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Abstract

With decentralized optimization having increased applications in various domains ranging from machine learning, control, to robotics,
its privacy is also receiving increased attention. Existing privacy solutions for decentralized optimization achieve privacy by patching
information-technology privacy mechanisms such as differential privacy or homomorphic encryption, which either sacrifices optimization
accuracy or incurs heavy computation/communication overhead. We propose an inherently privacy-preserving decentralized optimization
algorithm by exploiting the robustness of decentralized optimization dynamics. More specifically, we present a general decentralized
optimization framework, based on which we show that the privacy of participating nodes’ gradients can be protected by adding randomness
in optimization parameters. We further show that the added randomness has no influence on the accuracy of optimization, and prove that
our inherently privacy-preserving algorithm has R-linear convergence when the global objective ction is smooth and strongly convex. We
also prove that the proposed algorithm can avoid the gradient of a node from being inferable by other nodes. Simulation results confirm
the theoretical predictions.
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1 Introduction

Decentralized optimization has received increased attention
due to its vast applications in online learning (Yan et al.
2012), distributed sensing (Bazerque & Giannakis 2010),
formation control (Raffard et al. 2004), source localization
(Zhang & Wang 2018a), and power system control (Gan
et al. 2013). In many of these applications, a network of
nodes collectively solve the following problem

min
x∈Rd

F (x) ,
∑n
i=1fi(x), fi : Rd → R (1)

where fi is node i’s local and private objective function.
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Over the past decade, a number of gradient-based algorithms
have been developed to solve the problem. Early results in-
clude the decentralized subgradient (DGD) algorithm (Nedić
& Ozdaglar 2009) which combines average consensus with
(sub)gradient descent under diminishing stepsizes. Its con-
vergence rate is O((ln k)/

√
k) for general convex functions

and O((ln k)/k) for strongly convex functions. (Yuan et al.
2016) shows that the convergence rate of DGD can be im-
proved under a fixed stepsize but at the expense of opti-
mization accuracy. To guarantee both fast convergence and
exact solution under fixed stepsizes, many algorithms pro-
pose to replace the local gradients in DGD with an auxiliary
variable which tracks the global gradient, with typical ex-
amples including Aug-DGM (Xu et al. 2015), DIGing (Qu
& Li 2017, Nedić, Olshevsky & Shi 2017), ATC-DIGing
(Nedić, Olshevsky, Shi & Uribe 2017), AsynDGM (Xu et al.
2017), AB (Xin & Khan 2018), and Push-Pull (Pu et al.
2018, Du et al. 2018, Zhang et al. 2019). These algorithms
can achieve R-linear convergence 3 . Convergence of such
gradient-tracking based algorithms on time-varying graphs
have also been discussed in Nedić, Olshevsky & Shi (2017),

3 For a sequence {xk} converging to x∗ under some norm || · ||,
the convergence isR-linear if there exist constants c and ρ ∈ (0, 1)
such that ||xk −x∗|| ≤ cρk holds for any k (Nedić, Olshevsky &
Shi 2017).
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Xu et al. (2017), and Saadatniaki et al. (2020). Other rele-
vant algorithms include Shi et al. (2015), Xi et al. (2018),
Nedić & Ozdaglar (2015), Hale & Egerstedt (2017), Fazlyab
et al. (2018).

However, none of the aforementioned algorithms consider
the privacy of individual nodes, which is unacceptable in
many applications. For example, in the rendezvous prob-
lem where a group of nodes use decentralized optimization
to agree on the optimal assembly position, individual nodes
may want to keep their initial positions private in hostile
environments. As indicated in Huang et al. (2015), without
protection by an appropriate privacy mechanism, a node’s
initial position can be easily inferred by an adversary in ren-
dezvous algorithms. Another example is collaborative ma-
chine learning where gradients/model updates exchanged
among participating machines may contain sensitive infor-
mation such as personal medical record and salary (Yan et al.
2012).

Recently, results have emerged on privacy-preserving de-
centralized optimization. For example, differential-privacy
based approaches are proposed in Nozari et al. (2016),
Huang et al. (2015), and Wang & Nedić (2022). However,
except Wang & Nedić (2022) which retains almost sure
convergence to the optimal solution, all such approaches
will unavoidably compromise the accuracy of optimization
results. To enable privacy protection with guaranteed opti-
mization accuracy, partially homomorphic encryption based
approaches have been proposed in our own prior results
(Zhang & Wang 2018b, Zhang et al. 2018) as well as oth-
ers’ (Lu & Zhu 2018). However, such approaches will incur
heavy computation and communication overhead. Yan et al.
(2012) and Lou et al. (2018) showed that privacy can be
obtained by incorporating a projection step or injecting con-
stant uncertainties in stepsizes. However, both approaches
have limitations in privacy protection: projection based de-
fense requires individual agents to have a priori knowledge
of the optimal solution, whereas constant uncertainties in
stepsizes are unable to cover arbitrarily large variations on
the gradients. Other approaches include Gade & Vaidya
(2018), Li et al. (2020), and Wang & Poor (2022). However,
they are only applicable to undirected graphs.

Through using random coefficients and/or initial condi-
tions, others as well as our group have proposed several
private consensus algorithms (Manitara & Hadjicostis 2013,
Charalambous et al. 2019, Pilet et al. 2019, Hadjicostis &
Dominguez-Garcia 2020, Kia et al. 2015, Mo & Murray
2017, Gupta et al. 2017, He et al. 2018, Gao et al. 2018,
Ruan et al. 2019, Ridgley et al. 2019). Inspired by this line
of research, in this paper, we propose to protect the gra-
dients of participating nodes in decentralized optimization
by leveraging the robustness of decentralized optimization
dynamics. More specifically, by judiciously injecting uncer-
tainties in optimization dynamics, we obfuscate exchanged
information without affecting convergence to the exact op-
timal solution. We prove that the proposed algorithm can
avoid the gradient of a node from being inferable by other

nodes. Since protecting the gradient means protecting the
values of the gradient function over the entire domain (or
protecting both function types and function parameters), it
is much more challenging than protecting a single initial
value in the private consensus problem.

