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We provide the first rigorous numerical analysis of the longitudinal-transverse double-spin asymmetry

ALT in electron-nucleon and proton-proton collisions for the case where only a single pion, jet, or photon is

detected in the final state. Given recent extractions of certain, previously unknown, nonperturbative

functions, we are able to compute contributions from all terms relevant for ALT and make realistic

predictions for the observable at Jefferson Lab (JLab) 12 GeV, COMPASS, the future Electron-Ion

Collider, and the Relativistic Heavy Ion Collider. We also compare our results to a JLab 6 GeV

measurement, which are the only data available for this type of reaction. The twist-3 nature of ALT makes it

a potentially fruitful avenue to probe quark-gluon-quark correlations in hadrons as well as provide insights

into dynamical quark mass generation in QCD.
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I. INTRODUCTION

One of the earliest puzzles in spin physics research

was the observation in the 1970s of large asymmetries in

single-inclusive reactions where one hadron is transversely

polarized [1,2]—so-called single transverse-spin asymme-

tries (SSAs) AN . This eventually was recognized as a

signature of multi-parton correlations in hadrons [3–7]

and has been a source of intense theoretical [3–23], pheno-

menological [7,10,16,24–33], and experimental [34–49]

activity for decades. The collinear twist-3 formalism that

underpins this work allows one to explore a rich set of

nonperturbative functions, of which SSAs are sensitive to a

certain subset. Namely, the naïve time-reversal odd (T-odd)

nature of SSAs gives access to pole contributions from

initial state multiparton distribution functions (PDFs)

(where typically one of the partons’ momentum fractions

vanishes [5–8,10,13,16]
1
); or to the imaginary part

of (nonpole) final-state multiparton fragmentation func-

tions (FFs) [14,15].
2
For example, AN in p↑p → πX at

forward rapidity is mainly sensitive to the Qiu-Sterman

PDF FFTðx; xÞ (where the two quarks carry the same

momentum fraction x), as well as H
⊥ð1Þ
1

ðzÞ (which is the

first-moment of the Collins function) and H̃ðzÞ, with z the
momentum fraction carried by the produced hadron.

The latter two functions are certain integrals over z1 (from

z to ∞) of the FF Ĥℑ
FUðz; z1Þ [17], where ℑ indicates the

imaginary part. There are a plethora of SSA measurements,

not only in p↑p → hX but also semi-inclusive deep-

inelastic scattering (SIDIS) eN↑
→ ehX [51–58],

electron-positron annihilation eþe− → h1h2X [59–63],

and Drell-Yan p↑p → fW�; Z; or lþl−gX [64,65].

Due to this data, as well as the connection between

collinear twist-3 and transverse momentum dependent

(TMD) functions [66–70], FFTðx; xÞ, H
⊥ð1Þ
1

ðzÞ, and

H̃ðzÞ, along with the twist-2 transversity PDF h1ðxÞ, have
all been extracted in various phenomenological analyses

(see, e.g., [29,32,33,71–74]).

A complimentary observable to study multiparton

correlations in hadrons is the longitudinal-transverse

double-spin asymmetry ALT in collisions like e⃗N↑
→ πX

and p↑p⃗ → πX. These are T-even reactions that are

sensitive to the nonpole pieces of certain multiparton

PDFs (e.g., FFTðx; x1Þ with x ≠ x1) and the real part ℜ

of certain multiparton FFs [e.g., Ĥℜ
FUðz; z1Þ]. From

the theoretical side, ALT has been well studied in elec-

tron-nucleon [17,75,76] and proton-proton [77–81] colli-

sions for various single-inclusive final states (e.g., hadron,

jet, or photon), with some limited numerical work per-

formed for the electron-nucleon case [75,76], but none for

proton-proton. The main hindrance to more rigorous

predictions has been the lack of input for important
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.

1
The poles are due to propagators in the hard scattering going

on shell. While usually this causes a momentum fraction in the
multiparton PDF to vanish (“soft poles”), there are certain
processes that also lead to “hard poles” [9,11,50], where all
parton momentum fractions remain nonzero.

2
We will still refer to initial-state twist-3 functions as parton

distribution functions (PDFs) and final-state twist-3 functions as
fragmentation functions (FFs), even though they do not have a
strict probability interpretation.
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nonperturbative functions in ALT , which forces one to

resort to approximations or the outright neglect of certain

terms [75,76]. For example, one of the main PDFs that

enters ALT is g
ð1Þ
1T ðxÞ, which is the first-moment of the

worm-gear TMD g1T , and it has only been extracted

recently [82,83].
3
Previous numerical computations utiliz-

ing g
ð1Þ
1T ðxÞ relied on a Wandzura-Wilczek approximation

[17,84–86] that neglects quark-gluon-quark correlators to

approximate g
ð1Þ
1T ðxÞ in terms of an integral of the helicity

PDF g1ðxÞ: g
ð1Þ
1T ðxÞ ¼ x

R

1

x dy g1ðyÞ=y. In addition, the

twist-3 fragmentation piece to ALT is sensitive to a coupling

of the chiral-odd twist-3 FF EðzÞ with h1ðxÞ [80]. No

extractions exist of EðzÞ, but recent knowledge obtained

about the closely related FF H̃ðzÞ [33] allows us for the first
time to develop a realistic input for EðzÞ (in past numerical

work, this function had been simply set to zero [76]). The

potential for future measurements of ALT , particularly in

electron-nucleon collisions, to provide more direct

information about EðzÞ are intriguing due to the connection
of this FF to dynamical quark mass generation in

QCD [87–89].

From the experimental side, measurements of ALT in

single-inclusive processes like those introduced above are

unfortunately lacking. The only data available are from

Jefferson Lab 6 GeV (JLab6) on ALT in e⃗n↑ → πX [90].

Therefore, in this paper we give rigorous numerical

predictions for ALT in a variety of reactions and kinematic

configurations in order to motivate future measurements.

Namely, we will present results for e⃗N↑
→ πX for JLab

12 GeV (JLab12) with N ¼ n, COMPASS with N ¼ p,
and the future Electron-Ion Collider (EIC) with N ¼ p

(along with e⃗p↑
→ jet X), as well as for the Relativistic

Heavy Ion Collider (RHIC) for p↑p⃗ → fπ; jet; or γgX.
Even with the new information about g

ð1Þ
1T ðxÞ and H̃ðzÞ

previously mentioned, we still must employ approxima-

tions for or neglect certain twist-3 PDFs or FFs due to lack

of input for them. Thus, one stands to gain further insight

into multiparton correlations through measurements of

ALT . Especially with only a few years of running left at

RHIC, the world’s only polarized proton-proton collider,

one may forever lose the chance to measure ALT in

p↑p⃗ → fπ; jet; or γgX.
The paper is organized as follows: in Sec. II we

review the analytical formulas for ALT that have been

derived in the literature for the processes of interest

along with the twist-3 PDFs and FFs that enter them.

We also discuss the inputs and approximations used for

these various nonperturbative functions as well as our

strategy for computing the average values and uncer-

tainties of our predictions. We examine the main selected

results for ALT in electron-nucleon and proton-proton

collisions, and their implications for future measure-

ments, in Sec. III. The plots themselves can be found in

Appendix A (for electron-nucleon) and Appendix B (for

proton-proton). In Sec. IV we close with our conclusions

and outlook.

