
PHYSICAL REVIEW A 107, 012415 (2023)

Entanglement structures in quantum field theories: Negativity cores
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The many-body entanglement between two finite (size-d) disjoint vacuum regions of noninteracting lattice
scalar field theory in one spatial dimension, i.e., a (dA × dB )mixed Gaussian continuous variable system, is locally
transformed into a tensor-product core of (1A × 1B )mixed entangled pairs. Accessible entanglement within these
core pairs exhibits an exponential hierarchy and as such identifies the structure of dominant region modes from
which vacuum entanglement could be extracted into a spatially separated pair of quantum detectors. Beyond
the core, the remaining modes of the halo are determined to be AB separable in isolation, as well as separable
from the core. However, state preparation protocols that distribute entanglement in the form of (1A × 1B )mixed

core pairs are found to require additional entanglement in the halo that is obscured by classical correlations. This
inaccessible (bound) halo entanglement is found to mirror the accessible entanglement, but with a step behavior
as the continuum is approached. It remains possible that alternate initialization protocols that do not utilize
the exponential hierarchy of core-pair entanglement may require less inaccessible entanglement. Entanglement
consolidation is expected to persist in higher dimensions and may aid classical and quantum simulations of
asymptotically free gauge field theories, such as quantum chromodynamics.
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I. INTRODUCTION

Quantum correlations are a signature characteristic and
valuable resource for quantum computation, communication,
sensing, information, and simulation [1]. Studies of quantum
correlations are providing unique insights [2–18] and capabil-
ities to robustly explore physical systems from the Standard
Model and its quantum field theories (QFTs) [19–22] to gravi-
tation. Conversely, because quantum fields naturally distribute
entanglement, both dynamically and at spacelike separations
[23–30], their quantum correlations have long been recog-
nized as a resource in quantum information protocols. For
these reasons, studies of correlation structures in such sys-
tems, including entanglement entropies and distillable and
bound entanglement, are at the forefront of research.

That the quantum field vacuum is entangled at spacelike
separations is a simple consequence of the gradient coupling.
For example, in the idealized scenario of a constant field,
i.e., vanishing gradient, local measurement establishes the
global value of the field and therefore collapses the wave func-
tion throughout the spatial volume. Such a nonlocal response
of measurement statistics is a sufficient condition for the

*natklco@caltech.edu
†dhbeck@illinois.edu
‡On leave from the Institute for Nuclear Theory, University of

Washington, Seattle, WA 98195, USA; mjs5@uw.edu

identification of entanglement. In general, the gradient opera-
tor in the Hamiltonian results in low-energy wave functions
whose smoothness properties cause local measurements to
modify measurement statistics throughout the volume. This
collapse, however, is partial with diminishing effect at in-
creasing distance from the measurement location. Although
diminishing, the effect on the statistics, and thus the entangle-
ment, is nonzero throughout the volume.

Following decades of remarkable progress in unraveling
the entanglement structures of QFTs [31–53], leveraging both
analytic techniques including dualities and numerical tech-
niques of lattice field theory and harmonic chains, substantial
experimental efforts have begun to quantify entanglement
structures in low-dimensional QFTs, e.g., Refs. [54–56].
However, many quantum correlation properties that may
guide simulation protocols, e.g., for scalar fields [57–71] to-
wards gauge field theories [72–116], require further study.

In this work we describe correlation structures within
the simplest quantum field: the time-independent one-
dimensional (1D) noninteracting lattice scalar field vacuum.
The vacuum state is infinite and pure. In order to connect to
properties and protocols that are experimentally viable in the
laboratory with local detectors, we consider the entanglement
between a pair of spatially disjoint, finite regions of the field.
In a discretized representation appropriate for a simulation
platform, this simple vacuum state is a set of harmonic os-
cillators, one at each lattice point, with gradient coupling that
may be approximated through nearest-neighbor interactions.
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With d sites per region, the pair forms a (d × d )-mode mixed
continuous-variable (CV) Gaussian quantum state. As such,
well-developed tools of Gaussian quantum information are
employed to perform the analysis. With two operations in
mind—initial state preparation for simulation and extraction
of entanglement from the vacuum as a resource—we study
(numerically and for systems of modest size) the quantum and
classical correlations in this vacuum state.

We now outline the structure of the paper and the key
ideas. Section II provides a brief introduction to the scalar
field and the spatially discretized representation of its vac-
uum as an infinite-mode Gaussian quantum system. Following
this review, Sec. III develops and introduces a construc-
tive methodology for creating local unitary operations that
concentrate the entirety of the two-region extractable1 en-
tanglement into a subset of core pairs: entangled two-mode
Gaussian states spanning the two regions, (1A × 1B)mixed.
These modes are composed of linear combinations of those
representing lattice sites in each region.

Design of the consolidating local unitary entails transfer-
ring structural entanglement information from the full-system
partially transposed (PT) basis back to the experimentally rel-
evant physical basis. The logarithmic negativity of the nc core
pairs is subsequently organized in one-to-one correspondence
with the n− PT symplectic eigenvalues associated with the
negative eigenvalues of the PT density matrix. As such, the
entanglement within the core pairs exhibits the same expo-
nential hierarchy as the PT symplectic eigenvalues.

The separability structure of the postconsolidation quan-
tum system is analyzed in Sec. IV A. Through sequential
applications of techniques developed in Ref. [117], the core
is identified to be compatible with a tensor-product state of
core pairs, and thus the transformed covariance matrix (CM,
denoted by σ ), is determined to be compatible with the form
σ

⊕nc
(1A×1B ) ⊕ σh, up to additional Gaussian classical correlations.

This structure, combined with the localization of extractable
entanglement to the core modes, allows (1 × 1)mixed interpre-
tations of entanglement measures to be applicable (see, e.g.,
[118–121]). Note that this separability structure provides a
valuable rearrangement of quantum correlations for any en-
tanglement measure, i.e., it is not limited to the logarithmic
negativity and PT eigensystem that is utilized to guide the
local operator design.

The remaining modes after core identification, σh, form
a halo space that carries no operationally accessible en-
tanglement. In fact, upon tracing of the core modes, the
halo system is entirely separable along the region-region bi-
partition. However, by imposing the core-halo separability
structure identified above, the halo is constrained to be a
mixed state with distributed entanglement. The excess entan-
glement is calculated in Sec. IV B as that of σh after core-halo
separability identification through the constructive methods of
Ref. [117]. This entanglement is found to be commensurate,
in both magnitude and decay as a function of disjoint region

1Throughout, the adjectives extractable or accessible will be used
to describe the entanglement that can be localized into (1A ×
1B )mixed-mode pairs through local operations and thus viably coupled
to low-dimensional quantum detectors.

separation, with the accessible core entanglement and to ex-
hibit approximate plateaus as the continuum is approached.
While not available as an experimental quantum resource, the
presence of this entanglement structure is expected to impact
experimental state preparation and quantum simulation de-
sign, as discussed in the perspectives of Sec. V.

In Sec. IV C the inaccessibility of the halo entanglement is
discussed in the context of entanglement obscured by classi-
cal correlations. Tracing of the volume outside the detection
regions modifies the observable and underlying correlations
in important ways. These modifications arise due to the natu-
ral linkage between quantum and classical correlations. The
lattice scalar field vacuum is shown to be a concrete and
physically relevant example of uncoupling the relationship
between separability and vanishing entanglement. This type
of inaccessible entanglement is present when disjoint regions
of a free scalar field are prepared through distribution of
(1A × 1B)mixed entangled pairs organized by the PT symplectic
eigenvalues. Section V B discusses the implications of this
observation in the context of bound entanglement.

In Sec. V A insights are provided for optimizing the
distributed interaction profiles that allow extraction of entan-
glement from a field vacuum via local detectors composed of
a few quantum degrees of freedom. Such explorations also
begin to quantify the landscape of many-body entangling op-
erations that arise when arrays of quantum degrees of freedom
are exposed to a common field. In the context of quantum
sensing and error correction, this may yield constraints or
guidance for coupling quantum or classical fields to a quan-
tum sensor or simulation platform. Bringing these potential
applications to fruition necessitates detailed and operational
understanding of the quantum correlation structures within the
field and its representation(s) on quantum devices.

The presence of a sign problem in the analysis of the
disjoint-region free-field entanglement structure leads the nu-
merical exploration of this system (a physically ubiquitous
system without fine-tunings) to be nontrivial. As such, the
detailed description of this simplest quantum field and the
consequences of its local measurement are viewed as an im-
portant baseline for understanding more complicated (e.g.,
interacting) systems where analysis tools are not so readily
available. Though the free scalar field is a greatly simpli-
fied version of those comprising the Standard Model, it has
broad leading-order relevance, from quarks and gluons at high
energies to pions at low energies. This work is expected to
contribute to the foundation for future explorations of the en-
tanglement visible by local detectors in more complex fields.

II. GAUSSIAN FORMULATION OF LATTICE SCALAR
FIELD VACUUM

The Hamiltonian density of the 1D noninteracting scalar
field φ of mass m may be written as

H = 1
2π2 + 1

2 (∇φ)2 + 1
2m

2φ2, (1)

where π is the momentum conjugate to the field operator
satisfying the canonical commutation relation

[φ(x), π (y)] = iδ(x − y). (2)
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Upon latticization of the field and rescaling of the field
operators by the (unit) lattice spacing, the dimensionless
Hamiltonian density becomes

Ĥ = 1
2 π̂2 − 1

2 φ̂∇̂2
a φ̂ + 1

2 m̂
2φ̂2, (3)

with a discretized Laplacian operator

∇̂2
a φ̂ = φ̂(x + 1) + φ̂(x − 1) − 2φ̂(x) (4)

and commutation relation

[φ̂(x), π̂ (y)] = iδxyÎ. (5)

This Hamiltonian describes a chain of harmonic oscillators
(one at each lattice point) with gradient couplings approx-
imated by nearest-neighbor interactions and approaches the
free scalar field in the continuum limit.

The ground (vacuum) state of the latticized theory in the
field-space basis is

〈 �φ|ψ0〉 = det K1/4

πN/4
e− �φ TK �φ/2, (6)

where �φ = {φ0, . . . , φN−1}T is the vector of lattice field
variables spanning the N-site spatial volume. For a one-
dimensional field with periodic boundary conditions, the
correlation matrix elements may be calculated as

Ki j = 1

N

N−1∑
k=0

cos

(
2πk

N
(i − j)

)√
m̂2 + k̂2 (7)

with lattice momentum k̂ = 2 sin( πk
N ) in a finite-difference

representation of the gradient operator, where i, j, and k
are integers. The dense matrices of field and conjugate-
momentum two-point correlators directly follow as

Gi j = 〈ψ0|(φ̂i − φ̄)(φ̂ j − φ̄)|ψ0〉 = 1
2 (K−1)i j, (8)

Hi j = 〈ψ0|(π̂i − π̄ )(π̂ j − π̄ )|ψ0〉 = 1
2Ki j, (9)

where the vacuum contains vanishing first moments as well
as vanishing 〈φ̂iπ̂ j〉 expectation values. Analytic expressions
for the two-point correlators in finite volume and the N → ∞
thermodynamic limit, as utilized in the present calculations,
have been detailed in, e.g., Refs. [35,48,53].

As the free lattice scalar field vacuum is a multidimen-
sional Gaussian wave function, it can be naturally described
by a parametrized family of Gaussian quantum states. In
this formalism, the entanglement properties of CV Gaussian
density matrices are entirely characterized by 2n-dimensional
CMs for a lattice of n sites. Matrix elements of the ground-
state CM are defined by the symmetric two-point vacuum
expectation values

σi, j = 〈{r̂i − r̄i, r̂ j − r̄ j}+〉, (10)

where r̂ = {φ̂1, π̂1, φ̂2, π̂2, . . . , φ̂n, π̂n} is a vector of field and
conjugate momentum operators, with r̄ the vacuum expecta-
tion values. The positive definiteness of density matrices and
adherence to the canonical commutation relations is expressed
in phase space with the criterion

σ + i� � 0, (11)

a necessary and sufficient condition for a CM to be physical.
The scalar vacuum CM is an interleaved matrix of the form

1
2σ =

⎛
⎜⎜⎝
G11 0 G12 0 · · ·
0 H11 0 H12 · · ·
G21 0 G22 0 · · ·

...

⎞
⎟⎟⎠. (12)

Because CMs associated with reduced density matrices are
simply subblocks of the full CM, these indices could represent
the entirety of the lattice volume or a chosen spatial subset.
In the present work the indices of the vector r will be those
within two disjoint regions of the field.

Transformations of the system corresponding to unitary
operations in Hilbert space are effected by symplectic trans-
formations of the CM,

σ → SσST , S ∈ Sp(2n,R), (13)

where S is a symplectic operator. A symplectic matrix �

encodes the commutation relations

[r, rT ] = i�n, �n =
n⊕
j=1

iτy, (14)

with τy the second Pauli matrix. By construction, these com-
mutators are invariant under symplectic transformations

S�ST = �. (15)

As such, all entanglement rearrangements developed in
Sec. III will preserve the physical uncertainty relations.

Through global symplectic operations spanning the space,
every CM can be diagonalized to the Williamson normal form
[122]

σ = S

⎛
⎝ n⊕

j=1

ν jI2

⎞
⎠ST , (16)

where the diagonal elements ν j � 1 are the symplectic eigen-
values: invariants under symplectic transformations charac-
terizing the state. If ν j = 1 ∀ j, the state is pure. While a
constructive determination of the symplectic transformation
to the Williamson normal form is possible, the spectrum of
symplectic eigenvalues may be calculated as

ν = spec|i�σ | = 2 spec
√
GH , (17)

where the first spectrum contains a doubling of eigenvalues
symmetrically distributed about zero prior to the absolute
value.

