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Based on spatial-temporal resolved measurements of the stress field at crack tip using polarized optical
microscopy (str-POM), we develop an stress analysis approach to elastomeric fracture. Specifically,
str-POM measurements reveal emerging phenomenology in three distinct ways. First, there emerges
a stress saturation zone (SSZ) whose dimension rg is independent of the stress intensity factor K.
This SSZ arises from the fact that the precut suffers natural blunting during cut making. Because of
the finite radius of the cut tip, the tip stress oy, is well defined and experimentally accessible, i.e.,
can be determined within the spatial resolution of str-POM. At the onset of fracture, the tip stress
is interpreted to reach inherent material strength oginn), i.€., Otipry) = OFGinn). Second, elastomeric
fracture in pure shear is shown by the str-POM observations to involve the same physics: Fracture
occurs when the tip stress approaches the inherent strength. Rivlin—-Thomas expression for toughness
Gc = wchy follows because the stress buildup at the cut tip explicitly scales with specimen height hy,
i.e,, Kps = o +/ho, as expected. Third, the str-POM observations reveal how elastomeric fracture occurs
at a common K. independent of specimen thickness. At a given load there is weaker stress buildup
for a thicker specimen due to greater stress saturation at cut tip, and fracture is observed to occur at
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lower tip stress for a thicker specimen.
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1. Introduction

The fracture behavior of solids is a most important topic in
materials science and engineering. Soft materials also undergo
fracture [1,2]. After a hundred years [3] of extensive research [4]
fracture mechanics has become a more mature subject, guiding
research on fracture of modern materials including polymers.
Effects of large cracks on the strength of brittle polymers in-
cluding plastics and elastomers can indeed be characterized by
toughness G, also known as the critical energy release rate [4,5].
For both glassy polymers [6,7] and crosslinked rubbers [8], since
G¢ has been found to be hundreds or thousands times greater
than the surface fracture energy I, within fracture mechanics
we can no longer a priori prescribe the magnitude of G.. While
any microscopic modeling of G, can be regarded as a theoretical
inquiry to search for the fracture mechanism, we often fail to
find the calculated G, in agreement with experiment. Related to
these issues is whether polymers are flaw intolerant, i.e., whether
brittle fracture of polymers without intentional through-cut is
due to presence of intrinsic flaws or defects, as implied in the
literature [5].
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Since the beginning of linear-elastic fracture mechanics (LEFM)
[9-11], there has been the recognition that “fracture is gov-
erned by the local stress and deformation conditions around the
crack tip” [12]. However, the difficulty of the perceived stress
singularity [10,13] makes it convenient to adopt the Griffith [3]-
Irwin [14] energy balance argument. Thus, fracture behavior has
ever since been conveniently characterized in terms of global
conditions, i.e., through the measurement of G, based on its
operational definition (G, ~ o2a/E) for a given cut size a at critical
far-field load o, for fracture. For elastomers, Rivlin and Thomas
extended [8] LEFM to propose a pure-shear protocol for measure-
ment of the toughness G..

Separately, according to textbooks [4,5] the critical stress in-
tensity factor K. changes with specimen thickness for certain
materials (e.g., metals). As the state of stress changes from plane
stress (thin) to plane strain (thick), K. tends to decrease [15].
This thickness dependence of K. acquired a particularly conve-
nient interpretation in the energy approach: there is less plastic
dissipation under plane strain, with lower G, implying lower
K.. However, we note that the literature on fracture of rub-
bers shows [16] independence of fracture toughness on speci-
men thickness. Moreover, toughness of rubber has been observed
to increase with crack propagation speed, examined either in
terms of tensile extension of precut specimens [16,17] or tearing
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[18,19]. This increase of toughness with speed has been inter-
preted in terms of linear viscoelastic characteristics [19-23], first
proposed by Mullins [24,25].

Based on fracture behavior of two elastomers, in this work
we explore and establish that elastomeric fracture can be char-
acterized in terms of the crack tip stress exceeding inherent
strength. Specifically, using recently adopted spatial-temporal
resolved polarized-optical microscopy (str-POM) [26] we address
the following questions to demonstrate the merit of quantifying
local processes at crack tip: (a) Is the onset of fracture determined
by a critical stress state at the crack tip, independent of the crack
size? (b) Why is K. a material specific constant and what de-
termines its magnitude? (c) Does the Rivlin-Thomas pure-shear
protocol for elastomers [8] reveal similar physics to that involved
in fracture of single-edge notched (SEN) specimens? (d) How does
K. depend on specimen thickness as plane stress changes to plane
strain in the case of elastomers?