The main contributions of the paper are as follows: 1) We
propose a dynamics based privacy approach for decentral-
ized optimization that neither sacrifices accuracy nor incurs
heavy computation/communication overhead. This is in dis-
tinct difference from existing approaches based on differ-
ential privacy (which compromise optimization accuracy)
and approaches based on homomorphic encryption (which
incur heavy computation and communication overhead); 2)
Our approach is also different from the multi-party secure
computation approach in He et al. (2020) which requires
each node to communicate with two non-colluding external
servers. By introducing randomness into interaction param-
eters, our approach is implementable in a fully decentral-
ized manner without the assistance of any external servers;
3) We propose a new privacy definition based on the in-
distinguishability of gradient’s arbitrary variations to adver-
saries from the viewpoint of accessible information, which
is stricter than the unobservability/unsolvability based pri-
vacy definitions; 4) To facilitate the dynamics based pri-
vacy design, we propose a general framework for gradient-
tracking based decentralized optimization which includes as
special cases many existing algorithms, such as Aug-DGM
(Xu et al. 2015), DIGing (Qu & Li 2017, Nedić, Olshevsky
& Shi 2017), ATC-DIGing (Nedić, Olshevsky, Shi & Uribe
2017), AsynDGM (Xu et al. 2017),AB (Xin & Khan 2018),
and Push-Pull (Pu et al. 2018, Du et al. 2018, Zhang et al.
2019); 5) We prove that despite the time-varying randomness
injected into interaction parameters and the general frame-
work, our approach can still maintain R-linear convergence
when the global objective function is strongly convex.

Notations: R and Z≥0 denote real numbers and nonnegative
integers, respectively. Rn denotes the Euclidean space of
dimension n. 0n ∈ Rn and 0m×n ∈ Rm×n denote zero
vector andm×n zero matrix, respectively. 1n ∈ Rn denotes
the n×1 all-ones vector, 1m×n ∈ Rm×n denotes the m×n
all-ones matrix, and In ∈ Rn×n denotes the identity matrix.
‖ · ‖ denotes the Euclidean norm of vectors and the spectral
norm of matrices. ⊗ represents the Kronecker product.

2 Problem Formulation

We characterize the interaction as a directed graph G =
(V, E), where V = {1, 2, . . . , n} is the node set. E ⊂ V×V
is the set of edges, whose elements are such that an ordered
pair (i, j) belongs to E if and only if there exists a directed
link from node j to node i. We assume no self edges, i.e.,
(i, i) /∈ E for all i ∈ V . The out-neighbor set of node i is
denoted as N out

i = {j ∈ V | ∀ (j, i) ∈ E}. Similarly, the
in-neighbor set of node i is N in

i = {j ∈ V | ∀ (i, j) ∈ E}.

Assumption 1 G is strongly connected, i.e., for any i, j ∈ V
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Table I. Particular selections of parameters in the proposed framework to obtain some existing algorithms.

Rk Ak Ck Bk Λk

Aug-DGM (Xu et al. 2015) W W W W Λ

DIGing (Qu & Li 2017) W I W I λI

DIGing (Nedić, Olshevsky & Shi 2017) Wk I Wk I λI

ATC-DIGing (Nedić, Olshevsky, Shi & Uribe 2017) W W W W Λ

AsynDGM (Xu et al. 2017) Wk Wk Wk I Λ

AB (Xin & Khan 2018) R I C C λI

Push-Pull (Pu et al. 2018) R R C C λI

Push-Pull (Du et al. 2018) R I C I λI

Push-Pull (Zhang et al. 2019) R R C I λI

W and Wk are doubly stochastic, R is row-stochastic, C is column-stochastic, and λI and Λ represent homogeneous and
heterogeneous stepsize matrices, respectively.

with i 6= j, there exists one directed path from i to j in G.

Definition 1 f is α-strongly convex with α > 0 if (∇f(x)−
∇f(x′))T (x− x′) ≥ α‖x− x′‖2 holds for ∀ x, x′ in Rd.

Definition 2 f is β-smooth with β > 0 if ‖∇f(x) −
∇f(x′)‖ ≤ β‖x− x′‖ holds for ∀ x, x′ in Rd.

Assumption 2 Each fi is convex and βi-smooth. The global
objective function F =

∑n
i=1 fi(x) is αF -strongly convex.

Under Assumption 2, F is βF -smooth with βF =
∑n
i=1 βi.

And problem (1) has a unique solution, denoted as x∗.

3 A General Decentralized Optimization Framework

3.1 A New Framework for Decentralized Optimization

In this paper, we propose to enable privacy preservation in
decentralized optimization by exploiting the robustness of
decentralized optimization dynamics. To this end, we first
propose a new framework for gradient-tracking based de-
centralized optimization in Algorithm 1.

By setting Rk
ij = Ak

ij = 0d×d for j /∈ N in
i ∪ {i} and

Ck
ji = Bk

ji = 0d×d for j /∈ N out
i ∪{i}, (2) and (3) become

xk+1
i =

∑n
j=1

(
Rk
ijx

k
j −Ak

ijΛ
k
jy

k
j

)
yk+1
i =

∑n
j=1

(
Ck
ijy

k
j + Bk

ij

(
∇fk+1

j −∇fkj
)) (4)

where ∇fkj represents ∇fj(xkj ). Further rewrite (4) as

xk+1 = Rkxk −AkΛkyk

yk+1 = Ckyk + Bk
(
∇fk+1 −∇fk

) (5)

where xk = [(xk1)T · · · (xkn)T ]T , yk = [(yk1)T · · · (ykn)T ]T ,
∇fk = [(∇fk1 )T · · · (∇fkn)T ]T , and Rk, Ak, Ck, and Bk

are block matrices with the (ij)-th block entry being Rk
ij ,

Ak
ij , Ck

ij , and Bk
ij , respectively. Λk is a block diagonal

matrix with the i-th diagonal block being Λk
i .