In the following, the logarithmic negativity is used as
quantitative guidance in the design of entanglement reorga-
nizations. The logarithmic negativity quantifies the deviation
of a density matrix from physicality upon local application
of the transpose operation [118–121]. The CV PT operation
executes a local reversal of motion [120], negating the con-
jugate momentum operators on one side of the chosen mode
bipartition π̂ j → −π̂ j ∀ j ∈ {B}. For na,b modes on either side
of the bipartition, this may be implemented through the trans-
formation σ
 = 
σ
 with


 =
⎛
⎝ na⊕

j=1

I2

⎞
⎠ ⊕

⎛
⎝ na+nb⊕

j=na+1

τz

⎞
⎠, (18)
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where τz = diag(1,−1) is the third Pauli matrix. In the
present application of symmetric disjoint vacuum regions,
na = nb = d . Note that 
 is not symplectic and thus is not
a unitary operation in the Hilbert space. As such, the PT
symplectic spectrum

ν
 = spec|i�σ
| = 2 spec
√
GH
 (19)

is not invariant under this map, i.e., ν �= ν
 .
All physical states have non-negative eigenvalues in their

density-matrix representations. When the transpose operator
is applied to the entirety of a quantum state or to a portion
delineated by a separable bipartition, it acts as a positive
map, i.e., the density matrix remains physical with positive or
vanishing eigenvalues. In the CM formalism, the correspond-
ing criterion is that the PT symplectic eigenvalues remain
lower bounded by 1. However, when the transpose operator
is applied to a portion delineated by an inseparable biparti-
tion, entanglement can generate negative eigenvalues in the
post-PT density matrix. The corresponding effect on the CM
is the presence of PT symplectic eigenvalues less than one,
ν

j < 1. The logarithmic negativity is additive in the basis of

PT normal modes and completely characterized by the PT
symplectic eigenvalues

N = −
n∑
j=1

log2 min
(
ν

j , 1

) ≡
n∑
j=1

N j (20)

= −
n−∑
j=1

log2 ν

j , (21)

where n− is the number of PT symplectic eigenvalues less
than 1.

III. LOCAL TRANSFORMATION FOR ENTANGLEMENT
SIMPLIFICATION

Extracting a pair of regions from the vacuum of a lat-
tice scalar field theory generates a (dA × dB)mixed CV state
parametrized by region size d , their separation r̃, and the mass
m of the field.2 Although a number of entanglement structure
reorganizations have been devised for CV systems [35,123–
131], the transformation developed here achieves clear separa-
tion and pairwise organization of accessible and inaccessible
entanglement. This is depicted in Fig. 1, where the A and
B spaces label the two regions of the vacuum. The present
restructuring of the CM is achieved through local symplectic
transformations that are calculated from a subset of the sym-
plectic eigenvectors of the full PT CM (or product GH). The
subset corresponds to the d lowest PT symplectic eigenvalues,
where n− of the eigenvalues contribute to the negativity with
n− � d . Within this subset, components corresponding to a
single region are extracted and the unitarity is repaired using
a Gram-Schmidt orthogonalization process modified to incor-
porate symplectic inner products. The resulting symplectic
operations are applied locally to each region,

σ ′ = (SA ⊕ SB)σ (SA ⊕ SB)T , (22)

2Numerical values for these quantities are presented in lattice units.

FIG. 1. Diagrammatic representation of consolidating two re-
gions of the vacuum into a core of accessible entanglement and halo
with inaccessible entanglement. Prior to consolidation (left), the two
regions are entangled with multimode (d × d )mixed entanglement.
After consolidation through local transformation, the negativity is
captured in a core of (1 × 1)mixed pairs that manifest the exponential
hierarchy in entanglement contributions (Sec. III B). The teal dashed
lines indicate two partitions that are individually, but not simultane-
ously, separable.

transitioning from the original fully entangled modes of the
vacuum regions to an organized core of nc = n− entangled
(1 × 1)mixed states containing the accessible entanglement and
a halo space containing additional inaccessible entanglement.
Prior to describing the consolidation transformation in further
detail, Secs. III A and III B discuss previous works on entan-
glement reorganizations and the structure of PT symplectic
eigenvalues that will be leveraged in the present consolidation.

A. Known CV entanglement reorganizations

In the landscape of Gaussian CV quantum systems, a num-
ber of entanglement structure transformations are known. For
example, any (� × n)mixed state with a permutation symmetry
among the modes � (monosymmetric) can be transformed
to a (1 × n)mixed state and a set of � − 1 unentangled single
modes [130,131]. This reorganization associates (� × n)mixed

monosymmetric Gaussian states with the convenient features
of (1 × n)mixed Gaussian states, such as the positive PT (PPT)
criterion being both necessary and sufficient for determining
separability [126,131]. In an extension, bi-symmetric (� ×
n)mixed states, in which the � and n modes exhibit independent
permutation symmetries, can be locally transformed into a
(1 × 1)mixed state and a set of � + n − 2 unentangled single
modes [128]. Bisymmetric states thus have the entangle-
ment properties of two-mode Gaussian states [120,123,124].
Without local symmetries, (� × n)pure Gaussian states can
be locally transformed to a set of (1 × 1)pure states and un-
entangled single modes through local symplectic operations
[35,127]. This is also possible for (� × n)mixed isotropic states,
where the matrix of symplectic eigenvalues is proportional to
that of pure states, i.e., to the identity [35]. For (� × n)mixed

Gaussian states without local or global symmetries, a local
unitary has been identified that organizes the interregion two-
body entanglement into single-mode A-B pairs [129], though
higher-body entanglement through intraregion correlations
may remain.

012415-4



ENTANGLEMENT STRUCTURES IN QUANTUM FIELD … PHYSICAL REVIEW A 107, 012415 (2023)

FIG. 2. Logarithmic negativity contributions for entanglement
between vacuum regions of the one-dimensional massive scalar field
with d = 30 and m = 0.003 as a function of partially transposed
symplectic eigenvalue index for a series of separations r̃. The inset
shows the same values with scaled y components as y′ = −√−lny
such that linear behavior indicates Gaussian decay structure.

While the vacuum state of the free lattice scalar field is
not amenable to, or is insufficiently restructured by, the above
reorganizations, in the following we demonstrate the existence
of a transformation that analogously simplifies its entangle-
ment structure. The consolidating transform will allow the
total logarithmic negativity of the (d × d )mixed state to be
organized into a set of (1 × 1)mixed-mode pair contributions.

B. Partially transposed symplectic structure

As described with constructive techniques in the following,
the local operators designed to consolidate the entanglement
of the (d × d )mixed field regions are informed by the PT
symplectic eigensystem. It has been observed [51,53] that
the number of PT symplectic eigenvalues contributing to the
logarithmic negativity n− decreases rapidly with the spatial
separation between vacuum regions r̃. At large separation be-
tween the r̃ boundaries where the d × d and (d − 1) × (d −
1) vacuum regions become separable [34,35,38,39,42,45–
48,50,53,66], the logarithmic negativity is characterized by
a single PT symplectic eigenvector (e.g., single point for
r̃ = 400 with eigenvalue index of 1 in Fig. 2) that is entirely
delocalized across the modes within each region, i.e., all
smaller subsets of these modes are separable [53]. At reduced
field separations, the negativity in the PT basis has multiple
contributions with an exponential hierarchy, subsequently as-
sociated with (k × k)-body entanglement between the field
regions for � � k � d , with � an r̃-dependent constant that
becomes equal to one at r̃ = 0. These features of the PT basis
are shown in Fig. 2 for a representative system of pixelated
vacuum regions.

In light of the exponential hierarchy, it is advantageous
to consider the construction of a local symplectic opera-
tor that localizes the PT symplectic eigenvector associated
with largest negativity contribution into a pair of physical
modes, one in each region of the bipartite CV system. By
further building the local operator leveraging, the PT basis
and a symplectic Gram-Schmidt (sGS) procedure (see Ap-
pendix A) to enforce unitarity in the Hilbert space, mode
pairs of the transformed system can be designed to carry the

same entanglement hierarchy as the PT logarithmic negativity
contributions.

C. Constructive consolidation protocol

Utilizing the CM framework of Sec. II with 4d-
dimensional CMs for a lattice of d sites in each of two regions,
a technique of entanglement consolidation is now described
for the vacuum of lattice scalar field theory. For the matrices of
two-point correlation functions in Eqs. (8) and (9) calculated
for a lattice in the limit of infinite spatial volume, consider the
left and right eigenvectors of GH
 calculated as

H
Gv̄φ, j = λ2
j v̄φ, j, GH
 v̄π, j = λ2

j v̄π, j, (23)

where the λ j are the PT symplectic eigenvalues calculated as
the eigenvalues of |i�σ
|. While use of this basis organizes
the distribution of negativity, one may choose a standard nor-
malization for concreteness to set the first elements positive
(v̄φ,1)1, (v̄π,1)1 � 0 and

v̄Tφ, jGv̄φ, j = λ j, v̄Tπ, jH

 v̄π, j = λ j, v̄φ · v̄Tπ = I, (24)

where v̄φ and v̄π without further indices are stacked matrices
with rows corresponding to the PT symplectic eigenvectors.
Subsequently, a local transformation basis is extracted from
this eigenvector set as

S̄A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
v̄�0

φ,1

)
A(

v̄�0
π,1

)
A

...(
v̄�0

φ,d

)
A(

v̄�0
π,d

)
A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where d is the number of modes per region of the field and
the subscript indicates that the eigenvector has been cut at
the dimensionality of the first field region. Importantly, these
vectors are not eigenvectors of region A alone that would serve
to diagonalize the local region CMs. To construct a symplectic
transformation that does not mix φ and π coordinates, zeros
are interleaved into each of the half-eigenvectors (denoted by
superscript �0), as in the form of Eq. (12) (with G and H
exchanged for v̄φ and v̄π , respectively). While there are 2d
eigenvectors with positive λm eigenvalue, only the half with
the lowest PT symplectic eigenvalues is retained to span the
local transformation basis. For any (na + nb)-mode Gaussian
system, the maximum number of negative eigenvalues possi-
bly contributing to the negativity is min(na, nb), the minimum
number of modes in either region [131]. As such, the choice
of utilizing the lowest d left and right eigenvectors to initial-
ize a local symplectic transformation captures all available
negativity. Note that while entanglement consolidating trans-
formations for pure states can be informed solely through
the local CMs [35,127], this consolidation for a mixed state
depends upon full CM diagonalization, consistent with ex-
tensions of entanglement quantifications from pure to mixed
states.

While offering a transformation between local basis vec-
tors e and the Gaussian modes dominantly contributing to the
negativity,

{eφ, j, eπ, j} S̄A↔ {(v̄φ, j )A, (v̄π, j )A} ∀ j ∈ {1, . . . , d}, (26)
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the operator as described is not symplectic. To rectify this
property, the sGS procedure, discussed in Appendix A, is
applied to S̄A to produce a symplectic transformation SA in
the first region.

The associated transformation in the second region SB can
be determined through symmetry transformation of SA, i.e., a
reversal of Gaussian mode order. The local symplectic opera-
tor S = SA ⊕ SB thus transforms the negativity basis into pairs
of basis vectors within each region

σ ′ = SσST , S = SA ⊕ SB, (27)

consolidating the extractable entanglement into corresponding
pairs of Gaussian modes. The locally transformed σ ′ exhibits
entanglement that manifests the negativity core in the first
nc = n− modes in either region.

After the above transformation defined by the PT sym-
plectic eigenvectors, the negativity described in Eq. (21) is
captured in (1A × 1B)mixed pairs of local modes as governed
by the PT symplectic eigenvalues,

N [σ ′(1, 2d )] = N1,

N [σ ′(2, 2d − 1)] = N2,

...

N [σ ′(d, d + 1)] = Nd , (28)

where σ ′(i, j) is the two-mode reduced CM of σ ′ with the
ith and jth modes. Subsequently, negativity can be extracted
through (1 × 1)mixed-mode techniques for each of the nc = n−
core pairs. See Appendix B for detailed examples of this en-
tanglement consolidation through local symplectic operation.

In order to describe a physical unitary transformation on
the Hilbert space, a symplectic operation S has been de-
termined acting upon the CM. In order for that symplectic
operation to generate the hierarchy of negativity contribu-
tions observed in the field, the symplectic eigenbasis of the
PT CM has been employed in the calculation of S. While
this connection is not generically valid—even for local arbi-
trary operations Sarb = Sarb,A ⊕ Sarb,B, symplectic operations
do not generically commute with the active portion of the
partial transposition operator [Sarb,B, τ

⊕nB
z ] �= 0—the particu-

lar choice of local operation in Eq. (25) that acts as a separate
transformation in the local φ and π quadrature bases does
allow commutation [S, 
] = 0. In a system without mixed
expectation values (〈φiπ j〉 = 0 ∀ i, j), a negativity-informed
transformation can thus be determined for application on the
physical system.

D. Broader applicability: D-type CMs

Though the consolidating transformation has not been de-
signed for generic mixed states, some aspects of the core
structure apply to a broader class of mixed Gaussian states.
For example, consider D-type CMs, which may be decom-
posed as

σD = D(n)
DT (n), (29)

D(n) =
(
C 0
0 (C−1)T

)
, C ∈ GL(n;R), (30)

where D(n) is one generator of the symplectic group written in
a basis of {φ1, . . . , φn, π1, . . . , πn} and 
 is a diagonal matrix
with elements 
i � 1. This class of mixed CMs share the
property of vanishing 〈φiπ j〉 matrix elements. This condition,
as discussed above, allows the PT operation to commute with
the consolidating local transformation and thus allows the
PT symplectic spectrum to inform entanglement organizing
unitaries in the physical space. While not a sufficient condition
to organize accessible entanglement into separate (1 × 1)mixed

mode pairs as described in Eq. (28), the first k pairs capture the
logarithmic negativity associated with the first k symplectic
eigenvalues as

N [σ ′
D(1, . . . , k, 2n − k + 1, . . . , 2n)] =

k∑
j=1

N j, (31)

with σ ′
D(1, . . . , k, 2n − k + 1, . . . , 2n) the 2k-mode reduced

D-type CM after application of the negativity consolidating
transformation. This accumulative core structure, relevant be-
yond the lattice scalar field vacuum, arises as a result of the
sGS procedure used to generate a valid symplectic transfor-
mation for negativity consolidation from the PT symplectic
eigenvectors.