Because the stress buildup at the tip is found to saturate to
a plateau, we are able to show given the spatial resolution of
our str-POM method that (1) elastomeric fracture amounts to the
stress at crack tip oyp reaching a threshold value ogginny that may
be identified as inherent strength, (2) oy, grows linearly with
the nominal load o, which appears in the stress intensity factor
operationally defined as [4] K = 1.120+/ma for SEN, implying
existence of a characteristic length scale P: oyp = K /+/P, (3) at
fracture K. = aF(mh)\/ﬁ, (4) in pure shear oy, also scales linearly
with nominal load as oy = Kps/~/P, with Kys = o+/ho, where
hg is the sample height hg, (5) at fracture with SEN, the critical
stress intensity factor K. = aF(mh)\/ﬁ is independent of the sample
thickness D (ranging from 0.6 to 5 mm), with ogian) decreasing
with D and P increasing with D.

Given the str-POM observations, we hypothesize that elas-
tomeric fracture may be understood to arise from the inherent
strength oginn) being exceeded at crack tip, and G, is merely a
measure of the energy release due to fracture. In other words,
the tip stress oy, — Oginn) corresponding to the load level o —
0c ~ Oinh)+/P/a, or oginny+/P/ho in the respective cases of SEN
and pure shear. This says that fracture occurs when the applied
load o reaches a fraction of owgnn that is determined by the ratio
P/a or P/hy.

2. Results
2.1. Fracture of rubber sheets at different cut sizes (SEN)

Rivlin and Thomas has established [8] that for stretchable elas-
tic bodies such as rubber fracture behavior can be characterized
by measuring its toughness Gqzr) in terms of the work density of
fracture w, and cut size a [8,27,28]:

Gerry = 6W(Ao)a/y/ e, (1)

where A, is the critical stretching ratio at fracture of a precut
specimen. This formulation derives from the Griffith style en-
ergy balance considerations. However, it was found since the
beginning [8] that Gqxr) is orders of magnitude higher than sur-
face fracture energy. This discrepancy has led researchers in the
community to seek dissipative mechanisms [22] to account for
the observed much greater energy release and to suggest that
fracture at a finite speed cannot be idealized as involving only one
monolayer of debonding, which is the case treated by the Lake
and Thomas model [29] to describe the threshold for fatigue fail-
ure. For pure shear, Thomas also realized and demonstrated [30]
that by preparing a precut of controlled radius d/2 for the tip,
toughness can be found to scale approximately linearly with d.
By directly examining the stress buildup at crack tip in a pre-
cut BR specimen we explore the merit to adopt the Westergaard-
Irwin’s local stress approach [10,11] that recognizes K = o/7a
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as the loading parameter. Given the well-established stress op-
tical relationship (SOR), shown in Fig. 14, i.e,, An = Co, with
C = 2.92 GPa™!, we apply str-POM to quantify the stress field
as a distance from the cut tip within a spatial resolution better
than 10 wm. At & = /3 to the crack propagation direction, the
tensile stress field T(r) = (oyy - oxx) is also the principal stress
difference, [26] thus linearly related to the birefringence An,
i.e, T = An(r)/C, where C is the same stress-optical coefficient
C, measured in Fig. 1A.

Quantitative spatial mapping of An shows in Fig. 1B that the
stress field naturally saturates at the cut tip for four different cut
sizes at various stages of tensile extension of the precut specimen,
which is described in Supporting Information (SI.A). In such a plot,
a Westergaard like solution describes the straight line in Fig. 1B,
revealing

T = oyy — 0xx = 0.690(a/r)"/? for r>rs. (2)

Two comments are in order. First, stress saturation is observed
under all eight conditions. This stress saturation zone (SSZ)
emerges at a common distance rgs from the tip, independent of
cut size and load level, as indicated by values of 6, 10, 14 and
19 for (a/rs)"/?, corresponding to the respective values of a, so
that rgs = 20-22 wm under all conditions. To emphasize that the
size of the SSZ is constant, we replot Fig. 1B to obtain Fig. 1C.
While K varies from 0.28 to 0.51 MPa, rss remains approximately
constant The SSZ is clearly not a plastic zone, having a fixed size
instead of varying as K2, i.e., by a factor of (0.51/0.28)> = 3.3.
We have previously shown [26] that the emergence of SSZ is a
result of a finite tip radius pp. In other words, rg is comparably
determined by the natural tip blunting that occurs during precut
making. Second, instead of locking onto a hypothetical oys, the
tip stress oy, = T(r — 0) increases linearly with K until the
point of fracture. Consequently, the stress field T normalized by
K collapses in Fig. 1C, apart from a small correction by the far-field
load that manifests as a non-zero intercept on the ordinate.

The linear scaling relationship in Fig. 1D between oy, and K
reveals [26] a characteristic length scale P that is constant at
various stages of external loading including the onset of fracture,
characterized by (K., oiip)). Thus, in terms of P, the critical
stress intensity factor K. acquires a new expression, besides its
operational definition, given by

Ke =oc/mma = UF(inh)\fpv G)

where we suggest the tip stress at fracture as revealing inherent
strength, i.e., oipr) = OFinn). EQ. (3) explains why K. is material
specific: Both oginny and P are material specific. The emergence of
P originates from the existence of SSZ, which also persists during
crack propagation as shown in Supporting Information (SLA). It
is instructive to note that the observation summarized by Eq. (3),
1.e., otip(r) =0c+/ma/P, is consistent with the Inglis solution, which
shows the stress at a curved tip to be enhanced by a factor given
by the square-root of the ratio of the crack size to tip radius.
Indeed, P is related [26] to the tip radius pgp.

