the biogeochemical cycle. The 

experiment employed in this study, labeled as hist-noLu, was forced by anthropogenic and 

natural forcing from 1850 to 2014, while the land use and land cover were held constant at 

the year of 1850. In other words, the fraction of cropland and pastureland, the crop type 

distribution, land management regimes, wood harvesting, fire ignition/suppression rates, and 

so on, did not vary during the simulation period. In CESM2, vegetation structure (leaf area 

index, stem area index, canopy top and bottom heights) were calculated prognostically with 

its BGC model. The basic configurations of these models and their LSM schemes are 

summarized in Table 1.  

 

Table 1 Models and simulations used in this study. 
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Model 
Resolution 

(lat × lon) 

Land 

surface 

model 

Soil 

configuration 
Forcing Tile pair Irrigation Reference 

NCAR-

CESM2 

(default) 

0.9 × 1.25 CLM5 Shared Hist-noLu Crop - psl on 

Lawrence et 

al. (2019) 

Danabasoglu 

et al. (2020) 

NorESM22-

LM 
1.9 × 2.5 CLM5 Shared Hist-noLu Crop -psl on 

Seland et al. 

(2020) 

GFDL-

ESM4 
1.0 × 1.25 LM4 Individual Hist-noLu Crop - psl off 

Zhao et al. 

(2018) 

Dunne et al. 

(2020) 

UKESM11-

0-LL 
1.25 × 1.9 

JULES-

GL7.0 
Shared Hist-noLu Crop - psl off 

Sellar et al. 

(2019) 

Wiltshire et 

al. (2020) 

NCAR-

CESM2 

(individual 

soil) 

0.9 × 1.25 CLM5 Individual Hist-noLu 
 

Crop - psl 
on 

Schultz et al. 

(2016) 

NCAR-

CESM2 

(individual 

soil) 

0.9 × 1.25 CLM5 Individual 4×CO2 
 

Crop-psl 
off This study 

NCAR-

CESM2 

(individual 

soil) 

0.9 × 1.25 CLM5 Individual SSP5-8.5 

 

Crop-forest 

Grass-forest 

on 
Zhang et al. 

(2022) 

 

We performed one extra hist-noLu simulation using CESM2 with a modified version of 

its land scheme. In CLM5, the land component of CESM2 (Lawrence et al., 2019), the land 

surface is represented as a nested hierarchy of subgrid levels. The first subgrid level is the 

land unit, including vegetation, lake, urban, glaciers and crop, with a fraction assigned to 

each land unit. The crop tile contains managed, unmanaged, rainfed and irrigated crops. The 

irrigation option is enabled in both hist-noLu simulations. In irrigated croplands, a check is 

made once per day to determine whether irrigation is required on that day. Irrigation is 

required if crop leaf area is positive and the available soil water is below a specific threshold 

(Lawrence et al., 2018). The second subgrid level is the column, which intends to capture 
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variability in the soil and snow state variables within a single land unit. The key characteristic 

of the column level is that this is where the state variables for water and energy in the soil and 

snow are defined. The third subgrid level is PFT, which captures the biophysical and 

biogeochemical differences between broad categories of plants. In the default CLM5 

configuration, the vegetated land unit is assigned a single column whereby all the PFTs in the 

unit share the same soil column in terms of water, nutrient use and soil heat exchange. Recent 

studies have shown that this shared soil column configuration can lead to unrealistic ground 

heat fluxes because a common soil temperature is artificially maintained for all PFTs within a 

column (Schultz et al., 2016; Meier et al., 2018). In this new hist-noLu simulation, each PFT 

in the vegetation unit was assigned its own soil column, following the method described by 

Schultz et al. (2016).  We note that UKESM1 and NorESM2 are configured with shared soil 

column and GFDL has an individual soil column for different vegetation and land use types 

(Table 1).   

Although CESM2-CLM5.0 (and presumably the other models) can output data at the PFT 

level, the LUMIP protocol only requested subgrid data for up to four subgrid tiles (psl, crop, 

urban and pastureland), and only two tiles (psl and crop) have complete data across the four 

LUMIP models assessed here. For this reason, our multi-model analysis is restricted to 

subgrid variations between these two tiles. In LUMIP, the psl tile is an area-weighted 

aggregation of forest, unmanaged grassland, and shrub.  

The NorESM2 model uses CLM5 as its land component (Seland et al., 2020). All 

vegetation PFTs share a single soil column.  