IV. POSTCONSOLIDATION ENTANGLEMENT
STRUCTURE

One canonical pure-state convex decomposition of a Gaus-
sian CV mixed-state CM is characterized by the identification
of an additive deviation from purity,

σ = σ (p) + Y, (32)

where σ (p) is a pure CM and Y is a positive-semidefinite
(PSD) matrix of classical correlations. Because this structure
describes an ensemble of states with first-moment displace-
ments drawn from the multivariate Gaussian distribution
governed by Y , the PSD addition is also referred to as a
noise matrix. Operationally, this decomposition conveys one
tenable mixed-state preparation strategy, i.e., through unitary
operations on the quantum vacuum subsequently modified by
classically sampled correlated displacements in phase space.

When Gaussian mixed states are separable, their CMs
may be decomposed in underlying block diagonal form
as σsep = σa ⊕ σb + Y [126,130,131]. This decomposition
leads naturally to the necessary and sufficient condition for
Gaussian-state separability [126]

σsep � σa ⊕ σb. (33)

While efficient determination of separability is in gen-
eral a challenging problem for quantum many-body (QMB)
states, the separability-preserving flow techniques presented
in Ref. [117] provide a practical numerical approach for
not only determining the separability of Gaussian states, but
also identifying a viable σa,b underlying tensor product state
when available (see Appendix C for further details). In the
following, the techniques of Ref. [117] will be utilized to
characterize the simplified entanglement structure between
regions of the scalar field vacuum after consolidation.
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A. Separability structure

After the local negativity-consolidating transformation
presented in Sec. III, disjoint regions of the scalar vacuum
are identified to be separable along the core-halo bipartition.
As such, the A-B quantum system is expressible as a tensor-
product state immersed in classical correlations as

σ ′ = σc ⊕ σh + Y, Y =
(

α β

βT δ

)
. (34)

This bipartition corresponds to the horizontal teal dashed line
in the diagram on the right-hand side of Fig. 1. With all the
negativity accounted for in the core, the halo degrees of free-
dom, when isolated, are subsequently found to be separable
along the A-B region divide,

Trc(σ ′) = σh + δ = σh,A ⊕ σh,B + Yh. (35)

This observation corresponds to the vertical dashed teal line in
the halo space of the diagram on the right-hand side of Fig. 1.

For pure states, these two observations of sequential sepa-
rability could be combined to conclude the separability of, for
example, σh,A from the rest of the system. However, this logic
does not apply to mixed states, where the classical correlations
of Y and Yh can be incompatible. As notated by the exclusive
or between these separable bipartitions in Fig. 1, the separa-
bility observations of Eqs. (34) and (35) for the consolidated
scalar vacuum regions are not compatible. In particular, the
negativity between the portion of the halo in either region
and the rest of the system is found to be nonzero. This is a
sufficient observation to conclude that σh,A is connected to the
remaining many-body system with entanglement and there-
fore that this core-halo separated state contains inaccessible
entanglement in the halo.

More explicitly, attempts to combine the above separability
observations lead to

σ ′ = σc ⊕ σh,A ⊕ σh,B + Y ′,

Y ′ ≡ 0c ⊕ Yh − 0c ⊕ δ + Y. (36)

If the individual separability calculations are satisfied, Y , Yh,
and δ are PSD matrices. Upon simplification, a necessary
and sufficient condition for the three-part simultaneous sep-
arability in Eq. (36) becomes the identification of classical
correlations such that

Y ′ =
(

α β

βT Yh

)
� 0. (37)

Replacing halo contributions identified in the core-halo par-
tition, δ in Eq. (34), with that compatible with haloA-haloB

separability, Yh in Eq. (35), must result in a valid classical cor-
relation matrix. In contrast, ifY ′ < 0, as is presently observed,
the partitions are not simultaneously separable.

Focusing next on the structure of the core, the additivity of
the negativity among the (1 × 1)mixed-mode pairs as expressed
in Eq. (28) suggests that these core pairs are all separable
from each other. Furthermore, upon tracing, all bipartitions
of k pairs by � pairs for k + � � nc are identified to be
separable. The remaining question is whether these core-pair
separability observations are simultaneously compatible with
the core-halo separability, i.e., whether the transformed CM

FIG. 3. Logarithmic negativity quantifying core (accessible,
dashed lines) and halo (inaccessible, solid lines) entanglement be-
tween two disjoint regions of the latticized one-dimensional massive
(m = 0.003/d) scalar field vacuum as a function of dimensionless
separation r̃/d , where r̃ is the integer separation in lattice units and
d is the pixelated size of each region. The inset diagrammatically
reproduces the solid lines of the main panel, vertically displaced to
enhance visibility of emergent structure.

can be decomposed as

σ ′ = σc,1 ⊕ σc,2 ⊕ · · · ⊕ σc,nc ⊕ σh + Y, (38)

where σc,i is a (1A × 1B)mixed entangled CM. This question
addresses multipartite simultaneous separability of the core
pairs. While progress has been made in extending CV sep-
arability criteria to tripartite systems [132,133], the (nc +
1)-partite nature of this question is beyond current direct
techniques. However, sequential application of the bipar-
tite procedure of Ref. [117] (see Appendix C) provides a
methodology to pursue numerical identification of viable de-
compositions. For modest-size systems, at least one of the nc!
different bipartition orderings is reliably found to yield tensor-
product core pairs in the form of Eq. (38). Thus, Eq. (38)
represents the numerically determined final separability struc-
ture after entanglement consolidation.

B. Entanglement in the halo

The incompatibility of δ and Yh discussed in Eqs. (34)
and (35) may also be addressed through the entanglement of
σh alone. In particular, this observable further quantifies the
nonsimultaneous separability present for the core-halo and
haloA-haloB bipartitions.

The solid lines of Fig. 3 show the negativity of σh after
identification of classical correlations compatible with core-
halo separability in Eq. (34) utilizing the separability flow
techniques of Ref. [117]. The dashed lines show the core
entanglement for reference. By design of the local transfor-
mation presented in Sec. III C, the core entanglement is equal
to the full A-B negativity. For the purpose of demonstration,
we have chosen a mass function m = 3 × 10−3/d such that
the correlation length across the regions is held fixed as d
increases and reduces the impact of pixelation toward the
continuum limit.
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While many solutions in the form of Eq. (34) exist, the
decompositions generated by the techniques of Ref. [117]
appear to produce a tight upper bound for the halo entan-
glement. The family of decompositions purifying σh result
in the same or larger values of the halo negativity. Further,
numerical searches of σh perturbations that satisfy the nec-
essary constraints are found to also produce only increases.
Thus, this quantity should be interpreted as an estimate of
the entanglement distributed between regions in the halo, with
a value of zero incompatible with the implementation of the
core-halo separability of Sec. IV A.

At fixed region pixelation d , Fig. 3 illustrates that the
vanishing of halo entanglement at large separations coincides
with the boundary at which regions become separable. Both
the magnitude and exponential decay are consistent with that
previously calculated for the full A-B negativity [39]. The core
and halo entanglements fluctuate with amplitudes that dimin-
ish toward the continuum limit. The inset of Fig. 3 shows that
the regime from which the continuum limit emerges passes
through a phase where this calculation of the halo entan-
glement exhibits a clear stepwise structure, a feature more
commonly found in systems with topological behavior.

C. Inaccessibility of halo entanglement

Through consolidation and implementation of core-halo
separability, a clear distinction has been generated between
the entanglement accessible through (1 × 1)mixed core modes
and the inaccessible entanglement in the halo. This inacces-
sibility is generated by classical correlations arising from
the isolation of the halo [Eq. (35)], obscuring the underly-
ing entanglement. Operational implications follow for both
application directions considered in this work: (i) to prepare
the vacuum regions by distributing and locally transforming
a series of entangled core pairs governed by PT symplectic
eigenvalues and a classically connected halo state, additional
entanglement spanning the regions must be provided within
the halo and (ii) entanglement that can be extracted from
regions of a vacuum state through the basic units of (1A ×
1B)mixed entangled pairs is set by the core entanglement.

In general, convex decompositions of mixed states are not
unique, i.e., there exist multiple sets {σ (p),Y } in the decom-
position of Eq. (32) compatible with the specific form of a
mixed state. Separability indicates that at least one of these
sets has an underlying pure tensor-product CM and thus there
exists a set with vanishing quantum correlations across the
bipartition. The presence of entanglement in the pure CM
portion of compatible {σ (p),Y } decomposition sets can vary
widely, including those characterized by distributed entangled
pairs within the classically mixed ensemble of a separable
state.

As discussed in Appendix D, such separability-obscured
entanglement is a well-known phenomenon, i.e., separable
states may contain underlying entanglement visible only
through additional classical communication (e.g., for the post-
selection of entangled ensemble samples) or modification of
the noise. For example, Eqs. (32) and (33) show (along with
the positivity of CMs) that the presence of a classical corre-
lation matrix characterized by a tensor product of CMs will
result in a mixed state that satisfies the separability criterion,

regardless of the entanglement present in the underlying pure
state. As such, it is possible for the separability designation to
obscure the presence of entanglement (see, e.g., [134–139]).

In the case of lattice scalar field vacuum regions, classi-
cal correlations connecting the entangled core pairs to the
halo Hilbert space [Eq. (34)] are found to be incompatible
with possible separable {σ (p),Y } decomposition sets in the
halo. This can be physically interpreted as the implementa-
tion of core-halo separability (rather than tracing of the core)
limiting the structure that can be identified as classical cor-
relations in the internal halo-halo system. The inequality of
Eq. (37) expresses how constraints associated with separabil-
ity observations can propagate through classical correlations
to constrain subsequent subsystem evaluations of separability.

V. PERSPECTIVES FROM CONSOLIDATION

A. Extracting spacelike entanglement

Though much progress has been made in simulat-
ing the distribution of entanglement utilizing vacuum
fields as a medium for (quasi)particle propagation (e.g.,
Refs. [140–144]) or in boosted reference frames (e.g.,
Refs. [29,30,145,146]), techniques capable of reliably extract-
ing spacelike entanglement from a field in the laboratory
remain challenging. Prior to consolidation, the modes as-
sociated with the dominant spacelike entanglement are
delocalized within each region. To extract entanglement from
such a system into a sensing apparatus having basic quantum
degrees of freedom requires highly structured interactions
strategically distributed across each detection region. How-
ever, by first consolidating the negativity into a core through
local unitaries in each region, access to the extractable en-
tanglement can be achieved by simply coupling to (1A ×
1B)-mode pairs. It is within this organization of the en-
tanglement that the strategy of entanglement extraction via
swapping of a detection mode into the system becomes pos-
sible. As such, the entanglement consolidation methods we
develop are expected to aid in the identification of useful
distributed degrees of freedom and thus the design of future
quantum sensors, capable of recovering spacelike entangle-
ment from continuum quantum fields.

For generic Gaussian states, a calculation of negativity
provides an upper bound to the entanglement that may be
extracted given a bipartite system. Interestingly, the consoli-
dating transformation developed here shows that the entirety
of the accessible entanglement can be reorganized into (1 ×
1)mixed entangled pairs, extending the physical significance of
negativity for the free scalar field [118–121]. This reorgani-
zation of the negativity into entangled pairs, for which the
measure is additive, promotes the negativity from an upper
bound to a quantity with physical and operational meaning in
terms of extractable two-mode entanglement resources. There
is a one-to-one correspondence between the negativity of a
(1 × 1)mixed core pair and the two-mode squeezing required to
prepare it [147,148]. Furthermore, such two-mode entangled
Gaussian states are known to be distillable [124].

The explicit protocol developed here for extracting space-
like entanglement through (1 × 1)mixed modes is specifically
designed for spatially latticized fields. As the continuum
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limit is approached, the PT symplectic eigenvectors converge,
characterizing region-distributed modes that capture the log-
arithmic negativity. Rather than preprocessing of the field
through local unitaries, a process which may cease to be avail-
able when interacting with continuous fields, such modes may
be used to inform the design of continuous space interaction
profiles for a pair of finite-size local detectors. Due to the
vanishing of extractable entanglement at low region pixelation
(low UV truncation) where regions become compatible with
separable states, design of the detector energy sensitivity is
expected to be necessary.

B. Connections to bound entanglement

As discussed in Sec. IV C, the inaccessibility of halo en-
tanglement indicates that, when utilizing the PT entanglement
consolidation strategy, more entanglement must be provided
to create the scalar field vacuum regions than could be sub-
sequently extracted. Such irreversibility in the operational
treatment of quantum correlations is often expressed within
the framework of bound entanglement [126,137,149–154],
which is the difference between the entanglement of forma-
tion required to create a state and the distillable entanglement
that can be subsequently extracted from it (or asymptotically
many samples of it). In this context, we consider whether the
inaccessible entanglement identified to be necessary through
the consolidated state preparation procedure yields insight
into the fundamental presence of bound entanglement be-
tween regions of the scalar field vacuum, i.e., whether all
possible state preparation protocols would similarly require
the input of bound entanglement.

While it has become natural to expect some amount of
entanglement to become suppressed or bound upon the intro-
duction of classical noise in the creation of mixed quantum
states, it is important to note that mixedness is not a suffi-
cient criterion for establishing operational irreversibility of an
entanglement resource. For example, mixed density matrices
that are transformable via local unitaries U = UA ⊗UB to a
form that tags entangled pure states [155],

ρ = U

⎡
⎣∑

j

ρ(| j j〉AB) ⊗ ρ(|ψ j〉AB)

⎤
⎦U † (39)

with ρ(|ψ〉) = |ψ〉〈ψ |, can be prepared and extracted re-
versibly. Furthermore, relevant to the structure of core pairs
after consolidation as in Eq. (38), it has been determined
that, for two mode symmetric states, the entanglement of
formation over all possible σ (p) pure-state decompositions is
equal to that of the associated mixed state [147,148]. Because
the core pairs fall into this two-mode symmetric category, it
is thus possible to identify a pure state decomposition for
which N (σ (p)

c ) = N (σc). Core states of disjoint scalar field
vacuum regions thus provide a CV example in which the
required mixedness can be generated without suppressing the
entanglement, thus requiring no entanglement excess in their
creation.