Moreover, it is worth indicating that for the present BR sam-
ples the fracture toughness can be computed either from the
operational definition of K. for SEN or the Rivlin-Thomas formula
Eq. (1). Table 1 shows the comparison between the two different
estimates of G.. They are clearly comparable. Finally, we note
otip(r) Tead from Fig. 1D is lower than o, revealed in the inset of
Fig. 1A. We interpret this difference to arise from the fact that
fracture strength o, ~ 5 MPa is measured in uniaxial extension,
i.e., in plane stress, whereas plane strain prevails at cut tip. We
will continue the discussion in Section 3.1. Because of the stress
triaxiality, the fracture can be expected to occur involving a lower
level of birefringence. We examined a comparison between pure
shear and uniaxial extension in Supporting Information to show
that at a given extension the birefringence is lower in pure shear
because of the additional dimensional constraint.
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Fig. 1. (A) Stress optical relationship (SOR) through simultaneous mechanical and birefringence measurements of uncut BR specimen at V/L = 0.05 min~'. The inset
is the stress vs. strain curve of the specimen in terms of true stress o and stretching ratio A = L/Ly. (B) Normalized tensile stress field T/o, read from SOR in (A)
as a function (afr)'/2. Eq. (2), represented by the straight line, holds up to various values, i.e., 6, 10, 14 and 19 of (a/rs)"/?. For r < rg, = 21 um, T/o saturates
toward finite values. The curves are drawn to indicate the trend of stress saturation. (C) Various curves in (B) collapse when K instead of nominal load o is used to
normalize T, revealing a common ry, independent of K that ranges from 0.28 to 0.51 MPa mm'/2. Two groups of images show the same birefringence level at the
cut tip at K = 0.3 and 0.5 MPa mm'/2. The different stages of stretching in (B) and (C) are labeled by the values of engineering stress. (D) Master curves of Oijp VS.
K for the four values of cut size a, revealing a linear scaling law, characterized by a new length scale P. The last points are the values of K. ~ 0.5 MPa mm'/? and

Of(inh) ~ 2 MPa at the onset of fracture.

Table 1

Toughness K. and G, of BR for different cut sizes®.
Cut size a Thickness Dy € Oc K. = oc/ma G. = Kc*[E w(A) Gerr)
8.4 0.62 0.037 0.100 0.51 87 1.8 89
3.8 0.61 0.059 0.148 0.51 87 4.4 97
2.1 0.55 0.075 0.209 0.54 105 7.1 95
0.8 0.61 0.137 0.347 0.55 101 23.0 100

4Lengths a and Dy are in the unit of millimeters, e.= h.— 1, stress o. and modulus E in the unit of MPa, G, and w,
are in the units of J/m? and kJ/m? respectively. Note that if we adopt (12) in Section 3 for K., G would be slightly

higher than Ggr).

2.2. Nature of fracture in pure shear

Rivlin and Thomas proposed an elegant protocol to account
for the energy release during fracture of rubber. Specifically, the
critical energy release rate was argued to show a simple form
of Gpsey = Wchg in the Rivlin-Thomas scenario, as shown in
Supporting Information (SI.C). Since G is usually constant,
the Rivlin-Thomas expression explicitly suggests that a taller
specimen with larger hy would undergo fracture at smaller strain
because it has a larger volume and can store the same amount
of energy at a lower energy density, i.e., w. = w(A:) ~1/hg:

Larger hy corresponds to smaller A.. However, the results from
the preceding IL.A prompt us to look for a different interpretation
of the Rivlin-Thomas formulation.

