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Abstract

Privacy protection and nonconvexity are two challenging problems in decentralized optimization and learning involving sen-
sitive data. Despite some recent advances addressing each of the two problems separately, no results have been reported that
have theoretical guarantees on both privacy protection and saddle/maximum avoidance in decentralized nonconvex optimiza-
tion. We propose a new algorithm for decentralized nonconvex optimization that can enable both rigorous differential privacy
and saddle/maximum avoiding performance. The new algorithm allows the incorporation of persistent additive noise to enable
rigorous differential privacy for data samples, gradients, and intermediate optimization variables without losing provable con-
vergence, and thus circumventing the dilemma of trading accuracy for privacy in differential privacy design. More interestingly,
the algorithm is theoretically proven to be able to efficiently guarantee accuracy by avoiding convergence to local maxima and
saddle points, which has not been reported before in the literature on decentralized nonconvex optimization. The algorithm
is efficient in both communication (it only shares one variable in each iteration) and computation (it is encryption-free), and
hence is promising for large-scale nonconvex optimization and learning involving high-dimensional optimization parameters.
Numerical experiments for both a decentralized estimation problem and an Independent Component Analysis (ICA) problem
confirm the effectiveness of the proposed approach.
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1 Introduction

Decentralized optimization is gaining increased traction
across disciplines due to its fundamental role in coopera-
tive control [52], distributed sensing [3], multi-agent sys-
tems [34], sensor networks [55], and large-scale machine
learning [42]. In many of these applications, the problem
can be formulated in the following general form, in which
a network of m agents cooperatively solve a common op-
timization problem through on-node computation and
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local communication:

min
θ∈Rd

F (θ) ≜
1

m

m∑
i=1

fi(θ) (1)

where the optimization variable θ is common to all
agents but each fi(θ) : Rd → R is a local objective
function private to agent i.

Plenty of results have been reported to solve the above
decentralized optimization problem since the seminal
work of [43], with some of the popular approaches includ-
ing gradient-descent (e.g., [29,33,46]), distributed alter-
nating direction method of multipliers (e.g., [36,54]),
and distributed Newton methods (e.g., [50]). Results
have also emerged incorporating various communica-
tion and computation constraints in decentralized op-
timization (e.g., [27,6,7]). Most of the reported results
focus on convex objective functions, whereas results
are relatively sparse for nonconvex objective functions.
However, in many practical applications, the objective
functions are essentially nonconvex. For example, in
the resource allocation problem of communication net-
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works, the utility functions cannot be modeled by con-
vex/concave functions when the communication traffic
is non-elastic [44]; in most machine learning applica-
tions, the objective functions are essentially nonconvex
due to the presence of multi-layer neural networks [42];
in policy optimization for linear-quadratic regulator
[14] as well as for robust and risk-sensitive control [56],
nonconvex optimization naturally arises. Therefore, it
is imperative to study decentralized optimization under
nonconvex objective functions.

In recent years, results have emerged on decentralized
nonconvex optimization [4,11,41,45,53], which address
the convergence of participating agents’ optimization
variables to a first-order stationary point of the global
objective function. Nevertheless, these results do not ad-
dress the avoidance of saddle points (stationary points
that are not local extrema), which is a major concern
in many nonconvex optimization problems [16]. For ex-
ample, in machine learning applications, the main bot-
tleneck in parameter optimization is not due to the ex-
istence of multiple local minima, but the existence of
many saddle points which trap gradient updates [16].
To escape from saddle points, classical approaches re-
sort to second-order information, in particular the Hes-
sian matrix of second derivatives (see, e.g., [31,8]). The
Hessian matrix based approach, however, incurs a high
cost in both computation and storage in every iteration
since the Hessian matrix scales quadratically with the
dimension of optimization variables, which can be hun-
dreds of millions in modern deep learning applications
[40]. Recently, first-order gradient methods have been
shown to be able to escape saddle points with the help of
random perturbations in centralized optimization (see,
e.g., [16,23]). However, it is unclear if this is still true in
decentralized nonconvex optimization since the decen-
tralized architecture brings in fundamental differences in
optimization dynamics. For example, the saddle points
of individual objective functions fi(·) in decentralized
optimization are different from those of the aggregated
objective function F (·), which is the only function that
needs to be considered in centralized optimization. Fur-
thermore, the inter-agent coupling also complicates the
optimization dynamics. Note that random initialization
has been shown to be able to asymptotically avoid sad-
dles in centralized nonconvex optimization [25], which is
further extended to the decentralized case in [9]. How-
ever, the result in [12] shows that this approach to avoid-
ing saddles may take exponentially long time, rendering
it impractical.

In this paper, we propose an approach to avoiding max-
ima/saddles in decentralized nonconvex optimization by
leveraging differential privacy design. More specifically,
we propose a new algorithm for first-order decentral-
ized optimization that enables exploiting differential-
privacy noise to achieve guaranteed saddle-avoiding per-
formance without losing provable convergence. This is
significant because differential-privacy noise is generally

known to sacrifice provable convergence while enabling
privacy protection [2]. Moreover, we rigorously establish
that the differential-privacy noise can prevent the algo-
rithm from converging to undesired stationary points
such as saddle points within polylogarithmic time, and
hence can enhance optimization accuracy. This extends
recent results on saddle avoidance in centralized non-
convex optimization [23], and to our knowledge, has not
been reported for decentralized optimization with guar-
anteed convergence. It is worth noting that although di-
minishing noises, known as annealing, has been shown
to be able to facilitate global convergence in distributed
nonconvex optimization [38,39], such an approach may
not be efficient as it could result in convergence time in-
creasing exponentially with the dimension of optimiza-
tion variables [15].

The considered privacy protection aspect is becoming
an increasingly pressing need in decentralized opti-
mization involving sensitive data. For example, in sen-
sor network based localization, the positions of sensor
agents should be kept private in sensitive or hostile
environments [54,20]. This requires that decentralized-
optimization based localization approaches protect the
privacy of individual agents’ gradients, which are linear
functions of sensor positions and whose disclosure will
directly reveal a sensor’s position [54]. Another example
underscoring the importance of privacy preservation in
decentralized optimization is machine learning, where
the data involved may contain sensitive information
such as medical records or salary information [51]. In
fact, recent results in [57] (as well as our own result
[47,49]) show that without a strong privacy mechanism
in place, an adversary can precisely recover the raw data
used for training through shared gradients (pixel-wise
accurate for images and token-wise matching for texts).

The main contributions of this paper are as follows:
1) We propose a new algorithm for decentralized op-
timization that enables the achievement of differential
privacy without losing provable convergence. This is sig-
nificant since in general differential privacy has to trade
algorithmic accuracy for privacy; 2) We rigorously es-
tablish that the proposed algorithm can guarantee ac-
curacy by efficiently avoiding saddle points in decentral-
ized nonconvex optimization under a diminishing step-
size, which, to our knowledge, has not been reported be-
fore. We would like to emphasize that allowing the step-
size to diminish with time is crucial to ensure provable
convergence under persistent differential-privacy noise;
3) We prove that the proposed approach can enable
rigorous differential privacy for individual agents’ data
samples and shared gradients under guaranteed conver-
gence. Moreover, the proposed approach also provides
differential privacy for participating agents’ optimiza-
tion variables. However, different from the differential-
privacy protection on data samples and gradients, the
differential-privacy protection on optimization variables
decreases with time and reduces to zero when the algo-
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rithm converges. Note that this is completely acceptable
because the objective of decentralized optimization is to
let individual agents learn the same optimal optimiza-
tion variable.