The land component of GFDL model, LM4, is based on the LM3 model (Shevliakova et 

al., 2009; Zhao et al., 2018). In LM4, each gridcell consists up to 15 tiles (including a bare 

soil tile) to represent subgrid differences in hydrology and carbon states. Each tile has its own 

soil column. Changes in tile types and areas occur annually according to the LUH data set. 

The physical and biogeochemical fluxes between the land and the atmosphere are calculated 

separately for each tile. There is no real crop in GFDL model; instead, cropland is 

approximated by C3 and C4 grass (Shevliakova et al., 2009). For LUMIP subgrid tile 

reporting, all secondary and natural tiles are aggregated into the psl tile (Lawrence et al., 

2016). Croplands are unirrigated.  

The land component of UKESM1 model, JULES-GL7, uses a surface tiling scheme to 

represent subgrid heterogeneity. Tiles in a gridcell share a single soil column. Each tile has its 
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own albedo, surface conductance, turbulent fluxes, ground heat flux, radiation fluxes, snow 

mass and melt, as well as surface temperature. There are nine surface tiles consisting of five 

PFTs (broadleaf trees, needleleaf trees, C3 grass, C4 grass and shrubs) and four non-vegetated 

surface types (urban, inland water, bare soil and ice). The tile fractions are spatially varying 

and produced by a remapping of the 17 IGBP types. The crop and pasture are physiologically 

identical to the natural grasses. For example, a cropland tile consists of 75% C3 grass, 5% C4 

grass and 20% bare soil. (Wiltshire et al., 2020). Irrigation in the UKESM1 is turned off in 

the CMIP6 simulations. 

The spatial distribution of psl and crop fractions are shown in Figure S1. The psl tile takes 

up over 50% of the land surface in all models. The differences across the models are due to 

different treatments of the psl tile. For example, desert (bare ground) is included in psl tile of 

CESM2 and GFDL model, but not in UKESM1. 

To investigate how atmospheric CO2 influences subgrid temperature variations and to 

increase the number of subgrid tile configurations, we performed two more simulations with 

CESM2 using the individual soil column setup (Table 1). The first simulation was an instant 

quadrupling of the preindustrial CO2 concentration (4×CO2) with the same land use and land 

cover as in hist-noLu. This simulation was run in coupled mode for 120 years. Subgrid data 

were aggregated to four land tiles according to the LUMIP protocol and only the psl and the 

crop data were analyzed here. The second simulation was forced by the SSP5-8.5 scenario 

from 2015 to 2100. This is a high emission transient scenario, with atmospheric CO2 

increasing from about 400 ppm in 2015 to about 1135 ppm in 2100 resulting in radiative 

forcing of 8.5 W m-2 in 2100 relative to the preindustrial level (Meinshausen et al., 2020). 

Atmospheric CO2 can impact the surface climate directly via stomatal control on transpiration 

and indirectly via snow phenology change induced by changes in temperature. The multiple 

CO2 scenarios allow us to determine which impact is stronger. The land use of year 2015 was 

used throughout the simulation. Subgrid data were archived for eight land tiles (Zhang et al., 

2022). In this study, we analyzed the data for forest, crop and grass tiles.  

Some ESMs deploy a land parameterization that considers sub-grid topographic effects 

(Tesfa et al. 2017; Hao et al. 2022). In the ESMs shown in Table 1, there is no elevation 

change between different land uses within the same model grid.     

3. Data analysis 
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The 2-m air temperature (T) variations are the main focus in this study. These variations 

were quantified as the difference, denoted by , in T between three pairs of subgrid tiles, 

including (1) crop versus psl from the hist-noLu simulations and the 4×CO2 simulation, (2) 

crop versus forest from the SSP5-8.5 simulation, and (3) grass versus forest from the SSP5-

8.5 simulation. In these paired calculations, psl and forest tiles are the baseline land use, and 

crop and grass are the perturbations. For example, when examining the data from hist-noLu 

simulations, T is the difference in the 2-m air temperature between crop and psl (crop minus 

psl). The values of other subgrid variables were calculated similarly (crop minus forest and 

grass minus forest). Unless stated otherwise, results are presented as seasonal and annual 

means of the last 20 years of each simulation. They are year 1995-2014 for the hist-noLu 

simulations, year 100-120 for the 4×CO2 simulation and 2081-2100 for the SSP5-8.5 

simulation. 

Using the space-for-time substitution, the contrast in temperature between the crop and 

the psl or forest tile can be regarded as the local climate effect of agricultural expansion. 

Likewise, the contrast between the grass and the forest tile is equivalent to the local climate 

effect of deforestation. This approach considers direct impact only. It does not include 

indirect impact due to atmospheric changes (e.g., cloud feedback) or effects of local terrain 

variations (Hao et al., 2022).  

