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a b s t r a c t

Based on spatial–temporal resolved measurements of the stress field at crack tip using polarized optical
microscopy (str-POM), we develop an stress analysis approach to elastomeric fracture. Specifically,
str-POM measurements reveal emerging phenomenology in three distinct ways. First, there emerges
a stress saturation zone (SSZ) whose dimension rss is independent of the stress intensity factor K .
This SSZ arises from the fact that the precut suffers natural blunting during cut making. Because of
the finite radius of the cut tip, the tip stress σtip is well defined and experimentally accessible, i.e.,
can be determined within the spatial resolution of str-POM. At the onset of fracture, the tip stress
is interpreted to reach inherent material strength σF(inh), i.e., σtip(F) = σF(inh). Second, elastomeric
fracture in pure shear is shown by the str-POM observations to involve the same physics: Fracture
occurs when the tip stress approaches the inherent strength. Rivlin–Thomas expression for toughness
Gc = wch0 follows because the stress buildup at the cut tip explicitly scales with specimen height h0,
i.e., Kps = σ

√
h0, as expected. Third, the str-POM observations reveal how elastomeric fracture occurs

at a common Kc independent of specimen thickness. At a given load there is weaker stress buildup
for a thicker specimen due to greater stress saturation at cut tip, and fracture is observed to occur at
lower tip stress for a thicker specimen.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The fracture behavior of solids is a most important topic in
aterials science and engineering. Soft materials also undergo

racture [1,2]. After a hundred years [3] of extensive research [4]
racture mechanics has become a more mature subject, guiding
esearch on fracture of modern materials including polymers.
ffects of large cracks on the strength of brittle polymers in-
luding plastics and elastomers can indeed be characterized by
oughness Gc, also known as the critical energy release rate [4,5].
For both glassy polymers [6,7] and crosslinked rubbers [8], since
Gc has been found to be hundreds or thousands times greater
han the surface fracture energy Γ , within fracture mechanics
e can no longer a priori prescribe the magnitude of Gc. While

any microscopic modeling of Gc can be regarded as a theoretical
inquiry to search for the fracture mechanism, we often fail to
find the calculated Gc in agreement with experiment. Related to
these issues is whether polymers are flaw intolerant, i.e., whether
brittle fracture of polymers without intentional through-cut is
due to presence of intrinsic flaws or defects, as implied in the
literature [5].

∗ Corresponding author.
E-mail address: swang@uakron.edu (S.-Q. Wang).
https://doi.org/10.1016/j.eml.2023.101986
2352-4316/© 2023 Elsevier Ltd. All rights reserved.
Since the beginning of linear-elastic fracture mechanics (LEFM)
[9–11], there has been the recognition that ‘‘fracture is gov-
erned by the local stress and deformation conditions around the
crack tip’’ [12]. However, the difficulty of the perceived stress
singularity [10,13] makes it convenient to adopt the Griffith [3]-
Irwin [14] energy balance argument. Thus, fracture behavior has
ever since been conveniently characterized in terms of global
conditions, i.e., through the measurement of Gc based on its
operational definition (Gc ∼ σ 2

c a/E) for a given cut size a at critical
far-field load σc for fracture. For elastomers, Rivlin and Thomas
extended [8] LEFM to propose a pure-shear protocol for measure-
ment of the toughness Gc.

Separately, according to textbooks [4,5] the critical stress in-
tensity factor Kc changes with specimen thickness for certain
materials (e.g., metals). As the state of stress changes from plane
stress (thin) to plane strain (thick), Kc tends to decrease [15].
This thickness dependence of Kc acquired a particularly conve-
nient interpretation in the energy approach: there is less plastic
dissipation under plane strain, with lower Gc implying lower
Kc. However, we note that the literature on fracture of rub-
bers shows [16] independence of fracture toughness on speci-
men thickness. Moreover, toughness of rubber has been observed
to increase with crack propagation speed, examined either in
terms of tensile extension of precut specimens [16,17] or tearing
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18,19]. This increase of toughness with speed has been inter-
reted in terms of linear viscoelastic characteristics [19–23], first
roposed by Mullins [24,25].
Based on fracture behavior of two elastomers, in this work

e explore and establish that elastomeric fracture can be char-
cterized in terms of the crack tip stress exceeding inherent
trength. Specifically, using recently adopted spatial–temporal
esolved polarized-optical microscopy (str-POM) [26] we address
he following questions to demonstrate the merit of quantifying
ocal processes at crack tip: (a) Is the onset of fracture determined
y a critical stress state at the crack tip, independent of the crack
ize? (b) Why is Kc a material specific constant and what de-
termines its magnitude? (c) Does the Rivlin–Thomas pure-shear
protocol for elastomers [8] reveal similar physics to that involved
in fracture of single-edge notched (SEN) specimens? (d) How does
Kc depend on specimen thickness as plane stress changes to plane
strain in the case of elastomers?