The organization of the paper is as follows. Sec. II pro-
vides formulation of the problem. Sec. III presents the
proposed algorithm and Sec. IV provides a rigorous anal-
ysis on convergence, including the guaranteed perfor-
mance in avoiding maxima and saddle points in decen-
tralized nonconvex optimization. Sec. V discusses the
privacy preservation performance of the algorithm. Sec.
VI presents numerical experimental results in both a de-
centralized estimation application and an Independent
Component Analysis (ICA) application. Finally, Sec.
VII concludes the paper.

Notations: Rm denotes the Euclidean space of dimen-
sion m. Id denotes the identity matrix of dimension d,
and 1d denotes a d dimensional column vector with all
entries equal to 1; in both cases we suppress the dimen-
sion when clear from the context. A vector is viewed as a
column vector. For a vector x, xi denotes its ith element.
AT denotes the transpose of matrix A. ∥x∥ denotes the

standard Euclidean norm ∥x∥ =
√∑d

i=1(xi)2 and ∥x∥1
denotes the Taxicab norm ∥x∥1 =

∑d
i=1 |xi|. A matrix is

column-stochastic when its entries are nonnegative and
elements in every column add up to one. A square ma-
trix A is said to be doubly-stochastic when both A and
AT are column-stochastic.

2 Problem Formulation

2.1 Objective functions

In decentralized optimization, agent i’s objective func-
tion fi(·) is determined by its loss function and locally
accessible data samples. Therefore, we consider fi(·) of
the following form

fi(θ) =
1

ni

ni∑
j=1

ℓi(θ, si,j) (2)

where ℓi(·, ·) denotes the cost function of agent i, ni

denotes the number of data samples available to agent
i, and si,j represents the jth data sample of agent i. We
represent the set of all data samples available to agent i
as Di.

We make the following assumption on cost functions:

Assumption 1 Every ℓi(·, ·) satisfies lim
∥u∥→∞

ℓi(u, ·) →

∞ and has Lipschitz gradient and Lipschitz Hessian over

Rd, i.e., for some ν > 0 and ρ > 0,

∥∇ℓi(u, ·)−∇ℓi(v, ·)∥ ≤ ν∥u− v∥, ∀u, v ∈ Rd.

∥∇ℓi(·, sp)−∇ℓi(·, sq)∥1 ≤ ν∥sp − sq∥1, ∀sp, sq ∈ Di.

∥∇2ℓi(u, ·)−∇2ℓi(v, ·)∥ ≤ ρ∥u− v∥, ∀u, v ∈ Rd.

always hold for all i, where ∇2ℓi(·) denotes the Hessian
matrix of ℓi(·, ·) with respect to the first argument.

From the definition of fi(·) in (2), it can be easily verified
that fi(·) always has Lipschtiz gradient and Hessian, i.e.,

∥∇fi(u, ·)−∇fi(v, ·)∥ ≤ ν∥u− v∥, ∀u, v ∈ Rd.

∥∇2fi(u, ·)−∇2fi(v, ·)∥ ≤ ρ∥u− v∥, ∀u, v ∈ Rd.

The coercivity assumption lim
∥u∥→∞

ℓi(u, ·) → ∞ is used

here because we need the stochastic approximation the-
ory in [32] to prove the avoidance of local maxima. It
is also recently used in [41] to analyze the push-sum
based distributed optimization under the assumption of
no saddle points. The Lipschitz gradient and Hessian
condition is a standard assumption in saddle-avoidance
studies [16,23,10].

We also assume that the gradient is bounded, which is
commonly used in (distributed) nonconvex optimization
[10,28,22,24] and differential-privacy analysis [20,1]:

Assumption 2 For every i, we always have ∥∇ℓi(·, ·)∥ ≤
G for some positive constant G < ∞, which further im-
plies ∥∇fi(·)∥ ≤ G according to the definition of fi(·) in
(2).

Remark 1 Note that the Lipschitz function assumption
in [22] implies bounded gradients.

For a twice differentiable aggregated objective function
F (·), we call θ a stationary point if ∇F (θ) = 0 holds. A
stationary point θ can be viewed as belonging to one of
three categories:

• local minimum: there exists a γ > 0 such that
F (θ) ≤ F (ϑ) for any ∥ϑ− θ∥ ≤ γ;

• local maximum: there exists a γ > 0 such that
F (θ) ≥ F (ϑ) for any ∥ϑ− θ∥ ≤ γ;

• saddle point: neither of the above two cases is true,
i.e., for any γ > 0, there exist ϑ1 and ϑ2 satisfying
∥ϑ1 − θ∥ ≤ γ and ∥ϑ2 − θ∥ ≤ γ such that F (ϑ1) <
F (θ) < f(ϑ2).

Since distinguishing saddle points from local minima for
smooth functions is NP-hard in general [30], we focus on
a subclass of saddle points, i.e., strict saddle points:

Assumption 3 All saddle points θ of the aggregated
function F (·) are strict saddles, i.e., the minimum (resp.
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maximum) eigenvalue of the Hessian matrix ∇2F (θ) at
any saddle θ is negative (resp. positive).

A generic saddle point must satisfy that the minimum
(resp. maximum) eigenvalue of its Hessian matrix is non-
positive (resp. non-negative). Our assumption of strict
saddles rules out the case where the minimum or max-
imum eigenvalue of the Hessian matrix is zero. A line
of recent work in the machine learning literature shows
that for many popular models in machine learning, all
saddle points are indeed strict saddle points, with ex-
amples ranging from tensor decomposition [16], dictio-
nary learning [37], smooth semidefinite programs [5], to
robust principal component analysis [17].

Recently, [16] and [23] have shown that in centralized
nonconvex optimization, saddle points could be avoided
efficiently (in a polylogarithmic number of iterations) by
adding perturbations in the classical single-variable gra-
dient descent algorithm. In this paper, we extend this
result to the decentralized case and prove that the added
differential-privacy noise can be leveraged to avoid sad-
dles without sacrificing provable convergence. It is worth
noting that the extension from centralized optimization
to the decentralized case is highly nontrivial because the
saddle points of the aggregated function F (θ) are dif-
ferent from those of individual objective functions fi(θ).
Furthermore, in decentralized optimization, the inter-
action between agents brings in an additional element
that affects the evolution of dynamics around saddle
points, which makes state evolution analysis around sad-
dle points more involved compared with the centralized
optimization case.

2.2 Interaction topology

We consider a network of m agents. The agents interact
on an undirected graph, which can be described by a
weight matrix W = {wij}. More specifically, if agents i
and j can interact with each other, then wij is positive.
Otherwise, wij will be zero. We assume that an agent
is always able to affect itself, i.e., wii > 0 for all 1 ≤
i ≤ m. The neighbor set Ni of agent i is defined as
the set of agents {j|wij > 0}. So the neighbor set of
agent i always includes itself. To ensure that the agents
can cooperatively solve the decentralized optimization
problem (1), we make the following standard assumption
on the interaction topology:

Assumption 4 W = {wij} ∈ Rm×m is symmetric and
satisfies 1TW = 1T , W1 = 1, and η = ∥W − 11T

m ∥ < 1.

