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Key Points:
e A Bayesian data-fusion system was used to assimilate global observations to constrain
centennial carbon cycle model dynamics

e The spatial variation of the carbon sink is shaped by how strongly increased plant growth

leads to increased plant and soil respiration

e Higher respiration losses in wet tropics offsets stronger plant growth there, resulting in a

stronger carbon sink in the temperate regions
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Abstract

Over the past century, increased atmospheric CO; concentrations have enhanced photosynthesis
through CO, fertilization across the globe. However, the increased growth has also led to greater
respiration rates — both from vegetation (autotrophic respiration) and through the breakdown of
plant litter and soil organic matter (heterotrophic respiration). The resulting change in carbon
flux — and its spatial distribution — that can be attributed to increasing CO- and climate change
remain unknown. We used the Carbon Data Model Framework (CARDAMOM), a model-data
fusion system that assimilates global observations from satellites and other sources to create an
ensemble of observationally-constrained carbon cycle representations, to determine the
photosynthesis and respiration fluxes that can be attributed to increased atmospheric CO; and
associated climate change from 1920-2015. Across the globe, the response of photosynthesis and
respiration to atmospheric CO2 dominates their response to climate alone. The regional
distribution of the carbon sink attributable to climate change and CO: is strongly influenced by
the "loss ratio of carbon gained’ — the fraction of enhanced photosynthesis that is lost to
respiration. While the wet tropics’ attributable photosynthesis flux is 1.4 times larger than that of
the temperate region, the attributable flux of net carbon uptake is actually 1.25 larger in the
temperate region, due to the wet tropics’ greater heterotrophic respiration response to enhanced
plant growth. At global scale, the loss ratio of carbon gained is 83+0.6%. Our results highlight
the importance of the respiration responses to enhanced plant growth in regulating the land

carbon sink.
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Plain Language Summary

Earth’s land areas have taken up a large amount of carbon from the atmosphere over the last
century. However, exactly where, why, and by how much carbon uptake has increased is
uncertain. We used a modeling system informed by global observations from satellites and
elsewhere to quantify how the flows of carbon changed in response to the last century of
increasing atmospheric CO,. We found that increased photosynthesis stimulates greater
ecosystem respiration, decreasing CO2’s effect on net land carbon uptake. The fraction of
increased photosynthesis that goes to respiration (rather than land carbon storage) varies by
region and determines the location of the largest net land carbon uptake. Although it acts
indirectly through changes in plant and soil carbon stocks, the respiration response to CO2 was a
dominant component of the land carbon cycle response to human-caused emissions of CO; and

associated climate change.

1 Introduction

Human activity affects the global carbon cycle both directly (e.g., through land use
change) and indirectly (primarily through changes in climate caused by greenhouse gas
emissions). The resulting changes in climate affect the rate at which ecosystems grow and
decompose. Increased atmospheric CO> concentrations associated with emissions also directly
stimulate photosynthesis through so-called CO- fertilization (Walker et al., 2020). Taken
together, CO; fertilization and climate change affect the net land carbon sink, which is the
balance of photosynthesis (gross primary productivity, GPP), respiration, and disturbance fluxes

(e.g. fire, land use change). This land sink in turn affects the amount of CO; remaining in the
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atmosphere and thus the magnitude of associated future climate change. That is, a strong set of
interacting feedbacks exists between climate, CO» concentrations, and the carbon cycle
(Friedlingstein & Prentice, 2010). However, the magnitude of these feedbacks is uncertain,
contributing to the large spread in predicted atmospheric CO»> concentrations by 2100 for a given
emissions scenario (Friedlingstein et al., 2014; Lovenduski & Bonan, 2017). A necessary starting
point for constraining this uncertainty is understanding how climate change and CO, fertilization

have each changed the historical carbon uptake.

Previous studies attributing historical changes in GPP have found that the effect of CO»
fertilization dominates other processes such as climate change or land use change over the last
century (Melnikova & Sasai, 2020; Piao et al., 2013; Schwalm et al., 2020). Accordingly, the
effect of CO; fertilization on GPP, including its magnitude and spatial distribution, has been
intensively studied, although the roles of tropical ecosystems, stand age, and nutrient limitations
remain controversial (Chi et al., 2022; Ellsworth et al., 2017; Norby & Zak, 2011). How much
the historical net terrestrial carbon uptake increased in response to the past rise in atmospheric
CO; (or past climate change) is not just dependent on GPP but also depends on the response of
respiration. Although there is little to no direct effect of atmospheric CO2 concentrations on
respiration rates, there is potential for an indirect effect (Kuzyakov et al., 2019): first, increased
GPP due to CO» fertilization leads to increased plant growth, then the eventual decomposition of
that increased plant matter increases litter and soil organic matter pools, thus enhancing
heterotrophic respiration (Rn). That is, CO2 used for photosynthesis has two possible fates: a)
being respired back to the atmosphere, or b) being stored in the ecosystem’s soil and carbon

pools.
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To understand carbon-climate feedbacks, we must understand how any enhanced carbon
uptake is partitioned between respiration to the atmosphere and storage in the ecosystem. A
single metric captures this partitioning: the proportion of enhanced GPP lost to respiration,
instead of being stored in the ecosystem (hereafter, referred to as “the loss ratio of carbon
gained”). At a single mature forest site in Australia, Jiang et al (2020) found a loss ratio value of
87%. It is unclear how this ratio varies across the globe, and if it has been as large across the
history of anthropogenic CO; enhancement as it was in the Jiang et al (2020) study. It is also
unclear how historical changes in respiration (and, relatedly GPP) in response to CO»

enhancement have changed in the presence of climate change.

At global scales and over century-scale time periods, land surface models are one of the
only tools for understanding how complex changes in climate and CO; fertilization affect the
carbon balance of the terrestrial ecosystem. Yet several factors limit the utility of widely-used
land surface model ensembles. First, in the absence of any information about the magnitude and
distribution of carbon pools in the distant past, model ensembles generally use spin-up
procedures to start long-term simulations with carbon pools in steady state (i.e. defined to have
zero net carbon flux). This is unrealistic, because even pre-industrial era carbon fluxes were not
at equilibrium (Bauska et al., 2015). The steady state starting conditions explain the
overwhelming majority of inter-model variation in present-day net ecosystem production
(Huntzinger et al., 2020; Schwalm et al., 2019). Second, model uncertainty (in either model
structure or parameter choices) is a dominant source of variation in carbon cycle forecasts
(Bonan & Doney, 2018) and hindcasts (Bonan et al., 2019) of net carbon fluxes. In particular,
soil and carbon turnover times — which are intimately tied to respiration rates — are poorly

constrained (Pugh et al., 2020; Shi et al., 2020; Wieder et al., 2018).
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To address these challenges, we used a Bayesian carbon cycle model data-fusion system
called the Carbon Data Model Framework (CARDAMOM). For each grid cell across the globe,
CARDAMOM estimates the initial conditions, ecosystem parameters, and carbon pool histories
that best match a suite of observations (Bloom et al., 2016; Bloom & Williams, 2015). These
assimilated observations (and observationally constrained products) include global maps of
solar-induced fluorescence (SIF), net biosphere exchange (NBE), leaf area index (LAI), soil
organic matter, and biomass. In addition to determining optimal carbon cycle parameters at each
grid cell that best match observations, the CARDAMOM framework systematically quantifies
parameter uncertainty, a methodological step that is absent in the majority of global carbon cycle
models. A key innovation between the CARDAMOM runs performed here and other prognostic
modelling efforts (e.g. Chen et al., (2019)) is that CARDAMOM is constrained by estimates of
the net biome exchange derived from atmospheric inversions. Combined with the model
structure and other observations related to photosynthesis (e.g. LAI, SIF), the time series of this
integrated flux can help to constrain the spatio-temporal variations in respiration fluxes that are
otherwise relatively unknown. The use of NBE data has been shown to be particularly critical in
constraining models, especially as model structural complexity increases (Famiglietti et al.,
2021). These dynamic fluxes, combined with information about the amount of carbon in the
ecosystem (biomass and soil organic carbon), provide a constraint on the carbon turnover times

and their sensitivity to changes in temperature at each grid cell.