Algorithm 1 A new decentralized optimization framework
Each node i randomly initializes x0

i in Rd and sets y0
i =

∇fi(x0
i ). At iteration k:

1: Node i computes and sends xki as well as Λk
i y

k
i to its

out-neighbors l ∈ N out
i , where Λk

i is a diagonal matrix
denoting the stepsize.

2: After receiving xkj and Λk
jy

k
j from its in-neighbors j ∈

N in
i , node i updates xi as:

xk+1
i =

∑
j∈N in

i
∪{i}

(
Rk
ijx

k
j −Ak

ijΛ
k
jy

k
j

)
(2)

where Rk
ij and Ak

ij are coupling weight matrices.
3: After updating xi, node i computes and sends Ck

liy
k
i +

Bk
li

(
∇fi(xk+1

i ) − ∇fi(xki )
)

to its out-neighbors l ∈
N out
i , where Ck

li and Bk
li are coupling weight matrices.

4: After receiving Ck
ijy

k
j + Bk

ij

(
∇fj(xk+1

j ) −∇fj(xkj )
)

from its in-neighbors j ∈ N in
i , node i updates yi as:

yk+1
i =

∑
j∈N in

i
∪{i}

(
Ck
ijy

k
j

+ Bk
ij

(
∇fj(xk+1

j )−∇fj(xkj )
)) (3)

3.2 Relationship with Existing Algorithms

The proposed decentralized optimization framework in-
cludes as special cases many popular decentralized op-
timization algorithms. Table I summarizes the particular
selections of parameters Rk, Ak, Bk, Ck, and Λk in (5)
to obtain some commonly used algorithms. In fact, by
setting Rk, Ak, Ck, Bk, and Λk to R, I, C, I, and Λ,
respectively, our proposed algorithm in (5) can be rewritten
as xk+1 = (R + C)xk − CRxk−1 − Λ

(
∇fk − ∇fk−1

)
which becomes EXTRA (Shi et al. 2015).

Besides reducing to existing algorithms when the parameters
are selected appropriately, our proposed algorithm can also
give rise to new algorithms with special properties. Next,
we show that it results in new algorithms having inherent
privacy-preserving capabilities.
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Table II. Parameter design for each node i in our proposed framework.

Iterations k < K † Iterations k ≥ K

Λk
i

Λk
i = diag{λk

i (1), · · · , λk
i (d)}, where λk

i (1), . . . , λ
k
i (d)

are chosen following selected distributions with support R Λk
i = λId, λ > 0

Rk
ij

Rk
ij = diag{rkij(1), · · · , rkij(d)}, where rkij(l) are chosen from R for

j ∈ N in
i ∪ {i} and l = 1, . . . , d following selected distributions with support R

Rk
ij = rkijId, where rkij are selected from [η, 1]
for j ∈ N in

i ∪ {i} subject to
∑n

j=1 r
k
ij = 1

Ak
ij

Ak
ij = diag{akij(1), · · · , akij(d)}, where akij(l) are chosen from R for

j ∈ N in
i ∪ {i} and l = 1, . . . , d following selected distributions with support R

Ak
ij = akijId, where akij are selected from [η, 1]
for j ∈ N in

i ∪ {i} subject to
∑n

j=1 a
k
ij = 1

Ck
ji

Ck
ji = diag{ckji(1), · · · , ckji(d)}, where ckji(l) are chosen from R for

j ∈ N out
i and l = 1, . . . , d following selected distributions with support R,

and Ck
ii is set as Ck

ii = Id −
∑

j∈Nout
i

Ck
ji

Ck
ji = ckjiId, where ckji are selected from [η, 1]

for j ∈ N out
i ∪ {i} subject to

∑n
j=1 c

k
ji = 1

Bk
ji

Bk
ji = diag{bkji(1), · · · , bkji(d)}, where bkji(l) are chosen from R for

j ∈ N out
i and l = 1, . . . , d following selected distributions with support R,

and Bk
ii is set as Bk

ii = Id −
∑

j∈Nout
i

Bk
ji

Bk
ji = bkjiId

select bkji from [η, 1] for j ∈ N out
i ∪ {i}

subject to
∑n

j=1 b
k
ji = 1

† K can be any positive integer. Its influence will be discussed in detail in Remark 2 and Remark 6. Its influence will be discussed in detail
Its influence will be discussed in detail

4 Privacy-preserving Decentralized Optimization

4.1 Privacy-preserving Design

To enable privacy, we propose to add randomness in
stepsize Λk and coupling weights Rk, Ak, Ck, and Bk

for iterations k < K, where K is a positive integer.
The detailed parameter design for each node i is given
in Table II. More specifically, for iterations k < K,
each node i selects Ck

ji = diag
{
ckji(1), . . . , ckji(d)

}
and

Bk
ji = diag

{
bkji(1), . . . , bkji(d)

}
for j ∈ N out

i following
any chosen random distributions with support R such as
Gaussian or Laplace distribution (so the coupling weights
can be negative, positive, or zero). Since we do not require
Rk or Ak to be row-stochastic for iterations k < K, each
node i can select Rk

ij and Ak
ij for j ∈ N in

i ∪ {i} following
any random distributions.

Furthermore, as indicated in Table II, the column stochas-
tic property of Ck and Bk and the row stochastic property
of Rk and Ak are required for iterations k ≥ K. Let us
take Ck as an example to show how to ensure these prop-
erties in a fully decentralized manner. To meet the require-
ments of Table II, each node i selects a set of real values{
ckji ∈ [η, 1]

∣∣ j ∈ N out
i ∪ {i}

}
with their sum equal to one,

then sets Ck
ji as Ck

ji = ckjiId for j ∈ N out
i ∪ {i}. Note

that there are many ways to obtain such a set of real val-
ues with sum equal to one. For example, node i first ran-
domly selects a set of real values

{
pkji
∣∣ j ∈ N out

i ∪ {i}
}

from [0, 1], then it sets ckji by normalizing these values

{pkji} via ckji =
[1−(|N out

i |+1)η][(1−η)pkji+η]

(1−η)
∑

l∈Nout
i
∪{i}

pk
li

+(|N out
i
|+1)η

+ η for

j ∈ N out
i ∪ {i}. One can verify

∑
j∈N out

i
∪{i} c

k
ji = 1 and

ckji ∈ [η, 1] for j ∈ N out
i ∪ {i}, and the column stochastic

property of Ck is guaranteed in a fully decentralized manner.