The optimization problem (1) can now be reformulated
as the following equivalent multi-agent optimization
problem:

min
x∈Rmd

f(x) ≜
1

m

m∑
i=1

fi(xi) s.t. x1 = x2 = · · · = xm (3)

where xi ∈ Rd is the local estimate of agent i about the
optimization solution and x = [xT

1 , x
T
2 , · · · , xT

m]T ∈ Rmd

is the collection of the estimates made by the agents.

2.3 Privacy preservation in decentralized optimization

In decentralized optimization, the sensitive information
that has to be protected from disclosure could be the
data samples (raw data), gradients, or optimization vari-
ables. Although data samples are not directly shared
in decentralized optimization, their information are ab-
stracted and embedded in gradients. For example, in
decentralized-optimization based rendezvous and local-
ization, disclosing the gradient of an agent amounts to
disclosing its (initial) position [54,20,48], which directly
correlates with sampled range/angle measurements. In
machine learning, it has been shown that shared gradi-
ents can be used by an adversary to reversely recover
the raw data used for training (pixel-wise accurate for
images and token-wise matching for texts) [57,47,49].
The optimization variables (models in machine learning)
could also carry sensitive information abstracted from
raw data. However, note that the objective of decentral-
ized optimization is for individual agents to learn the
same optimal optimization variable (model), and hence
the final consensual optimization variable should be dis-
closed to all agents, and not be a target of privacy pro-
tection. Therefore, in this paper, we restrict the privacy
to individual agents’ data samples and gradients, and in-
dividual agents’ intermediate optimization variables (by
“intermediate,” we mean the evolution of optimization
variables before achieving consensus among agents).

We consider two potential attacks in decentralized opti-
mization, which are the two most commonly used mod-
els of attacks in privacy research [18]:

• Honest-but-curious attacks are attacks in which a
participating agent or multiple participating agents
(colluding or not) follow all protocol steps correctly
but are curious and collect all received intermediate
data to learn the sensitive information about other
participating agents.

• Eavesdropping attacks are attacks in which an ex-
ternal eavesdropper eavesdrops upon all communi-
cation channels to intercept exchanged messages so
as to learn sensitive information about the sending
agents.

An honest-but-curious adversary (e.g., agent i) has ac-
cess to the internal state xi, which is unavailable to ex-
ternal eavesdroppers. However, an eavesdropper has ac-
cess to all shared information in the network, whereas
an honest-but-curious agent only has access to shared
information that is destined to it.

In this paper, the proposed new decentralized optimiza-
tion algorithm enables us to leverage differential-privacy
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noises to facilitate the avoidance of maxima and saddle
points in nonconvex optimization. We adopt the popular
definition of (ϵ, δ)-differential privacy following standard
conventions [13]:

Definition 1 A randomized function h(x) is (ϵ, δ)-
differentially private if for all S ⊂ Range(h) and for all
x, y with ∥x− y∥1 ≤ 1, we have

Prob(h(x) ∈ S) ≤ eϵProb(h(y) ∈ S) + δ

where Range(h) denotes the image (the set of all output
values) of the function h and Prob(·) denotes probability.

Note that ϵ and δ are always non-negative, and a smaller
ϵ (or δ) corresponds to a stronger privacy protection.

3 The proposed decentralized optimization al-
gorithm

Conventional single-variable decentralized optimization
algorithms usually take the following form [29]:

xk+1
i =

∑
j∈Ni

wijx
k
j + λkgki (4)

where xk
i denotes the local copy of optimization variable

of agent i at iteration k, λk is a positive scalar denoting
the stepsize, and gki denotes the gradient of agent i eval-
uated at xk

i , i.e., gki = ∇fi(x
k
i ). It is well-known that

under Assumption 1 and Assumption 4, when λk is such
that

∑∞
k=0 λ

k = ∞ and
∑∞

k=0(λ
k)2 < ∞, then all xk

i
will converge to the same optimal solution when f(·) is
convex.

However, in the above decentralized optimization algo-
rithm, agent i has to share xk

i with all its neighbors
j ∈ Ni, which breaches the privacy of optimization vari-
able xk

i . Furthermore, if an adversary has access to the
optimization variable xk

i of agent i and the updates that
agent i receives from all its neighbors xk

j for j ∈ Ni, then
the adversary can easily infer gki based on the update
rule (4) and publicly known W and λk. To protect the
privacy of individual agents’ optimization variable xk

i ,
existing decentralized optimization approaches usually
choose to inject additive noise on shared xk

i (see, e.g.,
[20]), which, however, will compromise the accuracy of
the final optimization result.

We propose the following decentralized optimization al-
gorithm:

xk+1
i =

∑
j∈Ni

wij(x
k
j − λkgkj ) (5)

The detailed implementation procedure for individ-
ual agents is provided in Algorithm 1. Compared

with the conventional decentralized optimization algo-
rithm, it can be seen that instead of letting agent j
share xk

j with neighboring agents, we let agent j share
vkij ≜ wij(x

k
j − λkgkj ) with all its neighbors i ∈ Nj .

This new algorithm has two advantages over the con-
ventional one in (4): First, it includes the server based
distributed optimization like federated learning as a
special case. More specifically, when all xk

j (1 ≤ j ≤ m)
are forced to be the same, then different agents use
the same parameter xk

j but different local data sets
to calculate gradients, the average of which is used to
update the universal state. This is exactly the archi-
tecture used in federated learning. Note that since the
conventional decentralized algorithms share xk

j among
participating agents, they cannot be used to describe
the server based distributed optimization like federated
learning. Secondly, in the shared message vkij , the op-
timization variable xk

j and the gradient gkj are blended
together, which makes it impossible for a receiving
agent to uniquely determine xk

j or gkj based on received
information. In fact, the transmission of xk

i − λkgki in
our scheme amounts to transforming xk

i to a different
reference frame (by adding an unknown displacement
λkgki ), which avoids the receiver from inferring the
value of xk

i or gradient gki . In contrast, the conventional
scheme directly discloses the optimization variable xk

i ,
which also makes gki inferrable by an adversary that has
access to all messages shared in the network. Note that,
because vkij has the same dimension as xk

j , the new al-
gorithm does not increase the communication overhead
compared with conventional decentralized algorithms.
This one-variable only information-sharing scheme is
important in many applications such as machine learn-
ing because in these applications the dimension of the
optimization variables can scale to hundreds of millions,
which causes significant communication overhead and
even communication bottlenecks [40].

Algorithm 1: Decentralized nonconvex optimiza-
tion algorithm

Parameters: W , λk

(1) for k = 1, 2, · · · do
(a) Every agent j computes and sends to agent i ∈

Nj

vkij ≜ wij(x
k
j − λkgkj ) (6)

(b) After receiving vkij from all j ∈ Ni, agent i up-
dates its state as follows:

xk+1
i =

∑
j∈Ni

vkij =
∑

j∈Ni

wk
ij(x

k
j − λkgkj ) (7)

(c) end
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Although the new algorithm provides inherent privacy
protection by sharing the mixture of the optimization
variable and the gradient, the achieved privacy may not
be strong enough. Therefore, we propose to inject addi-
tional additive noise to the gradient to ensure rigorous
differential privacy. More specifically, instead of letting
agent j send vkij = wij(x

k
j −λkgkj ) to agent i, we let agent

j send vkij = wij(x
k
j − λk(gkj + nk

j )) to agent i, where
nk
j ∈ Rd is a d dimensional Gaussian noise with mean

zero and covariance matrix σId. The detailed implemen-
tation procedure for individual agents is provided in Al-
gorithm 2.