Although CARDAMOM contains only a single set of equations describing the carbon
cycle, its flexibility to optimize parameters based on observations allows it to simulate a large
range of possible flux dynamics with differing climatic sensitivities and growth patterns

representative of variations within and across biomes globally. The flexibility in parameters
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allows for similar carbon flux dynamics between CARDAMOM and more complex conventional
land surface models (Quetin et al., 2020). This suggests that some of the uncertainty in
CARDAMOM’s model structure (i.e., carbon cycle equations) is accounted for through its
explicit determination of parameter uncertainty, which is not accounted for in conventional land
surface model ensembles. Thus, CARDAMOM systematically accounts for a range of carbon
cycle uncertainty at each grid point while also balancing a large range of data from observations
there in contrast to more complex models where spatial variation is more determined by broad

categories of land cover types.

In this study, we used CARDAMOM to attribute what fraction of photosynthesis and
respiration fluxes over the last century are due to climate change and to CO: fertilization, and
constrain what proportion of enhanced GPP is lost to respiration instead of being stored in the
terrestrial biosphere. We demonstrate that, across the globe, the loss ratio of carbon gained is
large, significantly modulating the response of the net carbon balance to climate change and
enhanced CO,. We further demonstrate that variations in the loss ratio of carbon gained — rather
than variations in carbon gain alone — significantly shift where the net land carbon sink has

increased over the past century.

2 Methods

To study changes to the carbon cycle from 1920 — 2015, we combined contemporary (between
2000 — 2015) atmospheric and land surface observations with historical (1920 — 2015) climate
forcing to constrain a mechanistic carbon cycle model through data assimilation. This data

assimilation is described in Section 2.1. We then ran model experiments that isolate climate
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change and rising CO; effects to attribute the carbon cycles response to each change individually

and together (Section 2.2).

2.1 Retrieving carbon cycle parameters for the last century using model-data fusion

We used the CARDAMOM data assimilation framework and present-day global observations
(between the years 2000 and 2015) to create a 1000 member ensemble of observationally
constrained carbon cycle parameters and initial conditions (Bloom et al., 2016; Quetin et al.,
2020). CARDAMOM was used to optimize the initial conditions of six carbon pools and one
water pool, as well as 29 parameters that control the turnover rate, allocation, and environmental

response of carbon and water in the Data Assimilation Linked Ecosystem Carbon v2.1.6
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(DALECv2.1.6) carbon cycle model, which underlies the CARDAMOM model-data fusion

system (Figure 1). The optimized parameters are listed in Supplementary Table 1.

0/
Labile

Available Water

Figure 1: Diagram of the main components of DALECv2.1.6 used in CARDAMOM (reproduced

from Quetin et al. (2020)).

The carbon cycle parameters and initial conditions (e.g., turnover times, photosynthesis
sensitivities, etc.) that govern the response of the carbon cycle to increasing concentrations of
CO; and climate change were retrieved using a data assimilation approach (further described in
Section 2.1.3) such that model outputs best match observed data. These parameters and initial
conditions were retrieved independently for each grid point, avoiding the need to assume that
parameters only vary with plant functional type. This grid-point-by-grid-point retrieval approach

1s common in most other data assimilation systems (e.g. Smith et al. (2019)), and allows for the
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estimation of parameter uncertainty (Butler et al., 2017). In particular, the Carbon Monitoring
System Flux (CMS-Flux) — an atmospheric inversion estimate of net biosphere exchange using
satellite observations of atmospheric concentrations of CO, — provided information on the carbon
balance of the terrestrial ecosystem and constrained multiple aspects of the model (Liu et al.,

2017, 2021).

2.1.1 Carbon cycle representation

The carbon cycle representation in DALEC is as described in Quetin et al. (2020) and
Bloom et al., (2016), except for an alteration to the calculation of GPP and stomatal conductance.
To improve the representation of the effect of CO2 on stomatal conductance, we calculated leaf-
level GPP and stomatal conductance using the coupled leaf photosynthesis-stomatal conductance
models developed by Farquhar-Ball-Berry (Ball et al., 1987; Farquhar et al., 1980) and its
analytical solution (Baldocchi, 1994) (see Supporting Information). This was a key update for
representing centennial GPP and water use efficiency responses to climate change and the large
rise in atmospheric CO2 concentrations. As is common in land surface models incorporated in
Earth system models, we scaled the leaf level results of GPP and stomatal conductance to the
canopy as a single ‘big leaf” with an exponential decay function of LAI (Sellers et al., 1992) (see
Supporting Information). With this new model formulation, we also added an additional
ecological dynamical constraint to those already contained in CARDAMOM (Bloom &

Williams, 2015), that constrained the ratio of maximum carboxylation (Vcmax2s) to the maximum
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rate of whole chain electron transport at saturated light (Jmax2s) (see Supplementary Text S1) to

limit combinations that are not observed (Walker et al., 2014).

Table 1: Optimized parameters and initial conditions in CARDAMOM, corresponding flat prior
ranges, and resulting state variables. Reproduced with modifications in bold in the “Ball Berry
GPP” section from (Bloom et al., 2020; Quetin et al., 2020). Mean Temperature and
Precipitation are represented by T and P respectively.

Parameter  Description Prior range

Fauto Autotrophic respiration 0.2-0.8
- Flab NPP fraction to labile C 0.01-0.5"
S ¢ Ffol NPP fraction to foliar C 0.01-0.5"
s .2 froo NPP fraction to fine root C 0.01 -0.5"
% g fwoo! NPP fraction to stem C 0.01 -0.5"

=

Owoo Stem C turnover rate 2.5 x 105 -107 day!

Oroo Fine root C turnover rate 104 -102 day™!
8 Olit Litter C turnover rate at T, P 10*- 102 day!
S Osom Soil organic matter (SOM) turnover rate at T, P 107 - 1073 day™!
% Omin Mineralization of litter to SOM at T, P 10 - 102 day!
£ (¢ Heterotrophic temperature dependence factor 0.018 - 0.08
i Sp Heterotrophic precipitation dependence factor 0.01-1

donset Leaf onset day 0-365.25

dgant Leaf fall day 0-365.25

CLMA Leaf C mass per area 5-200 g Cm?

ci Leaf loss fraction 1/8 - 1
2 Cir Annual labile C release fraction 1/8 - 1
= Cronset Labile release period 10 — 100 days
S Crfall Leaf fall period 20 — 150 days

Tholiar’ Combustion factors of foliar C 0.01-1

Tlbiomass Combustion factors of non-foliar biomass C 0.01-1

TsoMm® Combustion factor of soil C 0.01-1
_E R Resilience factor 0.01-1

1) Water stress threshold 1 -10*Kg H,O m?
5 a 3Second order runoff decay constant 3x107-0.03 mm™' day!
<
=

cly Labile C at time ¢ 1 —2000 gC m?
C}Z? Foliar C at time ¢ 1 -2000 gC m™?