Remark 1 We allow each agent i to randomly choose its
associated coupling weights and stepsizes for iterations k <
K following any distributions. These distributions can be
any continuous probability distribution with support R, e.g.,
Gaussian distribution, Laplace distribution, etc.

4.2 Convergence Analysis

Theorem 1 Under Assumptions 1 and 2, and the parameter
design in Table II, our algorithm has R-linear convergence
when the stepsize parameter λ is sufficiently small.

Proof: The proof is inspired by Saadatniaki et al. (2020). We
first analyze the influence of randomly time-varying param-
eters in iterations 0 ≤ k ≤ K − 1. From Table II, we have∑n
i=1 Ck

ij = Id and
∑n
i=1 Bk

ij = Id, which, in combination
with (4) leads to(∑n

i=1y
k+1
i

)T
=
(∑n

i=1(yki +∇fk+1
i −∇fki )

)T (6)

for k ≤ K − 1. We can further rewrite (6) as
∑n
i=1 yk+1

i −∑n
i=1∇f

k+1
i =

∑n
i=1 yki −

∑n
i=1∇fki . Given y0

i = ∇f0
i ,

one can obtain∑n
i=1

(
yKi −∇fKi

)
= · · · =

∑n
i=1

(
y0
i −∇f0

i

)
= 0d (7)

The constraint (7) reflects the influence of random time-
varying parameters in iterations 0 ≤ k ≤ K−1. Next, under
this constraint, we study the dynamics after iteration K−1.

For our parameter design in Table II, we have Λk
i = λId,

Rk
ij = rkijId, Ak

ij = akijId, Ck
ij = ckijId, and Bk

ij = bkijId
for k ≥ K. Constructing n× n matrices R̄k, Āk, C̄k, and
B̄k with the (ij)-th elements being rkij , a

k
ij , c

k
ij , and bkij ,

respectively, we have Rk = R̄k ⊗ Id, Ak = Āk ⊗ Id,
Ck = C̄k ⊗ Id, and Bk = B̄k ⊗ Id for k ≥ K. Then for
k ≥ K, we can rewrite the system dynamics (5) as

xk+1 = (R̄k ⊗ Id)x
k − λ(Āk ⊗ Id)y

k

yk+1 = (C̄k ⊗ Id)y
k + (B̄k ⊗ Id)

(
∇fk+1 −∇fk

) (8)
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Next, we introduce a state transformation, sk = ((V̄k)−1⊗
Id)y

k, where V̄k = diag(vk) with the evolution of vk gov-
erned by vk+1 = C̄kvk for k ≥ K. vK is set as vK = 1

n1n.
Then for k ≥ K, (8) can be rewritten as

xk+1 =Rkxk − λ(ĀkV̄k ⊗ Id)s
k

sk+1 =Pksk + ((V̄k+1)−1B̄k ⊗ Id)
(
∇fk+1−∇fk

) (9)

where Pk = P̄k ⊗ Id and P̄k = (V̄k+1)−1C̄kV̄k. Note
that P̄k is row-stochastic and the sequence {P̄k} is ergodic
for k ≥ K. Furthermore, the sequence {vk} for k ≥ K is
an absolute probability sequence for {P̄k}. We define x̄kw =

((φk)T⊗Id)x
k, rk = 1n⊗x̄kw−1n⊗x∗, x̃kw = xk−1n⊗x̄kw,

and s̃kw = sk − (1n(vk)T ⊗ Id)s
k, respectively, where for

k ≥ K, {φk} is an absolute probability sequence for the
ergodic sequence of row-stochastic matrices {R̄k}. It can
be verified that if the stepsize λ satisfies λ ≤ 1/βF , then

‖rk+1‖ ≤ λnβ̄‖x̃kw‖+
(
1−λn−1ηn−1αF

)
‖rk‖+λn‖s̃kw‖

(10)
holds for k ≥ K. Further combining with the constraint in
(7), we have the following inequalities

‖x̃k+1
w ‖ ≤

(
rR + λQRn

√
nβ̄
)
‖x̃k−N̄+1

w ‖

+ λQRn
√
nβ̄
( N̄−2∑
l=0

‖x̃k−lw ‖+ ‖rk−N̄+1‖+
N̄−2∑
l=0

‖rk−l‖
)

+ λQR
√
n
(
‖s̃k−N̄+1

w ‖+
N̄−2∑
l=0

‖s̃k−lw ‖
)

(11)
and
‖s̃k+1

w ‖

≤
(2n2β̄QP

ηn−1
+ λ

n3β̄2QP
ηn−1

)(
‖x̃k−N̄+1

w ‖+
N̄−2∑
l=0

‖x̃k−lw ‖
)

+ λ
n3β̄2QP
ηn−1

(
‖rk−N̄+1‖+

N̄−2∑
l=0

‖rk−l‖
)

+
(
rP + λ

n2β̄QP
ηn−1

)
‖s̃k−N̄+1

w ‖+ λ
n2β̄QP
ηn−1

N̄−2∑
l=0

‖s̃k−lw ‖

(12)
for k ≥ K + N̄ − 1 where β̄ = max{β1, · · · , βn}, QR =

2n(1 + η−(n−1))/(1 − ηn−1), rR = QR(1 − ηn−1)
NR−1

n−1 ,
QP = 2n

(
1 + (nη−n)n−1

)
/
(
1 − (n−1ηn)n−1

)
, rP =

QP
(
1 − (n−1ηn)n−1

)NP−1

n−1 , and N̄ = max{NR, NP }.
Due to space limitation, here we omit the derivations of
(10), (11), and (12). Please refer to Gao et al. (2022) for
the detailed derivations.