Generic methods do not exist for determining whether
a mixed-state density matrix has bound entanglement. This
includes indirect calculations involving the entanglement of
formation and distillable entanglement. While progress has

been reported for nonsymmetric two-mode Gaussian states
[156,157], performing the necessary constrained optimiza-
tions in systems of more than two CV modes remains
challenging.

Though the core-halo entanglement structure has reduced
complexity and an upper-bound excluding zero has been pro-
vided for the inaccessible halo entanglement, we have not
proven that this reorganization is optimal. If the presence
of bound entanglement were to persist for all possible state
preparation procedures, disjoint pairs of scalar field vacuum
regions would be identified as nonpositive PT (NPT) states
with bound entanglement. This is distinct from the fully bound
PPT entangled states that are more commonly considered
[158–162]. Note that, consistent with the core organization
of tensor-product entangled pairs, the presence of distillable
entanglement has been established in all NPT Gaussian states
[125].

VI. CONCLUSION AND OUTLOOK

We have studied the entanglement structure between two
disjoint finite regions of infinite-volume, one-dimensional,
noninteracting lattice scalar field theory vacuua. The mo-
tivations for this analysis include designing protocols of
laboratory preparations for quantum simulation, as well as
informing quantum sensor design through identification of
the distributed modes within each region that are dominantly
responsible for the accessible entanglement.

To illuminate the entanglement structure within the mixed
states of disjoint vacuum regions, local transformations are
created that consolidate the entanglement into a core-halo
system. The core is comprised of (1 × 1)mixed CV pairs that
carry all the accessible entanglement between the regions,
with an exponential hierarchy of contributions following the
PT symplectic eigenvalues. The consolidated system is sep-
arable along the core-halo partition and the isolated halo is
separable between the two regions. Generally, however, when
a separable mixed state is a subset of a larger QMB sys-
tem, entanglement may still be required to prepare it, even
when the subset is connected to the QMB system only via
classical correlations. Analysis of the consolidated separabil-
ity structure reveals that initialization performed through the
distribution of entangled core pairs requires the presence of
inaccessible entanglement in the halo portion of the state.

Through iterated application of this protocol, transfor-
mations may be applied to the halo subsystem for further
consolidation of this bound entanglement, allowing a com-
plete pairwise protocol for preparing the quantum system.
Despite the clarity of the consolidated entanglement organi-
zation, the possibility that alternative protocols may exist that
require less (or even no) inaccessible entanglement has not
been precluded by the present analysis.

The consolidation of accessible entanglement in the field
utilizes local operations to transform region volume-to-
volume entanglement calculations plagued by a sign problem
[51,53] into pairs of additively contributing entangled modes.
This suggests that both computational and conceptual advan-
tages are possible through a delocalization of lattice degrees
of freedom, likely with analogy to the holographic techniques
connecting entanglement in conformal fields to geometries in
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bulk gravitational duals [37,41,163]. In particular, the expo-
nential hierarchy of entanglement present in the core-mode
pairs may provide a nonlocal scheme for entanglement trun-
cation with systematically quantifiable uncertainties.

While aspects of these entanglement reorganizations and
subsequent conclusions apply more broadly (Sec. III D), it
should be stressed that the results do not apply to generic
mixed quantum states. However, in the Standard Model, anal-
ogous consolidations are expected to be useful in regimes
where the effective degrees of freedom are perturbatively
close to Gaussian. The asymptotic freedom of quantum chro-
modynamics (QCD) in the UV, which provides a perturbative
vacuum of quarks and gluons, and chiral symmetry breaking
in the IR, which provides a perturbative vacuum of pions,
suggest the possibility of nontrivial evolution in the analo-
gous QCD negativity core and halo through the confinement
and chiral symmetry-breaking scale(s). Hints of interesting
behaviors in such symmetry transition regimes, where low-
energy effective interactions become increasingly nonlocal,
may be found in the connection between emergent global
symmetries and suppressed fluctuations of entanglement,
e.g., as displayed in nuclear forces in low-energy scattering
[7,11,12,15,164].
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APPENDIX A: SYMPLECTIC GRAM-SCHMIDT
PROCEDURE

The symplectic Gram-Schmidt procedure aims to produce
a set of symplectically orthogonal vectors seeded by an initial
basis of interest {v̄}. The symplectic inner product is written
as

〈u, v〉� = u�vT , (A1)

which vanishes by symmetry for any real vector with it-
self 〈v, v〉� = 0. The aim is to produce a basis for which
〈vi, v j〉� = �i, j . Subsequently constructing an operator S
through the stacking of these basis vectors in rows will pro-
duce a symplectic transformation preserving the canonical
commutation relations S�ST = � by design.

At each step, vectors in the basis must be symplectically
orthogonalized and normalized. Consider the first two vectors
proposed v̄x,1 and v̄p,1 corresponding to the two quadratures
of the first mode. By symmetry, the diagonal elements of the
intended inner product vanish such that only the normalization
requires modification

vx,1 = v̄x,1√|A| , vp,1 = v̄p,1
sgn(A)

√|A| , A = 〈v̄x,1, v̄p,1〉�.

(A2)
Though alternate distributions of the normalization lead also
to effective symplectic transformations for entanglement con-
solidation, the chosen symmetric distribution between the
position and momentum vectors is found to have advanta-
geous properties of numerical stability. For the incorporation
of further vectors into the symplectically orthogonal basis, a
procedure of removing projective contributions must first be
performed,

v′
z,k = v̄z,k −

k−1∑
j=1

[〈vx, j, v̄z,k〉�〈vx, j, vp, j〉�vp, j

+ 〈vp, j, v̄z,k〉�〈vp, j, vx, j〉�vx, j] (A3)

= v̄z,k −
k−1∑
j=1

[〈vx, j, v̄z,k〉�vp, j − 〈vp, j, v̄z,k〉�vx, j], (A4)

with z ∈ {x, p}, indicating that the symplectic orthogonal-
ization applies equivalently for the position and momentum
vectors. The first inner product in each term of Eq. (A3) cap-
tures the projection magnitude, while the second inner product
and vector set the contribution in a direction that will have +1
symplectic overlap with the component being removed. After
a final normalization procedure

vx,k = v′
x,k√
A

, vp,k = v′
p,k

sgn(A)
√|A| , A = 〈v′

x,k, v
′
p,k〉�,

(A5)
the collection of symplectically orthogonal vectors may be
organized rowwise to produce a symplectic transformation.
For example, in the alternating position-momentum basis
described above, the symplectic transformation may be con-
structed as

Si, j =
⎧⎨
⎩

(vx,(i+1)/2)( j+1)/2 for i, j odd
(vp,i/2) j/2 for i, j even
0 otherwise.

(A6)

APPENDIX B: EXAMPLES OF ENTANGLEMENT
CONSOLIDATION

1. GH� eigenvectors

Consider the vacuum of one-dimensional massive nonin-
teracting lattice scalar field theory. With two modes per region
at zero lattice separation (r̃ = 0) and mass arbitrarily chosen
to be m = 0.003, the CM written in the basis of alternating φ

and π coordinates is
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σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.51 0 1.87 0 1.66 0 1.53 0
0 1.27 0 −0.424 0 −0.0849 0 −0.0364

1.87 0 2.51 0 1.87 0 1.66 0
0 −0.424 0 1.27 0 −0.424 0 −0.0849

1.66 0 1.87 0 2.51 0 1.87 0
0 −0.0849 0 −0.424 0 1.27 0 −0.424

1.53 0 1.66 0 1.87 0 2.51 0
0 −0.0364 0 −0.0849 0 −0.424 0 1.27

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

Modes have been ordered from left to right such that the inner two modes correspond to the third through sixth row and column
indices. In this alternating basis, the matrix Gi, j = 〈φiφ j〉 of correlation functions is composed of the odd-odd coordinates and
the matrix Hi, j = 〈πiπ j〉 is composed of the even-even coordinates of the CM, with a factor of 2 as shown in Eq. (10). There
is one symplectic eigenvalue contributing to the negativity for a total negativity between the two regions of N = 0.654. Before
and after symplectic orthogonalization, the local transformation is determined by the left and right eigenvectors of the product
GH
 as

S̄A =

⎛
⎜⎜⎝

0.0607 0 0.683 0
0 0.321 0 0.704

0.762 0 −0.347 0
0 0.631 0 −0.0560

⎞
⎟⎟⎠, SA =

⎛
⎜⎜⎝

0.0858 0 0.965 0
0 0.454 0 0.995

1.08 0 −0.491 0
0 0.892 0 −0.0793

⎞
⎟⎟⎠. (B2)

The transformed CM

σ ′ = SσST =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.67 0 0.912 0 0.912 0 2.03 0
0 1.14 0 0.0536 0 −0.0536 0 −0.505

0.912 0 1.54 0 0.474 0 0.912 0
0 0.0536 0 1.08 0 −0.0196 0 −0.0536

0.912 0 0.474 0 1.54 0 0.912 0
0 −0.0536 0 −0.0196 0 1.08 0 0.0536

2.03 0 0.912 0 0.912 0 2.67 0
0 −0.505 0 −0.0536 0 0.0536 0 1.14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

while not visually exhibiting special entanglement structure, captures the negativity core. The negativity that had been distributed
nonlocally within the (2 × 2)mixed CM is now localized to the (1 × 1)mixed mode pair of the outer two modes. More precisely, the
negativity present in the reduced CM of the first and fourth modes (one from each local region) is equal to the negativity of the
full system N = 0.654. Though it does not visually appear to be so, an application of separability flow developed in Ref. [117]
determines that the (1 × 1)mixed pair of outer modes 1 and 4 is separable from the remaining (1 × 1)mixed pair of inner modes 2
and 3.

While for two lattice sites per region there is only one PT symplectic eigenvalue contributing to the negativity, one can find
a set of additive negativity contributions as the pixelation of each region is increased. For example, the same system at zero
separation (r̃ = 0) and mass (m = 0.003) but with four modes per region exhibits three separate contributions to the negativity:
0.858, 0.0230, and 0.000 298 for a total of N = 0.888. The local symplectic transformation designed to localize this negativity
into a core of local modes is

SA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0286 0 −0.0736 0 −0.190 0 −0.818 0
0 −0.244 0 −0.460 0 −0.693 0 −1.03

0.373 0 −0.433 0 −0.803 0 0.645 0
0 0.0505 0 −0.559 0 −0.741 0 0.224

0.386 0 −1.03 0 0.759 0 −0.143 0
0 0.112 0 −0.646 0 0.379 0 −0.0260

0.984 0 0.124 0 −0.0943 0 −0.225 0
0 0.960 0 0.479 0 0.152 0 −0.0448

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

After this transformation, the pair of outer modes in each
region carries an amount of negativity equal to that of the
dominant contribution N1,8 = 0.858. The second (1 × 1)mixed

pair of modes 2 and 7 carry negativity equal to that of the
following symplectic eigenvalue N2,7 = 0.0230. The remain-
ing pairs continue this pattern governed by the symplectic
eigenvalue contributions N3,6 = 0.000 298 and N4,5 = 0. As

the separation between the regions is increased, the number
of negativity contributions rapidly diminishes and becomes
dominated by a single eigenvalue before vanishing com-
pletely. By calculating the local symplectic transformations
in this manner, the consolidation of entanglement mimics
the structure of symplectic eigenvalues contributing to the
negativity.
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2. i�σ� eigenvectors

The local symplectic operators designed to consolidate the
vacuum entanglement into a core was above (and in the main
text) informed by the left and right eigenvectors of GH
 .
Naturally, such a transformation may also be designed from
symplectic eigenvectors themselves. Consider the right eigen-
vectors of the product �σ
 v̄ j = λ j v̄ j . The eigenvalues λ j are
the PT symplectic eigenvalues from which the logarithmic
negativity may be calculated additively,

N =
2d∑
j=1

N j, N j = − log2[min(|λ j |, 1)]. (B5)

Note that the symplectic eigenvalues appear in ± pairs
through this method of calculation, though they do not con-
tribute twice to the negativity. The eigenvectors with paired
eigenvalues are related by a conjugation, if λ j = −λk then
v̄ j = v̄∗

k , up to arbitrary global phases. If ordered from small-
est to largest, ignoring v̄ j for which λ j < 0, the initial basis
of the local consolidating symplectic transformation can be
chosen as

S̄A =

⎛
⎜⎜⎜⎜⎜⎝

(
Rev̄1

)
A(

Imv̄1
)
A

...(
Rev̄d

)
A(

Imv̄d
)
A

⎞
⎟⎟⎟⎟⎟⎠. (B6)

Separating the independent real and imaginary components of
each symplectic eigenvector into two basis vectors of the CM

informs the two quadratures of each Gaussian mode. In the
desired transformation, the eigenvectors v̄ j have been each
globally phased so that their first elements are real, allow-
ing the resulting symplectic transformation to act separately
on the (φ, π ) quadratures without mixture. This separation
provides commutation with the PT operation and thus allows
the negativity information in the PT space to be utilized in
defining a realizable symplectic transformation on the physi-
cal CM, as discussed in Sec. III D. For the purposes of locally
transforming two regions of the scalar vacuum into a basis
with a manifest negativity core, this choice of information
distribution is not unique, e.g., a choice of Rev̄1 ± Imv̄1 would
have a similar effect. The source of arbitrariness in this distri-
bution reflects the arbitrary set of single-mode transformations
that do not affect the negativity structure of the final CM. After
an application of the symplectic Gram-Schmidt procedure,
the symplectic operator generated from this basis acts upon
the CM, σ ′ = SσST with S = SA ⊕ SB, and consolidates the
entanglement between regions of the field into a number of
(1 × 1)mixed-mode pairs equal to the number of PT symplectic
eigenvalues less than unity.