II. THEORETICAL AND COMPUTATIONAL

BACKGROUND

In this section we review the analytical formulas for

ALT needed for our computational work along with the

relevant nonperturbative functions and certain relations

between them. The asymmetry itself is generically

defined as

ALT ≡

1

4
f½dσLTðþ;↑Þ − dσLTð−;↑Þ� − ½dσLTðþ;↓Þ − dσLTð−;↓Þ�g

dσunp
; ð1Þ

where dσLTðλ; S⃗TÞ (dσunp) is the longitudinal-transverse
spin-dependent (unpolarized) cross section, with þ (−)
indicating a particle with positive (negative) helicity λ, and

↑ (↓) denoting a particle with transverse spin S⃗T along the
designated positive (negative) transverse axis (e.g., �y).
Moving forward, the numerator of Eq. (1) will be denoted
by dσLT (without any arguments). We break this section
down into the electron-nucleon and proton-proton cases.

A. ALT in electron-nucleon collisions

We consider the reaction e⃗N↑
→ fπ or jetgX, where

the produced final-state particle has a transverse

momentum PT , which sets the hard scale for the process.

We define the þz-axis to be the direction of N↑
’s

momentum in the electron-nucleon center-of-mass

(c.m.) frame. In addition to PT , the asymmetry also

depends on the c.m. energy
ffiffiffi

S
p

and rapidity η (which

can also be written in terms of xF ¼ 2PT sinhðηÞ=
ffiffiffi

S
p

).

The coordinate system is such that at fixed-target

experiments like JLab and COMPASS, the final-

state particle is produced in the backward region (i.e.,

negative rapidity). The two other Mandelstam vari-

ables at the hadronic level are T ¼ ð−
ffiffiffi

S
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
T þ x2FS=4

p

þ
xFS=2Þ and U ¼ ð−

ffiffiffi

S
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
T þ x2FS=4

p

− xFS=2Þ. We

can then write ALT for the case of pion production

as [17,76],

3
We mention that the authors of Ref. [83] did not directly

extract the twist-3 function g
ð1Þ
1T ðxÞ needed in our analysis.
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Ae⃗N↑
→πX

LT ¼

R

1

zmin

dz
z3

�

−4PT

SþT=z

�

1

x

P

a e
2
a

�

M
û
D

π=a
1

ðzÞGa=Nðx; ŝ; t̂; ûÞ þ Mπ

zt̂
h
a=N
1

ðxÞEπ=aðzÞ
�

− ŝ
t̂

�

�

R

1

zmin

dz
z2

1

SþT=z
1

x

P

a e
2
af

a=N
1

ðxÞDπ=a
1

ðzÞ
�

ŝ2þû2

t̂2

� ; ð2Þ

where

Gðx; ŝ; t̂; ûÞ ¼
�

g
ð1Þ
1T ðxÞ − x

dg
ð1Þ
1T ðxÞ
dx

��

ŝðŝ − ûÞ
2t̂2

�

þ xgTðxÞ
�

−
ŝ û

t̂2

�

þ xg1ðxÞ
�

ûðŝ − ûÞ
2t̂2

�

; ð3Þ

with x ¼ −ðU=zÞ=ðSþ T=zÞ, zmin ¼ −ðT þ UÞ=S, and the
partonic Mandelstam variables ŝ ¼ xS; t̂ ¼ xT=z; û ¼ U=z.
The sum

P

a is over all light quark and antiquark flavors

(a ¼ q or q̄), ea is the quark or antiquark charge (in units of
the positron charge e), and M (Mπ) is the nucleon (pion)

mass.

The nonperturbative functions in Eqs. (2) and (3) include

the (twist-2) unpolarized PDF f1ðxÞ and FF D1ðzÞ, helicity
PDF g1ðxÞ, and transversity PDF h1ðxÞ, along with the

kinematical twist-3 PDF g
ð1Þ
1T ðxÞ (first-moment of the worm-

gear TMD g1T), intrinsic twist-3 PDF gTðxÞ, and (chiral-

odd) intrinsic twist-3 FF EðzÞ. We see that Eq. (2) can be

separated into two terms: one involving twist-3 PDFs (what

we will call the “distribution term”) and one involving a

twist-3 FF (what we will call the “fragmentation term”). We

note that the case of jet production [75] can be readily

obtained from Eq. (2) by replacingD1ðzÞ with δð1 − zÞ and
setting the fragmentation term to zero.

Some readers may be familiar with the more widely

studied/measured ALT asymmetry in inclusive DIS e⃗N↑
→

eX [91–98], where the scattered electron is detected in the

final state instead of a pion. In that process, the entire result

depends only on gTðxÞ, which is connected to the color

Lorentz force on a struck quark in DIS [99]. Already Eq. (2)

makes apparent the rich structure of multiparton correlators

one is sensitive to in ALT for e⃗N↑
→ πX that cannot be

accessed in inclusive DIS. This presents both a challenge,

in that one has several unknown twist-3 functions, but also

an opportunity to probe different aspects of multiparton

correlations in hadrons.

As alluded to above, there are different categories

of twist-3 correlators: kinematical, intrinsic, and also

dynamical [17]. The kinematical twist-3 functions are

generically first-moments of twist-2 TMDs [fð1ÞðxÞ≡
R

d2k⃗T k⃗
2

T=ð2M2Þfðx; k⃗2TÞ]; intrinsic use a twist-3 Dirac

projection in a quark-quark correlator; and dynamical are

quark-gluon-quark or tri-gluon correlators. These twist-3

PDFs or FFs are not independent of each other and can

be related through QCD equation-of-motion relations

(EOMRs) and Lorentz invariance relations (LIRs). We

refer the reader to Ref. [17] (and references therein) for

an extensive overview of collinear twist-3 functions,

including their correlator definitions, derivations of

EOMRs and LIRs, and how to express kinematical and

intrinsic twist-3 functions in terms of the dynamical ones.

For the PDFs relevant to our study [see Eq. (3)], we note the

following relations [17,85,100–103]:

g
q=N
T ðxÞ ¼ g

q=N
1

ðxÞ þ dg
ð1Þq=N
1T ðxÞ
dx

− 2P

Z

1

−1

dy
G

q=N
FT ðx; yÞ
ðx − yÞ2 ; ð4Þ

g
ð1Þq=N
1T ðxÞ ¼ xg

q=N
T ðxÞ −mq

M
h
q=N
1

ðxÞ þ P

Z

1

−1

dx1
F
q=N
FT ðx; x1Þ −G

q=N
FT ðx; x1Þ

x − x1
; ð5Þ

g
q=N
T ðxÞ ¼

Z

ϵðxÞ

x

dy
g
q=N
1

ðyÞ
y

þmq

M

�

h
q=N
1

ðxÞ
x

þ
Z

x

ϵðxÞ
dy

h
q=N
1

ðyÞ
y2

�

þ
Z

ϵðxÞ

x

dx1

x2
1

P

Z

1

−1

dx2

�

1 − x1δðx1 − xÞ
x1 − x2

F
q=N
FT ðx1; x2Þ −

3x1 − x2 − x1ðx1 − x2Þδðx1 − xÞ
ðx1 − x2Þ2

G
q=N
FT ðx1; x2Þ

�

; ð6Þ

g
ð1Þq=N
1T ðxÞ ¼ x

Z

ϵðxÞ

x

dy
g
q=N
1

ðyÞ
y

þmq

M
x

Z

x

ϵðxÞ
dy

h
q=N
1

ðyÞ
y2

þ x

Z

ϵðxÞ

x

dx1

x2
1

P

Z

1

−1

dx2

�

F
q=N
FT ðx1; x2Þ
x1 − x2

−
ð3x1 − x2ÞGq=N

FT ðx1; x2Þ
ðx1 − x2Þ2

�

;