Denoting ξk as ξk =
[
‖x̃kw‖, ‖rk‖, ‖s̃kw‖

]T
and invoking

(10), (11), and (12), we have the following inequality
ξk+1

...

ξk−N̄+2

 ≤ (M1 + λM2)︸ ︷︷ ︸
M(λ)


ξk

...

ξk−N̄+1

 (13)

for k ≥ K + N̄ − 1 where M1 and M2 are given by

M1 = M2 =
M1

a M1
b · · · M1

b M1
c

I3

. . .

I3

 ,


M2
a M2

b · · · M2
b M2

c

03×3

. . .

03×3


(14)

respectively, with

M1
a =


0 0 0

0 1 0

2t 0 0

 , M2
a =


nβ̄q nβ̄q q

nβ̄ −ηn−1m n

nβ̄t nβ̄t t



M1
b =


0 0 0

0 0 0

2t 0 0

 , M2
b =


nβ̄q nβ̄q q

0 0 0

nβ̄t nβ̄t t



M1
c =


rR 0 0

0 0 0

2t 0 rP

 , M2
c =


nβ̄q nβ̄q q

0 0 0

nβ̄t nβ̄t t


t = n2β̄QP /η

n−1, q = QR
√
n, m = αF /n

(15)

Following Theorem 3.2 in Powell (2011), the determinant
of zI−M1 is given by det(zI−M1) = (zN̄ − rR)(zN̄ −
rP )(z − 1)zN̄−1. Since rR, rP ∈ (0, 1) holds, we have
ρ(M1) = 1. Moreover, the eigenvalue 1 is simple, and its
corresponding right and left eigenvectors are u = 1N̄ ⊗
[0 1 0]T and w = [0 1 0 · · · 0]T , respectively. Denote the
simple eigenvalue of M(λ) as a function of λ, i.e., p(λ).
Given M(λ) = M1 + λM2, we have p(0) = 1. Using
Theorem 6.3.12 in Horn & Johnson (2012), one can obtain
dp(λ)
dλ

∣∣∣
λ=0

= wTM2u
wTu

= −n−1ηn−1αF < 0. Since eigen-
values are continuous functions of the elements of a matrix,
p(λ) is strictly less than 1 when λ is sufficiently small, im-
plying that the spectral radius of M(λ) is less than 1 when
λ is sufficiently small. Noting that M(λ) has nonnegative
entries and M(λ)N̄+1 has all positive entries, from Theo-
rems 8.5.1 and 8.5.2 in Horn & Johnson (2012), we have
that each entry of M(λ)k will converge to 0 at the rate
of O(ρ(M(λ))k). Therefore, when λ is sufficiently small,
‖xk−1n⊗x∗‖ converges to 0 at the rate of O(ρ(M(λ))k),
implying that our algorithm has R-linear convergence. �

Remark 2 Although adding randomness in optimization
parameters in the first K iterations may delay convergence
(as shown in simulations in Fig. 4), it has no influence on
the R-linear convergence rate. The added randomness in
the first K iterations is key to enable privacy protection, as
elaborated in the following subsection.
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4.3 Privacy Analysis

To protect fi(·), it suffices to protect the gradient function
∇fi(·). In decentralized optimization, every node receives
messages from its neighbors, and hence could exploit them
to infer other nodes’ private gradients. We denote all infor-
mation accessible to node j as Ij , which contains the cou-
pling weights, stepsizes, and states associated with node j,
sent information from node j to its out-neighbors, and re-
ceived information from node j’s in-neighbors to itself. A
mathematical representation of Ij is given as follows:

Ij =
{
Istate
j (k) ∪ Isend

j (k) ∪ I receive
j (k)

∣∣ k = 0, 1, . . .
}

∪
{
Λk
j ,R

k
jj ,A

k
jj ,C

k
jj ,B

k
jj

∣∣ k < K
}

∪
{
Rk
jl,A

k
jl

∣∣ k < K, ∀ l ∈ N in
j

}
∪
{
Ck
mj ,B

k
mj

∣∣ k < K, ∀m ∈ N out
j

}
∪
{
Λk
l ,R

k
lm,A

k
lm,C

k
lm,B

k
lm

∣∣ k ≥ K, ∀ l,m ∈ V}
(16)

where

Istate
j (k) =

{
xkj ,y

k
j ,Λ

k
jy

k
j ,C

k
jjy

k
j + Bk

jj(∇fk+1
j −∇fkj )

}
Isend
j (k) =

{
xkj ,Λ

k
jy

k
j ,

Ck
mjy

k
j + Bk

mj(∇fk+1
j −∇fkj )

∣∣ ∀m ∈ N out
j

}
I receive
j (k) =

{
xkl ,Λ

k
l y

k
l ,

Ck
jly

k
l + Bk

jl(∇fk+1
l −∇fkl )

∣∣ ∀ l ∈ N in
j

}
(17)

represent the respective state information, sent information,
and received information of node j at iteration k.

Using the defined information set, we are in position to
introduce the attacker model and our definition of privacy.

Definition 3 A node j is called honest-but-curious if it fol-
lows all protocol steps correctly but is curious and tries to
infer the gradient functions of other participating nodes us-
ing the information Ij accessible to itself.

Definition 4 For a network of n nodes, the privacy of node
i is preserved if honest-but-curious adversaries cannot dis-
tinguish the actual gradient ∇fi(·) of node i from an arbi-
trarily large variation of the gradient ∇f̃i(·) = ∇fi(·) + δ
where δ can be any vector in Rd. That is to say, there ex-
ist feasible coupling weights and stepsizes satisfying the re-
quirements in Table II that make the information accessible
to honest-but-curious adversaries exactly unchanged under
arbitrary variations of node i’s gradient.

Definition 4 means that an adversary cannot even identify a
range for a private function’s values and thus is more strin-
gent than the unobservability based privacy in Pequito et al.
(2014) and Alaeddini et al. (2017) which defines privacy as
the inability of an adversary to uniquely determine a pro-
tected value. It is also more stringent than the opacity based
privacy (Saboori & Hadjicostis 2013, Lefebvre & Hadji-
costis 2020, Ramasubramanian et al. 2019), which considers

adversaries having access to snapshots of the output and the
set of controls. Furthermore, in contrast to unobservability
and opacity that protect some state values, we protect gra-
dient function values over the entire domain (both function
types and function parameters), which is more challenging.