We proceed to examine three EPDM specimens of hy = 18,
48 and 120 mm in pure shear, where precut length c is half of
the specimen width W of 100 mm. Here for pure shear c is used
instead of a to denote the crack length. For pure shear, we adopt
a different notation to denote cut length as c¢ in place of a for
SEN. The finding of preceding section informs us that fracture
in pure shear would occur when the tip stress grows to reach
ofinh). The characterization of pure shear fracture begins with
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Fig. 2. (A) Stress optical relationship (SOR) through simultaneous mechanical and birefringence measurements of uncut EPDM specimen at V/L = 0.05 min~!. The
inset is the stress vs. strain curve of the specimen in terms of true stress o and stretching ratio A = L/Ly. (B) Engineering stress vs. nominal strain A = L/Ly of uncut
(ho, W = 100 mm) and precut (cut length ¢ = W/2 = 50 mm) specimens of different heights hy = 120, 48 and 18 mm. (C) Normalized tensile stress field T/o, at
different values of o read from SOR in (A) as a function (ho/r)'/? or (a/r)"/?, where the last group of data is a case of SEN with a = 3.3 mm. Eq. (5) represented
by the straight line holds up to various values of (afrs)"/?, i.e., 8, 18, 29 and 48 of (hy/rs)"/2. For r < r = 55 wm, T/o saturates toward finite values. Here and in
the subsequent (D), we label different stages of stretching with nominal stress, i.e., engineering stress. (D) Various curves in (C) collapse when K of Eq. (4) is used
to normalize T, revealing a common ry, independent of K. The different stages of stretching in (C) and (D) are labeled by the values of engineering stress. (E) Tip
stress (op) equal to T(r —0) as a function of nominal load o for hy = 120, 48 and 18 mm. The upper group of images depict the birefringence field near cut tip
at a common load, indicated by the vertical (light blue, color online) line at 0.043 MPa; the lower group of images show the birefringence field at onset of fracture
involving a common level of oypr) around 1.14 MPa, indicated by the horizontal orange line. (F) Master curves of oy, vs. K for the three values of hg, revealing
a linear scaling law, involving a characteristic length scale P, the triangles denote the data from SEN. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

experiments to determine the SOR for the EPDM specimens, from
which the local stress field can be mapped out. Fig. 2A shows
that the SOR is roughly a linear relation between tensile stress
and birefringence. The slight deviation from the linearity might
be due to the onset of non-Gaussian chain stretching. We show in
Supporting Information (SL.B) that SOR can actually be applied to
show a difference in the stress states between uniaxial extension
and pure shear.

Fig. 2B Presents the relations between nominal load and nom-
inal strain for both the uncut and precut specimens. Inspired by
Fig. 1B, we make a similar observation as shown in Fig. 2C and
reveal a similar feature that the local stress ceases to increases as
r~1/2 for r < a = 3.3 mm, where the stress field T(r) at 6 = /3
is estimated using the stress-optical relationship from Fig. 2A. In
place of the variable a, we have the specimen height hy, which is
the only pertinent length scale in the configuration [2]. According
to the theoretical analysis in Supporting Information (SI.C), for
linear elastic materials such as the present BR and EDPM samples
with cut length ¢ equal to half of specimen width W, we have the
following expression for the load parameter K.

Kps = 0-\/% (4)

in place of Ksgy = o+/ma. Like the Westergaard loading pa-
rameter Ksgy for SEN, we expect the pure shear to show stress
intensification through Kps as T(r) ~ Kps/(27r)"? at cut tip.
Indeed Fig. 2C shows that away from the tip, T(r) scales as

T = 0.450 (ho/1)"/? for r>rg, (5)

which is given by the straight line. In other words, all data
involving three different values of hg fall on the same straight line

until the emergence of SSZ in the same distance r from the cut
tip, at (ho/rss)/? = 18, 29 and 50, i.e., at ry; = 0.055 mm. This
SSZ's size is independent of Kp,,. Thus the SSZ has little to do with
Irwin’s plastic zone concept.

To emphasize the importance of the loading parameter Kp
whose operational definition is given in Eq. (4), similar to Fig. 1C,
we can make Fig. 2D by normalizing the local tensile stress T with
Kps to illustrate analogous features. In the scaling regime, i.e., for
r > 1y, like Fig. 1C, the data show the same slope. However, they
are not expected to collapse onto a single straight line because
these lines have different intercepts given by h, 2 in Fig. 2D and
by a~'/2 in Fig. 1C.

The existence of SSZ allows the tip stress oy, to be measured
as T(r = 0) and expressed for all three values of hg as a function of
load o. Specifically, Fig. 2E shows how the tip stress varies with
ho at various nominal loads. For example, at a common load of
0.043 MPa, indicated by the vertical line, at the time mark of ca.
72 s in the three videos in SLF, oy is higher for higher hy. Reading
Fig. 2E “horizontally”, we see the same tip stress is reached at a
lower load for higher hy. The loading parameter K of Eq. (4) can
collapse the three lines in Fig. 2E, as shown by Fig. 2F.

Similar to Figs. 1D, 2F discloses a similar scaling law: oyjp =
Kps/ /P, obeyed by both pure shear and SEN data. The overlapping
of the triangles with the other three sets of data confirms that
Eq. (4) is the correct expression for Kps. Fracture occurs in both
SEN and pure shear at a comparable tip stress that is bounded
by the inherent strength, with Ksgni) & Kpse), which implies
equivalently Gsgn(e) & Gps(c). In other words, similar to Eq. (3), we
have

Kpsc) = ey ho = 0(inn) VP (6)
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Table 2

Toughness K. and G, of EPDM: pure shear vs. SEN".
ho or a Thickness Dy € oc K. G = K?[E w(Ac) Gerr)
120 2.50 0.026 0.043 0.47 80 1.1 66
48 2.56 0.043 0.066 0.46 74 2.7 65
18 251 0.064 0.095 0.40 58 6.1 55
33 2.49 0.075 0.163 0.53 99 5.7 106

?Lengths hg, a and Dy are in the unit of millimeters, e.= Ac— 1, stress o, and modulus E in the unit of MPa, G. and
w are in the units of J/m? and kJ/m> respectively. K. is evaluated from Eq. (4) for Kps for the first three rows. K¢
is the bottom row follows from Ksgne) = oc+/ma in MPa mm'/2, Gerr is evaluated according to either Eq. (13) in

Section 3.3 for pure shear or Eq. (1) for SEN.