Consider the example of Appendix B 1 with two modes
per region at zero separation (r̃ = 0) and mass of m = 0.003.
The CM written in the basis of alternating φ and π coordi-
nates is provided in Eq. (B1). Before and after symplectic
orthogonalization, the local transformation is determined by
the eigenvectors of the product i�σ
 as

S̄A =

⎛
⎜⎜⎝

0.041 0 0.467 0
0 −0.220 0 −0.482

0.513 0 −0.234 0
0 −0.425 0 0.038

⎞
⎟⎟⎠, SA =

⎛
⎜⎜⎝

0.086 0 0.965 0
0 0.454 0 0.995

1.077 0 −0.491 0
0 0.892 0 −0.079

⎞
⎟⎟⎠. (B7)

The CM transformed by the local consolidating symplectic operation S = SA ⊕ SB becomes

σ ′ = SσST =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.670 0 0.912 0 0.912 0 2.034 0
0 1.140 0 0.054 0 −0.054 0 −0.505

0.912 0 1.536 0 0.474 0 0.912 0
0 0.054 0 1.081 0 −0.020 0 −0.054

0.912 0 0.474 0 1.536 0 0.912 0
0 −0.054 0 −0.020 0 1.081 0 0.054

2.034 0 0.912 0 0.912 0 2.670 0
0 −0.505 0 −0.054 0 0.054 0 1.140

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B8)

The negativity that had been distributed nonlocally within
the (2 × 2)mixed system is again localized to the (1 × 1)mixed-
mode pair of the outer two modes.

APPENDIX C: GAUSSIAN SEPARABILITY CRITERION

A necessary and sufficient condition for a CM σ to be
separable is the existence of two valid CMs σa and σb such
that [126]

σ � σa ⊕ σb, σa,b � i�. (C1)

Reference [117] describes not only how to numerically iden-
tify separability and inseparability for mixed Gaussian states,
but3 also provides a constructive method for calculating a
viable tensor-product state and classical noise contribution

3Note that this basis is distinct from that utilized by Ref. [125] to
demonstrate that nonzero negativity can always be transformed into
a (1 × 1)-mode subsystem through local symplectic operations, and
thus any NPT entangled Gaussian state provides nonzero distillable
entanglement. In particular, the eigenvectors chosen to seed this
transformation to the negativity core satisfy v̄†(σ − i�
 )v̄ � 0
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TABLE I. Numerical values of the logarithmic negativity contributions from PT symplectic eigenvalues at region separation r̃ presented in
Fig. 2.

r̃ N j r̃ N j r̃ N j r̃ N j r̃ N j r̃ N j

0 1.360 5 1.857 × 10−1 10 9.067 × 10−2 20 3.295 × 10−2 40 4.314 × 10−3 100 1.189 × 10−5

0 2.143 × 10−1 5 5.312 × 10−3 10 1.204 × 10−3 20 3.902 × 10−5 40 1.538 × 10−7 100 1.196 × 10−14

0 2.775 × 10−2 5 1.761 × 10−4 10 4.939 × 10−6 20 2.799 × 10−8 40 5.242 × 10−12 100 1.242 × 10−23

0 2.650 × 10−3 5 4.880 × 10−6 10 4.399 × 10−8 20 4.473 × 10−11 40 9.355 × 10−17 100 4.019 × 10−34

0 2.117 × 10−4 5 7.475 × 10−8 10 3.939 × 10−10 20 1.319 × 10−14 40 1.350 × 10−21 200 4.092 × 10−10

0 1.252 × 10−5 5 4.128 × 10−10 10 5.584 × 10−13 20 1.971 × 10−17 40 3.085 × 10−27 200 3.596 × 10−26

0 6.810 × 10−7 5 5.458 × 10−12 10 3.079 × 10−15 20 1.976 × 10−21 40 5.506 × 10−33 400 8.640 × 10−20

0 2.581 × 10−8 5 6.857 × 10−14 10 1.580 × 10−17 20 1.412 × 10−24 40 7.941 × 10−38

0 9.840 × 10−10 5 1.055 × 10−15 10 1.220 × 10−19 20 1.524 × 10−27 60 6.551 × 10−4

0 2.352 × 10−11 5 8.574 × 10−18 10 4.124 × 10−22 20 1.283 × 10−32 60 6.670 × 10−10

0 6.284 × 10−13 5 1.017 × 10−19 10 7.510 × 10−25 20 3.177 × 10−36 60 2.723 × 10−16

0 9.023 × 10−15 5 4.554 × 10−22 10 6.752 × 10−29 20 7.773 × 10−41 60 1.264 × 10−22

0 1.653 × 10−16 5 3.610 × 10−24 10 3.924 × 10−32 60 7.052 × 10−29

0 1.306 × 10−18 5 7.300 × 10−27 10 8.617 × 10−36 60 3.273 × 10−36

0 1.560 × 10−20 5 3.207 × 10−29 10 4.019 × 10−39 60 1.524 × 10−44

0 5.761 × 10−23 5 1.831 × 10−32

0 4.035 × 10−25 5 2.765 × 10−35

0 4.925 × 10−28

0 1.530 × 10−30

0 1.739 × 10−34

if separability is determined. For example, applied to the
core-halo separability, these techniques identify an explicit
decomposition in the form of Eq. (34). For a transformed CM
σ ′ in a basis ordered as core modes followed by halo modes,

σ ′ =
(

σ ′
cc σ ′

ch

(σ ′
ch)T σ ′

hh

)
, (C2)

the flow of Ref. [117] begins with the creation of a symmet-
ric object [of modified dimension if the core and halo have
different numbers of modes, dim(σ ′

cc) �= dim(σ ′
hh)] as

σ ′
1 =

(
σ ′
cc − Re(X ) −Im(X )
−Im(XT ) σ ′

cc − Re(X )

)
, (C3)

with X = σ ′
ch(σ ′

hh − i�)−1(σ ′
ch)T . This transformation de-

scribes a flow, σ ′
k for increasing k, that can be iterated until

separability or inseparability is determined. After the first step
(and generalized to further steps if necessary), the condition
for separability is

σc = σ ′
cc − Re(X ) − ‖Im(X )‖opI � i�, (C4)

where the operator norm ‖ξ‖op is the maximum eigenvalue
of

√
ξ †ξ . This condition means that separability between the

core and halo is identified if σc is a valid CM. A constructive
relationship is then found to be

σ ′
1 = σc ⊗ σc + Y1. (C5)

This information can be transferred back through the flow to
inform a decomposition of the physical σ ′ as

σ ′ = σc ⊕ σh + Y, σh = σ ′
hh − (σ ′

ch)T (σ ′
cc − σc)−1σ ′

ch.

(C6)
When σ ′

cc − σc is singular, as is often the case in the lat-
tice scalar field vacuum, the pseudoinverse can be utilized
for successful identification of a valid tensor-product and

noise decomposition. However, the associated poor condition
numbers often require high precision (hundreds of digits for
applications in the main text) to maintain numerical stability.
Conveniently, the core-halo separability of the field is ob-
served to be determined after a single step in the flow, and
thus σ ′

k for k = 1 is sufficient for quantifying the inaccessible
entanglement of Fig. 3. For constructive decompositions at
higher flow depth, an additional step of symmetrization is
required as separable states underlying the noise are tracked
backward through the flow to the original physical CM. Ref-
erence [117] provides further details.

The following is an example of sequentially applying this
separability criterion to establish simultaneous separability
among the core pairs. If the number of core mode pairs nc
is 4, one possible two-level splitting procedure that may yield
a fully separable pair decomposition in the core is

σc = σc,12 ⊕ σc,34 + Y1,

σc,12 = σc,1 ⊕ σc,2 + Y2, (C7)

σc,34 = σc,3 ⊕ σc,4 + Y3,

where the Yi are all PSD matrices representing additional
local noise contributions. With such sequential bipartitions,
the simultaneous separability of the core would be identified
as

σ ′ = σc,1 ⊕ σc,2 ⊕ σc,3 ⊕ σc,4 ⊕ σh + Y +
∑
i

Yi, (C8)

where the Yi are understood to be placed in their relevant
Hilbert spaces completed by 0 block matrices. For nc = 2, this
sequential procedure is achieved in one level with no ambi-
guity. For nc > 2, this sequential procedure requires multiple
levels with an array of different possible splitting structures
at each level. A search over splitting sequences allows full
simultaneous separability in the core to be reliably identified.
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TABLE II. Numerical values of region-region logarithmic negativity NA|B(σ ) and the inaccessible negativity in the halo NA|B(σh ) for
m = 3 × 10−3/d presented in Fig. 3 for d = 10.

r̃ NA|B N (σh )A|B r̃ NA|B N (σh )A|B r̃ NA|B N (σh )A|B

0 1.214 3.575 × 10−1 32 2.762 × 10−5 2.343 × 10−6 65 1.326 × 10−9 7.757 × 10−10

1 3.915 × 10−1 3.659 × 10−1 33 2.211 × 10−5 1.898 × 10−6 66 7.760 × 10−10 4.197 × 10−10

2 1.907 × 10−1 3.867 × 10−1 34 1.743 × 10−5 1.663 × 10−6 67 4.345 × 10−10 3.444 × 10−10

3 1.079 × 10−1 4.306 × 10−1 35 1.345 × 10−5 1.553 × 10−6 68 2.362 × 10−10 4.111 × 10−10

4 6.725 × 10−2 4.773 × 10−1 36 1.010 × 10−5 1.512 × 10−6 69 1.345 × 10−10 6.025 × 10−10

5 4.597 × 10−2 1.267 × 10−1 37 7.342 × 10−6 1.491 × 10−6 70 8.489 × 10−11 9.183 × 10−10

6 3.353 × 10−2 1.406 × 10−1 38 5.136 × 10−6 1.437 × 10−6 71 5.886 × 10−11 1.350 × 10−9

7 2.546 × 10−2 1.036 × 10−1 39 3.454 × 10−6 1.328 × 10−6 72 4.359 × 10−11 1.875 × 10−9

8 1.981 × 10−2 3.465 × 10−2 40 2.237 × 10−6 1.216 × 10−6 73 3.374 × 10−11 2.442 × 10−9

9 1.563 × 10−2 8.211 × 10−3 41 1.405 × 10−6 1.194 × 10−6 74 2.692 × 10−11 2.971 × 10−9

10 1.243 × 10−2 3.010 × 10−3 42 8.728 × 10−7 1.323 × 10−6 75 2.194 × 10−11 3.374 × 10−9

11 9.888 × 10−3 1.910 × 10−3 43 5.554 × 10−7 1.604 × 10−6 76 1.816 × 10−11 3.573 × 10−9

12 7.836 × 10−3 1.381 × 10−3 44 3.730 × 10−7 1.977 × 10−6 77 1.518 × 10−11 3.509 × 10−9

13 6.154 × 10−3 1.111 × 10−3 45 2.655 × 10−7 2.338 × 10−6 78 1.278 × 10−11 3.161 × 10−9

14 4.765 × 10−3 9.363 × 10−4 46 1.985 × 10−7 2.576 × 10−6 79 1.081 × 10−11 2.551 × 10−9

15 3.618 × 10−3 8.215 × 10−4 47 1.538 × 10−7 2.609 × 10−6 80 9.162 × 10−12 1.771 × 10−9

16 2.680 × 10−3 7.479 × 10−4 48 1.223 × 10−7 2.396 × 10−6 81 7.760 × 10−12 9.780 × 10−10

17 1.926 × 10−3 7.086 × 10−4 49 9.902 × 10−8 1.946 × 10−6 82 6.555 × 10−12 3.280 × 10−10

18 1.339 × 10−3 5.565 × 10−4 50 8.124 × 10−8 1.320 × 10−6 83 5.508 × 10−12 2.552 × 10−12

19 9.043 × 10−4 5.930 × 10−4 51 6.723 × 10−8 6.198 × 10−7 84 4.590 × 10−12 6.526 × 10−13

20 6.022 × 10−4 6.732 × 10−4 52 5.591 × 10−8 4.730 × 10−8 85 3.779 × 10−12 3.864 × 10−13

21 4.060 × 10−4 7.785 × 10−4 53 4.659 × 10−8 7.074 × 10−9 86 3.059 × 10−12 2.865 × 10−13

22 2.835 × 10−4 8.734 × 10−4 54 3.878 × 10−8 3.502 × 10−9 87 2.417 × 10−12 2.403 × 10−13

23 2.064 × 10−4 9.132 × 10−4 55 3.216 × 10−8 2.261 × 10−9 88 1.843 × 10−12 2.215 × 10−13

24 1.560 × 10−4 8.631 × 10−4 56 2.648 × 10−8 1.668 × 10−9 89 1.333 × 10−12 2.240 × 10−13

25 1.212 × 10−4 7.098 × 10−4 57 2.157 × 10−8 1.354 × 10−9 90 8.883 × 10−13 2.531 × 10−13

26 9.621 × 10−5 4.701 × 10−4 58 1.729 × 10−8 1.192 × 10−9 91 5.245 × 10−13 3.309 × 10−13

27 7.744 × 10−5 1.997 × 10−4 59 1.357 × 10−8 1.133 × 10−9 92 2.731 × 10−13 5.014 × 10−13

28 6.289 × 10−5 3.456 × 10−5 60 1.033 × 10−8 1.155 × 10−9 93 1.382 × 10−13 7.867 × 10−13

29 5.132 × 10−5 1.090 × 10−5 61 7.568 × 10−9 1.244 × 10−9 94 7.269 × 10−14 1.152 × 10−12

30 4.192 × 10−5 4.814 × 10−6 62 5.273 × 10−9 1.374 × 10−9 95 3.805 × 10−14 1.562 × 10−12

31 3.414 × 10−5 3.173 × 10−6 63 3.479 × 10−9 1.452 × 10−9 96 1.747 × 10−14 2.002 × 10−12

64 2.187 × 10−9 1.280 × 10−9 97 4.040 × 10−15 2.465 × 10−12

The rapid loss of numerical precision through this technique
with matrix inversions at each level has required utilization of
precision with several hundred digits to calculate the simul-
taneously separable decomposition of Eq. (38), exacerbated
for fixed nc at large number of lattice sites per region d and
associated spatial separations.