The subgrid temperature variations are related to subgrid variations in Hp, which were 

calculated according to Equation (1). Subgrid variations in several biophysical properties and 

surface fluxes, including LAI, netSW and LE, were also examined.  

For a subset of model simulations, we investigated the dependence of T on the 

efficiency of energy redistribution between each land tile and the overlaying atmosphere. 

This efficiency was quantified using the dimensionless energy redistribution factor f. 

Following Lee et al. (2011) and Bright et al. (2017), f was calculated from the diagnostic 

equation: 

𝑓 =  
𝜆

𝑇𝑠 – 𝑇𝑏
(𝑅𝑛

∗  − 𝐺)  − 1                           (2) 

where 𝑇𝑠 and 𝑇𝑏 represent surface temperature and air temperature at the blending height (or 

the lowest atmospheric grid), respectively, λ is the local climate sensitivity given by 

1 (4𝜎𝑇𝑆
3)⁄  with 𝜎 being the Stefan-Boltzmann constant, G denotes the ground heat flux, and  

𝑅𝑛
∗  is apparent net radiation given as  
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Rn
* = ↓SW - ↑SW + ↓LW - 𝜎𝑇𝑏

4                      (3) 

where ↓SW is the incoming shortwave radiation, ↑SW is the outgoing shortwave radiation, 

and ↓LW is the incoming longwave radiation. Higher f values indicate more efficient 

convection exchange or energy dissipation from the surface to the lower boundary layer. The 

daytime f ranges from about 2 to 30 and the nighttime f from about 0.3 to 4 (Chakraborty and 

Lee 2019). Calculation of f was made for three simulations, all using CESM2 (hist-noLu with 

independent soil column, 4×CO2 and SSP5-8.5), but was not done for other simulations 

because the blend-height air temperature was not available.  

  

4. Results 

a. Climatic effects of cropland expansion: geographic pattern 

Figure 1 maps the differences of annual mean temperature and Hp terms between crop and 

psl tiles for each model. In the space-for-time framework, these subgrid variations can be 

interpreted as local climatic effects of cropland expansion. Cropland-induced cooling (T < 

0) in mid-to-high latitudes of Northern Hemisphere (NH) and warming in the tropics (T > 0) 

are observed in all models with varying magnitudes, except for UKESM1. The UKESM1 

model, on the other hand, shows a wide-spread cooling across the globe. The T patterns are 

broadly consistent with previous studies using remote sensing data (Li et al., 2015; Li et al., 

2016a; Duveiller et al., 2018; Boysen et al., 2020) and can be largely explained by Hp 

(Figure 1p-t), in which grids with positive Hp generally show positive T, and vice versa. 

The spatial correlation coefficient r between T and Hp is higher than 0.74 (p < 0.001) 

except for GFDL model with r = 0.23 (p < 0.001). The result for GFDL is noisy compared 

with the CLM-based models. 
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Figure 1: Changes of annual mean temperature and heating potential terms for each 

model (crop minus psl). (a-e) for temperature (T), (f-j) for net SW radiation, (k-o) for latent 

heat flux (LE) and (p-t) for heating potential (Hp). Gray dots indicate that the changes are 

significant at 0.05 level based a two-sided student’s t test. The dots are shown every 5 grids 

for clarity. 

 

On the whole, cropland expansion leads to a widespread decrease of net SW radiation, 

with a stronger drop in high latitudes, which is a result of an increase in albedo (Figure 1f-j). 

There are two reasons for the difference: (i) In the growing season, croplands generally have 

a higher albedo than forests and therefore reflect more SW radiation (Peilke et al., 2011; Li et 

al., 2015; Duveiller et al., 2018); (ii) During the winter, snow can mask croplands but has 

smaller impact on forests, leading to a larger albedo effect at high latitudes (Robinson & 

Kukla, 1984).  

In all the models, cropland expansion results in a reduction of LE at low latitudes (LE < 

0, Figure 1k-o), possibly owing to the shallower root system and smaller LAI of cropland 

compared with psl (Bonan, 2008; Davin & de Noblet-Ducoudré, 2010; Lawrence & 

Vandecar, 2015), and reduced surface roughness (Winckler et al., 2019b). These models are 

not consistent in some mid-latitude regions: LE shows no change or slightly positive 

changes in arid zones (West North America and Central Asia) in CLM-based models (two 
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CESM2 simulations and one NorESM2 simulation) while in GFDL and UKESM1, LE 

shows slightly negative values. Different model parameters such as root distribution and plant 

water uptake (Meier et al., 2018), as well as the differing responses of precipitation and 

snowfall (Li et al., 2015) may partially explain the incongruent responses of LE across the 

models.  