Algorithm 2: Decentralized nonconvex optimiza-
tion algorithm with differential privacy

Parameters: W , λk

(1) for k = 1, 2, · · · do
(a) Every agent j computes and sends to agent i ∈

Nj

vkij ≜ wij(x
k
j − λk(gkj + nk

j )) (8)

(b) After receiving vkij from all j ∈ Ni, agent i up-
dates its state as follows:

xk+1
i =

∑
j∈Ni

vkij =
∑

j∈Ni

wk
ij(x

k
j−λk(gkj +nk

j ))

(9)
(c) end

We will prove that not only can the noise nk
j ensure rig-

orous differential privacy for the data samples and gra-
dient of agent j, but it will also bring differential privacy
protection to the optimization variable xk

j before the al-
gorithm converges. (Note that we do not need to pro-
tect the privacy of the final optimization variable after
convergence because the objective of decentralized opti-
mization is to let individual agents learn the same opti-
mal optimization variable.) In fact, as illustrated later
in Sec. V, compared with the conventional decentralized
algorithm, our algorithm architecture greatly facilitates
differential privacy design. For example, to protect gki
with a designated privacy strength, since the transmit-
ted message is xk

i −λkgki , the sender can easily calculate
the amount of noise that it should add to shared mes-
sages. In contrast, in the conventional distributed opti-
mization framework, as the shared information is xk

i , it
is not directly clear how much noise should be added to
xk
i to achieve a certain privacy strength for gki .

What is more interesting is that the injected additive
noise does not compromise the provable convergence
of the algorithm, but instead, it ensures avoidance of
undesired stationary points like maxima and saddle

points, and hence enhances the accuracy of decentral-
ized nonconvex optimization. This is significant because
differential-privacy noise is known to sacrifice algorith-
mic accuracy for privacy. In the following two sections,
we will rigorously analyze the convergence and maxi-
mum/saddle avoidance of Algorithm 2 and characterize
its privacy-preservation performance in Sec. 4 and Sec.
5, respectively.

For the convenience of the convergence analysis, we aug-
ment the individual-agent dynamics in (9) and obtain
the network-level dynamics:

xk+1 = (W ⊗ Id)(x
k − λk(gk +Nk)) (10)

where λk ≥ 0 denotes the stepsize at iteration k, and xk,
gk, and Nk denote the stacked optimization variables,
gradients, and noise respectively, i.e.,

xk = [(xk
1)

T , (xk
2)

T , · · · (xk
m)T ]T ,

gk = [(gk1 )
T , (gk2 )

T , · · · (gkm)T ]T ,

Nk = [(nk
1)

T , (nk
2)

T , · · · (nk
m)T ]T .

The symbol ⊗ denotes the Kronecker product.

4 Convergence Analysis

In this section, we first prove that even in the presence of
differential-privacy noise, all xk

i in Algorithm 2 will reach
consensus almost surely (Sec. 4.1). Then, we will prove in
Sec. 4.2 and Sec. 4.3 that the differential-privacy noise in
Algorithm 2 guarantees avoidance of, respectively, local
maxima and saddle points.

For the convenience of analysis, we define the average
vector x̄k as

x̄k =

∑m
i=1 x

k
i

m

Since W is column stochastic, from (10), we have

x̄k+1 = x̄k − λk

m

m∑
i=1

(gki + nk
i ) (11)

4.1 Consensus of all xk
i

We first prove that all xk
i (1 ≤ i ≤ m) converge to the

average x̄k almost surely.

Theorem 1 Under Assumption 1, Assumption 2, and
Assumption 4, when the stepsize λk is square summable,
i.e.,

∑∞
k=0(λ

k)2 < ∞, we have limk→∞ ∥xk
i − x̄k∥ = 0

almost surely for all i.
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Proof: Using (9) and (11), one obtains

xk+1 − x̄k+1 ⊗ 1 = W̄xk − λkW̄ (gk +Nk) (12)

where W̄ = (W − 11T

m )⊗ Id.

Since (W − 11T

m )1 = 0, we have for any element x̄k[ℓ] of
x̄k (where 1 ≤ ℓ ≤ d) that, (W − 11T

m )1x̄k[ℓ] = 0 holds,
which further leads to

(W − 11T

m
)⊗ Id · x̄k ⊗ 1 = 0 (13)

Combining (12) and (13) yields

xk+1−x̄k+1⊗1 = W̄ (xk−x̄k⊗1)−λkW̄ (gk+Nk) (14)

Using the definition of η = ∥W − 11T

m ∥ in Assumption
4, we obtain

∥xk+1−x̄k+1⊗1∥ ≤ η∥xk−x̄k⊗1∥+ηλk∥gk+Nk∥ (15)

By taking squares on both sides and using the inequality

2ab ≤ ϵa2 + ϵ−1b2

which holds for any a, b ∈ R and ϵ > 0, we obtain

∥xk+1 − x̄k+1 ⊗ 1∥2 ≤η2(1 + ϵ)∥xk − x̄k ⊗ 1∥2

+ η2(λk)2(1 + ϵ−1)∥gk +Nk∥2
(16)

i.e.,

∥xk+1 − x̄k+1 ⊗ 1∥2 ≤∥xk − x̄k ⊗ 1∥2

−
(
1− η2(1 + ϵ)

)
∥xk − x̄k ⊗ 1∥2

+ η2(λk)2(1 + ϵ−1)∥gk +Nk∥2
(17)

By setting 1+ϵ = 1
η which further leads to η2(1+ϵ−1) =

η2

1−η , one yields

∥xk+1 − x̄k+1 ⊗ 1∥2 ≤∥xk − x̄k ⊗ 1∥2

− (1− η) ∥xk − x̄k ⊗ 1∥2

+ (λk)2
η2

1− η
∥gk +Nk∥2

(18)

Summing the preceding inequality over k = 0, 1, · · ·

yields

(1− η)
∞∑
k=0

∥xk − x̄k ⊗ 1∥2 + ∥x∞ − x̄∞ ⊗ 1∥2

− ∥x0 − x̄0 ⊗ 1∥2

≤
∞∑
k=0

(λk)2
η2

1− η
∥gk +Nk∥2

≤
∞∑
k=0

(λk)2
η2

1− η
∥gk∥2 +

∞∑
k=0

(λk)2
η2

1− η
∥Nk∥2

(19)

According to Assumption 2, gk is bounded. Therefore,
we have

∑∞
k=0(λ

k)2 η2

1−η∥g
k∥2 < ∞ when λk is square

summable. For the second term on the right hand side
of (19), according to [19], we have ∥Nk∥2 being finite
almost surely (note that almost surely finite is different
from almost surely bounded). Therefore, under square
summable λk, the second term on the right hand side
of (19) is finite almost surely. In summary, the right
hand side of (19) is finite almost surely, meaning that
(1−η)

∑∞
k=0 ∥xk− x̄k⊗1∥2 is finite almost surely, which

further implies that limk→∞ ∥xk
i − x̄k∥ = 0 holds almost

surely for all i. ✷

Remark 2 The theorem can also be proven using our
proof technique in [48].