We first show that using deterministic parameters may cause
privacy breaches. Taking the AB algorithm in Xin & Khan
(2018) as an example, node i updates its states xki and yki
as follows:

xk+1
i =

∑
j∈N in

i
∪{i}rijx

k
j − λyki

yk+1
i =

∑
j∈N in

i
∪{i}cij

(
ykj +∇fk+1

j −∇fkj
) (18)

At k = 0, node i sends cji
(
y0
i+∇f1

i −∇f0
i

)
= cji∇f1

i to its
out-neighbor j where y0

i = ∇f0
i . At k = 1, node i sends x1

i
to its out-neighbor j. Note that in Xin & Khan (2018), node i
sets cji as cji = 1/(|N out

i |+1) where |N out
i | represents the

number of node i’s out-neighbors. As a result, using cji∇f1
i

obtained at k = 0 and state x1
i received at k = 1, node j can

uniquely determine the gradient of node i at x1
i as long as

it knows the number of node i’s out-neighbors. Therefore,
deterministic parameters make the gradients of participating
nodes easily inferable by their respective neighboring nodes.

Next, we show that by adding randomness in interaction pa-
rameters, our algorithm can protect the privacy of gradients.

Theorem 2 In Algorithm 1, the privacy of node i can be
preserved if honest-but-curious nodes do not share informa-
tion with each other and |N out

i ∪N in
i | ≥ 2 holds.

Proof: According to Definition 4, we have to prove that
when ∇fi(·) is altered to ∇f̃i(·) (could have an arbitrarily
large difference from ∇fi(·)), the information accessible to
any honest-but-curious node j, i.e., Ĩj , could be exactly the
same as Ij in (16). Therefore, we only need to prove that
there exists such ∇f̃i(·) that makes Ĩj = Ij hold. Given
|N out

i ∪N in
i | ≥ 2, there must exist a node m ∈ N out

i ∪N in
i

such that m 6= j holds. So we only need to show that there
exist feasible parameters (coupling weights and stepsizes
satisfying the requirements in Table II) making Ĩj = Ij hold
under ∇f̃i(·) = ∇fi(·) + δ and ∇f̃m(·) = ∇fm(·)− δ for
any δ = [δ1, · · · , δd]T ∈ Rd.

We consider m ∈ N out
i and m ∈ N in

i , separately (note that
if m ∈ N out

i ∩ N in
i holds, either of the considered cases

can be used in the argument to draw a same conclusion):

Case I: m ∈ N out
i . One can prove Ĩj = Ij for any δ ∈ Rd

under ∇f̃i(·) = ∇fi(·) + δ, ∇f̃m(·) = ∇fm(·)− δ, and
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

Λ̃0
p = Λ0

p ∀ p ∈ V \ {i, m}
λ̃0
i (l) = λ0

i (l)y
0
i [l]/(y

0
i [l] + δl)

λ̃0
m(l) = λ0

m(l)y0
m[l]/(y0

m[l]− δl)
R̃0
pq = R0

pq, Ã
0
pq = A0

pq ∀ p, q ∈ V
C̃0
pq = C0

pq ∀ p, q ∈ V \ {i, m}
c̃0pi(l) = c0pi(l)y

0
i [l]/(y

0
i [l] + δl) ∀ p ∈ V \ {m}

c̃0mi(l) = (c0mi(l)y
0
i [l] + δl)/(y

0
i [l] + δl)

c̃0pm(l) = c0pm(l)y0
m[l]/(y0

m[l]− δl) ∀ p ∈ V \ {m}
c̃0mm(l) = (c0mm(l)y0

m[l]− δl)/(y0
m[l]− δl)

C̃0
pq = C0

pq, B̃
0
pq = B0

pq ∀ p, q ∈ V
Λ̃k
p = Λk

p ∀ p ∈ V , k = 1, 2, . . .

R̃k
pq = Rk

pq, Ã
k
pq = Ak

pq ∀ p, q ∈ V , k = 1, 2, . . .

C̃k
pq = Ck

pq, B̃
k
pq = Bk

pq ∀ p, q ∈ V , k = 1, 2, . . .
(19)

where l = 1, · · · , d and “\” represents set subtraction.

Case II: m ∈ N in
i . One can obtain Ĩj = Ij for any δ ∈ Rd

under ∇f̃i(·) = ∇fi(·) + δ, ∇f̃m(·) = ∇fm(·)− δ, and

Λ̃0
p = Λ0

p ∀ p ∈ V \ {i, m}
λ̃0
i (l) = λ0

i (l)y
0
i [l]/(y

0
i [l] + δl)

λ̃0
m(l) = λ0

m(l)y0
m[l]/(y0

m[l]− δl)
R̃0
pq = R0

pq, Ã
0
pq = A0

pq ∀ p, q ∈ V
C̃0
pq = C0

pq ∀ p, q ∈ V \ {i, m}
c̃0pi(l) = c0pi(l)y

0
i [l]/(y

0
i [l] + δl) ∀ p ∈ V \ {m}

c̃0ii(l) = (c0ii(l)y
0
i [l] + δl)/(y

0
i [l] + δl)

c̃0pm(l) = c0pm(l)y0
m[l]/(y0

m[l]− δl) ∀ p ∈ V \ {m}
c̃0im(l) = (c0im(l)y0

m[l]− δl)/(y0
m[l]− δl)

C̃0
pq = C0

pq, B̃
0
pq = B0

pq ∀ p, q ∈ V
Λ̃k
p = Λk

p ∀ p ∈ V , k = 1, 2, . . .

R̃k
pq = Rk

pq, Ã
k
pq = Ak

pq ∀ p, q ∈ V , k = 1, 2, . . .

C̃k
pq = Ck

pq, B̃
k
pq = Bk

pq ∀ p, q ∈ V , k = 1, 2, . . .
(20)

where l = 1, · · · , d.