ð7Þ
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where P denotes the principal value prescription,

ϵðxÞ≡ 2θðxÞ − 1, mq is the quark mass, and FFTðx; x1Þ,
GFTðx; x1Þ are dynamical twist-3 PDFs (with FFTðx; x1Þ
giving the Qiu-Sterman function when x¼x1). The twist-2,
kinematical twist-3, and intrinsic twist-3 PDFs all have

support −1≤x≤1, where g
q=N
1

ð−xÞ¼g
q̄=N
1

ðxÞ, gq=NT ð−xÞ¼
g
q̄=N
T ðxÞ, g

ð1Þq=N
1T ð−xÞ ¼ −g

ð1Þq̄=N
1T ðxÞ, and h

q=N
1

ð−xÞ ¼
−h

q̄=N
1

ðxÞ. The dynamical twist-3 PDFs have support

jxj ≤ 1, jx1j ≤ 1, and jx − x1j ≤ 1, with F
q=N
FT ð−x1;−xÞ ¼

F
q̄=N
FT ðx; x1Þ and G

q=N
FT ð−x1;−xÞ ¼ −G

q̄=N
FT ðx; x1Þ [17]. The

first expression (4) is a LIR and (5) is an EOMR, while (6)

and (7) are the result of solving Eqs. (4) and (5) for the

respective functions [17] so that they only involve dynami-

cal twist-3 correlators [with possibly a twist-2 term, as

above with
R

ϵðxÞ
x dy g1ðyÞ=y]. Neglecting the quark mass

terms and dynamical twist-3 PDFs in Eqs. (6) and (7) leads

to the well-known Wandzura-Wilczek (WW) approxima-

tions [84,85,100–106]

g
a=N
T ðxÞ ≈WW

Z

1

x

dy
g
a=N
1

ðyÞ
y

;

g
ð1Þa=N
1T ðxÞ ≈WW

x

Z

1

x

dy
g
a=N
1

ðyÞ
y

;

ð8Þ

where a ¼ q or q̄. Until recently, the WW approximation

was the only input available for g
ð1Þ
1T ðxÞ. Now with the

extraction of g
ð1Þ
1T ðxÞ in Ref. [82], we do not necessarily

have to resort to the WWapproximation. The expression in

Eq. (7) makes clear there is more structure embedded in

g
ð1Þ
1T ðxÞ than what is accounted for in the WW approxima-

tion. Likewise, using the extracted g
ð1Þ
1T ðxÞ from Ref. [82] in

Eq. (4) in principle inserts information about multiparton

correlators into the expression for gTðxÞ, which the WW

approximation does not encode. Even so, we do not have

complete information on gTðxÞ because GFTðx; x1Þ is not
known. In Ref. [107], gu−dT ðxÞ was extracted for the first

time in lattice QCD using the so-called quasidistribution

approach [108]. An interesting prospect is one in principle

could obtain information on GFTðx; x1Þ through a flavor-

separated computation of gTðxÞ on the lattice (taking g1ðxÞ
and g

ð1Þ
1T ðxÞ as known functions).

On the fragmentation side we have [17]

Eh=qðzÞ ¼ −2z

�
Z

∞

z

dz1

z2
1

Ĥ
ℜ;h=q
FU ðz; z1Þ

1

z
− 1

z1

−
mq

2Mh

D
h=q
1

ðzÞ
�

;

ð9Þ

where ĤFUðz; z1Þ is a quark-gluon-quark (dynamical

twist-3) FF, and Mh is the hadron mass. The support

properties are 0 ≤ z ≤ 1 and z < z1 < ∞ [17]. We mention

again that dynamical twist-3 FFs are complex valued

because of the lack of a time-reversal constraint in the

fragmentation sector and have both realℜ and imaginary ℑ

parts. Recently, the FF H̃ðzÞ has been extracted [33], and it
is connected to the imaginary part of the same underlying

correlator ĤFUðz; z1Þ as EðzÞ depends on [17]:

H̃h=qðzÞ ¼ 2z

Z

∞

z

dz1

z2
1

Ĥ
ℑ;h=q
FU ðz; z1Þ

1

z
− 1

z1

: ð10Þ

Wewill use H̃ðzÞ to build up plausible scenarios for EðzÞ in
our numerical work.

B. ALT in proton-proton collisions

We now consider the reaction p↑p⃗ → fπ; jet; or γgX
We define the þz-axis to be the direction of p↑

’s momen-

tum in the proton-proton c.m. frame. There are three pieces

to this observable for the case of pion production, depend-

ing on whether the twist-3 effects occur in p↑, p⃗, or π (for

jet and γ, one only has the first two terms). We write ALT for

this case as

A
p↑p⃗→πX
LT ¼ dσTdistLT þ dσLdistLT þ dσ

frag
LT

dσunp
; ð11Þ

where in the numerator we have indicated whether the

term contains twist-3 effects from p↑ (transversely polar-

ized distribution—“Tdist”) [78], from p⃗ (longitudinally

polarized distribution—“Ldist”) [81], or from π

(fragmentation—“frag”) [80]. The expression for the unpo-

larized cross section reads

dσunp ¼ α2S
S

Z

1

zmin

dz

Z

1

xmin

dx

x

1

x0z2ðxSþU=zÞ
X

i

X

a;b;c

f
a=p
1

ðxÞ

× f
b=p
1

ðx0ÞDπ=c
1

ðzÞHi
Uðŝ; t̂; ûÞ; ð12Þ

where zmin ¼ −ðT þUÞ=S, xmin ¼ −ðU=zÞ=ðSþ T=zÞ,
x0 ¼ −ðxT=zÞ=ðxSþU=zÞ, and the summations are over

all channels i and parton flavors a, b, and c. The hard

factors Hi
Uðŝ; t̂; ûÞ depend on the partonic Mandelstam

variables ŝ ¼ xx0S; t̂ ¼ xT=z; û ¼ x0U=z, and they can be

found in Ref. [10].

We next turn to the longitudinal-transverse polarized

cross sections. For dσTdistLT we have [78]

dσTdistLT ¼ −
2α2sMPT

S

Z

1

zmin

dz

Z

1

xmin

dx

x

1

x0z3ðxSþ U=zÞ

×
X

i

X

a;b;c

1

m̂i

G
a=p↑

i ðx; ŝ; t̂; ûÞgb=p⃗
1

ðx0ÞDπ=c
1

ðzÞ;

ð13Þ

where
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Giðx; ŝ; t̂; ûÞ ¼
 

g
ð1Þ
1T ðxÞ − x

dg
ð1Þ
1T ðxÞ
dx

!