o, c® Fine root C at time ¢ 1 -2000 gC m™?
= Cv(vtgo Above- and below-ground woody C at time ¢ 1-10° g€C m?
= ¢ Litter C at time ¢ 1 -2000 gC m
E Cs(é% Soil organic C at time ¢ 1 -2x10° gCm?
2 w® Plant-available water at time ¢ 1 - 10* mm
& Vemax2s maximum carboxylation rate 10 — 400 umol m?s™!
&) (Walker et al., 2014)
E’ Jmax Maximum rate of whole chain electron transport 20 — 400 umol m2s™!
X at saturated light (Walker et al., 2014)
- Mstomata Stomatal conductance slope 2 — 30 (Oleson et al.,
2 2010)
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Dstomata Stomatal conductance intercept .001 - .1 mol m?s"!
(Oleson et al., 2010)
gb Leaf boundary layer conductance to CO2 4 —10 mol m?2s! (Martin

et al., 1999)

! fwoo is equivalent to 1 — fauto — ffol — flab

*Prior ranges are conservative approximations, see Fox et al., (2009) and CARDAMOM sample code for details on
sequential allocation fraction sampling in DALEC models.

2Only initial conditions (at time t=0) are optimized in DALECv2.1.6.

3Using the ecological and dynamical constraint approach (Bloom & Williams, 2015) we ensure that that 7 glia>
Tlbiomass aNd Tsliar™ TTSOM

2.1.2 Assimilated Carbon Cycle Observations

Our whole assimilation run spanned 1920 — 2015, with assimilated observations from
2000 — 2015. All variables in Table 1 were optimized. The suite of observations (summarized in
Table 1) was chosen to leverage new remote sensing observations of the global carbon cycle. A
key set of assimilated observations is CMS-Flux net biome exchange (NBE), which was
determined through atmospheric inversion (Bey et al., 2001; Liu et al., 2017, 2021). These NBE
estimates had previously been used to better constrain global respiration fluxes (Konings et al.,
2019), as well as the balance of photosynthesis and respiration across the tropics (Liu et al.,
2017), and as emergent constraints on carbon-climate feedbacks (Barkhordarian et al., 2021),
among others. Additional observations were derived from the following gridded datasets:
remotely sensed solar induced fluorescence (SIF) as a proportional constraint for GPP (Bloom et
al., 2020; Frankenberg et al., 2011), remotely sensed leaf area index (LAI) (Bi et al., 2015),
remotely sensed carbon monoxide (CO) to constrain the fraction of carbon lost from pools due to

fire (Bowman et al., 2017; Worden et al., 2017), remotely sensed total biomass (Carreiras et al.,
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233 2017; Saatchi et al., 2011), and soil organic matter from the Harmonized World Soil Database

234 (HWSD) (Hiederer & Kéchy, 2011).

235 The biomass and soil organic material observations were both drawn from a static map
236  and assimilated in the year and/or month most representative of their observation (June of 2015
237  for biomass and the year 2000 for soil organic material) as in (Bloom et al., 2016; Quetin et al.,
238 2020). By contrast, NBE and SIF were assimilated as monthly time series from 2010 — 2015 and
239 LAI as the long term mean from 2010 — 2015. The CO observations constrain biomass burning
240  emissions fractions (see Table 1). Each dataset was re-gridded to 4°x5° latitude/longitude on the
241 Goddard Earth Observing System - Chem (GEOS-Chem) for consistency with the CMS-Flux
242 estimates (see Table 2, Supporting Information Section S3). All CARDAMOM assimilation and
243 forward runs (i.e., DALEC model runs with the retrieved optimal parameters) were also

244 performed at this resolution.

245

246  Table 2. Observation-based datasets assimilated into the 4°x5° CARDAMOM simulation. Adapted with
247  modification from (Bloom et al., 2020; Quetin et al., 2020).

Observation Years Dataset description Uncertainty*
Leaf area index (LAI) 2010 -2015 MODIS LAI retrievals'. +log(1.2)
Soil organic matter 2000 Soil C from harmonized +log(1.5)
(SOM) world soils database

(HWSD) (Hiederer & Kochy,

2011)
Above- and below- 2015 GLAS-informed biomass map > =+log(1.5) 3
ground biomass (ABGB) (Carreiras et al., 2017; Saatchi

etal., 2011)
Solar-induced 2010 —2015 GOSAT retrievals of +log(2) 52
Fluorescence (SIF) fluorescence (Frankenberg et

al., 2011)?
Fire C emissions (BB) 2010 —2015 4°x5° inverse estimates of fire  +20%

C emissions (Bowman et al.,

2017; Worden et al., 2017).
Net Biosphere exchange 2010 -2015 GOSAT CO; and OCO, CO; Seasonal=+0.05 g C/m?/d
(NBE)’ derived 4°x5° inverse Annual= +0.02 g C/m?/d
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estimates of terrestrial NBE
(Liu et al., 2017, 2021).

'Only mean 2010-2015 LAI is assimilated into CARDAMOM, in order to mitigate the influence of
seasonal LAI retrieval biases (Bi et al., 2015).

>Time-resoved SIF is assimilated as a relative constraint on the temporal variability of GPP when
temperatures are greater than 5°C and LAl is greater than 0.2.

3see ref (Bloom et al., 2016) for details on the uncertainty on ABGB.

*Uncertainties denoted as +log() indicates log-transformed model and observed quantities.

*The CMS-Flux NBE is spatially smoothed using a 3x3 gaussian smoother to reduce noise.

2.1.3 Data assimilation methodology

CARDAMOM parameter optimization was performed with Bayesian inference in which
observations O are paired to model parameters, states, and fluxes () to form the likelihood
function (Bloom et al., 2016, 2020; Bloom & Williams, 2015; Quetin et al., 2020). The

likelihood probability function was calculated as the product of individual likelihoods:

P(Oly) = PLAI PSOM PABGB PSIF PNBE PCO (1)

where P(O|y) was the likelihood of y given observations (O) and Px was the probability
of variable X given the observations of that variable (Table 2). This formulation assumes that the
error between observations was independent. The Pr4s, Psom and P4pcs, and Pco were derived as

(Bloom et al., 2020; Quetin et al., 2020):

2

where m; and o; corresponds to the i’ observation of the corresponding DALEC-modeled
quantity and o; accounts for the combined effects of DALEC model structural error, model

inputs, and observation errors. To better capture the interannual variability, Pyse included
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separate probability calculations with different uncertainty estimates for monthly and annual
likelihoods and the units of SIF and GPP in Ps;» were normalized by the mean, such that GPP
dynamics were constrained by SIF even though the units are not the same. Consistent with
previous CARDAMOM runs (e.g. (Bloom et al., 2016, 2020; Quetin et al., 2020)), uncertainties
were ultimately chosen manually based on expert experience of the underlying dataset and the
impact on CARDAMOM’s match to the observations. For example, the seasonal uncertainty of
NBE is held within a reasonable range of observed uncertainty but small enough to induce a
seasonal cycle in NBE. See Quetin et al. (2020) and included references for further details.
Additionally, CARDAMOM applied ‘ecological and dynamical constraints’ that reduce
equifinality (Huntzinger et al., 2017) by eliminating parameter combinations that may match

observations despite limited ecological plausibility (Bloom & Williams, 2015).