b. Seasonal pattern of cropland climate effects 

Figure 2 shows the seasonal evolution of zonal mean values for T, netSW and LE 

between crop and psl tiles. Crops are warmer all year round (except for UKESM1 which 

produces cooling), with a slightly stronger warming in summer in CLM-based models than in 

GFDL in the tropics (Figure 2, upper row). Such a warming pattern is mainly contributed by 

reduced LE (Figure 2, lower row). T in mid-to-high latitudes (e.g., around 60°N) shows 

strong seasonality in all the models, with the strongest negative T observed in February to 

May (Figure 2, upper and middle rows), which is mainly attributed to the snow-masking 

effect (Bonan et al., 1992).  
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Figure 2: Hovmöller plot for T (a-e), netSW (f-j) and LE (k-o). Results shown are 

zonal mean values vs. month. All results are crop minus psl. Grey dots indicate missing data 

or insignificant changes at 0.05 level based on a two-sided student’s t test. 

 

In the three CLM-based model simulations, there is a stripe of negative T in the middle 

latitudes of NH in the spring-to-summer transition (from April to June; Figure 2a, b and e). 

This cooling is mainly attributed to the positive LE (Figure 2k, l and o). The enhanced LE 

appears to be a result of the crop growth in the springtime as evidenced by positive LAI 

(Figure 3).  

 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0073.1.
Brought to you by Yale University Library | Unauthenticated | Downloaded 01/20/23 06:20 PM UTC



15 

File generated with AMS Word template 1.0 

 

Figure 3: Same as Figure 2, but for LAI in the CESM2 model default simulation. Grey 

dots indicate missing data or insignificant changes at 0.05 level based on a two-sided 

student’s t test. 

 

c. Sensitivity to soil column configuration  

The three CLM-based model simulations show nearly identical zonal mean patterns of the 

subgrid contrasts in annual mean temperature and the Hp terms between crop and psl tiles 

(Figure 4a, b and e). All show the largest drop in temperature around 60°N, with a zonal 

mean value of -0.24 to -0.28 K. Then T increases southward and switches to positive values 

around 42°N, with a peak (0.61 to 0.71 K) in the tropical regions. The tropical (20°S-20°N) 

mean T is 0.44 K (CESM2 default), 0.44 K (NorESM2) and 0.39 K (CESM2 individual 

soil; Figure 5). The mean T for mid-to-high latitudes (40°N-70°N) is -0.07 K (CESM2 

default), -0.09 K (NorESM2) and -0.11 K (CESM2 individual soil). In the CESM2 default 

and the NorESM2 simulations, all natural PFTs shared the same soil column, whereas in the 

CESM2 individual soil simulation, each PFT was assigned its own soil column. In all three 

simulations, crops had their own separate soil columns. Figures 4 and 5 indicate that the 

result for the psl tile is insensitive to soil column configuration.  

Individual soil configuration is preferred over shared column configuration if the interest 

is subgrid variations between PFTs within the natural vegetation land unit, such as variations 

between forest and grass (Schultz et al., 2016). In the present study, the psl tile is an 
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aggregate of multiple PFTs (forest, grass, shrub and bare ground). The insensitivity shown in 

Figures 4 and 5 indicates that the aggregation has mostly eliminated bias errors associated 

with unrealistic ground heat fluxes in shared column configuration.  

 

 

Figure 4: Zonal mean changes (crop minus psl) of annual mean temperature and heating 

potential (Hp) terms for each model simulation. 
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Figure 5: Domain-averaged annual mean T for tropical regions (red), mid-to-high 

latitude regions (blue), and global land grids (orange, no Antarctica) for each model. Results 

are crop minus psl. Each circle represents one-year value during 1995-2014. 

 

d. Influence of atmospheric CO2 on subgrid variations  

      Our model ensemble encompasses a wide range of CO2 levels: from 285 ppm to 400 ppm 

under the historical forcing, 1140 ppm in the 4×CO2 scenario and from 400 ppm to 1135 ppm 

under the SSP5-8.5 scenario. To examine the influence of CO2 on subgrid variations, we 

compare in Figure 6 the zonal mean contrasts (crop minus forest) in T, netSW and LE 

between the first 20 (2015-2034) and the last 20 years (2081 to 2100) of the CESM2 model 

simulation under SSP5-8.5 scenario. The mean CO2 concentration is ~430 ppm in the first 

period and ~1000 ppm in the last period. The grid by grid scatter plots are given in Figure S2. 