Hi
g̃ðŝ; t̂; ûÞ þ xgTðxÞHi

1;GDT
ðŝ; t̂; ûÞ þ x

2
ðg1ðxÞ − gTðxÞÞHi

3;GDT
ðŝ; t̂; ûÞ

þ
�

g
ð1Þ
1T ðxÞ þ P

Z

1

−1

dx1

x1

xðFFTðx; x1Þ þ GFTðx; x1ÞÞ
x − x1

�

Hi
2;GDT

ðŝ; t̂; ûÞ: ð14Þ

Some comments are in order about the expressions (13) and

(14). First, the variable m̂i in Eq. (13) is either ŝ, t̂, or û
depending on the channel i, with the specific values found

in Table 1 of Ref. [78].
4
Second, the original expression

in Ref. [78] (see Eq. (17) of that paper) is written in terms

of the functions g̃ðxÞ and FDTðx; x1Þ; GDTðx; x1Þ. The

former is just a different notation for g
ð1Þ
1T ðxÞ. The latter

are “D-type” dynamical twist-3 PDFs that use the covariant

derivative, whereas we have chosen to write the result in

terms of “F-type” functions FFTðx; x1Þ; GFTðx; x1Þ that use
the field strength tensor. They are related via [9]

FDTðx; x1Þ ¼ P
1

x − x1
FFTðx; x1Þ; ð15Þ

GDTðx; x1Þ ¼ P
1

x − x1
GFTðx; x1Þ þ δðx − x1Þgð1Þ1T ðxÞ:

ð16Þ

Lastly, we continued to “optimize” Eq. (14) from the

original version in Ref. [78] so that it is written in terms

of a maximal set of functions for which there is input

for from the literature. An observation made in Ref. [78]

was that the hard factorsHi
FDT

,Hi
GDT

found in Appendix A
5

of that paper can be broken down into three types of

terms, namely, Hi ¼ Hi
1
þHi

2
=ð1 − ξÞ þHi

3
=ξ, where ξ ¼

ðx − x1Þ=x, with Hi
1;FDT

¼Hi
1;GDT

, Hi
2;FDT

¼ −Hi
2;GDT

, and

Hi
3;FDT

¼ 0. This insight allows one to use the LIR (4) and

EOMR (5) to obtain the final form in Eq. (14), where now

the only nonperturbative functions we lack input for are

FFTðx; x1Þ; GFTðx; x1Þ, and we will then ignore those terms

in our numerical work.

We now give the formulas for the remaining two terms in

the numerator of Eq. (11). For dσLdistLT we have [81]

dσLdistLT ¼ −
2α2sMPT

S

Z

1

zmin

dz

Z

1

xmin

dx

x

1

z3ðxSþU=zÞ
×
X

i

X

a;b;c

h
a=p↑

1
ðxÞHb=p⃗ðx0; ŝ; t̂; ûÞDπ=c

1
ðzÞ; ð17Þ

where

Hðx0; ŝ; t̂; ûÞ ¼ h1ðx0ÞHi
1Lðŝ; t̂; ûÞ þ hLðx0ÞHi

2Lðŝ; t̂; ûÞ

þ dh
⊥ð1Þ
1L ðx0Þ
dx0

Hi
3Lðŝ; t̂; ûÞ: ð18Þ

The hard factors Hi
f1;2;3gL correspond to σ̂f1;2;3g in

Eqs. (16)–(21) of Ref. [81]. The function hLðxÞ is an

intrinsic twist-3 function while h
⊥ð1Þ
1L ðxÞ is kinematical

twist-3 (first-moment of the other worm-gear TMD function

h⊥
1L). Unlike g

ð1Þ
1T ðxÞ, there are no phenomenological extrac-

tions of h
⊥ð1Þ
1L ðxÞ. Therefore, in our numerical work we must

use WWapproximations that connect hLðxÞ and h⊥ð1Þ
1L ðxÞ to

the twist-2 transversity PDF h1ðxÞ [17,100,101,103]:

h
a=N
L ðxÞ ≈WW

2x

Z

1

x

dy
h
a=N
1

ðyÞ
y2

;

h
⊥ð1Þa=N
1L ðxÞ ≈WW

x2
Z

1

x

dy
h
a=N
1

ðyÞ
y2

;

ð19Þ

where a ¼ q or q̄. Finally, for dσ
frag
LT we have [80]

dσ
frag
LT ¼ 2α2sMPT

S

Z

1

zmin

dz

Z

1

xmin

dx

x

1

x0z4ðxSþ U=zÞ
×
X

i

X

a;b;c

h
a=p↑

1
ðxÞgb=p⃗

1
ðx0ÞEπ=cðzÞHi

fðŝ; t̂; ûÞ;

ð20Þ

where the hard factors Hi
f correspond to σ̂i in Eq. (15) of

Ref. [80], and EðzÞ is the same dynamical twist-3 FF

introduced in the electron-nucleon case (2) (see also Eq. (9)).

We mention that the result for ALT in p↑p⃗ → jet X can

be obtained by replacing D1ðzÞ by δð1 − zÞ in Eqs. (12),

(13), and (17) and setting dσ
frag
LT to zero. We refer the reader

to Appendix B of Ref. [78] (see also [77]) for the dσTdistLT

formula for p↑p⃗ → γX.
6
To the best of our knowledge, the

dσLdistLT formula for p↑p⃗ → γX has not been derived yet in

the literature. Since we consider only direct photons, there

is no dσ
frag
LT term. The unpolarized cross section dσunp for

pp → γX can be found in Ref. [10].
4
We note a typo in the last row for the t̂ column of Table 1 in

Ref. [78], where the channel should read qq̄ → q̄0q0.
5
The hard factors Hi

g̃ can also be found in Appendix A of
Ref. [78].

6
Note that m̂i ¼ û in this case for both channels (qg → γq and

qq̄ → γg), which was not explicitly stated in Ref. [78].

NUMERICAL STUDY OF THE TWIST-3 ASYMMETRY ALT … PHYS. REV. D 107, 014013 (2023)

014013-5



C. Numerical methodology

We end this section with a discussion of our strategy for

obtaining realistic numerical predictions for ALT given the

information set forth in the previous two subsections.

1. Nonperturbative inputs

With regard to input for the nonperturbative functions,

we use CT18 NLO [109] for f1ðxÞ, DSS14 NLO [110] for

D1ðzÞ, NNPDFpol1.1 [111] for g1ðxÞ, and JAM3D-22 [33]

for h1ðxÞ, all via LHAPDF 6.2.3 [112]. For g
ð1Þ
1T ðxÞ and

gTðxÞ we consider two scenarios:

(1) quark-gluon-quark (qgq) scenario: We use g
ð1Þ
1T ðxÞ

extracted in Ref. [82], which in principle implicitly

encodes dynamical twist-3 functions [see Eq. (7)], and

Eq. (4) for gTðxÞ withGFTðx; x1Þ set to zero (since we
have no direct input for it). This is the maximal

amount of information about quark-gluon-quark cor-

relations we can include in gTðxÞ and g
ð1Þ
1T ðxÞ.

(2) WW scenario: We use Eq. (8) for gTðxÞ and g
ð1Þ
1T ðxÞ,

which completely neglects quark-gluon-quark cor-

relations.

A plot comparing the two different scenarios for g
ð1Þ
1T ðxÞ

is shown in Fig. 1, and for gTðxÞ is shown in Fig. 2 along

with a lattice QCD (LQCD) calculation (for the isovector

u − d combination) of the latter [107].
7
We remark that

g
ð1Þu
1T ðxÞ is larger in the qgq scenario and falls off slower at

larger x. Both the qgq and WW scenarios are compatible

within error bands for g
ð1Þd
1T ðxÞ. The behavior of gTðxÞ in

the two scenarios is quite different, mostly due to the

dg
ð1Þ
1T ðxÞ=dx term that enters Eq. (4) for the qgq case, which

causes a change in sign in gTðxÞ at moderate x values. For

the d quark, the two scenarios are still compatible within

error bands, but for the u quark the qgq scenario is

generally larger than the WW (in addition to having the

aforementioned sign change). The lattice computation for

gu−dT ðxÞ shows agreement with the qgq and WW scenarios

up to x ≈ 0.4. At larger x, the WW scenario goes to zero the

fastest, while the qgq scenario exhibits a change in sign and

slower decrease as x → 1. The lattice calculation at large x
must deal with systematic effects in reconstructing the x

FIG. 1. Plot of the up (u) and down (d) quark in a proton kinematic twist-3 PDF xg
ð1Þ
1T ðxÞ vs. x at Q2 ¼ 4 GeV2 for the qgq scenario

(blue dashed) and WW scenario (magenta solid) [both with 68% confidence level (CL) error bands].