Like K., o. acquires its meaning through either Eq. (6) for pure
shear or Eq. (3) for SEN: it is given by og(inn) and the ratio of either
ho/P or a/P. Unlike K, o, is not a material constant because it
depends on experimental parameters such as hy and a.

Since Fig. 2C reveals rg to be comparable in both pure shear
and SEN, we expect the slope of the oy, vs. K to be comparable,
i.e,, involving a common P, leading to a collapse of the SEN data
onto the master curve in Fig. 2F. Clearly, Eq. (4) is the correct
formula for K5 at ¢ = W/2. On the other hand, K. seems slightly
higher in SEN than in pure shear. This leads to higher G. for SEN
as shown in Table 2 in comparison with pure shear. Also listed
in Table 2 is Gqzr) given by either Eq. (1) for SEN and Eq. (13)
for pure shear. The discrepancy of G. between pure shear and
SEN seem to arise from a difference in ogqn) that varies from SEN
to pure shear. We return to this point in Section 3.1. Moreover,
the relation between SEN and pure shear is further explored in
Supporting Information (SI.D) based on a second rubber, i.e., BR.

2.3. Thickness dependence of toughness K.: local characterization

2.3.1. Precut

If polymer fracture is dictated by crack tip reaching inherent
strength, it is natural to ask whether and how inherent strength
varies with the mode of deformation. Since the state of stress is
known to change from plane stress to plane strain upon thickness
increase, using BR with SEN, it is straightforward to find out how
the critical condition for fracture depends on specimen thickness.
Making precut of comparable size a around ca. 4.0 mm, Fig. 3A
indicates that fracture occurs at a comparable K. because the
crack propagation occurs at a similar load level of K. = 0.49 MPa
mm'/?, involving oengr = 0.124 MPa for Dy = 5.16 mm and
a = 4.4 mm and Oengy = 0.13 MPa for Dy = 1.33 mm and
a = 4.0 mm as well as Oepgr = 0.14 MPa for Dy = 0.61 and
a =4.0 mm.

We apply str-POM observation of the cut tip to show how K.
reaches a common level independent of thickness Dy. The data
in Fig. 3B are unexpected, revealing not only emergence of SSZ,
analogous to data in Figs. 1C and 2D, but also dependence of SSZ
size rss on the specimen thickness Dy. Fig. 3B also suggests that at
comparable loads (and a common nominal strain), e.g., common
values of K, the tip stress oy, changes with Dy, lower for a larger
Dy, as show in Fig. 3C, which also reveals three separate values
for P, consistent with the fact that ry depends on Dy (cf. Fig. 3B).
The thickness effect can be more explicitly described in Fig. 3D:
Otip(F) = OF(inh) Scales with Dy to a negative power of 0.43 while
P'/? roughly increases with Dy in a power law with a positive
exponent of 0.43 so that K. = opnnP"/? stays constant at 0.49
MPa mm'/2,

We reiterate the explicit message revealed in Fig. 3B: At all
values of K, the thicker specimen with Dy = 5.3 avoids stress
buildup by stress saturation at a greater distance from the crack
tip. To further characterize the thickness effect, local thickness at
the cup tip is measured during stretching in separate tests. Fig. 3E
shows that the local thickness at the tip decreases with nominal
strain L/Ly, going faster for the thinner specimen. The greater

Table 3

Fracture of BR under preload.
0.2 MPa
Do (mm) 0.68 1.37 5.40
a. (mm) 2.87 3.48 2.97
K. (MPa mm'/?) 0.65 0.71 0.67
0.15 MPa
Do (mm) 0.53 1.43 5.27
a. (mm) 4.92 5.17 5.23
K. (MPa mm'/?) 0.62 0.64 0.65
0.12 MPa
Doy (mm) 0.63 1.44 531
a. (mm) 5.92 6.37 6.71

K (MPa mm'/2) 0.54 0.56 0.58

thickness change at the tip amounts to greater stress buildup. In
other words, the thicker specimen has greater capacity to avoid
the buildup at the tip. Fig. 3F indicates that the higher tip stress
is actually associated with the greater thickness change at the tip.