Because the stress buildup at the tip is found to saturate to
a plateau, we are able to show given the spatial resolution of
our str-POM method that (1) elastomeric fracture amounts to the
stress at crack tip σtip reaching a threshold value σF(inh) that may
be identified as inherent strength, (2) σtip grows linearly with
the nominal load σ , which appears in the stress intensity factor
operationally defined as [4] K = 1.12σ

√
πa for SEN, implying

xistence of a characteristic length scale P: σtip = K/
√
P, (3) at

racture Kc = σF(inh)
√
P, (4) in pure shear σtip also scales linearly

with nominal load as σtip = Kps/
√
P, with Kps = σ

√
h0, where

0 is the sample height h0, (5) at fracture with SEN, the critical
tress intensity factor Kc = σF(inh)

√
P is independent of the sample

hickness D (ranging from 0.6 to 5 mm), with σF(inh) decreasing
ith D and P increasing with D.
Given the str-POM observations, we hypothesize that elas-

omeric fracture may be understood to arise from the inherent
trength σF(inh) being exceeded at crack tip, and Gc is merely a
easure of the energy release due to fracture. In other words,

he tip stress σtip → σF(inh) corresponding to the load level σ →

c ∼ σF(inh)
√
P/a, or σF(inh)

√
P/h0 in the respective cases of SEN

nd pure shear. This says that fracture occurs when the applied
oad σ reaches a fraction of σF(inh) that is determined by the ratio
/a or P/h0.

2. Results

2.1. Fracture of rubber sheets at different cut sizes (SEN)

Rivlin and Thomas has established [8] that for stretchable elas-
ic bodies such as rubber fracture behavior can be characterized
y measuring its toughness Gc(RT) in terms of the work density of
racture wc and cut size a [8,27,28]:

c(RT) = 6w(λc)a/
√
λc, (1)

where λc is the critical stretching ratio at fracture of a precut
specimen. This formulation derives from the Griffith style en-
ergy balance considerations. However, it was found since the
beginning [8] that Gc(RT) is orders of magnitude higher than sur-
face fracture energy. This discrepancy has led researchers in the
community to seek dissipative mechanisms [22] to account for
the observed much greater energy release and to suggest that
fracture at a finite speed cannot be idealized as involving only one
monolayer of debonding, which is the case treated by the Lake
and Thomas model [29] to describe the threshold for fatigue fail-
ure. For pure shear, Thomas also realized and demonstrated [30]
that by preparing a precut of controlled radius d/2 for the tip,
toughness can be found to scale approximately linearly with d.

By directly examining the stress buildup at crack tip in a pre-
cut BR specimen we explore the merit to adopt the Westergaard-
Irwin’s local stress approach [10,11] that recognizes K = σ

√
πa
2

as the loading parameter. Given the well-established stress op-
tical relationship (SOR), shown in Fig. 1A, i.e., ∆n = Cσ , with
C = 2.92 GPa−1, we apply str-POM to quantify the stress field
as a distance from the cut tip within a spatial resolution better
than 10 µm. At θ = π/3 to the crack propagation direction, the
tensile stress field T(r) = (σyy - σxx) is also the principal stress
difference, [26] thus linearly related to the birefringence ∆n,
i.e., T = ∆n(r)/C, where C is the same stress-optical coefficient
C, measured in Fig. 1A.

Quantitative spatial mapping of ∆n shows in Fig. 1B that the
stress field naturally saturates at the cut tip for four different cut
sizes at various stages of tensile extension of the precut specimen,
which is described in Supporting Information (SI.A). In such a plot,
a Westergaard like solution describes the straight line in Fig. 1B,
revealing

T = σyy − σxx = 0.69σ (a/r)1/2 for r>rss. (2)

Two comments are in order. First, stress saturation is observed
under all eight conditions. This stress saturation zone (SSZ)
emerges at a common distance rss from the tip, independent of
cut size and load level, as indicated by values of 6, 10, 14 and
19 for (a/rss)1/2, corresponding to the respective values of a, so
that rss = 20-22 µm under all conditions. To emphasize that the
ize of the SSZ is constant, we replot Fig. 1B to obtain Fig. 1C.
While K varies from 0.28 to 0.51 MPa, rss remains approximately
onstant The SSZ is clearly not a plastic zone, having a fixed size
nstead of varying as K 2, i.e., by a factor of (0.51/0.28)2 = 3.3.
e have previously shown [26] that the emergence of SSZ is a

esult of a finite tip radius ρtip. In other words, rss is comparably
etermined by the natural tip blunting that occurs during precut
aking. Second, instead of locking onto a hypothetical σYS, the

ip stress σtip = T(r → 0) increases linearly with K until the
oint of fracture. Consequently, the stress field T normalized by
collapses in Fig. 1C, apart from a small correction by the far-field

oad that manifests as a non-zero intercept on the ordinate.
The linear scaling relationship in Fig. 1D between σtip and K

eveals [26] a characteristic length scale P that is constant at
arious stages of external loading including the onset of fracture,
haracterized by (Kc, σtip(F)). Thus, in terms of P, the critical
tress intensity factor Kc acquires a new expression, besides its
perational definition, given by

c = σc
√
πa = σF(inh)