Finally, we replaced the Adaptive Metropolis-Hastings Markov Chain Monte Carlo
(MHMCMC) algorithm which was previously used in CARDAMOM (described in Bloom et al.
(2020)) with a Differential Evolution Markov Chain Monte Carlo (DEMCMC) to sample P(y|0)
(Braak, 2006) (Levine et al. 2022, in prep). The DEMCMC allowed for an order of magnitude
increase in random starting points to avoid local minima and path dependency, while it also

provided modest improvement in computation time. The DEMCMC produced similar results to
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the MHMCMC algorithm in minimizing the mismatch between carbon cycle observations and

model values.

2.1.4 Model inputs for assimilation and attribution

CARDAMOM requires external inputs for climate variables (insolation, precipitation,
temperature, and vapor pressure deficit), atmospheric concentration of CO, and burned area. For
the assimilation runs, the climate inputs were taken from monthly CRUNCEP v7 reanalysis,
which was chosen primarily for being available for most of the past century. CRUNCEP v7 is a
combined datasets of the Climate Research Unit (CRU) and reanalysis data from National
Centers for Environmental Prediction (NCEP) (Viovy, 2018). The atmospheric concentrations of
CO: were taken from the historical values of the globally-averaged annual means used by the
Intergovernmental Panel on Climate Change with values for 2006 — 2015 taken from RCP8.5
scenario which include a rise in CO2 of 98.6 ppm between 1920 and 2015 (Pachauri &

Reisinger, 2008; Taylor et al., 2012).

CARDAMOM simulates fire fluxes based on burned area inputs and optimized emissions
factors relating burned area to emission rates of CO and COz. These simulations are necessary to
relate simulated net ecosystem productivity with observed net biome exchange (since the latter
also accounts for fire fluxes). We used the Global Fire Emissions Database (GFED) V4.1s
burned area to drive CARDAMOM during the observational period (1997 — 2015) (Randerson et
al., 2017). Prior to the observational period, we synthesized burned area at each point for the last
century by randomly resampling from the distribution of observed GFED V4.1s observations for

a given month. This synthesized burned area contained the same variance as the observations and
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did not have a long-term trend. We also investigated an empirical linkage between burned area
and climate inputs but found the burned area synthesized from observations had less error
relative to observed burned area in recent decades (not shown). Although we did not investigate
fire specifically in this study, fire is accounted for implicitly in the carbon cycle data assimilation

in CARDAMOM (Exbrayat et al., 2018).

2.2 Attributing Change in the Carbon Cycle

Our overall approach for attributing the carbon cycle response to different past
environmental changes is illustrated in Figure 2. We ran factorial forcing scenarios that included
different combinations of climate change and historically rising COx: 1) historical climate change
and increased atmospheric CO2 concentrations, as during the assimilation stage (referred to as the
‘Total’ scenario); ii) a control climate — repeating 1920 CRUNCEP meteorology — and steady
atmospheric concentrations of CO; equal to those in the 1920s (‘Control’ scenario); iii) a
historically rising (enhanced) atmospheric concentration of CO2 with a control climate (‘eCO>’
scenario); and 1v) a scenario with historical climate changes but constant CO> at 1920 levels
(‘Climate’ scenario, i.e. without CO; fertilization). The burned area was left the same as the
assimilation runs across experiments. These combined Total, Control, eCO>, and Climate
experiments are similar to the approach used in previous studies to diagnose climate-carbon

feedbacks in CAMIP (Arora et al., 2020; Friedlingstein et al., 2014; Jones et al., 2016), thus
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isolating the effect of CO> on plant physiology from the effect of climate change on the carbon

cycle.

Attribution of change in carbon fluxes was then determined as the difference between the
respective carbon fluxes of the forced scenarios (‘Total’,’eCO5’, and ‘Climate’) minus the
control run (‘Control’). Throughout this manuscript, we denote the attributed change in a flux
due to enhanced CO» as AX®C92, the attributed change in a flux to climate as AX ™4t and the
attributed change when they both are combined as AX % In each of the above cases, X denotes
the carbon flux variable, such as GPP or R;. For example, net ecosystem productivity due to

enhanced CO, (ANEP¢¢92) is calculated as in Equation 3:

ANEPeCOZ — NEPeCOZ _ NEPContTOl (3)

= NEP(control climate, historical CO,) — NEP(control climate, control CO,)

Attribution was performed at each grid point on the cumulative sums from 1920 — 2015 and then
spatially aggregated to calculate global and regional attribution, with regions defined as in Figure

3. The spatial aggregation method is discussed in Supplementary Text S2.



348

349

350

351

352

353

354

355

manuscript submitted to Global Biogeochemical Cycles 19

. ——g Carbon fluxes
Hlstor\cal DALEC and pools
Climate
M—C)
Rising CO, function

Carbon fluxes from:
« Climate and CO2
« Climate Only
» CO2 Only

1920 Climate

Figure 2: Summary of experimental design. We combine (pink) contemporary (2001-2016)
atmospheric and land surface carbon cycle observations and historical climate forcing datasets
(1920-2015) to constrain mechanistic carbon cycle responses to climate and atmospheric CO:.
Model runs (grey) forced by combinations of historical or control climate and CO:

concentrations to create the ‘Total’, ‘Control’, 'eCO;’, and ‘Climate’ scenarios.
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Figure 3: Regional divisions used for analysis. boreal (dark green), temperate (light green), wet
tropics (blue), dry tropics (light blue). Black dots show points where CARDAMOM was able to

complete the inversion (i.e. find a solution) in the simulated number of iterations.

3 Results and Discussion

3.1 Comparison of CARDAMOM simulations to assimilated estimates

We compared CARDAMOM to assimilated observations for verification, as well as to
alternate independent modeled and observed estimates of the carbon cycle. Compared to
assimilated observations, CARDAMOM has a strong match of the seasonal cycle of net
biosphere exchange for all regions and a slightly muted interannual variation (Figure S1). Across
space, the observations generally fall within CARDAMOM’s uncertainty, although simulated
leaf area is high and net biosphere exchange is somewhat lower than observations (that is,
simulated uptake is higher than observed) around the equator. In the Sahel region, biomass is low

and soil organic matter high relative to observations (Figure S2, Text S3). For the majority of
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land points, CARDAMOM was able to retrieve a solution (Figure 3, black dots). Failed points
primarily fell within the highly arid regions of the globe where there is relatively little carbon
cycle activity. Some failed points may encompass regions important to the interannual variation

of the carbon cycle (Poulter et al., 2014).

3.2 Comparison of CARDAMOM simulations to independent estimates

CARDAMOM’s simulated carbon cycle dynamics are within range of several
independent constraints that were not directly assimilated. The average global GPP from
CARDAMOM (90 = 1.3 Pg C/yr, 25-75™ percentile uncertainty for the period 2003 — 2015) is at
the low end — but within the range of — several alternative estimates (Figure 4). CARDAMOM
GPP are generally on the low end of other estimates in the tropical regions, while CARDAMOM
GPP is more similar in both the seasonal cycle and mean annual value in the Boreal and
Temperate regions (Figure S4). These alternative estimates include observations (i.e. optical
retrievals from NIRv and 30O'® ratios), an observationally-informed machine learning model
(FLUXCOM), or model ensembles (i.e. the Multi-scale synthesis and Terrestrial Model
Intercomparison Project (MsTMIP) and Trends in Net Land-Atmosphere Carbon Exchange
(TRENDY V9), see Table S1 for list of models used) (Badgley et al., 2019; Friedlingstein et al.,

2020; Huntzinger et al., 2013; Sitch et al., 2008; Welp et al., 2011).
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Figure 4: CARDAMOM mean annual Gross Primary Productivity (GPP, Pg C/yr) parameter
ensemble spread with CRUNCEP climate 2003 — 2015 (Orange). Compared with observation-
based estimates of global GPP from NIRv (2003 — 2015), FLUXCOM (2003 — 2015), and 60"
(1980 — 2010), and terrestrial biosphere estimates from TRENDY V9 (2003 — 2015), MsTMIP
(2003 — 2010) (all in grey). Figure structure and data for NIRv, FLUXCOM, MsTMIP, and
8018 adapted from (Badgley et al., 2019). Whiskers of boxplot show 5" — 95" percentiles. Grey

shading demarks literature values that do not directly overlap in time.