2.3.2. Preload

As stated in the beginning of Section 2.3.1, catastrophic frac-
ture occurs at comparable nominal loads or common K. as indi-
cated by Figs. 34, 3C and 3D. To confirm that the critical condition
for fracture is indeed independent of thickness, we pre-load uncut
BR specimens to different levels and then force a blade from one
edge into the specimen to produce a crack of increasing length
until catastrophic fracture at a critical cut size a.. Specifically,
we discretely preload BR specimens to three levels of oengr =
0.12, 0.15 and 0.20 MPa for each of the three thicknesses using
a constant load mode. As shown in Table 3, for three preloads
of 0.2, 0.15 and 0.12 MPa, the blade advances to three different
sets of distances before spontaneous fracture, revealing a similar
cut size for a given preload, roughly independent of D,. Here
the values of a. can be readily measured from the fractured
specimens since the catastrophic fracture produces much rougher
surfaces relative to that made by the blade, as shown by images
of fracture surface in Supporting Information (SLE). The duration
of blade advancement is characterized by Instron measurement
of clamp movements, also presented in Supporting Information
(SLE). With increasing load o, a. decreases, leading to a constant
K. = o./mac. Specifically, Table 3 lists the values of K. that are
roughly thickness independent, showing slight increase with the
load o, ranging from 0.71 MPa mm"/? for gengr = 0.2 MPa to
0.56 MPa mm'/2 for gengr = 0.12 MPa, which is comparable to
the level obtained from precut specimens (cf. Table 1). In other
words, these preload tests confirm that the toughness is indeed
constant independent of the specimen thickness.

3. Discussion
3.1. Inherent strength og(inn)

We have defined the tip stress at fracture as inherent strength
Of(inh). The str-POM observations in Section 2.3.1 indicate that
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Fig. 3. (A) Engineering stress vs. nominal strain ¢ = L/Ly - 1 of precut BR specimens of different Dy = 0.61, 1.33 and 5.16 mm. (B) Normalized tensile stress field T/K
at various nominal load o = 55, 83, 104 and 128 kPa as a function of r='/2 for Dy = 1.33 and 5.16 mm. (C) Tip stress oy vs. K, showing different slopes and thus
revealing different P values at different values of Dy yet a common K. (D) SSZ size rs and corresponding P as well as onny as a function of specimen thickness Do.
The opposing scaling of P and oinny leads to independence of K. on Dy, denoted by filled circles. (E) Local thickness decreases at cut tip during extension, i.e., as a
function of nominal draw ratio L/Ly. (F) Master curve of d/dy against the tip stress oy, with the smooth curve as guide for the eye.

OF(inh) 1S NOt constant and varies with specimen thickness. The
origin of this variation remains elusive. On the other hand, it is
clear that ognn) is appreciably lower than the fracture strength
(i.e., breaking stress) of uncut specimen, denoted by oy. To un-
derstand this difference, it is helpful to note that the uniaxial
extension (along Y axis) is described by a single non-zero com-
ponent oy, with o, = 0, = 0, which can be quantified through
SOR as

Oyy = Oy — Oxx = Ao = An/C. (7)

In contrast, according to the Westergaard description of the stress
field near the tip, at & = /3, oyy = 30y so that the SOR amounts
to

oyy = (3/2)An/C, (8)
O = 0yy/3 = (1/2)An/C, (9)
and

oip =T(r — 0,0 =n/3) = An(r — 0)/C, (10)

which is lower than oy, by a factor of 2/3. We expect str-POM
observations to reveal

(3/2)0F(inn)<0b (11)

because fracture occurs at o, under unconstrained condition of
oxx = 0z = 0 while fracture at the tip occurs under severe
constraint of oxx = oyy/3 and o,, ranging from 0 to 2oy (with
Poisson ratio v = %). To clarify, Eq. (11) supports our assertion
that elastomeric fracture under constraint (i.e., with ox> 0 and
0z > 0) would occur at lower oy, than o, measured from the
uniaxial extension of uncut specimen. While a chain-level theory
of inherent strength for elastomers under different deformation
modes is non-existent, the preceding assertion is self-evident.

It is necessary to further recognize that the value of oFginn)
(relative to oy, which we regard as inherent strength for uniaxial
stretching) may also depend on whether o, is zero or finite. For
example, apparently, the specimen thickness regulates the stress
state at cut tip, causing oginn) to vary, as implied by the data
in Section 2.3.1. Moreover, the difference found in K. between
SEN and pure shear, as listed in Table 2, may also indicate a
notable difference in o(inp). It is plausible that the mode of global
extension, e.g., uniaxial vs. pure shear, can influence the state of
deformation at the cut tip, leading to differences in oggnn).

