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Key Points: 17 

 A Bayesian data-fusion system was used to assimilate global observations to constrain 18 

centennial carbon cycle model dynamics  19 

 The spatial variation of the carbon sink is shaped by how strongly increased plant growth 20 

leads to increased plant and soil respiration 21 

 Higher respiration losses in wet tropics offsets stronger plant growth there, resulting in a 22 

stronger carbon sink in the temperate regions 23 
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Abstract 24 

Over the past century, increased atmospheric CO2 concentrations have enhanced photosynthesis 25 

through CO2 fertilization across the globe. However, the increased growth has also led to greater 26 

respiration rates – both from vegetation (autotrophic respiration) and through the breakdown of 27 

plant litter and soil organic matter (heterotrophic respiration). The resulting change in carbon 28 

flux – and its spatial distribution – that can be attributed to increasing CO2 and climate change 29 

remain unknown. We used the Carbon Data Model Framework (CARDAMOM), a model-data 30 

fusion system that assimilates global observations from satellites and other sources to create an 31 

ensemble of observationally-constrained carbon cycle representations, to determine the 32 

photosynthesis and respiration fluxes that can be attributed to increased atmospheric CO2 and 33 

associated climate change from 1920-2015. Across the globe, the response of photosynthesis and 34 

respiration to atmospheric CO2 dominates their response to climate alone. The regional 35 

distribution of the carbon sink attributable to climate change and CO2 is strongly influenced by 36 

the `loss ratio of carbon gained’ – the fraction of enhanced photosynthesis that is lost to 37 

respiration. While the wet tropics’ attributable photosynthesis flux is 1.4 times larger than that of 38 

the temperate region, the attributable flux of net carbon uptake is actually 1.25 larger in the 39 

temperate region, due to the wet tropics’ greater heterotrophic respiration response to enhanced 40 

plant growth. At global scale, the loss ratio of carbon gained is 83±0.6%. Our results highlight 41 

the importance of the respiration responses to enhanced plant growth in regulating the land 42 

carbon sink. 43 

 44 

 45 

 46 



manuscript submitted to Global Biogeochemical Cycles 

 

 

3 

Plain Language Summary 47 

Earth’s land areas have taken up a large amount of carbon from the atmosphere over the last 48 

century. However, exactly where, why, and by how much carbon uptake has increased is 49 

uncertain. We used a modeling system informed by global observations from satellites and 50 

elsewhere to quantify how the flows of carbon changed in response to the last century of 51 

increasing atmospheric CO2. We found that increased photosynthesis stimulates greater 52 

ecosystem respiration, decreasing CO2’s effect on net land carbon uptake. The fraction of 53 

increased photosynthesis that goes to respiration (rather than land carbon storage) varies by 54 

region and determines the location of the largest net land carbon uptake. Although it acts 55 

indirectly through changes in plant and soil carbon stocks, the respiration response to CO2 was a 56 

dominant component of the land carbon cycle response to human-caused emissions of CO2 and 57 

associated climate change.  58 

 59 

1 Introduction 60 

Human activity affects the global carbon cycle both directly (e.g., through land use 61 

change) and indirectly (primarily through changes in climate caused by greenhouse gas 62 

emissions). The resulting changes in climate affect the rate at which ecosystems grow and 63 

decompose. Increased atmospheric CO2 concentrations associated with emissions also directly 64 

stimulate photosynthesis through so-called CO2 fertilization (Walker et al., 2020). Taken 65 

together, CO2 fertilization and climate change affect the net land carbon sink, which is the 66 

balance of photosynthesis (gross primary productivity, GPP), respiration, and disturbance fluxes 67 

(e.g. fire, land use change). This land sink in turn affects the amount of CO2 remaining in the 68 
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atmosphere and thus the magnitude of associated future climate change. That is, a strong set of 69 

interacting feedbacks exists between climate, CO2 concentrations, and the carbon cycle 70 

(Friedlingstein & Prentice, 2010). However, the magnitude of these feedbacks is uncertain, 71 

contributing to the large spread in predicted atmospheric CO2 concentrations by 2100 for a given 72 

emissions scenario (Friedlingstein et al., 2014; Lovenduski & Bonan, 2017). A necessary starting 73 

point for constraining this uncertainty is understanding how climate change and CO2 fertilization 74 

have each changed the historical carbon uptake.  75 

Previous studies attributing historical changes in GPP have found that the effect of CO2 76 

fertilization dominates other processes such as climate change or land use change over the last 77 

century (Melnikova & Sasai, 2020; Piao et al., 2013; Schwalm et al., 2020). Accordingly, the 78 

effect of CO2 fertilization on GPP, including its magnitude and spatial distribution, has been 79 

intensively studied, although the roles of tropical ecosystems, stand age, and nutrient limitations 80 

remain controversial (Chi et al., 2022; Ellsworth et al., 2017; Norby & Zak, 2011). How much 81 

the historical net terrestrial carbon uptake increased in response to the past rise in atmospheric 82 