The zonal pattern of the apparent turnover time of the total ecosystem carbon for
CARDAMOM (calculated using the total summed soil and vegetation carbon stocks, as in Fan et
al. (2020)) is broadly similar to that of a recent observation-derived estimate of global turnover
times for the same time span (Fan et al., (2020), which is an updated version of the estimate in

Carvalhais et al. (2014)), at least between the latitudes of 46° S and 46° N (Figure 5). This is
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reflected in the average values — 41 years for CARDAMOM and 30 years for that of Fan et al.
(2020) (Figure 5). At high latitudes, however, the two estimates in Figure 5 diverge significantly,
with CARDAMOM predicting a shorter turnover time. This divergence may relate to an under-
prediction of the size of soil carbon pools in CARDAMOM in regions with complex permafrost
dynamics, since CARDAMOM does not have an explicit representation of the dynamics for
permafrost and frozen soils. In addition, the soil organic matter estimates at high latitudes are
highly uncertain because of the limited number of measurements. The HWSD soil organic matter
dataset assimilated in CARDAMOM was shown to be on the low end of estimates in Fan et al.
(2020), which would tend to drive CARDAMOM towards a shorter turnover time as well.
Resolving this divergence and others illustrated above is likely to improve the accuracy and
precision of carbon cycle analyses derived from CARDAMOM.

The difficulty in acquiring observations of soil carbon dynamics and their complexity
makes the parameterization of turnover times in land surface models highly uncertain
(Carvalhais et al., 2014; Friend et al., 2014; Koven et al., 2015), including at high latitudes
(Koven et al., 2017). By contrast, the soil carbon turnover rates and initial carbon pool sizes in
CARDAMOM are informed by observations of carbon fluxes and carbon states through data
assimilation. The close match between the turnover times estimated by CARDAMOM and those
estimated by observationally-driven and quasi-independent (some datasets included in Fan et al.
(2020) are assimilated in CARDAMOM, some are not) values hints at the success of
CARDAMOM's ability to accurately infer carbon cycle dynamics based on the assimilated

observations.
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Figure 5: The zonally averaged turnover time for total ecosystem Cin CARDAMOM (orange)
compared to the quasi-independent estimates of Fan et al. 2020 (black), calculated between

2001 — 2014. Shading demarks 5" — 95" range of ensembles, solid line is median.

For more complete insight into the full historical dynamics simulated by CARDAMOM,
we further compared it to independent model estimates of carbon flux timeseries from TRENDY
V9 scenario 2 (change in climate and CO; but not land use change) (Figure 6, S3) and estimates
of the sensitivity of GPP and NEP to increased CO> (Figure 7) (Friedlingstein et al., 2020). We
find that the net primary productivity in the CARDAMOM ‘Total’ (Historical) run falls just
below the TRENDY V9 set of models between 1920 and about 1980 (Figure 6). Up until 1960,

CARDAMOM is a weak source to the atmosphere, while TRENDY V9 is neutral to a sink
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throughout. These early differences highlight the difference in initial conditions between
CARDAMOM and the models contained in TRENDY. While TRENDY models are run to
equilibrium in 1700, CARDAMOM retrieves the initial carbon and water pools that serve to best
match the observations assimilated. After 1980, the CARDAMOM Historical runs fall within the
spread of models contained in TRENDY, ending in 2015 very close to the mean of the TRENDY
models (Figure 6). This convergence in modern times may be due to the influence of similar
observations on both models, which are systematically assimilated in CARDAMOM and assert
influence over TRENDY as they are often used as validation. Like for NEP, the growth in
CARDAMOM GPP since 1960 is much faster in CARDAMOM than in the TRENDY
simulations (Figure S3), possibly due to analogous differences in initial condition
parameterization and the influence of modern measurements. The relatively rapid CARDAMOM
GPP growth compared to TRENDY is consistent with the results of Campbell et al. (2017), who
used carbonyl sulfide records to show that historical GPP growth is higher than simulated by
earth system models. During the period 1900 - 2013, GPP was estimated to grow by 31 + 5%,
consistent with the 39 + 7%, simulated here during the slightly later period 1920 —2015. As also
shown in Fig. 4, the historical GPP simulated by CARDAMOM is lower than that simulated by
the TRENDY models. Consistent with this pattern, autotrophic respiration is also lower than in
the TRENDY models, while the heterotrophic respiration and LAI simulated by CARDAMOM

are lower than most TRENDY models, but still fall within the low end of their range (Figure S3).
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Figure 6: The annual timeseries of Net Ecosystem Productivity (NEP) from 1920 — 2015 from
the CARDAMOM Historical run (orange, shading 5" — 95" percentile of ensemble), the

individual TRENDY v9 models (grey solid) (Friedlingstein et al., 2020), and their multi-model
mean (grey dashed). For a fair comparison, the global aggregation was performed only where

there was a successful CARDAMOM run (black dots in Figure 3).

Lastly, because our study focused in part on the effect of historical atmospheric CO»
increases on terrestrial carbon fluxes, we investigated whether the GPP and NEP CO; sensitivity
calculated by CARDAMOM was in line with that of alternative estimates. Specifically, we
calculated the CARDAMOM sensitivity of gross primary productivity as a percentage (fScpp) and
net ecosystem production (Snep) to enhanced CO». The Scpr and Snep were calculated by
dividing the fractional gain of GPP or the carbon gained through NEP from 1920 — 2015 that was
attributed to enhanced COz by the change in atmospheric concentration of CO: over this period.
Note that when calculating Scpp, unlike when calculating Snep, the numerator was calculated as
a percentage gain over 1920-2015 to facilitate comparison with literature values. Experimental

manipulations in Free Air COz Enrichment (FACE) studies provided observation-based but site-
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specific estimates of relative GPP sensitivity to increased CO» (Hickler et al., 2008, p. 200),
which cannot be directly compared to CARDAMOM because of its coarse resolution. Some
differences in results between FACE studies and CARDAMOM would also be expected because
of differences in the absolute atmospheric CO; levels between the two. Nevertheless, when
considering CARDAMOM s relative GPP sensitivity to CO; across pixels, many pixels within
the 5-95" percentile CARDAMOM range show the same sensitivity as observationally observed
at four FACE experiments, which fall slightly below the 25" CARDAMOM percentile (Figure
7). Across the globe, model ensembles provide a further point of comparison. The GPP
sensitivity to CO; simulated by TRENDY V9 models and sampled at the CARDAMOM
simulation points for 1920 - 2015 is generally considerably lower than that of CARDAMOM
(Figure 7b). Like CARDAMOM’s, the TRENDY GPP CO; sensitivity is also uncertain, both
because of imperfect modelling assumptions and because no data are assimilated into TRENDY.
It is thus difficult to ascertain whether or by how much CARDAMOM’s GPP COz sensitivity is
too high or TRENDY s is too low.