APPENDIX D: SEPARABILITY-OBSCURED
ENTANGLEMENT

For mixed states, the designation of Hilbert space sep-
arability implies the existence of a convex density-matrix
decomposition of only tensor-product pure states

ρseparable =
∑
i

piρ
A
i ⊗ ρB

i , (D1)

with positive real weights
∑

i pi = 1. However, it is possible
for both tensor-product and entangled convex decompositions
to exist as compatible underlying descriptions of a separable
mixed-state density matrix. For a concrete two-qubit example
in which a separable state can be produced with distributed
entanglement, consider the mixture of a Bell state with the

maximally mixed state

ρ(η) = η ρ

( |00〉 + |11〉√
2

)
+ (1 − η)

I

4
, (D2)

known as an isotropic state or two-qubit Werner state up to
local transformation [166,167]. In two-qubit systems, nega-
tivity is both necessary and sufficient for the identification
of separability. With this quantity, it can be determined that
the mixture in Eq. (D2) is separable in the regime η � 1

3 .
Explicitly, one viable tensor-product decomposition of this
density matrix is

ρ(η) = η

2
[ρ(| + +〉x )

+ ρ(| − −〉x ) + ρ(| + −〉y) + ρ(| − +〉y)]

+ 1 − η

4
[ρ(|00〉) + ρ(|11〉)]

+ 1 − 3η

4
[ρ(|01〉) + ρ(|10〉)], (D3)

where ρ(|ψ〉) = |ψ〉〈ψ | is the density matrix associated
with pure state |ψ〉, |±〉x = |0〉±|1〉√

2
, and |±〉y = |0〉±i|1〉√

2
. This
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TABLE III. Numerical values of region-region logarithmic negativity NA|B(σ ) for m = 3 × 10−3/d presented in Fig. 3 for d = 20.

r̃ NA|B(σ ) r̃ NA|B(σ ) r̃ NA|B(σ ) r̃ NA|B(σ ) r̃ NA|B(σ ) r̃ NA|B(σ ) r̃ NA|B(σ )

0 1.463 60 4.480 × 10−5 120 7.296 × 10−9 180 2.103 × 10−12 240 1.870 × 10−16 300 7.682 × 10−21 360 1.813 × 10−25

1 5.438 × 10−1 61 3.764 × 10−5 121 6.571 × 10−9 181 1.815 × 10−12 241 1.456 × 10−16 301 5.902 × 10−21 361 1.434 × 10−25

2 3.187 × 10−1 62 3.149 × 10−5 122 5.921 × 10−9 182 1.553 × 10−12 242 1.129 × 10−16 302 4.645 × 10−21 362 1.171 × 10−25

3 2.209 × 10−1 63 2.628 × 10−5 123 5.337 × 10−9 183 1.315 × 10−12 243 8.731 × 10−17 303 3.746 × 10−21 363 9.786 × 10−26

4 1.648 × 10−1 64 2.191 × 10−5 124 4.808 × 10−9 184 1.103 × 10−12 244 6.756 × 10−17 304 3.088 × 10−21 364 8.336 × 10−26

5 1.283 × 10−1 65 1.828 × 10−5 125 4.328 × 10−9 185 9.152 × 10−13 245 5.253 × 10−17 305 2.595 × 10−21 365 7.207 × 10−26

6 1.032 × 10−1 66 1.530 × 10−5 126 3.891 × 10−9 186 7.518 × 10−13 246 4.126 × 10−17 306 2.215 × 10−21 366 6.305 × 10−26

7 8.490 × 10−2 67 1.288 × 10−5 127 3.491 × 10−9 187 6.119 × 10−13 247 3.288 × 10−17 307 1.916 × 10−21 367 5.570 × 10−26

8 7.111 × 10−2 68 1.090 × 10−5 128 3.126 × 10−9 188 4.940 × 10−13 248 2.664 × 10−17 308 1.675 × 10−21 368 4.960 × 10−26

9 6.034 × 10−2 69 9.288 × 10−6 129 2.791 × 10−9 189 3.961 × 10−13 249 2.197 × 10−17 309 1.478 × 10−21 369 4.446 × 10−26

10 5.171 × 10−2 70 7.972 × 10−6 130 2.483 × 10−9 190 3.159 × 10−13 250 1.841 × 10−17 310 1.314 × 10−21 370 4.007 × 10−26

11 4.466 × 10−2 71 6.889 × 10−6 131 2.201 × 10−9 191 2.509 × 10−13 251 1.565 × 10−17 311 1.175 × 10−21 371 3.628 × 10−26

12 3.881 × 10−2 72 5.992 × 10−6 132 1.941 × 10−9 192 1.988 × 10−13 252 1.347 × 10−17 312 1.057 × 10−21 372 3.297 × 10−26

13 3.388 × 10−2 73 5.242 × 10−6 133 1.703 × 10−9 193 1.576 × 10−13 253 1.172 × 10−17 313 9.546 × 10−22 373 3.007 × 10−26

14 2.966 × 10−2 74 4.610 × 10−6 134 1.484 × 10−9 194 1.254 × 10−13 254 1.029 × 10−17 314 8.656 × 10−22 374 2.750 × 10−26

15 2.602 × 10−2 75 4.072 × 10−6 135 1.285 × 10−9 195 1.005 × 10−13 255 9.099 × 10−18 315 7.873 × 10−22 375 2.520 × 10−26

16 2.285 × 10−2 76 3.610 × 10−6 136 1.104 × 10−9 196 8.138 × 10−14 256 8.101 × 10−18 316 7.181 × 10−22 376 2.314 × 10−26

17 2.006 × 10−2 77 3.211 × 10−6 137 9.414 × 10−10 197 6.672 × 10−14 257 7.253 × 10−18 317 6.563 × 10−22 377 2.128 × 10−26

18 1.759 × 10−2 78 2.863 × 10−6 138 7.956 × 10−10 198 5.543 × 10−14 258 6.523 × 10−18 318 6.009 × 10−22 378 1.960 × 10−26

19 1.541 × 10−2 79 2.557 × 10−6 139 6.665 × 10−10 199 4.665 × 10−14 259 5.890 × 10−18 319 5.510 × 10−22 379 1.806 × 10−26

20 1.346 × 10−2 80 2.288 × 10−6 140 5.537 × 10−10 200 3.975 × 10−14 260 5.336 × 10−18 320 5.058 × 10−22 380 1.666 × 10−26

21 1.173 × 10−2 81 2.048 × 10−6 141 4.563 × 10−10 201 3.424 × 10−14 261 4.847 × 10−18 321 4.646 × 10−22 381 1.537 × 10−26

22 1.018 × 10−2 82 1.834 × 10−6 142 3.734 × 10−10 202 2.978 × 10−14 262 4.413 × 10−18 322 4.270 × 10−22 382 1.418 × 10−26

23 8.805 × 10−3 83 1.642 × 10−6 143 3.038 × 10−10 203 2.611 × 10−14 263 4.025 × 10−18 323 3.925 × 10−22 383 1.308 × 10−26

24 7.579 × 10−3 84 1.469 × 10−6 144 2.461 × 10−10 204 2.306 × 10−14 264 3.676 × 10−18 324 3.607 × 10−22 384 1.207 × 10−26

25 6.493 × 10−3 85 1.313 × 10−6 145 1.990 × 10−10 205 2.049 × 10−14 265 3.361 × 10−18 325 3.314 × 10−22 385 1.112 × 10−26

26 5.536 × 10−3 86 1.171 × 10−6 146 1.608 × 10−10 206 1.830 × 10−14 266 3.075 × 10−18 326 3.042 × 10−22 386 1.024 × 10−26

27 4.700 × 10−3 87 1.043 × 10−6 147 1.304 × 10−10 207 1.642 × 10−14 267 2.814 × 10−18 327 2.790 × 10−22 387 9.416 × 10−27

28 3.975 × 10−3 88 9.253 × 10−7 148 1.063 × 10−10 208 1.479 × 10−14 268 2.576 × 10−18 328 2.555 × 10−22 388 8.645 × 10−27

29 3.353 × 10−3 89 8.185 × 10−7 149 8.742 × 10−11 209 1.335 × 10−14 269 2.357 × 10−18 329 2.336 × 10−22 389 7.922 × 10−27

30 2.826 × 10−3 90 7.210 × 10−7 150 7.258 × 10−11 210 1.209 × 10−14 270 2.155 × 10−18 330 2.132 × 10−22 390 7.243 × 10−27

31 2.383 × 10−3 91 6.323 × 10−7 151 6.090 × 10−11 211 1.097 × 10−14 271 1.969 × 10−18 331 1.940 × 10−22 391 6.603 × 10−27

32 2.014 × 10−3 92 5.515 × 10−7 152 5.164 × 10−11 212 9.972 × 10−15 272 1.797 × 10−18 332 1.760 × 10−22 392 5.999 × 10−27

33 1.710 × 10−3 93 4.783 × 10−7 153 4.424 × 10−11 213 9.074 × 10−15 273 1.637 × 10−18 333 1.591 × 10−22 393 5.430 × 10−27

34 1.458 × 10−3 94 4.121 × 10−7 154 3.825 × 10−11 214 8.263 × 10−15 274 1.488 × 10−18 334 1.432 × 10−22 394 4.891 × 10−27

35 1.251 × 10−3 95 3.526 × 10−7 155 3.334 × 10−11 215 7.527 × 10−15 275 1.349 × 10−18 335 1.282 × 10−22 395 4.380 × 10−27

36 1.079 × 10−3 96 2.996 × 10−7 156 2.927 × 10−11 216 6.858 × 10−15 276 1.219 × 10−18 336 1.141 × 10−22 396 3.897 × 10−27

37 9.367 × 10−4 97 2.527 × 10−7 157 2.586 × 10−11 217 6.246 × 10−15 277 1.097 × 10−18 337 1.008 × 10−22 397 3.438 × 10−27

38 8.170 × 10−4 98 2.116 × 10−7 158 2.297 × 10−11 218 5.685 × 10−15 278 9.839 × 10−19 338 8.823 × 10−23 398 3.002 × 10−27

39 7.160 × 10−4 99 1.761 × 10−7 159 2.050 × 10−11 219 5.169 × 10−15 279 8.774 × 10−19 339 7.644 × 10−23 399 2.589 × 10−27

40 6.299 × 10−4 100 1.457 × 10−7 160 1.836 × 10−11 220 4.693 × 10−15 280 7.777 × 10−19 340 6.536 × 10−23 400 2.196 × 10−27

41 5.561 × 10−4 101 1.201 × 10−7 161 1.650 × 10−11 221 4.252 × 10−15 281 6.844 × 10−19 341 5.503 × 10−23 401 1.825 × 10−27

42 4.922 × 10−4 102 9.870 × 10−8 162 1.487 × 10−11 222 3.844 × 10−15 282 5.971 × 10−19 342 4.545 × 10−23 402 1.475 × 10−27

43 4.366 × 10−4 103 8.113 × 10−8 163 1.342 × 10−11 223 3.466 × 10−15 283 5.157 × 10−19 343 3.670 × 10−23 403 1.148 × 10−27

44 3.878 × 10−4 104 6.683 × 10−8 164 1.214 × 10−11 224 3.114 × 10−15 284 4.402 × 10−19 344 2.889 × 10−23 404 8.493 × 10−28

45 3.447 × 10−4 105 5.531 × 10−8 165 1.099 × 10−11 225 2.786 × 10−15 285 3.706 × 10−19 345 2.214 × 10−23 405 5.878 × 10−28

46 3.065 × 10−4 106 4.608 × 10−8 166 9.959 × 10−12 226 2.481 × 10−15 286 3.073 × 10−19 346 1.659 × 10−23 406 3.797 × 10−28

47 2.725 × 10−4 107 3.869 × 10−8 167 9.027 × 10−12 227 2.197 × 10−15 287 2.506 × 10−19 347 1.225 × 10−23 407 2.373 × 10−28

48 2.420 × 10−4 108 3.277 × 10−8 168 8.181 × 10−12 228 1.932 × 10−15 288 2.009 × 10−19 348 9.012 × 10−24 408 1.516 × 10−28

49 2.147 × 10−4 109 2.799 × 10−8 169 7.411 × 10−12 229 1.687 × 10−15 289 1.585 × 10−19 349 6.647 × 10−24 409 1.014 × 10−28

50 1.901 × 10−4 110 2.411 × 10−8 170 6.707 × 10−12 230 1.460 × 10−15 290 1.235 × 10−19 350 4.925 × 10−24 410 7.052 × 10−29

51 1.678 × 10−4 111 2.093 × 10−8 171 6.062 × 10−12 231 1.250 × 10−15 291 9.538 × 10−20 351 3.656 × 10−24 411 5.024 × 10−29

52 1.477 × 10−4 112 1.829 × 10−8 172 5.470 × 10−12 232 1.059 × 10−15 292 7.328 × 10−20 352 2.705 × 10−24 412 3.610 × 10−29

53 1.296 × 10−4 113 1.609 × 10−8 173 4.924 × 10−12 233 8.865 × 10−16 293 5.610 × 10−20 353 1.980 × 10−24 413 2.575 × 10−29

54 1.131 × 10−4 114 1.422 × 10−8 174 4.420 × 10−12 234 7.324 × 10−16 294 4.280 × 10−20 354 1.424 × 10−24 414 1.789 × 10−29

55 9.833 × 10−5 115 1.263 × 10−8 175 3.954 × 10−12 235 5.974 × 10−16 295 3.250 × 10−20 355 1.000 × 10−24 415 1.172 × 10−29