FIG. 2. Plot of the u, d, and u − d in a proton intrinsic twist-3 PDF xgTðxÞ vs. x at Q2 ¼ 4 GeV2 for the qgq scenario (blue dashed),

WW scenario (magenta solid), and (for u − d) the lattice QCD (LQCD) calculation (green dotted) from Ref. [107] (all with 68% CL

error bands).

7
We note that the gTðxÞ computation in the qgq scenario

depends on g1ðxÞ, where we use NNPDF replicas [111], and

g
ð1Þ
1T ðxÞ, where we use the replicas from Bhattacharya et al. [82].
To calculate the central curve and uncertainty band in this case,
we use the same bootstrapping method described around Eq. (24)
below.
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dependence that make the behavior of gTðxÞ in that region

unreliable [107]. Once there is a rigorous lattice result of

gTðxÞ across a wider range of x and for individual u and d
flavors, one in principle could use the difference between

LQCD and the qgq scenario [taking g1ðxÞ and g
ð1Þ
1T ðxÞ as

known functions] to extract information on the dynamical

twist-3 PDF GFTðx; x1Þ [see Eq. (4)].

The last function we need input for is EðzÞ. This intrinsic
twist-3 FF was previously given attention in the literature

because of its connection to dynamical quark mass gen-

eration in QCD [87–89], which can also allow one to probe

the transversity PDF h1ðxÞ in inclusive DIS [87]. As

explicitly set forth in Eqs. (9) and (10), EðzÞ is driven

by the same quark-gluon-quark FF [ĤFUðz; z1Þ] as H̃ðzÞ,
which we have input for from the JAM3D-22 analysis [33].

Even so, there are some caveats with establishing this

connection. EðzÞ depends on the real part of ĤFUðz; z1Þ,
while H̃ðzÞ depends on the imaginary part, and the two

need not necessarily be related. The functions also obey

different sum rules [89]:

X

h

X

Sh

Mh

Z

1

0

dzEh=qðzÞ ¼ Mj;

X

h

X

Sh

Mh

Z

1

0

dz H̃h=qðzÞ ¼ 0;

ð21Þ

where the summation is over all hadrons h and their spins

Sh. The mass Mj is the (gauge-invariant, nonperturbative)

“jet mass” of a color-screened dressed quark propagating in

the vacuum [88,89], which can be substantially larger than

the current quark mass mq.
8
In the next section, we will

revisit the possibility of ALT measurements, especially in

electron-nucleon collisions, providing direct information

about EðzÞ, and, therefore, potentially giving insight into

Mj. These disclaimers notwithstanding, we think three

realistic scenarios to study for EðzÞ are EðzÞ ¼ −H̃ðzÞ,
EðzÞ ¼ 0, and EðzÞ ¼ H̃ðzÞ. This accounts for EðzÞ either
being the same order of magnitude as H̃ðzÞ (although we

cannot fix its sign) or EðzÞ being significantly smaller than

H̃ðzÞ. A plot for the EðzÞ ¼ −H̃ðzÞ scenario is displayed

in Fig. 3.

2. Computation of central curves and error bands

Clearly a numerical calculation of ALT in e⃗N↑
→

fπ or jetgX or p↑p⃗ → fπ; jet; or γgX depends on several

nonperturbative inputs that have been extracted from

various groups. We now discuss our procedure for

obtaining the central curves and error bands for the results

presented in the next section. To aid in this explanation, we

write the asymmetries as

Ae⃗N↑
→πX

LT ¼ dσdistLT ðg1; g
ð1Þ
1T ; gT ; D1Þ þ dσ

frag
LT ðh1; EÞ

dσunpðf1; D1Þ
≡ Ae⃗N↑

→πX
LT;dist ðg1; gð1Þ1T ; gT ; f1; D1Þ þ Ae⃗N↑

→πX
LT;frag ðh1; E; f1; D1Þ; ð22Þ

A
p↑p⃗→πX
LT ¼ dσTdistLT ðg1; gð1Þ1T ; gT ; D1Þ þ dσLdistLT ðh1; D1Þ þ dσ

frag
LT ðh1; g1; EÞ

dσunpðf1; D1Þ

≡ A
p↑p⃗→πX
LT;Tdist ðg1; g

ð1Þ
1T ; gT ; f1; D1Þ þ A

p↑p⃗→πX
LT;Ldist ðh1; f1; D1Þ þ A

p↑p⃗→πX
LT;frag ðh1; g1; E; f1; D1Þ; ð23Þ

FIG. 3. Plot of the (favored and unfavored) twist-3 FF zEðzÞ vs. z at Q2 ¼ 4 GeV2 for the EðzÞ ¼ −H̃ðzÞ scenario, where H̃ðzÞ is
taken from Ref. [33].

8
The first term in Eq. (9) can be identified as ẼðzÞ, which then allows for the decomposition Mj ¼ mq þmcorr

q discussed in
Refs. [88,89], whereMj is broken down into the current quark massmq and a termmcorr

q that encodes dynamical mass generation due to

quark-gluon-quark correlations.
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where we have explicitly indicated for each term which

nonperturbative functions it depends on.
9
For f1ðxÞ and

D1ðzÞ, since they have relatively small uncertainties com-

pared to the other PDFs and FFs, we simply use their

central values and do not propagate their error into the

computation.

We first focus on the electron-nucleon case. The frag-

mentation term Ae⃗N↑
→πX

LT;frag depends on h1ðxÞ and EðzÞ (recall
we are using H̃ðzÞ to build our input for EðzÞ). Both h1ðxÞ
and H̃ðzÞ were extracted simultaneously in JAM3D-22

[33], and we use all 450 replicas from that analysis to

compute the mean and standard deviation for Ae⃗N↑
→πX

LT;frag . For

the distribution term, we are considering the two previously

mentioned scenarios (WW and qgq). In the WW scenario,

g
ð1Þ
1T ðxÞ and gTðxÞ both depend only on g1ðxÞ. We therefore

can use all 100 replicas from NNPDFpol1.1 [111] to

determine the mean and standard deviation for Ae⃗N↑
→πX

LT;dist .

The qgq scenario is more complicated because it depends

on PDFs extracted by completely independent analyses,

namely, g1ðxÞ from NNPDFpol1.1 [111] and g
ð1Þ
1T ðxÞ from

Bhattacharya et al. [82] (recall our input for gTðxÞ depends
on both these functions). For g

ð1Þ
1T ðxÞ there are 200 replicas,

so a complete calculation of Ae⃗N↑
→πX

LT;dist in the qgq scenario

would require computing 100 × 200 ¼ 20;000 replicas.