√
P, (3)

where we suggest the tip stress at fracture as revealing inherent
strength, i.e., σtip(F) = σF(inh). Eq. (3) explains why Kc is material
specific: Both σF(inh) and P are material specific. The emergence of
P originates from the existence of SSZ, which also persists during
crack propagation as shown in Supporting Information (SI.A). It
is instructive to note that the observation summarized by Eq. (3),
i.e., σtip(F)=σc

√
πa/P, is consistent with the Inglis solution, which

shows the stress at a curved tip to be enhanced by a factor given
by the square-root of the ratio of the crack size to tip radius.
Indeed, P is related [26] to the tip radius ρtip.

Moreover, it is worth indicating that for the present BR sam-
les the fracture toughness can be computed either from the
perational definition of Kc for SEN or the Rivlin–Thomas formula
q. (1). Table 1 shows the comparison between the two different
stimates of Gc. They are clearly comparable. Finally, we note
σtip(F) read from Fig. 1D is lower than σb revealed in the inset of
Fig. 1A. We interpret this difference to arise from the fact that
fracture strength σb ∼ 5 MPa is measured in uniaxial extension,
i.e., in plane stress, whereas plane strain prevails at cut tip. We
will continue the discussion in Section 3.1. Because of the stress
triaxiality, the fracture can be expected to occur involving a lower
level of birefringence. We examined a comparison between pure
shear and uniaxial extension in Supporting Information to show
that at a given extension the birefringence is lower in pure shear
because of the additional dimensional constraint.
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Fig. 1. (A) Stress optical relationship (SOR) through simultaneous mechanical and birefringence measurements of uncut BR specimen at V/L = 0.05 min−1 . The inset
s the stress vs. strain curve of the specimen in terms of true stress σ and stretching ratio λ = L/L0 . (B) Normalized tensile stress field T/σ , read from SOR in (A)
s a function (a/r)1/2 . Eq. (2), represented by the straight line, holds up to various values, i.e., 6, 10, 14 and 19 of (a/rss)1/2 . For r < rss = 21 µm, T/σ saturates
oward finite values. The curves are drawn to indicate the trend of stress saturation. (C) Various curves in (B) collapse when K instead of nominal load σ is used to
ormalize T, revealing a common rss , independent of K that ranges from 0.28 to 0.51 MPa mm1/2 . Two groups of images show the same birefringence level at the
ut tip at K = 0.3 and 0.5 MPa mm1/2 . The different stages of stretching in (B) and (C) are labeled by the values of engineering stress. (D) Master curves of σtip vs.
for the four values of cut size a, revealing a linear scaling law, characterized by a new length scale P. The last points are the values of Kc ∼ 0.5 MPa mm1/2 and

F(inh) ∼ 2 MPa at the onset of fracture.
Table 1
Toughness Kc and Gc of BR for different cut sizesa .
Cut size a Thickness D0 εc σc Kc = σc

√
πa Gc = Kc2/E w(λc) Gc(RT)

8.4 0.62 0.037 0.100 0.51 87 1.8 89
3.8 0.61 0.059 0.148 0.51 87 4.4 97
2.1 0.55 0.075 0.209 0.54 105 7.1 95
0.8 0.61 0.137 0.347 0.55 101 23.0 100

aLengths a and D0 are in the unit of millimeters, εc= λc− 1, stress σc and modulus E in the unit of MPa, Gc and wc
are in the units of J/m2 and kJ/m3 respectively. Note that if we adopt (12) in Section 3 for Kc , Gc would be slightly
higher than Gc(RT) .
t
o

2.2. Nature of fracture in pure shear

Rivlin and Thomas proposed an elegant protocol to account
for the energy release during fracture of rubber. Specifically, the
critical energy release rate was argued to show a simple form
of Gps(c) = wch0 in the Rivlin–Thomas scenario, as shown in
Supporting Information (SI.C). Since Gps(c) is usually constant,
the Rivlin–Thomas expression explicitly suggests that a taller
specimen with larger h0 would undergo fracture at smaller strain
because it has a larger volume and can store the same amount
of energy at a lower energy density, i.e., w = w(λ ) ∼1/h :
c c 0

3

Larger h0 corresponds to smaller λc. However, the results from
he preceding II.A prompt us to look for a different interpretation
f the Rivlin–Thomas formulation.
We proceed to examine three EPDM specimens of h0 = 18,