The differences between these two periods can be explained by changing background climate 

and indirect effects of rising CO2. For example, the magnitude of albedo effect may be 

reduced in a warmer world (Figure 6b). A higher CO2 concentration may reduce stomatal 

opening, resulting in a lower LE flux. The contrast in the netSW (crop minus forest) is less 

negative at mid- to high latitudes in the second period than in the first period (Figure 6b) 

because of less snowfall and a shorter snow cover duration in a warmer climate (Figure S3), 

which leads to less negativeT in the high latitudes (Figure 6a). The LE is slightly more 

positive in the second than in the first period, due to more cropland irrigation (higher soil 

moisture content) driven by higher temperature in the later period (Figure 6c). The CO2 effect 

via stomatal regulation appears negligible on the differences between crops and forests.    
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Figure 6: Zonal mean differences (crop minus forest) of temperature (a), net SW radiation (b) 

and LE flux (c) under SSP5-8.5 scenario in 2015-2034 (blue) and 2081-2100 (red). 

 

e. Emergent relationship on subgrid temperature variations 

Figure 7 shows the correlation between zonally-averaged T, netSW, LE, and Hp for 

crops minus psl. The correlation between T and netSW is stronger for the mid-to-high 

latitudes than for the tropical regions, with a correlation coefficient of 0.86 (p < 0.01) and a 

slope of 0.04 K per W m-2 across all models (Figure 7a). This regional difference indicates a 

stronger albedo effect in the mid-to-high latitudes than in low latitudes. In contrast, LE 

controls the temperature change in the tropical regions, characterized with a correlation 

coefficient of -0.80 (p < 0.01) and a slope of -0.03 K per W m-2 (Figure 7b, red). The impact 

of LE in the mid-to-high latitudes is relatively minor (Figure 7b, blue). The correlation 

pattern with the heating potential Hp does not differ much between the two zones (Figure 

7c).  

 

Figure 7: Linear relationship between zonally-averaged T and netSW (a), T and LE 

(b) as well as T and Hp (c and d) for all hist-noLu simulations (crop minus psl). In (a), (b) 

and (c), red and blue symbols represent tropics and mid-to-high latitude regions, respectively. 
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In (d) all latitude bands are used. Each symbol represents zonal mean value of a one-degree 

latitude band. The lines represent linear regression fit, with linear correlation (r) and 

confidence level (p) values shown. 

 

The crop-versus-psl difference in the overall heating potential Hp, which combines both 

netSW and LE (Equation 1), as the independent variable correlates reasonably well with 

T (r = 0.72, p < 0.01) for all latitudes and all hist-noLu model simulations (Figure 7d). The 

regression equation is given by 

T = -0.030 + 0.025 Hp                              (4) 

where T is in K and Hp is in W m2. In comparison, T and Hp in a large-scale 

deforestation experiment are highly correlated in latitude zone 20oS to 50oN but poorly 

correlated north of 50oN (Li et al., 2016a). A small group of outliers in Figure 7d deviate 

significantly from Equation 4. They occur in the GFDL model, mainly north of 45oN and 

south of 40oS (Figure 4c), implying factors other than netSW and LE, such as the energy 

redistribution factor, may also play a role in modifying T. 

An open question is whether Equation 4 is a robust emergent relationship on subgrid 

variations under other CO2 scenarios and on variations associated with other types of land 

use. To answer this question, we did three out-of-sample tests using the CESM2 model 

results (crop-psl in 4×CO2, grass-forest in SSP5-8.5 and crop-forest in SSP5-8.5; Table 1). 

We found that this relationship predicts T reasonably well for the same subgrid tile 

configuration (crop versus psl) under 4×CO2 (Figure 8a, r = 0.92), but does not work well for 

T associated with two other tile configurations (grass versus forest, Figure 8b; crop versus 

forest, Figure 8c) under the SSP5-8.5 scenario. In these two cases, most of the data points lie 

above the regression line of Equation 4. In the case of crop versus forest, the relationship is 

noisy with r value of 0.47 only. In other words, albedo and LE differences cannot fully 

explain the range of local temperature responses to LULCC. 
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Figure 8: Linear relationship between zonally-averaged T and Hp for three out-of-sample 

tests of Equation 4. Each symbol represents zonal mean value of a one-degree latitude band. 

The thick solid lines represent Equation 4. 

 

Published modeling studies of large-scale deforestation have shown that the surface air 

temperature responds to changes in surface roughness in addition to changes in albedo and 

LE (e. g., Winckler et al., 2019b). In the local surface energy balance framework, this 

roughness effect can be quantified with the energy redistribution factor f  (Lee et al., 2011). 