56 8.501 × 10−5 116 1.126 × 10−8 176 3.524 × 10−12 236 4.816 × 10−16 296 2.451 × 10−20 356 6.867 × 10−25 416 6.766 × 10−30

57 7.308 × 10−5 117 1.007 × 10−8 177 3.125 × 10−12 237 3.843 × 10−16 297 1.835 × 10−20 357 4.688 × 10−25 417 2.700 × 10−30

58 6.245 × 10−5 118 9.026 × 10−9 178 2.756 × 10−12 238 3.042 × 10−16 298 1.367 × 10−20 358 3.272 × 10−25

59 5.305 × 10−5 119 8.109 × 10−9 179 2.416 × 10−12 239 2.392 × 10−16 299 1.019 × 10−20 359 2.381 × 10−25
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TABLE IV. Numerical values of region-region inaccessible negativity in the halo NA|B(σh ) for m = 3 × 10−3/d presented in Fig. 3 for
d = 20.

r̃ N (σh )A|B r̃ N (σh )A|B r̃ N (σh )A|B r̃ N (σh )A|B r̃ N (σh )A|B r̃ N (σh )A|B r̃ N (σh )A|B

0 4.818 × 10−1 60 2.262 × 10−5 120 1.049 × 10−8 180 2.611 × 10−13 240 1.351 × 10−16 300 1.932 × 10−20 360 1.939 × 10−24

1 4.862 × 10−1 61 2.290 × 10−5 121 3.449 × 10−9 181 2.643 × 10−13 241 1.139 × 10−16 301 2.287 × 10−20 361 2.537 × 10−24

2 5.027 × 10−1 62 2.334 × 10−5 122 1.625 × 10−9 182 2.697 × 10−13 242 1.006 × 10−16 302 2.734 × 10−20 362 3.275 × 10−24

3 5.444 × 10−1 63 2.395 × 10−5 123 1.005 × 10−9 183 2.762 × 10−13 243 9.483 × 10−17 303 3.255 × 10−20 363 4.177 × 10−24

4 5.852 × 10−1 64 2.470 × 10−5 124 7.117 × 10−10 184 2.822 × 10−13 244 9.515 × 10−17 304 3.834 × 10−20 364 5.274 × 10−24

5 6.224 × 10−1 65 2.555 × 10−5 125 5.454 × 10−10 185 2.859 × 10−13 245 1.005 × 10−16 305 4.446 × 10−20 365 6.595 × 10−24

6 6.562 × 10−1 66 2.644 × 10−5 126 4.412 × 10−10 186 2.853 × 10−13 246 1.101 × 10−16 306 5.067 × 10−20 366 8.162 × 10−24

7 1.953 × 10−1 67 2.726 × 10−5 127 3.718 × 10−10 187 2.787 × 10−13 247 1.232 × 10−16 307 5.664 × 10−20 367 9.978 × 10−24

8 1.733 × 10−1 68 2.790 × 10−5 128 3.239 × 10−10 188 2.661 × 10−13 248 1.389 × 10−16 308 6.205 × 10−20 368 1.201 × 10−23

9 1.522 × 10−1 69 2.823 × 10−5 129 2.903 × 10−10 189 2.496 × 10−13 249 1.562 × 10−16 309 6.655 × 10−20 369 1.421 × 10−23

10 1.250 × 10−1 70 2.815 × 10−5 130 2.667 × 10−10 190 2.329 × 10−13 250 1.739 × 10−16 310 6.980 × 10−20 370 1.647 × 10−23

11 4.682 × 10−2 71 2.759 × 10−5 131 2.504 × 10−10 191 2.197 × 10−13 251 1.910 × 10−16 311 7.155 × 10−20 371 1.869 × 10−23

12 2.720 × 10−2 72 2.640 × 10−5 132 2.396 × 10−10 192 2.126 × 10−13 252 2.062 × 10−16 312 7.161 × 10−20 372 2.074 × 10−23

13 1.697 × 10−2 73 2.463 × 10−5 133 2.330 × 10−10 193 2.123 × 10−13 253 2.185 × 10−16 313 6.990 × 10−20 373 2.251 × 10−23

14 1.144 × 10−2 74 2.229 × 10−5 134 2.296 × 10−10 194 2.190 × 10−13 254 2.268 × 10−16 314 6.646 × 10−20 374 2.390 × 10−23

15 8.260 × 10−3 75 1.937 × 10−5 135 2.286 × 10−10 195 2.318 × 10−13 255 2.305 × 10−16 315 6.146 × 10−20 375 2.480 × 10−23

16 6.366 × 10−3 76 1.598 × 10−5 136 2.291 × 10−10 196 2.495 × 10−13 256 2.290 × 10−16 316 5.516 × 10−20 376 2.516 × 10−23

17 5.167 × 10−3 77 1.225 × 10−5 137 2.304 × 10−10 197 2.706 × 10−13 257 2.221 × 10−16 317 4.791 × 10−20 377 2.491 × 10−23

18 4.262 × 10−3 78 8.371 × 10−6 138 2.314 × 10−10 198 2.933 × 10−13 258 2.099 × 10−16 318 4.011 × 10−20 378 2.402 × 10−23

19 3.578 × 10−3 79 4.698 × 10−6 139 2.317 × 10−10 199 3.156 × 10−13 259 1.930 × 10−16 319 3.215 × 10−20 379 2.250 × 10−23

20 3.097 × 10−3 80 2.065 × 10−6 140 2.309 × 10−10 200 3.356 × 10−13 260 1.720 × 10−16 320 2.436 × 10−20 380 2.037 × 10−23

21 2.783 × 10−3 81 9.659 × 10−7 141 2.285 × 10−10 201 3.515 × 10−13 261 1.480 × 10−16 321 1.700 × 10−20 381 1.773 × 10−23

22 2.541 × 10−3 82 5.701 × 10−7 142 2.091 × 10−10 202 3.616 × 10−13 262 1.220 × 10−16 322 1.024 × 10−20 382 1.475 × 10−23

23 2.414 × 10−3 83 3.910 × 10−7 143 2.060 × 10−10 203 3.648 × 10−13 263 9.527 × 10−17 323 4.186 × 10−21 383 1.166 × 10−23

24 2.339 × 10−3 84 2.933 × 10−7 144 2.040 × 10−10 204 3.602 × 10−13 264 6.880 × 10−17 324 1.796 × 10−22 384 8.733 × 10−24

25 2.303 × 10−3 85 1.883 × 10−7 145 2.044 × 10−10 205 3.474 × 10−13 265 4.349 × 10−17 325 3.953 × 10−23 385 6.184 × 10−24

26 2.315 × 10−3 86 1.594 × 10−7 146 2.080 × 10−10 206 3.266 × 10−13 266 2.008 × 10−17 326 2.149 × 10−23 386 4.125 × 10−24

27 2.356 × 10−3 87 1.392 × 10−7 147 2.151 × 10−10 207 2.984 × 10−13 267 2.482 × 10−18 327 1.456 × 10−23 387 2.536 × 10−24

28 2.416 × 10−3 88 1.249 × 10−7 148 2.254 × 10−10 208 2.638 × 10−13 268 4.809 × 10−19 328 1.094 × 10−23 388 1.337 × 10−24

29 2.488 × 10−3 89 1.148 × 10−7 149 2.382 × 10−10 209 2.242 × 10−13 269 2.475 × 10−19 329 8.744 × 10−24 389 4.339 × 10−25

30 2.569 × 10−3 90 1.075 × 10−7 150 2.522 × 10−10 210 1.813 × 10−13 270 1.628 × 10−19 330 7.301 × 10−24 390 2.655 × 10−27

31 2.649 × 10−3 91 1.025 × 10−7 151 2.660 × 10−10 211 1.369 × 10−13 271 1.198 × 10−19 331 6.305 × 10−24 391 7.780 × 10−28

32 2.720 × 10−3 92 9.904 × 10−8 152 2.782 × 10−10 212 9.274 × 10−14 272 9.413 × 10−20 332 5.602 × 10−24 392 4.614 × 10−28

33 2.768 × 10−3 93 9.684 × 10−8 153 2.873 × 10−10 213 5.057 × 10−14 273 7.742 × 10−20 333 5.105 × 10−24 393 3.325 × 10−28

34 2.782 × 10−3 94 9.553 × 10−8 154 2.919 × 10−10 214 1.436 × 10−14 274 6.596 × 10−20 334 4.763 × 10−24 394 2.637 × 10−28

35 2.746 × 10−3 95 9.476 × 10−8 155 2.912 × 10−10 215 2.509 × 10−15 275 5.787 × 10−20 335 4.548 × 10−24 395 2.220 × 10−28

36 2.631 × 10−3 96 9.426 × 10−8 156 2.844 × 10−10 216 1.125 × 10−15 276 5.213 × 10−20 336 4.441 × 10−24 396 1.950 × 10−28

37 2.483 × 10−3 97 9.390 × 10−8 157 2.713 × 10−10 217 6.987 × 10−16 277 4.811 × 10−20 337 4.437 × 10−24 397 1.773 × 10−28

38 2.255 × 10−3 98 9.382 × 10−8 158 2.519 × 10−10 218 4.971 × 10−16 278 4.545 × 10−20 338 4.534 × 10−24 398 1.660 × 10−28

39 1.947 × 10−3 99 9.411 × 10−8 159 2.267 × 10−10 219 3.817 × 10−16 279 4.390 × 10−20 339 4.742 × 10−24 399 1.598 × 10−28

40 1.571 × 10−3 100 9.479 × 10−8 160 1.965 × 10−10 220 3.084 × 10−16 280 4.335 × 10−20 340 5.075 × 10−24 400 1.583 × 10−28

41 1.152 × 10−3 101 9.599 × 10−8 161 1.624 × 10−10 221 2.590 × 10−16 281 4.372 × 10−20 341 5.560 × 10−24 401 1.618 × 10−28

42 7.358 × 10−4 102 9.790 × 10−8 162 1.258 × 10−10 222 2.244 × 10−16 282 4.500 × 10−20 342 6.229 × 10−24 402 1.714 × 10−28

43 4.036 × 10−4 103 1.006 × 10−7 163 8.813 × 10−11 223 2.000 × 10−16 283 4.721 × 10−20 343 7.124 × 10−24 403 1.902 × 10−28

44 2.179 × 10−4 104 1.042 × 10−7 164 5.128 × 10−11 224 1.827 × 10−16 284 5.041 × 10−20 344 8.275 × 10−24 404 2.237 × 10−28

45 1.333 × 10−4 105 1.084 × 10−7 165 1.900 × 10−11 225 1.708 × 10−16 285 5.462 × 10−20 345 9.658 × 10−24 405 2.836 × 10−28

46 9.177 × 10−5 106 1.129 × 10−7 166 4.610 × 10−12 226 1.633 × 10−16 286 5.982 × 10−20 346 1.111 × 10−23 406 3.892 × 10−28

47 6.856 × 10−5 107 1.171 × 10−7 167 2.033 × 10−12 227 1.594 × 10−16 287 6.576 × 10−20 347 1.226 × 10−23 407 5.582 × 10−28

48 5.454 × 10−5 108 1.205 × 10−7 168 1.239 × 10−12 228 1.586 × 10−16 288 7.180 × 10−20 348 1.252 × 10−23 408 7.878 × 10−28

49 4.523 × 10−5 109 1.226 × 10−7 169 8.700 × 10−13 229 1.606 × 10−16 289 7.671 × 10−20 349 1.131 × 10−23 409 1.060 × 10−27

50 3.871 × 10−5 110 1.227 × 10−7 170 6.615 × 10−13 230 1.652 × 10−16 290 7.855 × 10−20 350 8.285 × 10−24 410 1.361 × 10−27

51 3.401 × 10−5 111 1.206 × 10−7 171 5.304 × 10−13 231 1.721 × 10−16 291 7.503 × 10−20 351 3.912 × 10−24 411 1.682 × 10−27

52 3.056 × 10−5 112 1.159 × 10−7 172 4.427 × 10−13 232 1.810 × 10−16 292 6.456 × 10−20 352 1.327 × 10−24 412 2.019 × 10−27

53 2.802 × 10−5 113 1.085 × 10−7 173 3.818 × 10−13 233 1.909 × 10−16 293 4.816 × 10−20 353 7.591 × 10−25 413 2.371 × 10−27

54 2.615 × 10−5 114 9.860 × 10−8 174 3.388 × 10−13 234 2.006 × 10−16 294 3.176 × 10−20 354 6.104 × 10−25 414 2.737 × 10−27

55 2.474 × 10−5 115 8.632 × 10−8 175 3.084 × 10−13 235 2.078 × 10−16 295 2.161 × 10−20 355 5.952 × 10−25 415 3.116 × 10−27

56 2.378 × 10−5 116 7.209 × 10−8 176 2.872 × 10−13 236 2.096 × 10−16 296 1.699 × 10−20 356 6.676 × 10−25 416 3.509 × 10−27

57 2.313 × 10−5 117 5.646 × 10−8 177 2.731 × 10−13 237 2.029 × 10−16 297 1.534 × 10−20 357 8.299 × 10−25 417 3.916 × 10−27

58 2.274 × 10−5 118 4.024 × 10−8 178 2.648 × 10−13 238 1.861 × 10−16 298 1.542 × 10−20 358 1.092 × 10−24

59 2.255 × 10−5 119 2.433 × 10−8 179 2.610 × 10−13 239 1.614 × 10−16 299 1.680 × 10−20 359 1.460 × 10−24
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decomposition is convex only for η � 1
3 , beyond which the

state is entangled and the last coefficient becomes negative.
Thus, it is possible that the regime identified as separable can
be physically produced through Eq. (D3) with solely classical
correlations or through Eq. (D2) as a mixed ensemble of
entangled pairs and unentangled basis states, dominated by
the latter.