48 and 120 mm in pure shear, where precut length c is half of
the specimen width W of 100 mm. Here for pure shear c is used
instead of a to denote the crack length. For pure shear, we adopt
a different notation to denote cut length as c in place of a for
SEN. The finding of preceding section informs us that fracture
in pure shear would occur when the tip stress grows to reach
σ . The characterization of pure shear fracture begins with
F(inh)
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Fig. 2. (A) Stress optical relationship (SOR) through simultaneous mechanical and birefringence measurements of uncut EPDM specimen at V/L = 0.05 min−1 . The
inset is the stress vs. strain curve of the specimen in terms of true stress σ and stretching ratio λ = L/L0 . (B) Engineering stress vs. nominal strain λ = L/L0 of uncut
(h0 , W = 100 mm) and precut (cut length c = W/2 = 50 mm) specimens of different heights h0 = 120, 48 and 18 mm. (C) Normalized tensile stress field T/σ , at
different values of σ read from SOR in (A) as a function (h0/r)1/2 or (a/r)1/2 , where the last group of data is a case of SEN with a = 3.3 mm. Eq. (5) represented
by the straight line holds up to various values of (a/rss)1/2 , i.e., 8, 18, 29 and 48 of (h0/rss)1/2 . For r < rss = 55 µm, T/σ saturates toward finite values. Here and in
the subsequent (D), we label different stages of stretching with nominal stress, i.e., engineering stress. (D) Various curves in (C) collapse when Kps of Eq. (4) is used
to normalize T, revealing a common rss , independent of Kps . The different stages of stretching in (C) and (D) are labeled by the values of engineering stress. (E) Tip
stress (σtip) equal to T(r →0) as a function of nominal load σ for h0 = 120, 48 and 18 mm. The upper group of images depict the birefringence field near cut tip
at a common load, indicated by the vertical (light blue, color online) line at 0.043 MPa; the lower group of images show the birefringence field at onset of fracture
involving a common level of σtip(F) around 1.14 MPa, indicated by the horizontal orange line. (F) Master curves of σtip vs. K for the three values of h0 , revealing
a linear scaling law, involving a characteristic length scale P, the triangles denote the data from SEN. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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experiments to determine the SOR for the EPDM specimens, from
which the local stress field can be mapped out. Fig. 2A shows
that the SOR is roughly a linear relation between tensile stress
and birefringence. The slight deviation from the linearity might
be due to the onset of non-Gaussian chain stretching. We show in
Supporting Information (SI.B) that SOR can actually be applied to
show a difference in the stress states between uniaxial extension
and pure shear.

Fig. 2B Presents the relations between nominal load and nom-
inal strain for both the uncut and precut specimens. Inspired by
Fig. 1B, we make a similar observation as shown in Fig. 2C and
reveal a similar feature that the local stress ceases to increases as
r−1/2 for r < a = 3.3 mm, where the stress field T(r) at θ = π/3
is estimated using the stress-optical relationship from Fig. 2A. In
place of the variable a, we have the specimen height h0, which is
the only pertinent length scale in the configuration [2]. According
to the theoretical analysis in Supporting Information (SI.C), for
linear elastic materials such as the present BR and EDPM samples
with cut length c equal to half of specimen width W, we have the
following expression for the load parameter Kps.

Kps = σ
√
h0 (4)

in place of KSEN = σ
√
πa. Like the Westergaard loading pa-

ameter KSEN for SEN, we expect the pure shear to show stress
ntensification through Kps as T(r) ∼ Kps/(2πr)1/2 at cut tip.
Indeed Fig. 2C shows that away from the tip, T(r) scales as

= 0.45σ (h0/r)1/2 for r>rss, (5)

which is given by the straight line. In other words, all data
involving three different values of h fall on the same straight line
0 K

4

until the emergence of SSZ in the same distance r from the cut
tip, at (h0/rss)1/2 = 18, 29 and 50, i.e., at rss = 0.055 mm. This
SZ’s size is independent of Kps. Thus the SSZ has little to do with
rwin’s plastic zone concept.

To emphasize the importance of the loading parameter Kps
hose operational definition is given in Eq. (4), similar to Fig. 1C,

we can make Fig. 2D by normalizing the local tensile stress T with
Kps to illustrate analogous features. In the scaling regime, i.e., for
r > rss, like Fig. 1C, the data show the same slope. However, they
are not expected to collapse onto a single straight line because
these lines have different intercepts given by h−1/2

0 in Fig. 2D and
by a−1/2 in Fig. 1C.

The existence of SSZ allows the tip stress σtip to be measured
as T(r = 0) and expressed for all three values of h0 as a function of
load σ . Specifically, Fig. 2E shows how the tip stress varies with
h0 at various nominal loads. For example, at a common load of
0.043 MPa, indicated by the vertical line, at the time mark of ca.
72 s in the three videos in SI.F, σtip is higher for higher h0. Reading
Fig. 2E ‘‘horizontally’’, we see the same tip stress is reached at a
lower load for higher h0. The loading parameter Kps of Eq. (4) can
collapse the three lines in Fig. 2E, as shown by Fig. 2F.