Remark 3 Besides almost sure convergence, we can
also prove that limk→∞ E

[
∥xk

i − x̄k∥2
]
→ 0, where E[·]

is taken with respect to the σ-field generated by the
Gaussian noise sequence {Nk}. More specifically, in the
derivation of Theorem 1, (18) also implies

E
[
∥xk+1 − x̄k+1 ⊗ 1∥2

]
≤ E

[
∥xk − x̄k ⊗ 1∥2

]
− (1− η)E

[
∥xk − x̄k ⊗ 1∥2

]
+ (λk)2

η2

1− η
E
[
∥gk +Nk∥2

]
≤ E

[
∥xk − x̄k ⊗ 1∥2

]
− (1− η)E

[
∥xk − x̄k ⊗ 1∥2

]
+ (λk)2

η2

1− η
E
[
2∥gk∥2 + 2∥Nk∥2

]
≤ E

[
∥xk − x̄k ⊗ 1∥2

]
− (1− η)E

[
∥xk − x̄k ⊗ 1∥2

]
+ (λk)2

η2

1− η
2mG2 + (λk)2

η2

1− η
2mσ

(20)
where we have made use of Assumption 2 and the fact
that nk

i has covariance matrix σId.

7



Summing the preceding inequality over k = 0, 1, · · · yields

(1− η)
∞∑
k=0

E
[
∥xk − x̄k ⊗ 1∥2

]
+ E

[
∥x∞ − x̄∞ ⊗ 1∥2

]
− E

[
∥x0 − x̄0 ⊗ 1∥2

]
≤

∞∑
k=0

(λk)2
η2

1− η
2mG2 +

∞∑
k=0

(λk)2
η2

1− η
2mσ

(21)

Therefore, the right hand side of (21) is finite, meaning
that (1−η)

∑∞
k=0 E

[
∥xk − x̄k ⊗ 1∥2

]
is finite, which fur-

ther implies that limk→∞ E
[
∥xk

i − x̄k∥2
]
= 0 holds for

all i.

4.2 Avoidance of local maxima

Theorem 1 states that all xk
i will converge to each

other almost surely. However, it is still unclear what
the convergence point is. In the centralized case, it has
been shown that additive noise can enable a stochastic-
approximation based optimization process to converge
to a local minimum when there are no saddle points:

Lemma 1 [32] For a stochastic approximation process

xk+1 = xk − ak(∇f(xk) + q(k, xk) + wk),

if the following conditions are satisfied:

(1) f(x) satisfies lim∥x∥→∞ f(x) → ∞ and ∥∇f(x)∥ <
C for some C;

(2)
∑∞

k=0 a
kq(k, xk) < ∞ holds almost surely;

(3) wk are independent random variables satisfying
E{wk

i } = 0 and E{(wk
i )

2} = σI with σ < ∞ for
each element wk

i of wk;
(4) ak is not summable but square summable,

then state xk converges almost surely to a point of the
union of saddle and minima or the boundary of the union.
(It will avoid the local maxima almost surely).

Recently, the above result has been extended in [41] to
push-sum based distributed optimization under the as-
sumption of no saddle points. However, the push-sum
based distributed optimization approach in [41] has to
share two variables in every iteration (one optimization
variable and an additional gradient-tracking variable),
which is undesirable when the dimension of the opti-
mization variable is high. In fact, in modern deep learn-
ing applications, the dimensions of optimization vari-
ables can scale to hundreds of millions, and hence infor-
mation sharing could create significant communication
overhead and even communication bottlenecks [40]. In
this paper, we show that the result in Lemma 1 can be
extended to our decentralized optimization framework
which only shares one variable in every iteration:

Theorem 2 Under Assumption 1, Assumption 2,
and Assumption 4, when λk is non-increasing, is not
summable but square summable, i.e.,

∑∞
k=0 λ

k = ∞ and∑∞
k=0(λ

k)2 < ∞, then all states xk
i converge almost

surely to the same point in the union of saddles and
minima or the boundary of the union. (It will avoid local
maxima almost surely).

Proof: It can be seen that under the conditions of the
theorem, the conditions in Theorem 1 are satisfied and
hence all xk

i will converge to the average state x̄k almost
surely. So we only need to prove that x̄k will converge
to a point in the union of saddles and minima or the
boundary of the union.

From (11), we can rewrite the dynamics of x̄k as follows

x̄k+1 = x̄k − λk

m

m∑
i=1

(gki + nk
i )

= x̄k − λk∇f(x̄k)− λk

∑m
i=1 n

k
i

m

+ λk

(
∇f(x̄k)−

∑m
i=1 g

k
i

m

) (22)

Since when nk
i follows Gaussian distribution,

∑m

i=1
nk
i

m
also follows Gaussian distribution, it can be seen that
(22) resembles the dynamics in Lemma 1 with q(k, xk) =∑m

i=1
gk
i

m −∇f(x̄k) and ak = λk. Therefore, according to
Lemma 1, if we can prove that

∑∞
k=0 λ

kq(k, xk) is finite
almost surely, then it will follow that x̄k will converge
to a point in the union of saddles and minima or the
boundary of the union almost surely, and hence that all
xk
i will converge to the same point in the union of saddles

and minima or the boundary of the union, almost surely.

One can verify that q(k, xk) satisfies the following rela-
tionship:

∥q(k, xk)∥ =

∥∥∥∥∑m
i=1 g

k
i

m
−∇f(x̄k)

∥∥∥∥
=

∥∥∥∥∑m
i=1(g

k
i −∇fi(x̄

k))

m

∥∥∥∥
≤ L

m

m∑
i=1

∥xk
i − x̄k∥

≤ L√
m
∥xk − x̄k ⊗ 1∥

(23)

where the second to last inequality used the Lipschitz
continuous assumption of the gradients in Assumption
1 and the last inequality used the inequality

∑m
i=1 ai ≤√

m
∑m

i (ai)2.
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From (15), we have

∥xk+1 − x̄k+1 ⊗ 1∥
≤ η∥xk − x̄k ⊗ 1∥+ ηλk∥gk +Nk∥
≤ η2∥xk−1 − x̄k−1 ⊗ 1∥+ η2λk−1∥gk−1 +Nk−1∥

+ ηλk∥gk +Nk∥
...

≤ ηk+1∥x0 − x̄0 ⊗ 1∥+
k∑

l=0

ηk+1−lλl∥gl +N l∥

(24)
which leads to

∞∑
k=0

λkq(k, xk) ≤ L√
m

∞∑
k=0

ηkλk∥x0 − x̄0 ⊗ 1∥

+
L√
m

∞∑
k=0

λk
k−1∑
l=0

ηk−lλl∥gl +N l∥

(25)
Since λk is non-increasing, we have

∞∑
k=0

λkηk ≤ λ0
∞∑
k=0

ηk = λ0 1

1− η
< ∞

which further means that the first item on the right hand
side of (25) is finite.