The relatively high CARDAMOM GPP sensitivity to CO; relative to that of conventional
models is also reflected in the comparison between CARDAMOM NEP sensitivity to CO2 and
that of model intercomparisons, including estimates from TRENDY V9, which were regridded to
CARDAMOM resolution and sampled where CARDAMOM provided a solution (black dots
Figure 3), the Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP), and
MsTMIP (Arora et al., 2013; Friedlingstein et al., 2006, 2020; Huntzinger et al., 2017) (Figure
7¢c). CARDAMOM’s NEP sensitivity is on the high end of estimates from TRENDY and
C4AMIP, but in the middle of the range for MsTMIP. The different sensitivities exhibited by

models from different intercomparison systems is reflective of their uncertainty. Nevertheless,
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the differences between conventional model ensembles and CARDAMOM add a note of caution
to the results described in the manuscript.

Taken together, the reasonable — though imperfect — match between the CARDAMOM-
simulated historical carbon cycle (Figures 4-7, S3-S4) and independent estimates demonstrates

CARDAMOM's utility for process attribution of historical fluxes, as performed below.
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Figure 7: Comparison of the CARDAMOM mean sensitivity of carbon to eCO: for percent change
in GPP with a) the CARDAMOM spread across space with FACE sites, b) CARDAMOM
parameter spread of global mean with TRENDY V9 model spread. In c) the absolute change in
NEP per change in ppm CO: for CARDAMOM simulations (orange, 1920 - 2015) including the
ensemble uncertainty of the global mean and TRENDY V9 (1920 — 2015) models (Friedlingstein
et al., 2020) and values drawn from literature for C4MIP (1901 — 2015) circles for
(Friedlingstein et al., 2006, p. 20) and diamonds for (Arora et al., 2013) estimates, MsTMIP
(1959 — 2010) from (Huntzinger et al., 2017) (all in grey). All CARDAMOM values are for 1920
— 2015 For a fair comparison, the global aggregation was performed only where there was a
successfiul CARDAMOM run (black dots in Figure 3). Whiskers of boxplot show 5" — 95"

percentiles. Grey shading demarks literature values that do not directly overlap in time.
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3.3 Large gains in GPP under rising CO: are largely offset by the response of respiration to

increased plant growth

Over the past century, the CARDAMOM simulations attribute large increases in global
GPP to the combination of the historical enhanced atmospheric concentrations of CO> and
climate change (AGPP!°'® = 1294 + 57 Pg C, where the uncertainty is + the 25" — 75" range
divided by two) (Figure 8). This modeled increase in global GPP is consistent with increasing
GPP driving the satellite-observed greening of the Earth (Zhu et al., 2016). The increase in
global GPP is primarily attributed to the GPP response to enhanced atmospheric concentrations
of CO2 (AGPP®¢92 = 974 + 76 Pg C), which accounts for 75% of the total GPP change. The
larger response to CO; than the response to climate is consistent with past studies using
traditional model ensembles (Arora et al., 2013; Melnikova & Sasai, 2020; Piao et al., 2013;
Schwalm et al., 2020), although this study is the first to quantify this effect using a data-
constrained methodology.

Changes in climate over the past century have also impacted the carbon cycle. When only
climate change is simulated, GPP decreases globally relative to the control experiment
(AGPpClimate— _551 + 72 Pg C). The negative response of GPP to the Climate only scenario is
broadly consistent with negative responses of NPP seen in C4AMIP experiments (Friedlingstein et
al., 2006). Except under particularly hot conditions in the wet tropics, increased temperatures
generally increase GPP by increasing chemical activity, but increased vapor pressure deficit
reduces GPP by causing stomatal closure and reducing stomatal conductance (Fu et al., 2022).
Overall, the potential benefits from warming due to climate change are offset by the effects of
vapor pressure deficit-driven stomatal closure. (Note that changes in sunlight and precipitation

were relatively small between 1920 — 2015, such that direct temperature and VPD effects were
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the dominant climate drivers). This explains the global decrease in GPP in the climate change-
only scenario. By contrast, the fact that AGPP is larger in the total scenario (AGPP*°'* = 1294 +
57 Pg C) than in the enhanced COs-only scenario (AGPP¢°2 = 974 + 76 Pg C) suggests that
when CO2 and climate changes interact, climate has a positive (rather than negative as in
AGPPCimatey inflyence on the Total scenario. Under the increased CO, scenario, CO»-induced
stomatal closure limits the impact of vapor pressure deficit-induced stomatal closure. This is
consistent with observations (Dusenge et al., 2019) and with the recognition that stomatal closure
in response to enhanced CO2 reduces evaporation (Lemordant et al., 2018; Swann et al., 2016).
As a result, the direct positive effects of increasing temperature on GPP dominate, and the effect
of climate change on GPP is positive. This coupling between the carbon-concentration and
carbon-climate feedbacks allows climate changes to have a positive impact on GPP when

increases in atmospheric CO> are present.
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Figure 8: Magnitude of global cumulative sum of terrestrial carbon fluxes from 1920 - 2015
attributed to a) combined climate change and enhanced CO: (‘Total’ minus ‘Control’), b)
enhanced CO: alone (‘eCO:’ minus ‘Control’), and c) climate change alone (‘Climate’ minus
‘Control’). Distributions for gross primary productivity (AGPP), ecosystem respiration (ARcco),
autotrophic respiration (AR,), and heterotrophic respiration from litter and soils (ARy) (Pg C).
Colors per legend. The median of the whole distribution is shown as a colored dot-dashed line,
while the percentiles of 5" — 95" and 25™ — 75" percentile are shown as gradually darker

shading. Reco is equal to Ry + Ra.
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The majority of the enhanced ecosystem respiration over the last century is due to a
change in plant growth (i.e., input of additional carbon into the ecosystem), rather than an
acceleration in the turnover of carbon due to the sensitivity to increasing temperature. Our
analysis attributes a large increase of ecosystem respiration in response to the increased plant

growth that occurs due to CO» fertilization. The majority of AGPP¢¢9?

is lost to respiration
(AREE9? = 774 £ 72 Pg C out of AGPP®¢92 = 974 + 76 Pg C) (Figure 8). This increase in
respiration is due to both autotrophic respiration (AR¢9% = 460 + 46 Pg C) and heterotrophic

respiration (AREC0% =

315 £ 28 Pg C) rising significantly. This large respiration response to CO»-
fertilization-driven increases in photosynthesis is consistent with observations at site-scale free-
air carbon dioxide enrichment (FACE) studies, which have found that elevated atmospheric CO>
concentrations lead to increases in soil respiration (King et al., 2004). By contrast, FACE studies
find only mixed evidence for significant increases in soil organic matter (Hungate et al., 2009;
Norby & Zak, 2011), which is consistent with our result that a large portion of stimulated
photosynthesis is ultimately respired rather than stored in carbon pools.

The increase in respiration in the eCO, scenario (ARSE9? = 774 = 72 Pg C) is large
relative to that of the Total scenario (ARLEH = 1074 + 52 Pg C), suggesting that most of the
attributable respiration increase is due to increases in the magnitude of respiring carbon pools,
rather than climate-driven increases in respiration rates. The importance of plant growth to
changes in respiration over long periods of time in our experiments is consistent with
observations of both a tight coupling between GPP and respiration across space and a strong

relationship between interannual variations in GPP and respiration in flux tower observations

(Baldocchi, 2008; Dusenge et al., 2019; Fernandez-Martinez et al., 2014). The high respiration
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response to plant growth is driven by both autotrophic (ARL** = 595 + 33 Pg C) and
heterotrophic respiration (ARL* = 481 £ 21 Pg C) in both the total and eCO scenarios.