To see why the parameter setting in (19) can ensure Ĩj = Ij
under m ∈ N out

i , we consider k = 0 and k ≥ 1, separately.
Under the feasible parameters for k = 0, the information
accessible to node j at k = 0 keeps unchanged and the states
of each node p ∈ V satisfy x̃1

p = x1
p and ỹ1

p = y1
p. Then

by setting feasible parameters for k ≥ 1 the same as the
original ones without gradient variations, it is apparent that
the information accessible to node j keeps unchanged for
k ≥ 1. Following a similar argument, one can verify that the
parameter setting in (20) ensures Ĩj = Ij under m ∈ N in

i .

In summary, we have Ĩj = Ij for ∇f̃i(·) = ∇fi(·) + δ
under any δ ∈ Rd. Therefore, our algorithm can protect the

privacy of node i if honest-but-curious nodes do not share
information with each other and |N out

i ∪N in
i | ≥ 2 holds. �

Remark 3 If we view the feasible parameters as solutions
to guaranteeing Ĩj = Ij , then there exist infinitely many
solutions. (19) and (20) just provide one such solution.

Next we show that if the condition in Theorem 2 is not met,
then the privacy of node i can be breached.

Theorem 3 In Algorithm 1, the privacy of node i cannot be
preserved against node j if node j is the only in-neighbor
and out-neighbor of node i, i.e., N out

i = N in
i = {j}.

Proof: When N out
i = N in

i = {j} holds, one can get the
dynamics of yki from (3) as follows:

yk+1
i = Ck

iiy
k
i + Bk

ii

(
∇fk+1

i −∇fki
)

+ Ck
ijy

k
j

+ Bk
ij

(
∇fk+1

j −∇fkj
) (21)

According to the parameter design in Table II, we have yki =

Ck
iiy

k
i +Ck

jiy
k
i and∇fk+1

i −∇fki = (Bk
ii+Bk

ji)(∇f
k+1
i −

∇fki ) for k ∈ Z≥0 based on the facts Ck
ii + Ck

ji = Id and
Bk
ii + Bk

ji = Id. So we can rewrite (21) as

yk+1
i =yki −Ck

jiy
k
i + (∇fk+1

i −∇fki ) + Ck
ijy

k
j

−Bk
ji(∇fk+1

i −∇fki ) + Bk
ij(∇fk+1

j −∇fkj )
(22)

Denote mk
j as

mk
j = −Ck

jiy
k
i + Ck

ijy
k
j −Bk

ji(∇fk+1
i −∇fki )

+ Bk
ij(∇fk+1

j −∇fkj )
(23)

Note that mk
j is accessible to the honest-but-curious node

j because Ck
jiy

k
i + Bk

ji(∇f
k+1
i −∇fki ) is the information

node i sends to node j, and Ck
ijy

k
j + Bk

ij(∇f
k+1
j −∇fkj )

is the information computed by node j. Plugging (23) into
(22), node j can obtain yk+1

i − yki = ∇fk+1
i −∇fki + mk

j

and further (note y0
i = ∇f0

i )

yk+1
i = ∇fk+1

i +
∑k
l=0m

l
j (24)

Since limk→∞ yk+1
i = 0d holds as k goes to infin-

ity, we have limk→∞∇fk+1
i = limk→∞∇fi(xk+1

i ) =

− limk→∞
∑k
l=0 ml

j . Given limk→∞ xk+1
i = limk→∞ xk+1

j

= x∗, node j also knows limk→∞ xk+1
i , meaning that an

honest-but-curious node j can infer the gradient of node i
at the global optimal solution x∗ using (24). Therefore, the
privacy of node i cannot be preserved against node j when
node j is the only in-neighbor and out-neighbor of node i.�

Remark 4 In Theorems 2 and 3, we consider non-colluding
case where a single adversary acts on its own. Similar results
can be obtained when multiple adversaries collude with each
other. Please refer to Theorems 4 and 5 in Gao et al. (2022)
for details.
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Remark 5 Even using time-varying parameters, theAB al-
gorithm cannot guarantee the privacy in Definition 4. This
is because AB does not allow negative coupling weights,
which is key to ensure feasible solutions for the parameters
required in (19) and (20), and hence make adversaries’ ac-
cessible information unchanged under arbitrary variations.

Remark 6 From Theorem 1, one can see that the parameter
K does not affect optimization accuracy. Furthermore, from
(19) and (20), we can see that only changing the coupling
weights/stepsizes in the initial iteration k = 0 is enough to
cover gradient variations. In other words, any K ≥ 1 is
sufficient to protect the defined privacy for gradients. It is
also worth noting that although the randomness added in
the first K iterations does not affect the convergence rate
(as proven in Theorem 1), it does delay the convergence
since the algorithm only starts to converge after iteration K
(see Fig. 4). Hence, to minimize delay in the convergence
process, we can set K = 1.

5 Numerical Simulations

5.1 Privacy Protection in the Rendezvous Problem

We consider the distributed rendezvous problem where a
group of nodes want to agree on the nearest meeting point
without revealing each other’s initial position (Huang et al.
2015). Mathematically this can be modeled as the problem
minx∈Rd F (x) =

∑n
i=1 fi(x) =

∑n
i=1

1
2‖x−pi‖2, where

pi represents the initial position of node i. For the simplicity
of exposition, we consider the d = 1 case but similar results
can be obtained when d 6= 1. We consider three nodes con-
nected in a directed cycle as shown in Fig. 1 (a). Let node 3
be an honest-but-curious node which collects received data
to learn the gradient function of node 1. Node 2 does not
collude with node 3. K was set to 3. In the simulation, we
first ran our algorithm and recorded I3, the information ac-
cessible to node 3 (cf. (16)). Then we show that information
accessible to node 3 can be exactly the same under a com-
pletely different gradient function ∇f̃1(x1).