For the second term on the right hand side of (25), since
{λk} is a non-increasing sequence, we always have λk ≤
λℓ for ℓ ≤ k and hence

∞∑
k=0

λk
k−1∑
l=0

ηk−lλl ≤
∞∑
k=0

k−1∑
l=0

ηk−l(λl)2

Noticing that (λl)2 is summable and η resides in the in-
terval (0, 1), we have that

∑∞
k=0 λ

k
∑k−1

l=0 ηk−lλl is finite
according to Lemma 3 in the Appendix. Further using
Assumption 2 that gk is always bounded and the obser-
vation that Nk is finite almost surely [19], we have that
the right hand side of (25) is finite almost surely. There-
fore, we can conclude that

∑∞
k=0 λ

kq(xk, x̄k) is finite al-
most surely.

In summary, under the conditions of the theorem, all
conditions in Lemma 1 are satisfied. Therefore, we can
conclude that x̄k will converge to a point in the union of
saddles and minima or the boundary of the union, and
hence all xk

i will converge to the same point in the union
of saddles and minima or the boundary of the union. ✷

4.3 Avoidance of saddle points

As we discussed in Sec. I, avoiding saddle points is
a central challenge for first-order based optimization

methods. Recently some advances have been reported
on avoiding saddles in nonconvex optimization (see e.g.,
[16,23]). However, these results are all for centralized
optimization. Given that in decentralized optimization
generally the local objective functions of individual
agents may have saddle points different from those of the
aggregated objective function, and inter-agent interac-
tions also complicate the evolution of local optimization
variables, it is unclear if the results for the centralized
case can immediately be generalized to the decentral-
ized optimization problem. Therefore, in this section, we
systematically address the saddle avoidance problem by
leveraging reported results on centralized optimization.

Inspired by the results in [23], we also use coupling se-
quence to address the problem of saddle escaping:

Definition 2 Given an optimization algorithm

xk+1 = xk − λk(∇f(xk) + ξk(xk) + wk) (26)

where wk is Gaussian noise with an identity covariance
matrix and ξk(xk) is some function of the state xk, we
call {x′k} and {x′′k} coupling sequences starting from a
strict saddle point x0 if the following three conditions are
satisfied:

(1) both sequences start from x0;
(2) both are obtained as separate runs of the optimiza-

tion algorithm under the same ξk(xk);
(3) both are obtained under w′k and w′′k that are only

different in the eT1 direction, i.e., eT1 w′k = −eT1 w
′′k,

where e1 denotes the eigenvector associated with the
minimum eigenvalue of the Hessian matrix at the
saddle point x0.

The results for the centralized optimization in [23] show
that for a strict saddle x0, if with a positive probability,
the magnitude of the projected ξk(xk) on x′k − x′′k is
less than half of the magnitude of the projected wk on
x′k−x′′k, then the algorithm in (26) can effectively avoid
the saddle point:

Lemma 2 [23] For the stochastic approximation process
xk+1 = xk−a(∇f(xk)+ξk(xk)+wk) where wk is Gaus-
sian noise with an identity covariance matrix, suppose
that {x′k} and {x′′k} are coupling sequences starting from
a strict saddle point x0. If with a positive probability, the
magnitude of the projected ξk(xk) on x′k − x′′k is less
than half of the magnitude of projected wk on x′k − x′′k

(the dynamics of the difference x′k−x′′k is dominated by
wk), then for any given probability 0 < µ < 1, xk will es-
cape the saddle x0 with probability at least 1− µ after at
most O(

log( 1
µ )

a ) iterates with a sufficiently small constant
stepsize a ≤ 1

ℓ .

According to Theorem 1, under Assumption 4, all xk
i will

converge to the mean state x̄k almost surely, so we only
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need to consider if x̄k can avoid saddle points. Given that
the dynamics of x̄k is governed by (22), from Lemma 2,
if we can prove that the difference between two coupling
sequences initiating from a saddle point is governed by∑m

i=1
nk
i

m rather than q(k, xk) = ∇f(x̄k)−
∑m

i=1
gk
i

m , then
x̄k will escape the saddle point, meaning that all xk

i will
escape the saddle point. More specifically, we can prove
the following result:

Theorem 3 Under Assumption 1, Assumption 2, and
Assumption 4, the differentially-private decentralized
nonconvex optimization algorithm in Algorithm 2 avoids
saddle points with probability at least 1 − µ for any
0 < µ < 1 under the following stepsize strategy:

(1) constant and small enough λk ≤ 1
ℓ for the first

O(
log( 1

µ )

λ ) iterates; and then
(2) diminishing λk satisfying the non-summable but

square summable condition.

Proof: We first study the dynamics of the difference be-
tween two coupling sequences x̄′k and x̄′′k. Since the evo-
lution of x̄k is governed by

x̄k+1 = x̄k − λk∇f(x̄k) + λkq(k, xk)− λk

∑m
i=1 n

k
i

m

we can represent the dynamics of the two coupling se-
quences x′k and x′′k as

x′k+1 = x′k − λk∇f(x′k) + λkq(k, x′k)− λkξ′k

x′′k+1 = x′′k − λk∇f(x′′k) + λkq(k, x′′k)− λkξ′′k

where ξ′k and ξ′′k represent the corresponding aggre-

gated Gaussian noise
∑m

i=1
nk
i

m differing in only the e1
direction.

Therefore, the difference x̃k ≜ ξ′k−ξ′′k has the following
dynamics

x̃k+1 =x̃k − λk(∇f(x′k)−∇f(x′′k))

+ λk(q(k, x′k)− q(k, x′′k))− λk(ξ′k − ξ′′k)
(27)

Let ξ̃k ≜ ξ′k − ξ′′k and ∆k ≜
∫ 1

0
∇2f(ϕx′k −

(1 − ϕ)x′′k)dϕ. Noticing that ∇f(x′k) − ∇f(x′′k) =∫ 1

0
∇2f(ϕx′k − (1−ϕ)x′′k)dϕ(x′k −x′′k), we can rewrite

(27) as

x̃k+1 = (I − λk∆k)x̃k + λk(q(k, x′k)− q(k, x′′k))− λk ξ̃k

From (23) and (24), we have

∥q(k, x′k)∥ ≤ L√
m
∥xk − x̄k ⊗ 1∥

≤ Lηk√
m
∥x0 − x̄0 ⊗ 1∥

+
L√
m

k∑
l=0

ηk−lλl∥gl +N l∥

Since gl is bounded according to Assumption 2 (denote
the upper bound as G), and under a positive probability,
N l is less than some positive T , with a positive proba-
bility, ∥gl + N l∥ is less than G + T , which means that
we have the following relationship with a positive prob-
ability under a constant stepsize λ:

∥q(k, x′k)∥ ≤ Lηk√
m
∥x0 − x̄0 ⊗ 1∥+ Lλ√

m

1− ηk

1− η
(G+ T )

Similarly, we have

∥q(k, x′′k)∥ ≤ Lηk√
m
∥x0 − x̄0 ⊗ 1∥+ Lλ√

m

1− ηk

1− η
(G+ T )

with a positive probability. Therefore, with a positive
probability, we have

∥q(k, x′k)− q(k, x′′k)∥ ≤2Lηk√
m

∥x0 − x̄0 ⊗ 1∥

+
2Lλ√
m

1− ηk

1− η
(G+ T )

In the mean time, given that ξ̃k is also Gaussian, we have
that with a positive probability,

∥ξ̃k∥ > T

holds.