The dominance of the respiration response to carbon inputs alone, rather than to soil
warming for example, highlights how the baseline (unmodified by climate) turnover times of
different carbon pools play a large role in determining how much of the increased plant growth
will stay in the ecosystem and the ultimate net carbon sink. These baseline turnover rates are set
by many processes, including allocation of carbon between different plant pools with different
respiration rates and microbial effects on heterotrophic respiration. This emphasizes the need for
global carbon cycle studies to consider how the base turnover rates of different respiration pools
are calibrated across the globe, not just their extensively-studied climatic sensitivities e.g.

(Mahecha et al., 2010; Nottingham et al., 2020).
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Figure 9: Distribution of cumulative per area change in AGPP®©* (4, ¢, e, g) and ANEPOt%
(b, d, f, h). Note: NEP = - NEE. Carbon flux change by region attributed to the Total forcing
(i.e., Total — Control) which includes both increasing CO: and changing climate. Darker
shading corresponds to 5" — 95" percentile and 25" — 75" percentile of distributions due to both
parameter and climate spread. Note that the y-axis is the same scale for all subplots in each

column.
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3.4 Respiration response to CO: shapes regional balance of the net carbon flux

The changes in carbon sinks from rising CO; concentrations and changing climate vary
across regions due to both spatial variation in enhanced carbon input (GPP) (Figure 9) and the
respiration response. It is not surprising that the wet tropics, the region with the highest GPP on
Earth (Badgley et al., 2019), also has the largest GPP increase due to enhanced CO,. However,
even though the greatest increase in ecosystem carbon input (GPP) is in the wet tropics, the total
attributed ANEP®*® is largest in the temperate region (17.8 + 0.7 Mg C/ha). This increase in the
temperate carbon sink per unit area is larger than that in the wet tropics (14.2 = 1.1 Mg C/ha),
about twice as large as in the boreal (7.9 £ 1.0 Mg C/ha) and in the dry tropics (11.6 = 0.9 Mg
C/ha) (Figure 9). Thus, the net carbon sink in the temperate region has increased more than the
net carbon sink in the wet tropics, despite GPP increasing more in the wet tropics (AGPPot® =
133.5 + 15.5 Mg C/ha for wet tropics and AGPP®°t4 = 92 8 + 4.6 Mg C/ha for temperate).
Independent atmospheric inversions for net carbon flux also find a strong carbon sink in the
present-day temperate region compared to the nearly neutral tropics (Byrne et al., 2020; Gaubert
et al., 2019). This geographic mismatch between the largest increase in GPP and largest increase
in the carbon sink demonstrates the importance of respiration dynamics in determining the
carbon balance of an ecosystem.

We can quantitatively summarize the response of the ecosystem to increased carbon input
as the amount of new carbon lost compared to the increased carbon input, or the “loss ratio of
carbon gained” (AR/AGPP). Note that the loss ratio of carbon gained is a distinct quantity from
the ratio between total Reco and GPP in historical fluxes (Baldocchi, 2008), as it reflects the
response to added carbon input, rather than to total carbon input. As future ecosystem dynamics

respond to climate change and increasing atmospheric CO2 concentrations, the loss ratio of
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carbon gained tracks how well they will serve as a sink in comparison to changes in carbon
input. The (AR,.,/AGPP)t°t changes significantly across regions (Figure 10). It is highest in
the wet tropics (89 + 1%), where the highest portion of increased GPP is lost to respiration. It is
lowest in the boreal region (76 £ 4%), such that more of the increased GPP remains stored in
boreal ecosystems than in other regions. Both the temperate (81 + 0.5%) and dry tropics (84 +
1%) regions have values between the boreal and wet tropics. Across regions, the loss ratios of
carbon gained in the Total scenarios are only a few percentage points larger than the equivalent
values in the eCO; scenario, which does not experience climate change (Figure 10). The small
change due to climate change shows that the loss ratio of carbon gained is primarily set by the
base turnover rates in different regions, rather than changes in the turnover rates due to their
climatic sensitivities.

The loss ratio of carbon gained due to heterotrophic respiration varies more between
regions (e.g., from 44 + 1.5% in the dry tropics to 24 + 3.4% in the boreal) than that due to
autotrophic respiration, which varies no more than 12 percentage points across regions (Figure
10). Thus, spatial variations in the loss ratio of carbon gained are primarily driven by spatial
patterns of the heterotrophic respiration’s loss ratio of carbon gained (i.e. (AR;,/AGPP)total),
rather than by that for autotrophic respiration (Figure 10). The higher heterotrophic respiration
responses to enhanced COxz in tropical regions offsets the much larger response of GPP to CO»
fertilization in the (wet) tropics, dropping the attributable net carbon flux below that of other
regions. Note that our finding that the relatively large enhancements of CO:> in the wet tropics
translate to greater heterotrophic respiration fluxes is consistent with isotopic evidence from the
flanks of two Costa Rican volcanoes, which are exposed to higher CO> concentrations. In these

areas a strong relationship was found between trees with high xylem concentrations of CO; —
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suggesting higher CO; fertilization — and higher nearby soil respiration fluxes (Bogue et al.,
2019).

This study is the first to explicitly compare the amount of additional carbon fluxes across
regions. The pattern of spatial variability in the loss ratio of carbon gained has significant
consequences for the land carbon sink. While the increase in wet tropical GPP attributable to
climate change and CO> is 1.4 — 4.0 times higher than in other regions, the high loss ratio of
carbon gained causes the wet tropical gain in NEP to be only 0.8 — 1.8 times higher than that of
other regions. This suggests a more limited regional importance for the wet tropics than would be
apparent if only photosynthesis CO fertilization rates were considered. Additionally, if it can be
further supported, the finding of a particularly high respiration response to CO> fertilization in
the wet tropics, driven by both soil and plant respiration rates, could be a useful constraint for
understanding the net carbon flux of undisturbed tropical forests, particularly since they are
under-represented in most in situ observational networks (Bond-Lamberty & Thomson, 2018;

Jian et al., 2020; Schimel et al., 2015).
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Figure 10: Ranges for the loss ratio of carbon gained (AR/AGPP) for a) heterotrophic
respiration, b) autotrophic respiration, and c) ecosystem respiration. Larger values mean more
carbon lost to the atmosphere. Gray denotes Total run minus Control and green denotes elevated
CO; run minus Control. Vertical line is the median, colored box is the 25" — 75" range, and

whiskers are the 5™ to 95" range. Note that the x-axis is not the same scale for all subplots.

3.5 Strong relationship between respiration and GPP constrained by observations
CARDAMOM-derived loss ratios of carbon gained show reasonably high overlap with
those from land surface models included in the TRENDY V9 S2 experiment. This holds true for
each of the cases where either the total, heterotrophic, or autotrophic respiration is considered —
though TRENDY generally has a higher loss ratio of carbon gained for autotrophic respiration
and thus total respiration (Figure 11). This similarity occurs despite the disagreement between
CARDAMOM and TRENDY in the mean GPP magnitude and the sensitivity of GPP to

increasing CO» (Figures 4, 7), and despite the very different inputs used to parameterize
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CARDAMOM and TRENDY (i.e. parameters derived from observations in CARDAMOM,
using plant functional types in TRENDY). This similarity is likely due to the similar process
representations of carbon allocation and respiration in the two ensembles. However, the
uncertainty across the TRENDY models is considerably larger than that of the observationally-
constrained CARDAMOM ensemble.