Similar to Figs. 1D, 2F discloses a similar scaling law: σtip =

ps/
√
P, obeyed by both pure shear and SEN data. The overlapping

of the triangles with the other three sets of data confirms that
Eq. (4) is the correct expression for Kps. Fracture occurs in both
SEN and pure shear at a comparable tip stress that is bounded
by the inherent strength, with KSEN(c) ≈ Kps(c), which implies
quivalently GSEN(c) ≈ Gps(c). In other words, similar to Eq. (3), we
ave

= σ
√
h = σ

√
P (6)
ps(c) c 0 F(inh)
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Table 2
Toughness Kc and Gc of EPDM: pure shear vs. SENa .
h0 or a Thickness D0 εc σc Kc Gc = Kc2/E w(λc) Gc(RT)

120 2.50 0.026 0.043 0.47 80 1.1 66
48 2.56 0.043 0.066 0.46 74 2.7 65
18 2.51 0.064 0.095 0.40 58 6.1 55
3.3 2.49 0.075 0.163 0.53 99 5.7 106

aLengths h0 , a and D0 are in the unit of millimeters, εc= λc− 1, stress σc and modulus E in the unit of MPa, Gc and
w are in the units of J/m2 and kJ/m3 respectively. Kc is evaluated from Eq. (4) for Kps for the first three rows. Kc
is the bottom row follows from KSEN(c) = σc

√
πa in MPa mm1/2 . Gc(RT) is evaluated according to either Eq. (13) in

Section 3.3 for pure shear or Eq. (1) for SEN.
t

r
l
0
t
w
c

3

3

Like Kc, σc acquires its meaning through either Eq. (6) for pure
shear or Eq. (3) for SEN: it is given by σF(inh) and the ratio of either
h0/P or a/P. Unlike Kc, σc is not a material constant because it
depends on experimental parameters such as h0 and a.

Since Fig. 2C reveals rss to be comparable in both pure shear
and SEN, we expect the slope of the σtip vs. K to be comparable,
i.e., involving a common P, leading to a collapse of the SEN data
onto the master curve in Fig. 2F. Clearly, Eq. (4) is the correct
formula for Kps at c = W/2. On the other hand, Kc seems slightly
higher in SEN than in pure shear. This leads to higher Gc for SEN
as shown in Table 2 in comparison with pure shear. Also listed
in Table 2 is Gc(RT) given by either Eq. (1) for SEN and Eq. (13)
for pure shear. The discrepancy of Gc between pure shear and
SEN seem to arise from a difference in σF(inh) that varies from SEN
to pure shear. We return to this point in Section 3.1. Moreover,
the relation between SEN and pure shear is further explored in
Supporting Information (SI.D) based on a second rubber, i.e., BR.

2.3. Thickness dependence of toughness Kc: local characterization

2.3.1. Precut
If polymer fracture is dictated by crack tip reaching inherent

strength, it is natural to ask whether and how inherent strength
varies with the mode of deformation. Since the state of stress is
known to change from plane stress to plane strain upon thickness
increase, using BR with SEN, it is straightforward to find out how
the critical condition for fracture depends on specimen thickness.
Making precut of comparable size a around ca. 4.0 mm, Fig. 3A
indicates that fracture occurs at a comparable Kc because the
crack propagation occurs at a similar load level of Kc = 0.49 MPa
mm1/2, involving σengr = 0.124 MPa for D0 = 5.16 mm and
a = 4.4 mm and σengr = 0.13 MPa for D0 = 1.33 mm and
a = 4.0 mm as well as σengr = 0.14 MPa for D0 = 0.61 and
a = 4.0 mm.

We apply str-POM observation of the cut tip to show how Kc
reaches a common level independent of thickness D0. The data
in Fig. 3B are unexpected, revealing not only emergence of SSZ,
analogous to data in Figs. 1C and 2D, but also dependence of SSZ
size rss on the specimen thickness D0. Fig. 3B also suggests that at
comparable loads (and a common nominal strain), e.g., common
values of K , the tip stress σtip changes with D0, lower for a larger
D0, as show in Fig. 3C, which also reveals three separate values
for P, consistent with the fact that rss depends on D0 (cf. Fig. 3B).
The thickness effect can be more explicitly described in Fig. 3D:
σtip(F) = σF(inh) scales with D0 to a negative power of 0.43 while
P1/2 roughly increases with D0 in a power law with a positive
exponent of 0.43 so that Kc = σF(inh)P1/2 stays constant at 0.49
MPa mm1/2.

We reiterate the explicit message revealed in Fig. 3B: At all
values of K , the thicker specimen with D0 = 5.3 avoids stress
buildup by stress saturation at a greater distance from the crack
tip. To further characterize the thickness effect, local thickness at
the cup tip is measured during stretching in separate tests. Fig. 3E
shows that the local thickness at the tip decreases with nominal
strain L/L , going faster for the thinner specimen. The greater
0 σ

5

Table 3
Fracture of BR under preload.
0.2 MPa

D0 (mm) 0.68 1.37 5.40
ac (mm) 2.87 3.48 2.97
Kc (MPa mm1/2) 0.65 0.71 0.67

0.15 MPa

D0 (mm) 0.53 1.43 5.27
ac (mm) 4.92 5.17 5.23
Kc (MPa mm1/2) 0.62 0.64 0.65

0.12 MPa

D0 (mm) 0.63 1.44 5.31
ac (mm) 5.92 6.37 6.71
Kc (MPa mm1/2) 0.54 0.56 0.58

thickness change at the tip amounts to greater stress buildup. In
other words, the thicker specimen has greater capacity to avoid
the buildup at the tip. Fig. 3F indicates that the higher tip stress
is actually associated with the greater thickness change at the tip.