CO2 (or past climate change) is not just dependent on GPP but also depends on the response of 83 

respiration. Although there is little to no direct effect of atmospheric CO2 concentrations on 84 

respiration rates, there is potential for an indirect effect (Kuzyakov et al., 2019): first, increased 85 

GPP due to CO2 fertilization leads to increased plant growth, then the eventual decomposition of 86 

that increased plant matter increases litter and soil organic matter pools, thus enhancing 87 

heterotrophic respiration (Rh). That is, CO2 used for photosynthesis has two possible fates: a) 88 

being respired back to the atmosphere, or b) being stored in the ecosystem’s soil and carbon 89 

pools. 90 
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To understand carbon-climate feedbacks, we must understand how any enhanced carbon 91 

uptake is partitioned between respiration to the atmosphere and storage in the ecosystem. A 92 

single metric captures this partitioning: the proportion of enhanced GPP lost to respiration, 93 

instead of being stored in the ecosystem (hereafter, referred to as “the loss ratio of carbon 94 

gained”). At a single mature forest site in Australia, Jiang et al (2020) found a loss ratio value of 95 

87%. It is unclear how this ratio varies across the globe, and if it has been as large across the 96 

history of anthropogenic CO2 enhancement as it was in the Jiang et al (2020) study. It is also 97 

unclear how historical changes in respiration (and, relatedly GPP) in response to CO2 98 

enhancement have changed in the presence of climate change.  99 

At global scales and over century-scale time periods, land surface models are one of the 100 

only tools for understanding how complex changes in climate and CO2 fertilization affect the 101 

carbon balance of the terrestrial ecosystem. Yet several factors limit the utility of widely-used 102 

land surface model ensembles. First, in the absence of any information about the magnitude and 103 

distribution of carbon pools in the distant past, model ensembles generally use spin-up 104 

procedures to start long-term simulations with carbon pools in steady state (i.e. defined to have 105 

zero net carbon flux). This is unrealistic, because even pre-industrial era carbon fluxes were not 106 

at equilibrium (Bauska et al., 2015). The steady state starting conditions explain the 107 

overwhelming majority of inter-model variation in present-day net ecosystem production 108 

(Huntzinger et al., 2020; Schwalm et al., 2019). Second, model uncertainty (in either model 109 

structure or parameter choices) is a dominant source of variation in carbon cycle forecasts 110 

(Bonan & Doney, 2018) and hindcasts (Bonan et al., 2019) of net carbon fluxes. In particular, 111 

soil and carbon turnover times – which are intimately tied to respiration rates – are poorly 112 

constrained (Pugh et al., 2020; Shi et al., 2020; Wieder et al., 2018). 113 
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To address these challenges, we used a Bayesian carbon cycle model data-fusion system 114 

called the Carbon Data Model Framework (CARDAMOM). For each grid cell across the globe, 115 

CARDAMOM estimates the initial conditions, ecosystem parameters, and carbon pool histories 116 

that best match a suite of observations (Bloom et al., 2016; Bloom & Williams, 2015). These 117 

assimilated observations (and observationally constrained products) include global maps of 118 

solar-induced fluorescence (SIF), net biosphere exchange (NBE), leaf area index (LAI), soil 119 

organic matter, and biomass. In addition to determining optimal carbon cycle parameters at each 120 

grid cell that best match observations, the CARDAMOM framework systematically quantifies 121 

parameter uncertainty, a methodological step that is absent in the majority of global carbon cycle 122 

models. A key innovation between the CARDAMOM runs performed here and other prognostic 123 

modelling efforts (e.g. Chen et al., (2019)) is that CARDAMOM is constrained by estimates of 124 

the net biome exchange derived from atmospheric inversions. Combined with the model 125 

structure and other observations related to photosynthesis (e.g. LAI, SIF), the time series of this 126 

integrated flux can help to constrain the spatio-temporal variations in respiration fluxes that are 127 

otherwise relatively unknown. The use of NBE data has been shown to be particularly critical in 128 

constraining models, especially as model structural complexity increases (Famiglietti et al., 129 

2021). These dynamic fluxes, combined with information about the amount of carbon in the 130 

ecosystem (biomass and soil organic carbon), provide a constraint on the carbon turnover times 131 

and their sensitivity to changes in temperature at each grid cell.  132 

Although CARDAMOM contains only a single set of equations describing the carbon 133 

cycle, its flexibility to optimize parameters based on observations allows it to simulate a large 134 

range of possible flux dynamics with differing climatic sensitivities and growth patterns 135 

representative of variations within and across biomes globally. The flexibility in parameters 136 
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allows for similar carbon flux dynamics between CARDAMOM and more complex conventional 137 

land surface models (Quetin et al., 2020). This suggests that some of the uncertainty in 138 