Therefore, for λ sufficiently small, we can always have
∥ξ̃k∥ > 2∥q(k, x′k)− q(k, x′′k)∥ with a positive probabil-
ity, implying that with a positive probability, ξ̃k dom-
inates the dynamics of x′k − x′′k. Then according to
Lemma 2, we have that x̄k can avoid the saddle with at
least probability 1− µ for any 0 < µ < 1. Further using
the result from Theorem 1 that all xk

i converge to x̄k al-
most surely yields that all xk

i can avoid the saddle with
at least probability 1− µ for any 0 < µ < 1. ✷

5 Privacy Analysis

In this section, we prove that Algorithm 2 can provide
rigorous differential privacy for data samples sij , individ-
ual agents’ gradients gki , and intermediate optimization
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variables xk
i . By intermediate optimization variables, we

mean the evolution of optimization variables xk
i before

convergence is achieved. Note that after convergence, it
is the exact objective of decentralized optimization to
have all agents arrive at the same optimization variable
(and hence know each other’s value). We first analyze
the achieved privacy strength for data samples.

According to differential privacy, the minimum of noise
variance required to achieve (ϵ, δ)-differential privacy for
data samples is determined by the sensitivity function

Ss,i = sup
∥si,p−si,q∥1≤1

∥Mk
i (si,p)−Mk

i (si,q)∥1 (28)

where Mk
i ≜ xk

i − λkgki . Note that we replaced vkji =

wji(x
k
i −λkgki ) with Mk

i to calculate the sensitivity func-
tion because the coefficient wji is publicly known. Fur-
ther notice that gki = ∇fi(x

k
i ) holds and in the above

sensitivity function, changing one data sample from si,p
to si,q only affects one cost function ℓi(·, ·), and thus ac-
cording to Assumption 1 and the relationship between
ℓi(·, ·) and fi(·) in (2), one can obtain that Si = νλk

ni
.

Then making use of the standard result in differential
privacy, we have the following theorem for privacy pro-
tection on data samples:

Theorem 4 For any ϵ, δ ∈ (0, 1), at iteration k, the
noise nk

i can ensure (ϵ, δ)-differential privacy for agent
i’s every data sample si,q when the variance σ2 satisfies

σ2 ≥ 2ν2(λk)2
ln(1.25/δ)

n2
i ϵ

2
(29)

Proof: According to [13], a Gaussian noise of variance
σ2 ≥ 2

ln(1.25/δ)(Sf )
2

ϵ2 can achieve (ϵ, δ)-differential pri-
vacy for any ϵ, δ ∈ (0, 1) where Sf denotes the sensi-
tivity function. Thus the proof will be completed by in-
corporating the sensitivity function value of Si =

νλk
i

ni

obtained just above the statement of the theorem. ✷

Remark 4 Note that there are infinitely many (ϵ, δ)
pairs that satisfy (29) in Theorem 4.

Note that not only does the differential-privacy noise
nk
i added to agent i enable privacy protection for agent

i’s data samples, but it also provides differential-privacy
protection for agent i’s gradient. The sensitivity function
for agent i’s gradient is given by

Sg,i = sup
∥gk

i
−g′k

i
∥1≤1

∥Mk
i (g

k
i )−Mk

i (g
′k
i )∥1 (30)

where Mk
i ≜ xk

i − λkgki .

It can be shown that Sg,i = λk, and hence we have the
following theorem:

Theorem 5 For any ϵ, δ ∈ (0, 1), at iteration k, the
noise nk

i can also ensure (ϵ, δ)-differential privacy for
agent i’s gradient gki when the variance σ2 satisfies

σ2 ≥ 2(λk)2
ln(1.25/δ)

ϵ2

Proof: The result follows from a similar line of argument
as in the proof of Theorem 4. ✷

From Theorem 4, we can see that to achieve a fixed
level of differential privacy for data samples, the required
noise level decreases with an increase in the number of
data samples ni. To the contrary, Theorem 5 shows that
the required noise level for differential privacy of gradi-
ents is not affected by the number of samples, which is
understandable since the gradient of an agent is always
computed from all data samples of the agent in gradient
descent algorithms.

The same noise nk
i also provides privacy protection

for optimization variables. In fact, we can see that the
amount of noise applied on xk

i is λknk
i in shared infor-

mation. And the variance of this noise is (λk)2σ2. Since
it can be verified that the sensitivity function for xk

i is

Sx,i = sup
∥xk

i
−x′k

i
∥1≤1

∥Mk
i (x

k
i )−Mk

i (x
′k
i )∥1 = 1 (31)

where Mk
i ≜ xk

i − λkgki , we can obtain that the same
noise nk

i also enables the following differential privacy
for individual agents’ optimization variables:

Theorem 6 At iteration k, the noise nk
i also ensures

(ϵ, δ)-differential privacy for agent i’s optimization vari-
able xk

i for any ϵ, δ ∈ (0, 1) when the variance σ2 satisfies
σ2 ≥ 2 ln(1.25/δ)

(λk)2ϵ2
.

Proof: The result follows from a similar line of argument
as in the proof of Theorem 4. ✷

Remark 5 Note that different from the enabled privacy
for data samples and gradients, under a fixed noise vari-
ance σ, the strength of enabled (ϵ, δ)-differential privacy
for xk

i decreases with a decrease in λk. When λk tends to
zero, the strength of enabled privacy for xk

i will decrease
to zero. However, note that this is acceptable since the
purpose of decentralized optimization is for all agents to
learn the same optimum value for the optimization vari-
able cooperatively.

Remark 6 Also note that in all the above results on sen-
sitivity and differential privacy, we have assumed that the
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adversary knows the underlying algorithm and can ob-
serve every shared message in the network, namely, the
adversary can launch both the honest-but-curious attack
and the eavesdropping attack discussed in Sec. 2.3. If the
adversary is weaker in the sense that it can only launch
the honest-cut-curious attack (can only observe messages
shared on some but not all links), then the sensitivity of
agents whose messages are unaccessible to the adversary
will be smaller (and even zero), and hence these agents
will have a stronger privacy protection against the ad-
versary. The same conclusion can be drawn for the case
where the adversary can only launch the eavesdropping
attack (does not know the underlying algorithm).

6 Numerical Experiments

In this section, we evaluate the performance of the pro-
posed decentralized optimization algorithm using nu-
merical experiments in decentralized nonconvex opti-
mization applications. More specifically, we evaluate the
performance of the proposed algorithm using two appli-
cation scenarios, one in decentralized estimation and the
other in Independent Component Analysis, a popular
dimension reduction tool in statistical machine learning
and signal processing [21].

6.1 Decentralized estimation based numerical experi-
ments

We consider a canonical decentralized estimation prob-
lem where a network of m sensors collectively estimate
an unknown parameter θ ∈ Rd. More specifically, we as-
sume that each sensor i has a measurement of the pa-
rameter, Yi = Mθ + wi, where M ∈ Rs×d is the mea-
surement matrix of agent i and wi is measurement noise.
Then the estimation of parameter θ can be solved using
the optimization problem formulated as (1), with each
fi(θ) given as

fi(θ) = ∥Yi −Mθ∥2 + κ∥θ∥3

Here κ is a regularization parameter, which will be cho-
sen to have some desired properties for fi(·).