We analyzed the dependence of T on various combinations of netSW, LE, and f using a 

subset of the simulations with CESM2. We did not consider netSW - LE - H as predictor, 

because on the annual time scale this combination is roughly equivalent to ↑LW or change 

in the outgoing longwave radiation. Since ↑LW is controlled by the surface temperature 

according to the Stephan-Boltzmann law, use of ↑LW as a predictor of T would amount to 

circular reasoning of explaining temperature with temperature. The best statistical model is 

obtained by regressingT against netSW and f (all as zonal mean values):  

T = 0.017 × netSW – 0.170 × f – 0.018                           (5) 

This linear model explains 88% of the variations (r2 = 0.88) in T between crop versus psl, 

crop versus forest, and grass versus forest under three different CO2 forcing scenarios 

(historical, 4×CO2 and SSP5-8.5; Figure 9a). Consistent with the heating potential 

relationship (Equations 1 and 4), T is positively related to netSW, indicating that land use 

change that causes a reduction in albedo contributes to warming. On the other hand, the 

relationship with f is negative, or land use change that increases the efficiency of surface-air 

energy redistribution contributes to cooling. The zonal patterns of f are given in Figure S4. 
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In these three tile pairs, open land tiles (crop and grass) have smaller f than their 

corresponding baseline tile (psl or forest). This is because f decreases with increasing heat 

diffusion resistance in the surface layer and with increasing Bowen ratio (Lee et al., 2011) 

and because open land tiles have higher diffusion resistance due to their lower roughness and 

generally higher Bowen ratio.  

 

Figure 9: An emergent relationship on subgrid temperature variations in CESM2 model 

simulations. (a) Original T versus fitted T (Equation 5). (b-e) zonal mean plot of original 

T, fitted T. In (b-e), the blue and orange lines represent contribution to T from changes in 

energy redistribution factor and in netSW, respectively. The SSP5-8.5 results are for 2081 to 

2100. 

 

The individual contributions of netSW and f to T could be estimated by multiplying 

their coefficients, respectively (Figure 9b-e). In the three tile configurations, change in the 

energy redistribution factor dominates the latitudinal pattern of T between 60oS and 30oN 

(blue lines). In mid-to-high latitudes (roughly north of 40oN), change in albedo is dominant, 

resulting in lower temperatures in open land (crop and grass) than in psl or forest.   
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f. Behavior of the UKESM1 model 

In contrast to warming at low latitudes and cooling at high latitudes in the other model 

simulations, the UKESM1 model shows cooling due to cropland expansion across all 

latitudes (Figures 1, 2 and 4). To understand this behavior, we compared the annual albedo 

and LE for the crop and the psl tile and their differences among the five hist-noLu model 

simulations (Figure 10, Tables 2 and 3). The albedo of the crop tile in UKESM1 is generally 

higher than other models. In the region of 40°N - 70°N, the UKESM1 model has a mean crop 

albedo of 0.37 compared with 0.23 in CESM2 (default) and 0.29 in GFDL, causing a stronger 

reduction of net SW radiation (-13.8 W m-2) than in other models (from -6.6 W m-2 to -12.5 

W m-2). The most negative zonal mean T of -0.93 K occurs in the UKESM1 simulation at 

60oN (Figure 4d).   
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Figure 10: Zonal mean plot of mean albedo in psl (primary and secondary land) tile (a), 

crop land tile (b), and their differences (c) in hist-noLu simulations. (d-f), same as (a-c) but 

for latent heat (LE) flux. 

 

The UKESM1 model shows a similar LE to CESM2 for the psl tile (Figure 10d), but a 

roughly 20 W m-2 higher LE for the crop tile in the tropics relative to CESM2. This translates 

into a less negative LE change (-4.4 W m-2) compared with CESM2 (-18.0 W m-2) in the 

tropical region (Table 3), and negative or near-zero Hp (Figure 4d) as opposed to large 

positive HP in CESM2 (Figure 4a). The combination of a stronger albedo effect and a 

reduced LE change leads to the above-mentioned consistent cooling in UKESM1 model. 

The GFDL model also shows a strong albedo-driven cooling effect at high latitudes and a 

high LE flux in the tropics for the crop tile (Figure 10b and e). However, due to a high LE 

flux of the psl tile, the LE difference between crop and psl is similar to the other models at 

low latitudes and is negative at mid- to high latitudes which offsets the cooling effect from 

albedo.  

 

Table 2 albedo and netSW radiation in each model for the tropics and mid-to-high latitudes. 