CARDAMOM’s model structure (i.e., carbon cycle equations) is accounted for through its 139 

explicit determination of parameter uncertainty, which is not accounted for in conventional land 140 

surface model ensembles. Thus, CARDAMOM systematically accounts for a range of carbon 141 

cycle uncertainty at each grid point while also balancing a large range of data from observations 142 

there in contrast to more complex models where spatial variation is more determined by broad 143 

categories of land cover types. 144 

In this study, we used CARDAMOM to attribute what fraction of photosynthesis and 145 

respiration fluxes over the last century are due to climate change and to CO2 fertilization, and 146 

constrain what proportion of enhanced GPP is lost to respiration instead of being stored in the 147 

terrestrial biosphere. We demonstrate that, across the globe, the loss ratio of carbon gained is 148 

large, significantly modulating the response of the net carbon balance to climate change and 149 

enhanced CO2. We further demonstrate that variations in the loss ratio of carbon gained – rather 150 

than variations in carbon gain alone – significantly shift where the net land carbon sink has 151 

increased over the past century. 152 

 153 

2 Methods 154 

To study changes to the carbon cycle from 1920 – 2015, we combined contemporary (between 155 

2000 – 2015) atmospheric and land surface observations with historical (1920 – 2015) climate 156 

forcing to constrain a mechanistic carbon cycle model through data assimilation. This data 157 

assimilation is described in Section 2.1. We then ran model experiments that isolate climate 158 
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change and rising CO2 effects to attribute the carbon cycles response to each change individually 159 

and together (Section 2.2). 160 

 161 

2.1 Retrieving carbon cycle parameters for the last century using model-data fusion 162 

We used the CARDAMOM data assimilation framework and present-day global observations 163 

(between the years 2000 and 2015) to create a 1000 member ensemble of observationally 164 

constrained carbon cycle parameters and initial conditions (Bloom et al., 2016; Quetin et al., 165 

2020). CARDAMOM was used to optimize the initial conditions of six carbon pools and one 166 

water pool, as well as 29 parameters that control the turnover rate, allocation, and environmental 167 

response of carbon and water in the Data Assimilation Linked Ecosystem Carbon v2.1.6 168 
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(DALECv2.1.6) carbon cycle model, which underlies the CARDAMOM model-data fusion 169 

system (Figure 1). The optimized parameters are listed in Supplementary Table 1. 170 

 171 

 172 

Figure 1: Diagram of the main components of DALECv2.1.6 used in CARDAMOM (reproduced 173 

from Quetin et al. (2020)). 174 

 175 

The carbon cycle parameters and initial conditions (e.g., turnover times, photosynthesis 176 

sensitivities, etc.) that govern the response of the carbon cycle to increasing concentrations of 177 

CO2 and climate change were retrieved using a data assimilation approach (further described in 178 

Section 2.1.3) such that model outputs best match observed data. These parameters and initial 179 

conditions were retrieved independently for each grid point, avoiding the need to assume that 180 

parameters only vary with plant functional type. This grid-point-by-grid-point retrieval approach 181 

is common in most other data assimilation systems (e.g. Smith et al. (2019)), and allows for the 182 
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estimation of parameter uncertainty (Butler et al., 2017). In particular, the Carbon Monitoring 183 

System Flux (CMS-Flux) – an atmospheric inversion estimate of net biosphere exchange using 184 

satellite observations of atmospheric concentrations of CO2 – provided information on the carbon 185 

balance of the terrestrial ecosystem and constrained multiple aspects of the model (Liu et al., 186 

2017, 2021). 187 

 188 

2.1.1 Carbon cycle representation 189 

The carbon cycle representation in DALEC is as described in Quetin et al. (2020) and 190 

Bloom et al., (2016), except for an alteration to the calculation of GPP and stomatal conductance. 191 

To improve the representation of the effect of CO2 on stomatal conductance, we calculated leaf-192 

level GPP and stomatal conductance using the coupled leaf photosynthesis-stomatal conductance 193 

models developed by Farquhar-Ball-Berry (Ball et al., 1987; Farquhar et al., 1980) and its 194 

analytical solution (Baldocchi, 1994) (see Supporting Information). This was a key update for 195 

representing centennial GPP and water use efficiency responses to climate change and the large 196 

rise in atmospheric CO2 concentrations. As is common in land surface models incorporated in 197 

Earth system models, we scaled the leaf level results of GPP and stomatal conductance to the 198 

canopy as a single ‘big leaf’ with an exponential decay function of LAI (Sellers et al., 1992) (see 199 