2.3.2. Preload
As stated in the beginning of Section 2.3.1, catastrophic frac-

ure occurs at comparable nominal loads or common Kc as indi-
cated by Figs. 3A, 3C and 3D. To confirm that the critical condition
for fracture is indeed independent of thickness, we pre-load uncut
BR specimens to different levels and then force a blade from one
edge into the specimen to produce a crack of increasing length
until catastrophic fracture at a critical cut size ac. Specifically,
we discretely preload BR specimens to three levels of σengr =

0.12, 0.15 and 0.20 MPa for each of the three thicknesses using
a constant load mode. As shown in Table 3, for three preloads
of 0.2, 0.15 and 0.12 MPa, the blade advances to three different
sets of distances before spontaneous fracture, revealing a similar
cut size for a given preload, roughly independent of D0. Here
the values of ac can be readily measured from the fractured
specimens since the catastrophic fracture produces much rougher
surfaces relative to that made by the blade, as shown by images
of fracture surface in Supporting Information (SI.E). The duration
of blade advancement is characterized by Instron measurement
of clamp movements, also presented in Supporting Information
(SI.E). With increasing load σ , ac decreases, leading to a constant
Kc = σ

√
πac. Specifically, Table 3 lists the values of Kc that are

oughly thickness independent, showing slight increase with the
oad σ , ranging from 0.71 MPa mm1/2 for σengr = 0.2 MPa to
.56 MPa mm1/2 for σengr = 0.12 MPa, which is comparable to
he level obtained from precut specimens (cf. Table 1). In other
ords, these preload tests confirm that the toughness is indeed
onstant independent of the specimen thickness.

. Discussion

.1. Inherent strength σF(inh)

We have defined the tip stress at fracture as inherent strength
. The str-POM observations in Section 2.3.1 indicate that
F(inh)
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he opposing scaling of P and σF(inh) leads to independence of Kc on D0 , denoted by filled circles. (E) Local thickness decreases at cut tip during extension, i.e., as a
unction of nominal draw ratio L/L0 . (F) Master curve of d/d0 against the tip stress σtip , with the smooth curve as guide for the eye.
w

F(inh) is not constant and varies with specimen thickness. The
rigin of this variation remains elusive. On the other hand, it is
lear that σF(inh) is appreciably lower than the fracture strength
i.e., breaking stress) of uncut specimen, denoted by σb. To un-
erstand this difference, it is helpful to note that the uniaxial
xtension (along Y axis) is described by a single non-zero com-
onent σyy with σxx = σzz = 0, which can be quantified through
OR as

yy = σyy − σxx = ∆σ = ∆n/C . (7)

n contrast, according to the Westergaard description of the stress
ield near the tip, at θ = π/3, σyy = 3σxx so that the SOR amounts
o

yy = (3/2)∆n/C, (8)

xx = σyy/3 = (1/2)∆n/C, (9)

nd

tip = T (r → 0, θ = π/3) = ∆n(r → 0)/C, (10)

hich is lower than σyy by a factor of 2/3. We expect str-POM
bservations to reveal

3/2)σF(inh)<σb (11)

ecause fracture occurs at σb under unconstrained condition of
xx = σzz = 0 while fracture at the tip occurs under severe
onstraint of σxx = σyy/3 and σzz ranging from 0 to 2σxx (with
oisson ratio ν =

1
2 ). To clarify, Eq. (11) supports our assertion

that elastomeric fracture under constraint (i.e., with σxx> 0 and
σzz ≥ 0) would occur at lower σyy than σb measured from the
uniaxial extension of uncut specimen. While a chain-level theory
of inherent strength for elastomers under different deformation
modes is non-existent, the preceding assertion is self-evident.
 K

6

It is necessary to further recognize that the value of σF(inh)
(relative to σb, which we regard as inherent strength for uniaxial
stretching) may also depend on whether σzz is zero or finite. For
example, apparently, the specimen thickness regulates the stress
state at cut tip, causing σF(inh) to vary, as implied by the data
in Section 2.3.1. Moreover, the difference found in Kc between
SEN and pure shear, as listed in Table 2, may also indicate a
notable difference in σF(inh). It is plausible that the mode of global
extension, e.g., uniaxial vs. pure shear, can influence the state of
deformation at the cut tip, leading to differences in σF(inh).