Two parties, A and B, receiving distributed samples of this
separable state (η � 1

3 ) from a source will not be able to dis-
tinguish between the entangled and unentangled production
mechanisms, even with classical communication and a com-
plete tomography of the mixed density matrix that they share.
However, with the addition of classical communication from
the source to parties A and B, e.g., indexing the pure state from
which each provided sample was generated as in Eq. (D2),
parties A and B may be able to extract entangled pairs. For
states with separability-obscured entanglement, it is possible
to identify distributed entanglement provided only additional
classical communication from the source. This is a physical
mechanism underlying many observations of entanglement
structure, e.g., Refs. [134–137,168–170].

Example: Lattice scalar field vacuum

The following is an explicit example of a mixed state of
four CV quantum modes, transformed from a pair of low-
pixelation vacuum regions, that exhibits both core-halo and
haloA-haloB separability but is not simultaneously separable
along these two partitions. In particular, despite this pair
of separability observations, the distillable entanglement be-
tween, for example, haloA and the rest of the system, will be
nonzero.

Consider the CM associated with two sites per region,
shown in Eq. (B3). Having been transformed through local
symplectics, modes 1 and 4 comprise coreA and coreB, while
modes 2 and 3 comprise haloA and haloB, where A or B
indicates the associated region of the scalar field vacuum.
Through the techniques described in Ref. [117], core-halo
separability is identified through the inequality of Eq. (34)
with the decomposition

σc =

⎛
⎜⎜⎝

1.1143 0 0.4785 0
0 1.1044 0 −0.4687

0.4785 0 1.1143 0
0 −0.4687 0 1.1044

⎞
⎟⎟⎠, σh =

⎛
⎜⎜⎝

1.0018 0 −0.0600 0
0 1.0018 0 0.0600

−0.0600 0 1.0018 0
0 0.0600 0 1.0018

⎞
⎟⎟⎠, (D4)

Y =

1.5553 0 1.5553 0 0.9115 0 0.9115 0
0 0.0360 0 −0.0360 0 0.0536 0 −0.0536

1.5553 0 1.5553 0 0.9115 0 0.9115 0
0 −0.0360 0 0.0360 0 −0.0536 0 0.0536

0.9115 0 0.9115 0 0.5343 0 0.5343 0
0 0.0536 0 −0.0536 0 0.0796 0 −0.0796

0.9115 0 0.9115 0 0.5343 0 0.5343 0
0 −0.0536 0 0.0536 0 −0.0796 0 0.0796

, (D5)

in the basis of {coreA, coreB, haloA, haloB}.
For Gaussian states with density matrix ρ, the purity may be calculated from the associated CM σ as Tr(ρ2) = 1/

√
det(σ ).

A decomposition with σc and σh pure can always be created as mixed Gaussian states may be described as randomly displaced
pure states. One method for separating the pure contribution is to utilize the Williamson normal decomposition in which a CM is
diagonalized through global symplectic operations σ = SW
STW , where 
 is diagonal and SW is symplectic. After identification
of the symplectic operation that transforms to the Williamson normal form, the CM can be separated into a pure state (with

 = I) and a PSD noise contribution describing classically distributed displacements,

σ = SW STW + SW (
 − I)STW = σ (p) + Y (p). (D6)

When applied to the core-halo decomposition

σ ′ = σc ⊕ σh + Y = σ (p)
c ⊕ σ

(p)
h + Y (p)

c ⊕ Y (p)
h + Y

= σ (p)
c ⊕ σ

(p)
h + Y (p), (D7)

the explicit CM and noise matrices become

σ (p)
c =

⎛
⎜⎜⎝

1.1093 0 0.4736 0
0 1.1024 0 −0.4706

0.4736 0 1.1093 0
0 −0.4706 0 1.1024

⎞
⎟⎟⎠, σ

(p)
h =

⎛
⎜⎜⎝

1.0018 0 −0.0600 0
0 1.0018 0 0.0600

−0.0600 0 1.0018 0
0 0.0600 0 1.0018

⎞
⎟⎟⎠, (D8)

Y (p) =

1.5602 0 1.5602 0 0.9115 0 0.9115 0
0 0.0381 0 −0.0341 0 0.0536 0 −0.0536

1.5602 0 1.5602 0 0.9115 0 0.9115 0
0 −0.0341 0 0.0381 0 −0.0536 0 0.0536

0.9115 0 0.9115 0 0.5343 0 0.5343 0
0 0.0536 0 −0.0536 0 0.0796 0 −0.0796

0.9115 0 0.9115 0 0.5343 0 0.5343 0
0 −0.0536 0 0.0536 0 −0.0796 0 0.0796

. (D9)
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Written in this form, a preparation procedure can be imagined for two-site pixelated regions of the vacuum through distribution
of two two-mode pure entangled CV states σc,h and the addition of classical correlations. The added noise causes σh to exhibit
only separability-obscured entanglement and thus the accessible entanglement of the second pair to vanish.

The shaded subblocks in the noise matrices indicate δ of Eq. (34), where the PSD property after replacement of δ by the
noise structure of halo separability Yh will determine whether the core-halo and haloA-haloB can be simultaneously separable.
Techniques similar to those above allow the haloA-haloB separability to be identified through the inequality of Eq. (35) with the
decomposition

σ
(p)
h,A = σ

(p)
h,B =

(
0.9951 0

0 1.0050

)
, Y (p)

h =

⎛
⎜⎜⎝

0.5410 0 0.4743 0
0 0.0765 0 −0.0196

0.4743 0 0.5410 0
0 −0.0196 0 0.0765

⎞
⎟⎟⎠. (D10)

For clarity, a symmetric decomposition with σ
(p)
h,A = σ

(p)
h,B has

been chosen. The simultaneous separability condition may
be explored through replacement of the lower block of Y
with Yh, creating Y ′ as discussed in Eq. (37). The resulting
absence of PSD structure (negative Y ′ eigenvalues of −0.037
and −0.024) indicates that these particular separability obser-
vations are not simultaneously realizable. Furthermore, this
is consistent with the presence of nonzero negativity between
haloA and the rest of the system NhaloA|haloB,core = 0.022. Note
that this incompatibility is also heralded by σh alone, which is
found to have negativity NA,B(σh) = 0.087.

APPENDIX E: NUMERICAL TABLES

In this Appendix we provide numerical values appearing
in the figures in the main text. Table I corresponds to Fig. 2
presenting the logarithmic negativity contributions organized
by PT symplectic eigenvalues for a variety of region sep-
arations in the vacuum. Tables II–IV correspond to Fig. 3
presenting the region-region logarithmic negativity NA|B(σ )
and the inaccessible logarithmic negativity between regions
in the halo NA|B(σh) for d = 10, 20. Further numerical values
are available upon request.

[1] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[2] C. M. Ho and S. D. H. Hsu, Entanglement and fast quantum
thermalization in heavy ion collisions, Mod. Phys. Lett. A 31,
1650110 (2016).

[3] D. E. Kharzeev and E. M. Levin, Deep inelastic scatter-
ing as a probe of entanglement, Phys. Rev. D 95, 114008
(2017).

[4] O. K. Baker and D. E. Kharzeev, Thermal radiation and en-
tanglement in proton-proton collisions at energies available at
the CERN Large Hadron Collider, Phys. Rev. D 98, 054007
(2018).

[5] A. Cervera-Lierta, J. I. Latorre, J. Rojo, and L. Rottoli, Maxi-
mal entanglement in high energy physics, SciPost Phys. 3, 036
(2017).

[6] J. Berges, S. Floerchinger, and R. Venugopalan, En-
tanglement and thermalization, Nucl. Phys. A 982, 819
(2019).

[7] S. R. Beane, D. B. Kaplan, N. Klco, and M. J. Savage, En-
tanglement Suppression and Emergent Symmetries of Strong
Interactions, Phys. Rev. Lett. 122, 102001 (2019).

[8] O. Gorton and C. W. Johnson, Entanglement entropy and
proton-neutron interactions, Proceedings of the ESNT Work-
shop on Proton-Neutron Pairing (CEA, Paris, 2019).

[9] S. R. Beane and P. Ehlers, Chiral symmetry breaking, en-
tanglement, and the nucleon spin decomposition, Mod. Phys.
Lett. A 35, 2050048 (2020).

[10] Z. Tu, D. E. Kharzeev, and T. Ullrich, Einstein-Podolsky-
Rosen Paradox and Quantum Entanglement at Subnucleonic
Scales, Phys. Rev. Lett. 124, 062001 (2020).

[11] S. R. Beane and R. C. Farrell, Geometry and entanglement in
the scattering matrix, Ann. Phys. (NY) 433, 168581 (2021).

[12] S. R. Beane, R. C. Farrell, and M. Varma, Entanglement min-
imization in hadronic scattering with pions, Int. J. Mod. Phys.
A 36, 2150205 (2021).

[13] D. E. Kharzeev and E. Levin, Deep inelastic scattering as a
probe of entanglement: Confronting experimental data, Phys.
Rev. D 104, L031503 (2021).

[14] C. Robin, M. J. Savage, and N. Pillet, Entanglement rearrange-
ment in self-consistent nuclear structure calculations, Phys.
Rev. C 103, 034325 (2021).

[15] I. Low and T. Mehen, Symmetry from entanglement suppres-
sion, Phys. Rev. D 104, 074014 (2021).

[16] W. Gong, G. Parida, Z. Tu, and R. Venugopalan, Bell-type
inequality tests and quantum entanglement from �-hyperon
spin correlations at high energy colliders, Phys. Rev. D 106,
L031501 (2022).

[17] A. Roggero, Entanglement and many-body effects in col-
lective neutrino oscillations, Phys. Rev. D 104, 103016
(2021).

[18] N. Mueller, T. V. Zache, and R. Ott, Thermalization of Gauge
Theories from their Entanglement Spectrum, Phys. Rev. Lett.
129, 011601 (2022).

[19] M. C. Bañuls et al., Simulating lattice gauge theories within
quantum technologies, Eur. Phys. J. D 74, 165 (2020).

[20] Y. Alexeev et al., Quantum computer systems for scientific
discovery, PRX Quantum 2, 017001 (2021).

[21] N. Klco, A. Roggero, and M. J. Savage, Standard model
physics and the digital quantum revolution: Thoughts about
the interface, Rep. Prog. Phys. 85, 064301 (2022).

012415-18

https://doi.org/10.1007/BF02650179
https://doi.org/10.1142/S0217732316501108
https://doi.org/10.1103/PhysRevD.95.114008
https://doi.org/10.1103/PhysRevD.98.054007
https://doi.org/10.21468/SciPostPhys.3.5.036
https://doi.org/10.1016/j.nuclphysa.2018.12.008
https://doi.org/10.1103/PhysRevLett.122.102001
https://doi.org/10.1142/S0217732320500480
https://doi.org/10.1103/PhysRevLett.124.062001
https://doi.org/10.1016/j.aop.2021.168581
https://doi.org/10.1142/S0217751X21502055
https://doi.org/10.1103/PhysRevD.104.L031503
https://doi.org/10.1103/PhysRevC.103.034325
https://doi.org/10.1103/PhysRevD.104.074014
https://doi.org/10.1103/PhysRevD.106.L031501
https://doi.org/10.1103/PhysRevD.104.103016
https://doi.org/10.1103/PhysRevLett.129.011601
https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1103/PRXQuantum.2.017001
https://doi.org/10.1088/1361-6633/ac58a4


ENTANGLEMENT STRUCTURES IN QUANTUM FIELD … PHYSICAL REVIEW A 107, 012415 (2023)

[22] E. Zohar, Quantum simulation of lattice gauge theories
in more than one space dimension—requirements, chal-
lenges and methods, Philos. Trans. A 380, 20210069
(2021).

[23] H. Halvorson and R. Clifton, Generic Bell correlation between
arbitrary local algebras in quantum field theory, J. Math. Phys.
41, 1711 (2000).

[24] H. Reeh and S. Schlieder, Bemerkungen zur unitäräquiv-
alenz von lorentzinvarianten feldern, Nuovo Cimento 22, 1051
(1961).

[25] S. J. Summers and R. Werner, The vacuum violates Bell’s
inequalities, Phys. Lett. A 110, 257 (1985).

[26] S. J. Summers and R. Werner, Bell’s inequalities and quan-
tum field theory. I. General setting, J. Math. Phys. 28, 2440
(1987).

[27] S. J. Summers and R. Werner, Bell’s inequalities and quantum
field theory. II. Bell’s inequalities are maximally violated in
the vacuum, J. Math. Phys. 28, 2448 (1987).

[28] A. Valentini, Non-local correlations in quantum electrodynam-
ics, Phys. Lett. A 153, 321 (1991).

[29] B. Reznik, Entanglement from the vacuum, Found. Phys. 33,
167 (2003).

[30] B. Reznik, A. Retzker, and J. Silman, Violating Bell’s inequal-
ities in the vacuum, Phys. Rev. A 71, 042104 (2005).

[31] M. Srednicki, Entropy and Area, Phys. Rev. Lett. 71, 666
(1993).

[32] C. Holzhey, F. Larsen, and F. Wilczek, Geometric and renor-
malized entropy in conformal field theory, Nucl. Phys. B 424,
443 (1994).

[33] C. G. Callan, Jr. and F. Wilczek, On geometric entropy, Phys.
Lett. B 333, 55 (1994).

[34] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner, En-
tanglement properties of the harmonic chain, Phys. Rev. A 66,
042327 (2002).

[35] A. Botero and B. Reznik, Spatial structures and localization of
vacuum entanglement in the linear harmonic chain, Phys. Rev.
A 70, 052329 (2004).

[36] P. Calabrese and J. L. Cardy, Entanglement entropy and quan-
tum field theory, J. Stat. Mech. (2004) P06002.

[37] S. Ryu and T. Takayanagi, Holographic Derivation of Entan-
glement Entropy from the Anti–de Sitter Space/Conformal
Field Theory Correspondence, Phys. Rev. Lett. 96, 181602
(2006).

[38] J. Kofler, V. Vedral, M. S. Kim, and Č. Brukner, Entanglement
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