The CARDAMOM loss ratio of carbon gained varies within a few percentage points at
regional and global scales (Figures 10, 11). Put another way, there is a strong proportional
relationship between the AGPP?°* and the AR, ARE'  and AR'™ (as well as in the eCO>
and Climate scenarios, not shown). This strong relationship echoes a previous finding by Hajima
et al. (2014), who found a tightly constrained ratio of changes in heterotrophic respiration to net
primary productivity in response to climate change and enhanced atmospheric concentrations of
COgz in Earth System Models. Overall, the loss ratio of carbon gained may be a useful additional
constraint on model representations of carbon cycle responses to global change, particularly
given the large remaining uncertainties in the magnitude of global fluxes of respiration (Bond-
Lamberty, 2018; Jian et al., 2022) and GPP (Badgley et al., 2019; Welp et al., 2011),.

Nevertheless, the tightly constrained nature and value of the loss ratio of carbon gained
are subject to the uncertainties in the CARDAMOM system (as further discussed in Sec. 3.6
below) that will require further validation, ideally across different assimilation systems driven by
observational data. These could include, e.g. other data assimilation systems (Fox et al., 2018;
Peylin et al., 2016; Smith et al., 2020), or CARDAMOM runs with alternative observational
constraints. For example, studies using radiocarbon have found that most carbon cycle models
simulate unrealistically young median ages of soil C (Shi et al., 2020), suggesting our simulation

and related studies would benefit from the explicit assimilation of radiocarbon observations.
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Overall, as more and longer time series of observations become available, CARDAMOM and
other data assimilation systems have the potential to further constrain the loss ratio of carbon

gained.

(a)
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Figure 11: The global distributions of loss ratio of carbon gained (AR“/AGPP" ') for a)
heterotrophic respiration (Ry) and autotrophic respiration (R.), and b) the ecosystem respiration
(Reco) over GPP. Points are the same ratio for individual TRENDY V9 models (Friedlingstein et
al., 2020). Darker shading in the histograms for CARDAMOM distributions is for the 5™ — 95™

and 25" — 75" range. Note that the y-axis is the same scale for both subplots.
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3.6 Uncertainties in CARDAMOM flux estimates

A number of relevant terrestrial carbon cycle processes are not explicitly represented in
CARDAMOM, adding uncertainty to the above results. These include soil priming (van
Groenigen et al., 2014), changes in microbial biomass (Wieder et al., 2013), lateral carbon flux
(Regnier et al., 2013) and vegetation demography (Fisher et al., 2018). CARDAMOM uses
relatively simplistic treatments of autotrophic respiration (proportional to photosynthesis with
spatially variable carbon use efficiency) and heterotrophic respiration (using just two pools, litter
and soil organic matter). Temporally variable nutrient limitations are also not represented,
though spatial variability in nutrient limitations can be partially accounted for through reduced
Vemax2s values. Past attribution studies using conventional model ensembles have found a
significant effect from including the nitrogen cycle by lowering the carbon gained due to
increased atmospheric concentrations of CO2 (Huntzinger et al., 2017), lowering accumulation of
soil carbon (Huntingford et al., 2022), and nutrient deposition impacts on photosynthesis
(Schwalm et al., 2020). However, note that Chen et al. (2019) found that accounting for nitrogen
deposition only mildly enhanced the simulated NEP since 1981 (Chen et al., 2019).

Another key source of uncertainty in this study is the fact that CARDAMOM does not
explicitly represent land use and land cover change (LULCC). Because a model without an
explicit LULCC representation is assimilating observations that are influenced by the true
historical LULCC, the CARDAMOM-retrieved parameters (and the associated carbon pools and
fluxes) are likely to partially reflect historical LULCC. The lack of sub-grid scale heterogeneity
in vegetation type in CARDAMOM makes it difficult to simulate LULCC. However, a
sensitivity analysis can be performed by altering simulated burned area patterns to mimic land

cover changes due to LULCC. When tested for several representative locations, this sensitivity
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analysis did not lead to any systematic change in the loss ratio of carbon gained, nor any other
significant qualitative changes to the results discussed above (not shown). This suggests that the
key qualitative conclusions of this manuscript are robust to LULCC effects, consistent with
Schwalm et al. (2020), who found LULCC to be a relatively minor factor affecting GPP over the
last century, and much smaller than CO; fertilization. Nevertheless, our sensitivity analyses were
performed only on a small number of representative pixels and do not fully capture the potential
effects of LULCC, which adds some uncertainty to our results.

CARDAMOM’s advantage relative to conventional terrestrial biosphere model
ensembles is not that it has an inherently more accurate ecosystem respiration representation, but
that the observational constraints allow an exploration of the dynamics of carbon fluxes that is
not dependent on a priori assumptions of the magnitude of the climatic sensitivities or base
turnover times of various respiring carbon pools. Because dynamic net biome exchange and a
snapshot of carbon stocks are assimilated into CARDAMOM (along with other observations
such as SIF and LAI and uncertainty accounting), turnover and respiration parameters can be
explicitly constrained. This constraint is dependent in part on the observational uncertainty
assumed. Although data assimilation systems can suffer from equifinality issues that can limit
the utility of the assimilation outside the observational period, CARDAMOM’s ecological and
dynamic constraints (Bloom & Williams, 2015) and intermediate structural complexity
(Famiglietti et al., 2021) help to reduce such equifinality. Thus, turnover should be more
accurately constrained (see Figure 5) than in past prognostic models that use only information
about vegetation states (e.g. Chen et al., (2019), Melnikova & Sesai, (2020)).

Despite the above limitations, previous research has shown that CARDAMOM is capable

of representing ecosystem temporal dynamics similar to those of more structurally complex
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conventional carbon cycle models (See Figure 6, 7 and 8 in Quetin et al. (2020)). In effect,
CARDAMOM’s explicit treatment of parameter uncertainty allows it to partially compensate for
the added structural uncertainty compared to more complex models. As such, and based on the
reasonable match to observations discussed in Text S3 and Sec 3.1, we expect the qualitative

conclusions of our attribution calculations above to be robust.

4. Conclusions

We used data assimilation in CARDAMOM to attribute change in the terrestrial carbon
cycle in response to enhanced atmospheric concentrations of CO> and climate change over the
past century. Our analysis allowed for the retrieval of a parameters, including initial conditions,
that are consistent with present-day observations of the carbon cycle at each grid point. This
approach avoids the assumed spin-up to equilibrium that is common in other modeled
projections of the carbon cycle, and estimates carbon cycle dynamics based on ecosystem

observations rather than broad distributions of plant functional types.

The response of the carbon cycle is dominated by increased plant growth due to CO-
fertilization across the globe and all regions. We identify the largest per area increase of GPP to
be in the wet tropics, and the largest per area carbon sink to be in the temperate region. The
location of the largest net carbon sink region per area is due the combination of large increases in
plant growth with a relatively low ‘loss ratio of carbon gained’ in the temperate region compared
to the more productive wet tropics. While the increase in wet tropical GPP is 1.4 — 4.0 times
higher than in other regions, the wet tropical gain in NEP is only 0.8 — 1.8 times higher, because
respiration fluxes are so much more responsive than in other regions even without considering

changes in soil temperature.
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The global loss ratio of carbon gained (globally, 83 + 0.6%) across the CARDAMOM
ensemble’s range of parameters is much less uncertain than the range of GPP increase, and
accounts for the majority of increased productivity respired to the atmosphere. A significant
portion of the loss ratio of carbon gained is due to heterotrophic respiration as a response to
increased plant growth. This suggests that the base turnover rates of an ecosystem — rather than
the sensitivity of those turnover rates to climate change — is the dominant driver of how much of
and where the carbon fixed by enhanced COsz is stored in ecosystems under past and near-term

climate change.
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