It can be verified that when κ is a positive number, fi(·)
will be a convex function. In order to have a nonconvex
objective function so as to test and evaluate the perfor-
mance of our algorithm in nonconvex optimization, we
set κ as κ = −0.1. We took M and Yi (1 ≤ i ≤ 5) as
follows

M =


1 0

0 2

0 0

 , Yi = i×


1/3

2/3

0



-8 -6 -4 -2 0 2 4

-3

-2

-1

0

1

2

3

Fig. 1. A two-dimensional contour graph of f(θ) in
[−8, 4]× [−3, 3].

Using the relationship

∇fi = −2MTYi + 2MTMθ + 3κ∥θ∥θ

and

∇2fi = 2MTM − 3κ∥θ∥I2 + 3κ
1

∥θ∥
θθT

one can obtain that the aggregated function f(θ) =∑5
i=1

fi(θ)
5 has a local minimum at θ =

[
1.3478,

1.0690

]
and

a saddle point at θ =

[
−7.4336

1.3959

]
.

To facilitate numerical experiments, we focus on the re-
gion θ ∈ [−8, 4] × [−3, 3]. Outside this region we ma-
nipulate fi(θ) to make it increase linearly with ∥θ∥ with
continuous and smooth connection on the boundary of
[−8, 4]× [−3, 3]. By doing so, our optimization problem

has one minimum at θ =

[
1.3478,

1.0690

]
(and no other local

minimum) and one saddle point at θ =

[
−7.4336

1.3959

]
, and

it can be verified that the saddle point is a strict saddle
point. Please see Fig. 1 for a two-dimensional contour
graph of f(θ) on [−8, 4]× [−3, 3].

We considered a network of five agents interacting on a
graph depicted in Fig. 2. In the numerical experiments,
we set the stepsize as λk = 0.02 for k ≤ 500 and switched
it to λi =

1
k for k > 500. wi was uniformly distributed

in [0, 1]. We added Gaussian noise with zero mean and
variance σ = 0.5 in the gradients for the purpose of both
privacy protection and global convergence. We first ini-
tialized the optimization variables randomly to check if
the algorithm can guarantee consensus in decentralized
optimization in the presence of differential-privacy noise.
The evolution of all agents’ optimization variables is il-
lustrated in Fig. 3, which confirms that the algorithm
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Fig. 3. Evolution of all agents’ optimization errors when
initialized with random values.

can indeed ensure all agents to converge to the same
state under differential-privacy noise. To evaluate the
performance of our algorithm with regard to avoiding the
saddle point, we also initialized all agents on the saddle

point, i.e., x0
i =

[
−7.4336

1.3959

]
for all 1 ≤ i ≤ 5. Clearly,

without the differential-privacy noise, all states would be
trapped at the saddle point. In contrast, the differential-
privacy noise avoided the saddle point and ensured the
convergence of all agents to the optimal value, as illus-
trated in Fig. 4, which corroborates the theoretical re-
sults in Theorem 3. We have also evaluated the influence
of the magnitude of σ on the optimization error. The re-
sults are summarized in Table I, where each data point
was the average of 100 runs. It can be seen that the op-
timization error increases with an increase in the noise
magnitude σ.

6.2 Independent Component Analysis based numerical
experiments

Independent Component Analysis (ICA) is widely used
in signal processing and statistical machine learning to
reduce the dimension of data [21]. Modeling the data
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Fig. 4. Evolution of all agents’ optimization errors when
every agent was initialized from the saddle point.

vector as Y = AZ with A ∈ Rd×d an orthonormal ma-
trix and Z ∈ Rd a non-Gaussian random sample of d
independent entries, the objective of ICA is to recover
one of multiple columns of A from independent observa-
tions Y ∈ Rd. In standard practice, the Y vector should
be whitened to have zero mean and an identity covari-
ance matrix. Furthermore, in standard practice, the el-
ements of Z are usually assumed to have a fourth mo-
ment µ ̸= 3, and the d columns of A are usually denoted
as a1, a2 · · · ,ad. Under these conditions, ICA is usually
cast as the following optimization problem:

min
∥u∥=1

−sign(µ− 3) · E
[
(uTY )4

]

The saddles of the above optimization problem include
(but not limited to) all u∗ = d−1/2(±1, · · · ,±1), all of
which satisfy the strict-saddle condition [26]. We imple-
mented our algorithm to solve the above optimization
problem. (It is worth noting that the equality constraint
∥u∥ = 1 can be handled by using the method of La-
grange multipliers [16].) In the implementation, we set
d = 10. We also generated 800 random samples Y by
randomly selecting each entry of Z from a uniform dis-
tribution in {−1, 1}. The 800 samples were evenly dis-
tributed among the five agents (each agent had 160 sam-
ples). We set the stepsize as λk = 0.003 for k ≤ 100
and switched it to λi =

3
10k for k > 100. The network

interaction topology is still the same as in Fig. 2. We
evaluated the performance of our algorithm under differ-
ent variances σ of the differential-privacy noise. In each
case, we ran the algorithm for 100 times. In each of the
100 runs, we randomly set A to a random orthonormal
matrix and randomly selected x0

i . The evolution of the
maximal reconstruction error of the first column of A,
a1, among all five agents is shown in Fig. 5. It can be
seen that after adding differential-privacy noise, our al-
gorithm obtains comparable or even slightly better con-
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Table 1
Final optimization error under different σ at k = 3000

σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5 σ = 0.6

Average optimization error 0.048 0.058 0.064 0.070 0.078 0.091
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Fig. 5. Evolution of the maximum reconstruction error
among all agents in the ICA application.

vergence accuracy and speed compared with the noise-
free case. This is understandable since our algorithm can
always avoid saddle points, whereas the noise-free case
was trapped at saddle points in some of the 100 runs.
Note that since the initial conditions for the 100 runs
were randomly selected, the noise-free case is not always
trapped at saddle points.

7 Conclusions

This paper has proposed an algorithm for decentralized
nonconvex optimization that can achieve rigorous dif-
ferential privacy with guaranteed convergence to a min-
imum point. By leveraging diminishing stepsizes, the al-
gorithm avoids sacrificing provable convergence for dif-
ferential privacy, which is a common problem with ex-
isting differential-privacy based algorithms for decen-
tralized optimization. Besides enabling privacy protec-
tion for data samples and gradients, the approach also
achieves privacy protection for optimization variables
until the algorithm converges. More interestingly, we
have proved that our algorithm has guaranteed sad-
dle avoidance in a polylogrithmic number of iterations.
The guarantee on differential privacy, algorithmic con-
vergence, and saddle-avoidance simultaneously has not
been reported in decentralized optimization literature.
Note that since in decentralized optimization individual
agents may have saddle points different from those of the
centralized counterpart, the saddle-avoidance result ob-
tained for decentralized optimization is highly nontrivial
compared with existing results for centralized optimiza-
tion. Numerical experiments for both a decentralized es-
timation problem and an independent component anal-
ysis problem confirm the effectiveness of the proposed

algorithm.

Appendix A

Lemma 3 [35] Let {γk} be a scalar sequence. If γk ≥ 0
for all k,

∑∞
k=0 γ

k < ∞, and 0 < β < 1, then∑∞
k=0(

∑k
ℓ=0(β)

k−ℓγℓ) < ∞.
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