 Mean albedo (psl) Mean albedo (crop) albedo (crop – psl) 
netSW (crop-psl, 

W/m2) 

Model 
20°S-

20°N 

40°N-

70°N 

20°S-

20°N 

40°N-

70°N 

20°S-

20°N 

40°N-

70°N 

20°S-

20°N 

40°N-

70°N 

CESM2 

default 
0.16 0.19 0.16 0.23 0 0.04 -0.5 -6.6 

NorESM2 0.16 0.19 0.16 0.24 0 0.05 -0.3 -6.6 

GFDL 0.18 0.19 0.23 0.29 0.05 0.10 -10.4 -12.5 

UKESM1 0.19 0.27 0.23 0.37 0.04 0.10 -8.1 -13.8 

CESM2 

indv. soil 
0.16 0.19 0.16 0.24 0 0.05 -0.4 -6.8 
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Table 3 Latent heat (LE) flux in each model for the tropics and mid-to-high latitudes (unit: W 

m-2). 

 Mean LE (psl) Mean LE (crop) LE (crop – psl) 

Model 20°S-20°N 40°N-70°N 20°S-20°N 40°N-70°N 20°S-20°N 40°N-70°N 

CESM2 

default 
72.1 30.4 54.2 29.7 -18.0 -0.8 

NorESM2 75.4 31.2 54.5 31.5 -20.8 0.3 

GFDL 85.6 44.3 70.2 32.8 -15.4 -11.6 

UKESM1 77.7 31.8 73.3 29.1 -4.4 -2.7 

CESM2 

indv. soil 
68.5 28.5 54.0 29.4 -14.4 0.9 

 

5. Discussion and summary 

In this study, we investigated the LULCC impact on local subgird tile air temperature 

with a set of CMIP6 ESMs across a large range of CO2 concentrations. We found that the 

subgrid temperature response to LULCC varies by latitude, and depends on the competing 

effects of albedo, LE and energy redistribution. Because of this balancing act, there exists a 

transitional latitude that divides warming to the south and cooling to the north from land 

clearing. Satellite-based studies on land surface temperature show that deforestation leads to 

cooling north of 45°N - 55°N (Alkama & Cescatti, 2016; Duveiller et al., 2018), while in 

observational studies of air temperature, the transition from warming to cooling occurs 

further south, at around 35°N (Lee et al., 2011; Zhang et al., 2014). In a model simulation of 

local deforestation (grass versus forest) under the historical climate (1991 to 2010; Schultz et 

al. 2016), the transition in air temperature change occurs at around 48oN. Winckler et al. 

(2019c) reported a transition of 45oN to 55oN for surface temperature in the MPI-ESM 

model. In the historical simulations presented here, the transition of positive T (2-m air 
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temperature, crop minus psl) to negative T occurs at around 40°N (38°N - 42°N; Figure 3a, 

b, c & e). The simulation of a transient climate scenario suggests that under future higher CO2 

conditions, the transition may shift further north (Figure 6a).   

The latitudinal dependence of temperature response to LULCC can be further understood 

by quantifying the relative contribution of non-radiative processes. Following Bright et al. 

(2017), the non-radiative contribution is given as: 

Non-radiative fraction = |𝑅𝐻2|

(|𝑅𝐻1|+|𝑅𝐻2|+|𝑅𝐻3|)
× 100%                      (6) 

In Equation 6, |RH1|, |RH2| and |RH3| are the 1st, 2nd and 3rd term on the right-hand side of 

Equation 5. The zonal mean results (Figure 11) show that the non-radiative contribution 

exceeds 50% between 45°S and 30°N, with peak values (> 80%) at tropical latitudes (15°S 

and 10°N), over the ranges of the CO2 and land use change scenarios simulated by CESM2. 

These results confirm the dominant role of non-radiative processes at these latitudes, 

consistent with previous analyses (Bright et al., 2017; Ge et al., 2019). For example, in Bright 

et al., (2017), the authors found that non-radiative processes dominate the local temperature 

response to LULCC effect, especially in the tropics. In more northern latitudes, the non-

radiative contribution seems to be more sensitive to CO2 concentration, irrigation status (the 

irrigation scheme was turned off in the 4×CO2 simulation) and LULCC type (Figure 11).  
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Figure 11: Zonal mean fractions of T contributed by nonradiative process in CESM2 

simulations. Dashed line represents 50%. 