3.2. Single-edge notch (SEN)

For rubber such as the present BR and EPDM, the stress
buildup is found to saturate so that it is feasible to character-
ize the tip stress σtip as a function of the nominal load σ or
stress intensity factor K based on its operational definition. The
stress buildup at the cut tip is prescribed by the combination of
nominal load σ and cut size a, as anticipated by linear elastic
fracture mechanics. Indeed, fracture from precut specimen is a
local event, dependent on the stress intensification at the cut tip
and independent of global configurations such as the variation
from SEN to pure shear. For SEN, the tensile stress field T at a
distance r from the tip and angle θ = π/3, after normalization
by the nominal load σ , can be expected [26], according to the
Westergaard solution [10], as

T/σ = 1.12 sin(π/3)
(
Kexp/Ktheor

)√
a/2r + 1, (12)

ith the theoretical operational definition [4]

= 1.12σ
√
πa. (13)
theor
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nity in Eq. (12) denotes the fact that the far-field stress is
omparable to the nominal load. Comparing Eq. (12) with the
xperimental result described by Eq. (2), we have Kexp = Ktheor .

.3. Pure shear

For pure shear, analogous to Eq. (1), Rivlin and Thomas pro-
osed the following widely used expression for Gps(c) as

ps(c) = w(λc)h0/2, (14)

hich is re-drived in Supporting Information (SI.C). Parallel to
he case of SEN, we can envision stress intensification in pure
hear to be characterized by a stress intensity factor Kps, involving
n expression similar to Eq. (12). The exact form of Kps given in
q. (4) is derived in the Supporting Information (SI.C). Specifically,
ecause of the scaling form in Eq. (4), the following expression
an be expected in the Kps annulus for the local stress field driven
y the nominal load σ

/σ = B
√
h0/r + 2, at θ = π/3, (15)

where the factor of two arises from the special case of the cut
length c in pure shear equal to half width, W/2, so that the
nominal load σ is half of the far-field stress σuc equal to that of
uncut specimen. Eq. (15) suggests that the pure shear data should
be analyzed by plotting T/σ against normalized distance

√
h0/r

or different values of h0. This is indeed the case according to
he experimental data in Fig. 2C, partically described by Eq. (5),
howing B = 0.45.
Rivlin–Thomas [8] varied h0 by a factor of three to vali-

ate Eq. (14) that Gc is a material constant, independent of h0,
.e., wc ∼ 1/h0. The form of Eq. (14) conveys the message that
he energy balance argument is valid: The taller specimen has
ore volume to store energy and thus only needs to involve a

ower level of strain energy to produce the same energy release
ate. In their subsequent papers from II to XI, Rivlin and Thomas
id not return to the question of whether and why Eq. (14)
olds for different values of h0. Soon after their Paper I Thomas
ecame aware [30] that Gc may be related to the strain distribu-
ion around a blunted crack tip. Unfortunately, Thomas did not
roceed to show that Eq. (14) may have its origin in the local

stress intensification that increases with h0, as shown by Eqs. (4)
and (15): At a given nominal strain λ, the local stress field near
crack tip is higher at a larger h0.

Str-POM observation of the stress field near crack tip unravels
the hidden meaning of Eq. (14). In other words, we explain for
the first time why wc ∼ 1/h0, as implied by Eq. (14). We show
by the specific experiments elaborated in Section 2.2 that Kps of
Eq. (4) indeed holds, i.e., the tip stress actually builds up in linear
proportion to Kps ∼

√
h0, or more generally Eq. (15) holds true.

o our knowledge, there is no theoretical derivation of Eq. (15)
or linear elastic materials in pure shear configuration. We have
stablished this relation by experiment and elucidated the actual
eaning of the Rivlin–Thomas formula, Eq. (14). In other words,
→ Gps(c) reflects a stress criterion, showing the consequence of

tip → σF(inh), which is universal, e.g., is also the fracture criterion
or SEN configuration.

Thanks to Irwin’s demonstration [11,31] to show G = K 2/
, where K is Irwin’s stress intensity factor and E the Young’s
odulus, we can arrive at an expression for toughness Gc as

c = Kc2/E = (σ 2
c /E)h0 = 2wFP, with wF = (σF(inh))2/2E, (16)

here wF is the work of fracture. Thus, Eq. (16) shows that P
rescribes the value for the fracto-cohesive length [32] Lfc =

c/wF and is the origin of this length scale. In other words,
ince P originates from the finite tip radius d/2, the origin of

is the natural tip blunting. Moreover, Eq. (16) is consistent
fc C

7

ith Thomas’ approximate demonstration [30] that Gc linearly
epends on tip diameter d. We note that the same expression
pplies to SEN. Thus, Eqs. (3) and (16) describe the actual meaning

of toughness Kc and Gc, with Gc computable from Kc.

3.4. Generic expression for Gc

Eq. (16) actually holds universally as an expression for Gc and
can be argued to be true at the scaling level by considering the
majority of energy storage per unit fracture surface. When the
crack advances by δ in the specimen of thickness D, involving an
area of ∆A = Dδ, the energy release is controlled by σF(inh) in SSZ
of size P, given by ∆U= (σ 2

F(inh)/2E)(2PDδ) so that Gc = ∆U/∆A =

2wFP, which is Eq. (16).