3.2. Single-edge notch (SEN)

For rubber such as the present BR and EPDM, the stress
buildup is found to saturate so that it is feasible to character-
ize the tip stress oy, as a function of the nominal load o or
stress intensity factor K based on its operational definition. The
stress buildup at the cut tip is prescribed by the combination of
nominal load o and cut size a, as anticipated by linear elastic
fracture mechanics. Indeed, fracture from precut specimen is a
local event, dependent on the stress intensification at the cut tip
and independent of global configurations such as the variation
from SEN to pure shear. For SEN, the tensile stress field T at a
distance r from the tip and angle 6 = /3, after normalization
by the nominal load o, can be expected [26], according to the
Westergaard solution [10], as

T/o = 1.125sin(7r /3) (Kexp/Keneor) v/ /21 + 1,

with the theoretical operational definition [4]

Kineor = 1.120+/ma.

(12)

(13)
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Unity in Eq. (12) denotes the fact that the far-field stress is
comparable to the nominal load. Comparing Eq. (12) with the
experimental result described by Eq. (2), we have Keyy = Kiheor-

3.3. Pure shear

For pure shear, analogous to Eq. (1), Rivlin and Thomas pro-
posed the following widely used expression for Gps() as

Gps(c) = W()\C)ho/z, (]4)

which is re-drived in Supporting Information (SI.C). Parallel to
the case of SEN, we can envision stress intensification in pure
shear to be characterized by a stress intensity factor K, involving
an expression similar to Eq. (12). The exact form of K;s given in
Eq. (4) is derived in the Supporting Information (SL.C). Specifically,
because of the scaling form in Eq. (4), the following expression
can be expected in the Kj,; annulus for the local stress field driven
by the nominal load o

T/o = By/ho/r +2, at 0 =7 /3, (15)

where the factor of two arises from the special case of the cut
length ¢ in pure shear equal to half width, W/2, so that the
nominal load o is half of the far-field stress oy equal to that of
uncut specimen. Eq. (15) suggests that the pure shear data should
be analyzed by plotting T/o against normalized distance /ho/r
for different values of hy. This is indeed the case according to
the experimental data in Fig. 2C, partically described by Eq. (5),
showing B = 0.45.

Rivlin-Thomas [8] varied hy by a factor of three to vali-
date Eq. (14) that G, is a material constant, independent of hy,
i.e, we ~ 1/hg. The form of Eq. (14) conveys the message that
the energy balance argument is valid: The taller specimen has
more volume to store energy and thus only needs to involve a
lower level of strain energy to produce the same energy release
rate. In their subsequent papers from II to XI, Rivlin and Thomas
did not return to the question of whether and why Eq. (14)
holds for different values of hy. Soon after their Paper I Thomas
became aware [30] that G. may be related to the strain distribu-
tion around a blunted crack tip. Unfortunately, Thomas did not
proceed to show that Eq. (14) may have its origin in the local
stress intensification that increases with hg, as shown by Egs. (4)
and (15): At a given nominal strain A, the local stress field near
crack tip is higher at a larger h.

Str-POM observation of the stress field near crack tip unravels
the hidden meaning of Eq. (14). In other words, we explain for
the first time why w, ~ 1/hyg, as implied by Eq. (14). We show
by the specific experiments elaborated in Section 2.2 that Kps of
Eq. (4) indeed holds, i.e., the tip stress actually builds up in linear
proportion to K,; ~ +/ho, or more generally Eq. (15) holds true.
To our knowledge, there is no theoretical derivation of Eq. (15)
for linear elastic materials in pure shear configuration. We have
established this relation by experiment and elucidated the actual
meaning of the Rivlin-Thomas formula, Eq. (14). In other words,
G — Gy reflects a stress criterion, showing the consequence of
Otip —> OF(inh), Which is universal, e.g., is also the fracture criterion
for SEN configuration.

Thanks to Irwin’s demonstration [11,31] to show G = K2/
E, where K is Irwin’s stress intensity factor and E the Young’s
modulus, we can arrive at an expression for toughness G. as

Ge = K2 /E = (02 /E)hg = 2wgP, with wg = (0%inn))?/2E,  (16)

where wg is the work of fracture. Thus, Eq. (16) shows that P
prescribes the value for the fracto-cohesive length [32] L. =
Gc/we and is the origin of this length scale. In other words,
since P originates from the finite tip radius d/2, the origin of
Lg is the natural tip blunting. Moreover, Eq. (16) is consistent
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with Thomas’ approximate demonstration [30] that G, linearly
depends on tip diameter d. We note that the same expression
applies to SEN. Thus, Egs. (3) and (16) describe the actual meaning
of toughness K. and G, with G, computable from K.

3.4. Generic expression for G,

Eq. (16) actually holds universally as an expression for G. and
can be argued to be true at the scaling level by considering the
majority of energy storage per unit fracture surface. When the
crack advances by § in the specimen of thickness D, involving an
area of AA = D§, the energy release is controlled by og(inn) in SSZ
of size P, given by AU= (oy%;,/2E)(2PD§) so that G. = AUJAA =
2wgP, which is Eq. (16).