Instead, we bootstrap the result by randomly sampling

replicas for g1ðxÞ and for g
ð1Þ
1T ðxÞ (with replacement). We

continue to increase the number of replicas sampled and

then calculate the (unequal variance or Welch’s) t-statistic
using the current and previous iterations, where [113]

t ¼ μ1 − μ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
1
=N1 þ σ2

2
=N2

p ; ð24Þ

with μ the mean, σ the standard deviation, and N the

number of “data points” (replicas sampled) of the respec-

tive distribution of ALT values for a given PT . Once jtj is
such that the corresponding p-values ≳ 0.1, then we

consider the two distributions statistically equivalent [113]

and do not proceed with any further iterations.
10
(We also

visually inspect the results to confirm the mean and

standard deviation of ALT have converged.) The

t-statistic, and consequently the number of replicas

required for convergence, is kinematic (
ffiffiffi

S
p

; η; PT) and

process (initial and final state) dependent. For example,

1500 replicas were needed for JLab12 while 3000 were

necessary for the EIC at
ffiffiffi

S
p

¼ 29 GeV. Recall our

calculation of Ae⃗N↑
→πX

LT;dist and Ae⃗N↑
→πX

LT;frag are totally uncorre-

lated from each other in that the respective nonperturbative

functions that enter each term are from independent

analyses by different groups. Thus, once we have the final

sample, we determine the central curve and uncertainty

(68% CL error band) as

hAe⃗N↑
→πX

LT i ¼ hAe⃗N↑
→πX

LT;dist i þ hAe⃗N↑
→πX

LT;frag i;

δAe⃗N↑
→πX

LT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðδAe⃗N↑
→πX

LT;dist Þ2 þ ðδAe⃗N↑
→πX

LT;frag Þ2
q

:
ð25Þ

For the proton-proton case we follow a similar strategy,

but there are some new aspects one must consider. The

fragmentation term A
p↑p⃗→πX
LT;frag now also depends on g1ðxÞ

(since there is a longitudinally polarized proton involved,

not an electron). In addition, A
p↑p⃗→πX
LT;Ldist depends on h1ðxÞ

and, consequently, must be computed simultaneously with

A
p↑p⃗→πX
LT;frag using the same replica sampled for h1ðxÞ in that

term. Therefore, we must bootstrap the entire A
p↑p⃗→πX
LT

asymmetry using the replicas from NNPDFpol1.1,

Bhattacharya et al., and JAM3D-22, following a similar

procedure as outlined for the electron-nucleon case, for

both the WW and qgq scenarios.
11
We again calculate the

t-statistic of our ALT distributions (and visually inspect

them) for different iterations to determine the number of

samples required for convergence. As before, there is a

kinematic and process dependence; for example, RHIC
ffiffiffi

S
p

¼ 200 GeV at midrapidity (η ¼ 0) needed 2500 sam-

ples while 3500 were necessary at forward rapidity

(η ¼ 3.3). Since all terms in A
p↑p⃗→πX
LT are correlated with

each other, we determine the central curve and uncertainty

using

D

A
p↑p⃗→πX
LT

E

¼
D

A
p↑p⃗→πX
LT;Tdist

E

þ
D

A
p↑p⃗→πX
LT;Ldist

E

þ
D

A
p↑p⃗→πX
LT;frag

E

;

δA
p↑p⃗→πX
LT ¼ δ

�

A
p↑p⃗→πX
LT;Tdist þA

p↑p⃗→πX
LT;Ldist þA

p↑p⃗→πX
LT;frag

�

:

ð26Þ

We mention that for the jet and photon final states in

proton-proton collisions, since the fragmentation term does

not enter, the transverse and longitudinal distribution terms

are uncorrelated. The latter can be calculated using all

replicas from JAM3D-22. The former requires bootstrap-

ping for the qgq scenario, but for the WW scenario it can

be computed using all replicas from NNPDFpol1.1.

The central curve and uncertainty are then found exactly

as in Eq. (25), with the replacements ðe⃗N↑
→ πXÞ →

ðp↑p⃗ → fjet or γgXÞ, dist → Tdist, frag → Ldist.

9
Note for A

p↑p⃗→πX
LT;Ldist , the nonperturbative functions that enter are

h1ðxÞ, hLðxÞ, and h
⊥ð1Þ
1L ðxÞ [see Eqs. (17) and (18)]. However,

since we use WW approximations for the latter two, which
depend on h1ðxÞ [see Eq. (19)], we have only denoted a
dependence on h1ðxÞ.

10
For many PT points, the p-values were much greater than

0.1, approaching 1.0 in some cases.

11
Note that even for the WW scenario we need to employ

bootstrapping since g1ðxÞ shows up in A
p↑p⃗→πX
LT;frag .
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III. RESULTS AND DISCUSSION

In this section we report our main results for ALT in

electron-nucleon and proton-proton collisions. We mention

that, especially at the EIC and RHIC, we extensively

studied the (
ffiffiffi

S
p

; η; PT) coverage and are able to provide

predictions for any reaction at any kinematics upon request.

Here we discuss a selective collection of plots, which

can be found in Appendix A (for electron-nucleon) and

Appendix B (for proton-proton), that highlight the main

features of ALT in the single-inclusive processes under

investigation. Each plot shows six cases based on the

possible combinations of input for g
ð1Þ
1T ðxÞ, gTðxÞ, and EðzÞ,

i.e., qgq or WW scenario for g
ð1Þ
1T ðxÞ, gTðxÞ, and EðzÞ¼

−H̃ðzÞ, EðzÞ ¼ 0, or EðzÞ¼ H̃ðzÞ. We remark again that the

only measurement available of either e⃗N↑
→fπ or jetgX or

p↑p⃗ → fπ; jet; or γgX is from JLab6 for e⃗n↑ → πX [90].

There have been a few numerical calculations of e⃗N↑
→

fπ or jetgX [75,76], but only with central curves (no error

bands) using the WW approximation for g
ð1Þ
1T ðxÞ, gTðxÞ and

(for pion production) ignoring the fragmentation term

involving EðzÞ. No numerical studies exist for the pro-

ton-proton case.

A. Comparison with JLab6 data

The comparison between our predictions and the JLab6

measurement is shown in Fig. 4. We caution that the

data are at PT < 1 GeV, so one has to be careful about

using a perturbative calculation in this region, and what

conclusions to infer from it. (In the computation, for any

PT-dependent kinematic quantities we used the actual

experimental PT value, but in the nonperturbative functions

we fixed PT ¼ 1 GeV.) We see that generally all cases are

able to describe the data relatively well, with the distribution

term playing a dominant role over the fragmentation term.

Nevertheless, there are hints, looking at the EðzÞ ¼ H̃ðzÞ
row of Fig. 4, that having a nonzeroEðzÞwith the same sign

as H̃ðzÞ aids in obtaining better agreement with the data. We

note that the qgq scenario has larger error bands than the

WWscenario because the direct extraction of g
ð1Þ
1T ðxÞ ismuch

less constrained than g1ðxÞ (which is used in the WW

approximation). This is especially noticeable for πþ because

g
d=p
1T ðxÞ has a larger error band than g

u=p
1T ðxÞ [82] (recall

JLab6 is for a neutron target, and we are employing isospin

symmetry to obtain the neutron PDFs).

B. Predictions for JLab12, COMPASS, and the EIC

Wenextgive predictions for JLab12,COMPASS, anda few

sets of EIC kinemtics. We mention that next-to-leading order

(NLO) corrections for the electron-nucleon single-inclusive

unpolarized cross section (eN→fπorjetgX) [114] have be
shown to be sizeable, and for the double-longitudinal spin

asymmetry ALL (e⃗N⃗→fπ or jetgX) [115] they are also

non-negligible. In addition, lower-energy experiments are

typically dominated by quasireal photoproduction [116].