4. Conclusion

Spatial–temporal resolved POM (str-POM) observations show
that the stress buildup at crack tip saturates at all levels of applied
load at a sizable distance (beyond 20 µm) from crack tip. Exis-
tence of a stress saturation zone (SSZ) permits tip stress σtip to be
determined as a function of nominal load or stress intensity factor
K (through its operational definition). The observed linear growth
of σtip with K arises from the existence of a finite tip radius.
Moreover, this linear scaling reveals a new characteristic length
scale P = (K/σtip)2. Since the size of SSZ is independent of K , SSZ
cannot regarded as an Irwin process zone. On the other hand,
sizable process zone has been reported for toughened elastomers
[33–35]. Separately, theoretical studies have suggested [36–39]
that the local stress can saturate upon approaching the tip due to
the finite curvature of crack tip.

Based on three independent sets of str-POM studies, we show
that elastomeric fracture may be characterized in terms of a
stress-based criterion rather than Griffith energy-balance argu-
ment. Independent of geometric configuration, e.g., for different
cut sizes in single-edge notch, different specimen thicknesses,
pure shear (planar extension) vs. uniaxial extension, the onset
of fracture is shown to be governed by the criterion of tip stress
reaching a threshold level, designated as inherent strength. This
stress criterion allows us to explain how the LEFM phenomenol-
ogy emerges in reality. For example, Eq. (3) explicitly shows (a)
why Kc is a material constant — because both inherent strength
σF(inh) and P are material specific, and (b) a combination inherent
strength σF(inh) and P determine the magnitude of Kc and Gc =

K 2
c /E, per Eqs. (3) and (16) respectively.
The str-POM observation of stress buildup at crack tip suggests

that the widely used pure shear protocol of Rivlin and Thomas [8]
to characterize toughness of elastomers has its origin in the tip
stress scaling with specimen height h0 as σtip ∼ Kps = σ

√
h0. In

other words, we have uncovered the meaning of Rivlin–Thomas
Eq. (14) that stress intensification depends on h0 and fracture is
tip stress controlled.

Finally, through str-POM, we are now able to show how elas-
omeric fracture occurs at a common Kc, independent of specimen
hickness D0, [16] unlike the case of plastics [15]. Specifically,
he local deformation at crack tip varies with D0, showing stress
aturation at a larger distance from the tip for a thicker specimen,
orresponding to weaker deformation at the tip, with fracture
bserved to commence at a lower tip stress, i.e., lower inherent
trength.

aterials and methods

aterials and Sample Preparation
Polybutadiene rubber (BR) from The Goodyear Tire & Rubber

ompany (BUD1207) and ethylene propylene diene monomer
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EPDM) from Lion Elastomers (Royalene 511) were studied in this
ork. Only dicumyl peroxide is added as the crosslinking agent
o guarantee transparency in BR. BR sheets with thickness 0.6–
.3 mm were cured by heat compression molding with 1 phr
icumyl peroxide (Acros Organics) at 160 ◦C for 60 min. EPDM
heets with thickness 2–2.5 mm were prepared by Gregory Brust
t Lion Elastomers using tri-functional crosslinker SR-350 (1∼3
hr), and peroxide DiCup R (3∼4 phr), at 170 ◦C for 20 min.
Dogbones were cut using type V die (ASTM D638). They are

sed to establish the stress-optical relationship. Strip-shaped
pecimens were cut into desired dimensions by a paper cutter.
recut specimens involving edge notch, i.e., either single-edge
otch (SEN) or pure shear with cut length being half of the spec-
men width, are made by gently pushing a razor blade (Feather
afety Razor Co., Ltd.) into specimens. The cut size to width ratio
a/W) for all SEN is kept smaller than 0.2. For cut sizes smaller
han ca. 4 mm, the length and width of the specimen is chosen
o be 50 × 20 mm2; for cut sizes larger than 4 mm, length and
idth is chosen to be 80 × 40 mm2.

ethods
Tensile experiments were carried out on an Instron 5543

ensile tester at room temperature. Photoelastic characteristics
f BR and EPDM were mapped both spatially and temporally
round the cut tip using a str-POM setup [26] described in a pre-
ious study. To capture the development of birefringence during
tretching, video camera (Mokose C100) with 4K resolution was
sed along with two different magnification-adjustable micro-
enses (Edmund Industrial Optics (EIO) and Hayear model HY-
80XA). The str-POM observations in Section 2.1 involved 8×

magnification on EIO. For data in Section 2.2, Hayear lens at
2.25× was used. Finally, for str-POM observations presented in
ection 2.3, magnification on EIO was set at 7×, 5× and 2.5×,
orresponding to D0 = 0.61, 1.33 and 5.16 mm respectively.
The monochromatic light source for most of our str-POM ob-

ervations is a low-pressure sodium lamp (Phillips). For samples
ith thickness less than 0.7 mm, we adopt white light and use
ichel-Levy charter to make more accurate measurements of
irefringence. For preload tests presented in II.C.2, the same razor
lade is advanced into one of the two edges of a strip-shaped
pecimen until the point of fracture.
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