Fig. 2 shows xk1 , Λk
1yk1 , and Ck

31y
k
1 + Bk

31(∇fk+1
1 −∇fk1 )

in I3 and x̃k1 , Λ̃k
1 ỹk1 , and C̃k

31ỹ
k
1 + B̃k

31(∇f̃k+1
1 −∇f̃k1 ) in

Ĩ3, respectively. The trajectories of the observations of node
3 in both cases are identical, although the gradients∇f1(x1)

and ∇f̃1(x1) are clearly different (cf. Fig. 3). Since node 3

receives the same information under ∇f̃1(x1) 6= ∇f1(x1),
it has no way to infer the real gradient function of node 1.

5.2 Distributed Estimation Problem

In this subsection we focus on the convergence per-
formance of our algorithm and compare our algorithm
with other decentralized optimization algorithms. We
consider the canonical distributed estimation problem
minx∈Rd F (x) =

∑n
i=1

(
‖zi − Qix‖2 + σi‖x‖2

)
in

1

5

43

2

1

32

(a) (b)

Fig. 1. Graphs used in simulations: (a) a directed cycle graph with
3 nodes; (b) a strongly connected graph with 5 nodes.
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Fig. 2. The information accessible to node 3 are the same under
two different gradient functions of node 1 depicted in Fig. 3.
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Fig. 3. The two different gradient functions of node 1 that lead to
identical observations at node 3.

Xu et al. (2017), where n nodes cooperatively measure
a certain unknown parameter x ∈ Rd. In this prob-
lem, each node i has access to its local cost function
fi(xi) = ‖zi −Qixi‖2 + σi‖xi‖2 with Qi ∈ Rs×d being
its measurement matrix and zi ∈ Rs being its measurement
data. The regularization parameter σi can be set to 0 (resp.
a positive value) to make fi general convex (resp. strongly
convex) under appropriate Qi. We considered a network
of n = 5 nodes interacting on a strongly connected graph
in Fig. 1 (b). d and s were set to 2 and 3, respectively.
Parameter K was set to 3.
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Fig. 4. Comparison of convergence rates of different optimization
algorithms.

5.2.1 Comparison with Other Algorithms

We compared our algorithm with DIGing (Nedić, Olshevsky,
Shi & Uribe 2017), AB (Xin & Khan 2018), ADD-OPT (Xi
et al. 2018), and Subgradient-Push (Nedić & Ozdaglar 2015)
to evaluate the influence of privacy design on optimization
performance. The stepsize was set to 0.06 for all of the con-
sidered algorithms except Subgradient-Push whose stepsize
was set to a diminishing sequence λk = 1/k. The simulation
results on optimization error ‖xk−1n⊗x∗‖ are depicted in
Fig. 4, which corroborates our statement in Remark 2 that
the added randomness has no influence on the R-linear con-
vergence. Of course, in our algorithm, the privacy-induced
randomness delayed convergence to iteration step k ≥ 4.

5.2.2 Comparison with Huang et al. (2015)

We also compared our algorithm with the differential privacy
based approach in Huang et al. (2015). We ran the algorithm
in Huang et al. (2015) under four different privacy levels, i.e.,
ε = 0.1, 1, 10, 100, respectively. The domain of optimization
in Huang et al. (2015) was set to X = {x ∈ R2|‖x‖ ≤ 10}.
Note that the optimal solution x∗ = [0.6881, 0.5103]T re-
sides in X . For each privacy level ε, we repeated the simu-
lation for 1, 000 times, and averaged the optimization error
trajectories. Under a stepsize 0.06, we also measured the
mean optimization error of our algorithm over 1, 000 repeti-
tions. The results in Fig. 5 confirm the trade-off between pri-
vacy and accuracy for differential-privacy based approaches
and demonstrate the advantage of our algorithm in ensuring
optimization accuracy.

5.2.3 Comparison with Lou et al. (2018)

Then we compared our algorithm with the privacy approach
in Lou et al. (2018). The closed convex projection set X was
set to X = {x ∈ R2|‖x‖ ≤ 10} for the algorithm in Lou
et al. (2018). The other parameters for the algorithm in Lou
et al. (2018) were set as follows: each node i randomly chose
ci from (0, 5), and updated its state with its subgradient
once every Ti iterations where Ti was randomly chosen from
{1, 2, 3, 4, 5}. The stepsize of our algorithm was set to 0.06.
The results are shown in Fig. 6 (a). Clearly our algorithm
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Fig. 5. Comparison of mean optimization error over 1, 000 rep-
etitions between our algorithm and the differential-privacy based
approach in Huang et al. (2015).
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Fig. 6. (a) Comparison of optimization error ‖xk − 1n ⊗ x∗‖
between our algorithm and the algorithm in Lou et al. (2018); (b)
The optimization error trajectory of our algorithm in a network of
n = 100 nodes.

has a R-linear convergence whereas the convergence rate of
Lou et al. (2018) is much slower.

5.2.4 Numerical Simulations on Large-scale Networks

Finally, we verified the scalability of our algorithm using a
network of n = 100 nodes. Each agent i was assumed to
have two out-neighbors, i.e., N out

i =
{
i+ 1, i+ 1 + 1

}
,

where the superscript “ ¯ ” represents modulo operation on
n, i.e., i , i mod n. The evolution of optimization error
‖xk−1n⊗x∗‖ is shown in Fig. 6 (b). It can be seen that the
convergence rate is still linear, meaning that our proposed
algorithm can guarantee the convergence of all nodes to the
global optimal solution even when the network size is large.

6 Conclusions

In this paper we proposed a dynamics based privacy ap-
proach for decentralized optimization. Our approach can en-
able privacy without compromising optimization accuracy
or incurring heavy computation/communication overhead.
This is in distinct difference from differential-privacy based
approaches which compromise optimization accuracy and
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encryption based approaches which incur heavy computa-
tion/communication overhead. We rigorously characterized
the convergence properties of our algorithm and its privacy-
preserving performance. In addition, to facilitate the privacy
design, we also proposed a general framework of gradient-
tracking based decentralization optimization, which includes
many commonly used algorithms as special cases. Finally,
we provided numerical simulation results to confirm the ef-
fectiveness and efficiency of our proposed algorithm.
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