These issues should have less impact as one goes to higher

PT (≳2 or 3 GeV), but high-precision measurements at the

EIC may require NLO calculations.

In Fig. 5 we present results for JLab12 with a neutron

target. In all cases, sizeable asymmetries ∼15 − 30% are

predicted which grow more substantial with increasing PT .

The distribution term gives basically the entirety of ALT .

The qgq scenario also tends to be larger than the WW

scenario, especially at higher PT. Therefore, one may be

able to use JLab12 data to test the WW approximation and

potentially extract information about dynamical quark-

gluon-quark correlations in the nucleon.

The COMPASS results are displayed in Fig. 6 for a

proton target, which are roughly an order of magnitude

smaller than JLab12 but still measurable at ∼2 − 4%. From

the first [EðzÞ ¼ −H̃ðzÞ] and last [EðzÞ ¼ H̃ðzÞ] rows of

the plot, we see that, unlike JLab12, the ALT fragmentation

term can be comparable to the distribution term, at least for

π− production. Since the EðzÞ ¼ 0 case (middle row) has

ALT for π
− clearly positive, a measured negative asymmetry

would be a likely indication of quark-gluon-quark frag-

mentation effects. The qgq and WW scenarios may be

difficult to distinguish at COMPASS since they give

similarly-sized effects.

The low-energy EIC predictions at midrapidity (
ffiffiffi

S
p

¼
29 GeV; η ¼ 0) are shown in Fig. 7, where again we notice

a further decrease in the size of the asymmetry compared to

JLab12 and COMPASS, with ALT now ∼0.5 − 1.5%.

Similar to COMPASS, a clearly negative signal for π−

production would be caused by quark-gluon-quark frag-

mentation. Since the EIC will also measure jets, we give

results for that reaction at higher-energy EIC kinematics

and slightly forward rapidity (
ffiffiffi

S
p

¼63GeV;η¼1) in Fig. 9.

The asymmetry again decreases, now to ∼0.1 − 0.3%, due

to the increase in c.m. energy and the fact that jets are being

detected instead of pions.

The general features of ALT in electron-nucleon collisions

are that it increases with PT but decreases significantly with
ffiffiffi

S
p

. However, as η increases, and one pushes PT to the

theoretical kinematic limit, the fragmentation term can cause

an enhanced growth in ALT . A typical example is shown in

Fig. 8. One sees the asymmetry is basically zero for most of

the PT range and then receives an sizeable enhancement at

the largest PT values. In this region, zmin in Eq. (2) is around

0.8 to 0.9; one is then integrating at the threshold of

producing the pion, where EðzÞ is not constrained and

resummation techniques may be needed [117–121].

Whether or not this is a physical effect that would be

observed in experiments remains to be seen.

The measurement of ALT in e⃗N
↑
→ fπ or jetgX at future

experiments has the potential to provide insight into quark-

gluon-quark correlations, especially given the precision

expected at the EIC. A reduction in the uncertainty of
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g
ð1Þ
1T ðxÞ will be key if one is to disentangle dynamical

twist-3 effects from the twist-2 WW approximation. More

precise measurements of the A
cosðϕh−ϕSÞ
LT modulation in

SIDIS at COMPASS, SoLID at JLab, and the EIC will

be crucial to achieve this. For example, there are hints in

Fig. 7 that the qgq scenario may differ from the WW

scenario by ∼0.5%, but currently the error band in the qgq

scenario (that relies on the full extraction of g
ð1Þ
1T ðxÞ) is too

large to distinguish the two. A similar statement can be

made for jet production in Fig. 9. Also recall that even in

the qgq scenario, we neglected the dynamical twist-3 PDF

GFTðx; x1Þ in Eq. (4). Thus, significant differences between
the qgq scenario predictions and future data could provide

information on this function. Moreover, any significant

deviations from the EðzÞ ¼ 0 scenario, especially if g
ð1Þ
1T ðxÞ

becomes more constrained, would allow for an extraction

of this twist-3 FF. Given its connection to dynamical quark

mass generation in QCD [see the discussion around

Eq. (21)], the potential for ALT to give us information

on EðzÞ is another intriguing reason to measure it.

C. Predictions for RHIC

We now report on the results for ALT in p↑p⃗ →

fπ; jet; or γgX at RHIC, the only machine capable of

measuring this asymmetry. We focus on
ffiffiffi

S
p

¼ 200 GeV

c.m. energy at middle and forward rapidities. We remind

the reader that there are three pieces to the asymmetry given

in Eqs. (13), (17) and (20) (although the fragmentation term

doesn’t enter for photon or jet production). Our predictions

for charged pion production at midrapidity (η ¼ 0) in

Fig. 10 reach to ∼0.02 − 0.05% for π� at the highest PT .

The transverse distribution term gives the largest contri-

bution to ALT , although the fragmentation term plays a non-

negligible role. At forward rapidity (η ¼ 3.3) in Fig. 11, the

asymmetry has larger error bands for the qgq scenario

that are consistent with zero but range from ∼−0.3% to

þ0.2%. In the WW approximation the uncertainties are

much smaller at larger PT and again consistent with zero.

In either case, the transverse distribution term gives the

entirety of ALT at forward rapidity. The π0 asymmetries

(Figs. 12 and 13) are similar in size to π�. For jet or photon
production at midrapdity (Fig. 14), our predictions for ALT

are ≲ 0.03%. We note that at
ffiffiffi

S
p

¼ 500 GeV, the asym-

metry (for any final state) is generally an order of

magnitude smaller than at
ffiffiffi

S
p

¼ 200 GeV.

The reader may question why ALT in proton-proton

collisions is much smaller than AN . Recall that AN (where

one proton is unpolarized and the other is transversely

polarized) is another (much more widely studied/measured)

twist-3 asymmetry that does show significant effects, at

least in the forward region [34–46,49]. We found that there

are two driving factors. First, in the qg → qg channel

(which is the dominant channel in the numerator of AN and

ALT), the fragmentation term for AN (which is the main

source of the asymmetry [29,31–33]) has hard factors

∼1=t̂3, whereas in the transverse distribution term (13)

for ALT (which is the main source of that asymmetry) the

hard factors ∼1=ðt̂2ûÞ. Since t̂ → 0 in the forward region,

this provides an enhancement to AN not seen in ALT . The

second difference is AN has an unpolarized proton, so in the

qg → qg channel, f
g
1
ðxÞ multiplies the (twist-3) fragmen-

tation term. On the other hand, ALT has a longitudinally

polarized proton, so g
g
1
ðxÞ multiplies the (twist-3) trans-

verse distribution term. In the forward region (of the

transversely polarized proton), these gluon functions are

probed at small x; hence, AN becomes significantly larger

than ALT . In fact, we checked that if in the numerator of AN

one replaces f
g
1
ðxÞ (in the qg → qg channel) with g

g
1
ðxÞ, the

asymmetry is nearly as suppressed as ALT .