 

Unlike the other models, the UKESM1 model shows cooling due to agricultural 

expansion across all latitudes (Figure 4d). This different behavior arises largely from the 

higher albedo and the higher LE of the crop tile in UKESM1 than in the other models (Tables 

2 and 3; Figure 10). The land surface scheme in UKESM1 is JULES (Table 1). Previous 

modeling studies with JULES reveal that its albedo response to land clearing is too strong in 

comparison to other models (Kumar et al., 2013; Davies-Barnard et al., 2014; Robertson, 

2019; Winckler et al., 2019a). In an evaluation of JULES against an observational dataset, 

Robertson (2019) found that albedo errors in JULES are a major reason for its temperature 

biases. The exact cause of the albedo errors is not clear. It may be related to relative biases in 

optical parameter settings, such as leaf and soil albedo, among different PFTs or to LAI 

calculation and calculation of canopy radiation. They also suggest that errors in surface 

roughness length may partially explain its different LE response from other models. In these 

studies, performance evaluation is based on grid mean values in control versus perturbation 

simulations (Dvaies-Barnard et al., 2014), “all-forcing” simulations (Kumar et al., 2013) or 

“chessboard” simulations (Robertson, 2019; Winckler et al., 2019a) as described in the 

Introduction. Our analysis demonstrates similar parameterization biases at the subgrid level 

in JULES. This example supports the view that subgrid model data provides useful diagnostic 

information on land surface model performance. 

The surface heating potential (Hp) has been used to explain the land surface temperature 

variations observed by satellites (Schultz et al., 2017). In the present study, Hp explains 

reasonably well the latitudinal dependence of the 2-m air temperature change between crop 

and psl land tiles for all the five hist-noLu model simulations (including UKESM1; r = 0.72, 

Equation 4 & Figure 7c). However, this relationship does not hold for two other subgrid tile 

configurations (grass versus forest; crop versus forest; Figure 8). An alternative formulation, 

given by Equation 5, combines the contributions to subgrid temperature variations from 

radiative processes via changes in the net SW radiation (primarily due to surface albedo 

change) and from nonradiative processes via the energy redistribution factor, the latter of 

which accounts for the surface roughness effect. Equation 5 appears more robust than the Hp 

relationship (Equation 4), explaining 88% of the subgrid air temperature variations between 
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crop versus psl, crop versus forest, and grass versus forest tiles and under three different CO2 

forcing scenarios (historical, 4×CO2 and SSP5-8.5; Figure 9a). In a pseudo validation 

exercise, with the MODIS albedo product and CESM2-generated f values, we find that 

Equation 5 fits reasonably well with the latitudinal variation of T observed at 42 paired 

FLUXNET sites (open land versus forest, values averaged every 5° of latitude; Lee et al., 

2011 & Zhang et al. 2014; r = 0.95, p<0.001, RMSE = 0.23 K; Figure S5). We suggest that 

Equation 5 may serve as an emergent constraint for benchmarking the performance of land 

surface models and for prediction of local temperature response to LULCC. 

 One limitation of the present study is that atmospheric temperature data at the first model 

grid height (or blending height) are not available for three of the four ESMs. In keeping with 

the typical practice, these models archive air temperature at fixed pressure levels (1000 hPa, 

925 hPa, 850 hPa, and so on), with the lowest level being 1000 hPa, or ~100 m above the sea 

level. However, the surface elevation in most land surface grids is greater than 100 m. Data at 

the blending are necessary to perform diagnostic calculation of the energy redistribution 

factor f. Because of this data limitation, Equation 5 is based on the data provided by CESM2 

only. To check the robustness of Equation 5, we also estimated the f values for the four hist-

noLu simulations (CESM2 default, NorESM2, GFDL, UKESM1; Table 1), using the 

temperature at the lowest pressure level as a substitute for the blending height temperature. 

Using the f value obtained this way along with netSW, we calculated the T from 

Equation 5. The results, presented in Figure S6, show that Equation 5 performs reasonably 

well across the four ESM models. As f is increasingly used in LULCC studies, it is 

imperative that in future LUMIP-like projects, outputs for the blending height be archived 

along with surface and 2-m height variables.   

In summary, our study shows that the albedo effect and LE flux response cannot fully 

explain the temperature response to LULCC activities.  A new emergent relationship is 

proposed that combines the albedo effect and the effect of energy redistribution between the 

surface and the atmosphere. This relationship highlights the dominant role of non-radiative 

processes in the temperature response. Simulations under high CO2 conditions indicate that 

rising atmospheric CO2 can alter the local climate effects of LULCC indirectly by altering 

irrigation intensity and snow cover duration. These insights from a multi-model and multi-

scenario perspective may be helpful to evaluate the performance of land surface model 

parameterizations.  
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