4. Conclusion

Spatial-temporal resolved POM (str-POM) observations show
that the stress buildup at crack tip saturates at all levels of applied
load at a sizable distance (beyond 20 wm) from crack tip. Exis-
tence of a stress saturation zone (SSZ) permits tip stress oy, to be
determined as a function of nominal load or stress intensity factor
K (through its operational definition). The observed linear growth
of oyp with K arises from the existence of a finite tip radius.
Moreover, this linear scaling reveals a new characteristic length
scale P = (K/crﬁp)z. Since the size of SSZ is independent of K, SSZ
cannot regarded as an Irwin process zone. On the other hand,
sizable process zone has been reported for toughened elastomers
[33-35]. Separately, theoretical studies have suggested [36-39]
that the local stress can saturate upon approaching the tip due to
the finite curvature of crack tip.

Based on three independent sets of str-POM studies, we show
that elastomeric fracture may be characterized in terms of a
stress-based criterion rather than Griffith energy-balance argu-
ment. Independent of geometric configuration, e.g., for different
cut sizes in single-edge notch, different specimen thicknesses,
pure shear (planar extension) vs. uniaxial extension, the onset
of fracture is shown to be governed by the criterion of tip stress
reaching a threshold level, designated as inherent strength. This
stress criterion allows us to explain how the LEFM phenomenol-
ogy emerges in reality. For example, Eq. (3) explicitly shows (a)
why K. is a material constant — because both inherent strength
orinh) and P are material specific, and (b) a combination inherent
strength oginny and P determine the magnitude of K. and G. =
K2[E, per Egs. (3) and (16) respectively.

The str-POM observation of stress buildup at crack tip suggests
that the widely used pure shear protocol of Rivlin and Thomas [8]
to characterize toughness of elastomers has its origin in the tip
stress scaling with specimen height hg as o, ~ Kps = o+/ho. In
other words, we have uncovered the meaning of Rivlin-Thomas
Eq. (14) that stress intensification depends on hg and fracture is
tip stress controlled.

Finally, through str-POM, we are now able to show how elas-
tomeric fracture occurs at a common K¢, independent of specimen
thickness Do, [16] unlike the case of plastics [15]. Specifically,
the local deformation at crack tip varies with Dy, showing stress
saturation at a larger distance from the tip for a thicker specimen,
corresponding to weaker deformation at the tip, with fracture
observed to commence at a lower tip stress, i.e., lower inherent
strength.

Materials and methods

Materials and Sample Preparation
Polybutadiene rubber (BR) from The Goodyear Tire & Rubber
Company (BUD1207) and ethylene propylene diene monomer
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(EPDM) from Lion Elastomers (Royalene 511) were studied in this
work. Only dicumyl peroxide is added as the crosslinking agent
to guarantee transparency in BR. BR sheets with thickness 0.6-
5.3 mm were cured by heat compression molding with 1 phr
dicumyl peroxide (Acros Organics) at 160 °C for 60 min. EPDM
sheets with thickness 2-2.5 mm were prepared by Gregory Brust
at Lion Elastomers using tri-functional crosslinker SR-350 (1~3
phr), and peroxide DiCup R (3~4 phr), at 170 °C for 20 min.

Dogbones were cut using type V die (ASTM D638). They are
used to establish the stress-optical relationship. Strip-shaped
specimens were cut into desired dimensions by a paper cutter.
Precut specimens involving edge notch, i.e., either single-edge
notch (SEN) or pure shear with cut length being half of the spec-
imen width, are made by gently pushing a razor blade (Feather
Safety Razor Co., Ltd.) into specimens. The cut size to width ratio
(a/W) for all SEN is kept smaller than 0.2. For cut sizes smaller
than ca. 4 mm, the length and width of the specimen is chosen
to be 50 x 20 mm?; for cut sizes larger than 4 mm, length and
width is chosen to be 80 x 40 mm?.

Methods

Tensile experiments were carried out on an Instron 5543
tensile tester at room temperature. Photoelastic characteristics
of BR and EPDM were mapped both spatially and temporally
around the cut tip using a str-POM setup [26] described in a pre-
vious study. To capture the development of birefringence during
stretching, video camera (Mokose C100) with 4K resolution was
used along with two different magnification-adjustable micro-
lenses (Edmund Industrial Optics (EIO) and Hayear model HY-
180XA). The str-POM observations in Section 2.1 involved 8x
magnification on EIO. For data in Section 2.2, Hayear lens at
2.25x was used. Finally, for str-POM observations presented in
Section 2.3, magnification on EIO was set at 7x, 5x and 2.5x,
corresponding to Dy = 0.61, 1.33 and 5.16 mm respectively.

The monochromatic light source for most of our str-POM ob-
servations is a low-pressure sodium lamp (Phillips). For samples
with thickness less than 0.7 mm, we adopt white light and use
Michel-Levy charter to make more accurate measurements of
birefringence. For preload tests presented in I1.C.2, the same razor
blade is advanced into one of the two edges of a strip-shaped
specimen until the point of fracture.
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