We emphasize that, in addition to the assumptions

that underlie our scenarios for g
ð1Þ
1T ðxÞ; gTðxÞ and EðzÞ, the

proton-proton case has several terms that we are forced to

neglect due to lack of input for dynamical twist-3

correlators. Namely, we do not consider the terms in

Eq. (14) involving FFTðx; x1Þ; GFTðx; x1Þ. The WW

approximation we use for hLðxÞ and h
⊥ð1Þ
1L ðxÞ in

Eq. (18) sets to zero another dynamical twist-3 PDF

called HFLðx; x1Þ [17,100,101,103].
12

Therefore, mea-

surements that significantly deviate from our predictions

could provide information on these unknown quark-

gluon-quark correlators.

IV. CONCLUSIONS AND OUTLOOK

We have numerically analyzed the twist-3 asymmetry

ALT in single-inclusive electron-nucleon and proton-

proton collisions for various final states. This is the

first time contributions from all terms entering these

asymmetries have been computed. Nevertheless, some

approximations/assumptions had to be employed, includ-

ing ignoring certain dynamical twist-3 PDFs due to a lack

of information about them. Using recent extractions of

g
ð1Þ
1T ðxÞ [82] and H̃ðzÞ [33], we were able to develop

realistic scenarios to investigate for three critical functions

in ALT : g
ð1Þ
1T ðxÞ, gTðxÞ, and EðzÞ. We used bootstrapping to

provide a rigorous error quantification of our calculation

that accounts for the fact that ALT depends on multiple

nonperturbative functions extracted by different groups.

We found good agreement with JLab6 data, which is the

only ALT measurement available (for single-inclusive

observables). We then made predictions for ALT in

electron-nucleon collisions at JLab12, COMPASS, and

12
We note that there are some model calculations of functions

connected to FFTðx; x1Þ; GFTðx; x1Þ [122]. The worm-gear TMD

h⊥
1L in the future can be extracted from data on the A

sin 2ϕh

LT
modulation in SIDIS [58,123–127].
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the EIC, as well as proton-proton collisions at RHIC,

in order to motivate future measurements. Beyond the

results presented in this paper, we are able to provide

predictions for any initial/final states and kinematic region

ð
ffiffiffi

S
p

; η; PTÞ upon request.

In electron-nucleon collisions, the asymmetry decreases

with increasing center-of-mass energy, going from (for

π� production) ∼15 − 30% at JLab12 to ∼2 − 4% at

COMPASS to ∼0.5 − 1.5% for the low-energy EIC con-

figuration (at midrapidity). An intriguing prospect is if

significant deviations from the EðzÞ ¼ 0 scenario are

measured, it could provide direct information on EðzÞ,
which is connected to dynamical quark mass generation in

QCD [87–89]. One may also be able to test the validity of

the Wandzura-Wilczek approximation for g
ð1Þ
1T ðxÞ; gTðxÞ

and probe dynamical twist-3 PDFs, especially with pre-

cision measurements at the EIC. The calculation of the

proton-proton case at RHIC kinematics showed (for π�

production) ALT ∼ 0.02 − 0.05% at midrapidity and can be

in the range of ∼ − 0.3% toþ0.2% at forward rapidity. The

asymmetry does not grow rapidly at forward rapidity, in

contrast to AN , due to a suppression caused by the other

proton being longitudinally polarized instead of unpolar-

ized (where g
g
1
ðxÞ then enters the qg → qg channel in the

numerator of the asymmetry instead of f
g
1
ðxÞ). Since RHIC

is the only machine capable of measuring ALT in proton-

proton collisions, confirmation or refutation of our pre-

dictions would aid in better understanding the role of

quark-gluon-quark correlations in hadrons.
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APPENDIX A: ELECTRON-NUCLEON RESULTS

In this appendix we include the plots discussed in

Secs. III A and III B for JLab6 (Fig. 4), JLab12 (Fig. 5),

COMPASS (Fig. 6), low-energy EIC for pion production at

midrapidity (Fig. 7) and slightly forward rapidity (Fig. 8),

and higher-energy EIC for jet production at slightly

forward rapidity (Fig. 9).

FIG. 4. Predictions for ALT vs. PT in e⃗n↑ → πX compared to

JLab6 data [90]. The left column is for the qgq scenario for

g
ð1Þ
1T ðxÞ, gTðxÞ and the right is for the WW scenario (see Sec. II C

for more details). The first row is for the case EðzÞ ¼ −H̃ðzÞ, the
second for EðzÞ ¼ 0, and third for EðzÞ ¼ H̃ðzÞ. The solid curve

gives the average total asymmetry (with 68% CL error band),

while the dashed (dotted) curves give the average individual

contribution from the distribution (fragmentation) term.

FIG. 5. Predictions for ALT vs. PT in e⃗n↑ → πX for JLab12

kinematics (
ffiffiffi

S
p

¼ 4.6 GeV; η ¼ −0.5). The description is the

same as the Fig. 4 caption.
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APPENDIX B: PROTON-PROTON RESULTS

In this appendix we include the plots discussed in

Sec. III C for RHIC for π� at midrapidity (Fig. 10) and

forward rapidity (Fig. 11), for π0 production at midrapidity

(Fig. 12) and forward rapidity (Fig. 13), and for jet or

photon production at midrapidity (Fig. 14).

FIG. 6. Predictions for ALT vs. PT in e⃗p
↑
→ πX for COMPASS

kinematics (
ffiffiffi

S
p

¼ 17.3 GeV; η ¼ −1). The description is the

same as the Fig. 4 caption.

FIG. 7. Predictions for ALT vs. PT in e⃗p↑
→ πX for low-energy

EIC kinematics at midrapidity (
ffiffiffi

S
p

¼ 29 GeV; η ¼ 0). The

description is the same as the Fig. 4 caption.

FIG. 8. Predictions for ALT vs. PT in e⃗p↑
→ πX for low-energy

EIC kinematics at slightly forward rapidity (
ffiffiffi

S
p

¼29GeV;η¼1).

The description is the same as the Fig. 4 caption.

FIG. 9. Predictions for ALT vs. PT in e⃗p↑
→ jet X for higher-

energy EIC kinematics at slightly forward rapidity (
ffiffiffi

S
p

¼
63 GeV; η ¼ 1).
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FIG. 10. Predictions for ALT vs. PT in p↑p⃗ → π�X for RHIC

kinematics at midrapidity (
ffiffiffi

S
p

¼ 200 GeV; η ¼ 0). The left

column is for the qgq scenario for g
ð1Þ
1T ðxÞ, gTðxÞ and the right

is for the WW scenario (see Sec. II C for more details). The first

row is for the case EðzÞ ¼ −H̃ðzÞ, the second for EðzÞ ¼ 0, and

third for EðzÞ ¼ H̃ðzÞ. The solid curve gives the average total

asymmetry (with 68% CL error band), while the dashed (dashed-

dotted, dotted) curves give the average individual contribution

from the transverse distribution (longitudinal distribution, frag-

mentation) term.

FIG. 11. Predictions for ALT vs. PT in p↑p⃗ → π�X for RHIC

kinematics at forward rapidity (
ffiffiffi

S
p

¼ 200 GeV; η ¼ 3.3). The

description is the same as the Fig. 10 caption.

FIG. 12. Predictions for ALT vs. PT in p↑p⃗ → π0X for RHIC

kinematics at midrapidity (
ffiffiffi

S
p

¼ 200 GeV; η ¼ 0). The descrip-

tion is the same as the Fig. 10 caption.

FIG. 13. Predictions for ALT vs. PT in p↑p⃗ → π0X for RHIC

kinematics at forward rapidity (
ffiffiffi

S
p

¼ 200 GeV; η ¼ 3.3). The

description is the same as the Fig. 10 caption.
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