Supporting Information). With this new model formulation, we also added an additional 200 

ecological dynamical constraint to those already contained in CARDAMOM (Bloom & 201 

Williams, 2015),  that constrained the ratio of maximum carboxylation (Vcmax25) to the maximum 202 



manuscript submitted to Global Biogeochemical Cycles 

 

 

11 

rate of whole chain electron transport at saturated light (Jmax25) (see Supplementary Text S1) to 203 

limit combinations that are not observed (Walker et al., 2014). 204 

Table 1: Optimized parameters and initial conditions in CARDAMOM, corresponding flat prior 205 

ranges, and resulting state variables. Reproduced with modifications in bold in the “Ball Berry 206 

GPP”  section from (Bloom et al., 2020; Quetin et al., 2020). Mean Temperature and 207 

Precipitation are represented by 𝑇̅ and 𝑃̅ respectively. 208 

 209 

 Parameter Description Prior range 

A
ll

o
ca

ti
o

n
 

fr
ac

ti
o

n
s 

Fauto Autotrophic respiration 0.2 – 0.8 

Flab NPP fraction to labile C  0.01 – 0.5* 

Ffol NPP fraction to foliar C 0.01 – 0.5* 

froo NPP fraction to fine root C 0.01 – 0.5* 

fwoo1 NPP fraction to stem C 0.01 – 0.5* 

T
u

rn
o
v

er
 r

at
es

 

θwoo Stem C turnover rate 2.5 × 10-5 - 10-3 day-1 

θroo Fine root C turnover rate 10-4 - 10-2 day-1 

Θlit Litter C turnover rate at 𝑇̅, 𝑃̅ 10-4 -  10-2 day-1 

θsom Soil organic matter (SOM) turnover rate at 𝑇̅, 𝑃̅ 10-7 - 10-3 day-1 

θmin Mineralization of litter to SOM at 𝑇̅, 𝑃̅ 10-5 -  10-2 day-1 

Θ Heterotrophic temperature dependence factor 0.018 – 0.08 

sp Heterotrophic precipitation dependence factor 0.01 - 1 

C
an

o
p

y
  

donset  Leaf onset day 0 – 365.25 

dfall Leaf fall day 0 – 365.25 

cLMA Leaf C mass per area 5 – 200 g C m-2 

cll Leaf loss fraction 1/8 - 1 

clr Annual labile C release fraction 1/8 - 1 

cronset Labile release period 10 – 100 days 

crfall Leaf fall period 20 – 150 days 

F
ir

e 
 

πfoliar
3 Combustion factors of foliar C 0.01 – 1  

πbiomass
3 Combustion factors of non-foliar biomass C 0.01 – 1 

πSOM
3 Combustion factor of soil C  0.01 – 1 

R Resilience factor 0.01 – 1  

W
at

er
  

𝜔  Water stress threshold 1 – 104 Kg H2O m-2 

α 3Second order runoff decay constant 3 × 10-7 – 0.03 mm-1 day-1 

S
ta

te
 v

ar
ia

b
le

s2
 

𝐶𝑙𝑎𝑏
(𝑡)

 Labile C at time t 1 – 2000 gC m-2 

𝐶𝑓𝑜𝑙
(𝑡)

 Foliar C at time t 1 – 2000 gC m-2 

𝐶𝑟𝑜𝑜
(𝑡)

 Fine root C at time t 1 – 2000 gC m-2 

𝐶𝑤𝑜𝑜
(𝑡)

 Above- and below-ground woody C at time t 1 – 105 gC m-2 

𝐶𝑙𝑖𝑡
(𝑡)

 Litter C at time t 1 – 2000 gC m-2 

𝐶𝑠𝑜𝑚
(𝑡)

 Soil organic C at time t 1 – 2×105  gC m-2 

𝑊(𝑡) Plant-available water at time t 1 – 104 mm 

B
a

ll
 B

er
ry

 G
P

P
 

Vcmax25 maximum carboxylation rate 10 – 400 umol m-2 s-1 

(Walker et al., 2014) 

Jmax Maximum rate of whole chain electron transport 

at saturated light 

20 – 400 umol m-2 s-1 

(Walker et al., 2014) 

mstomata Stomatal conductance slope 2 – 30 (Oleson et al., 

2010) 
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bstomata Stomatal conductance intercept .001 - .1 mol m-2 s-1 

(Oleson et al., 2010) 

gb Leaf boundary layer conductance to CO2 .4 – 10 mol m-2 s-1 (Martin 

et al., 1999) 
 210 
1 fwoo is equivalent to 1 – fauto – ffol – flab 211 

*Prior ranges are conservative approximations, see Fox et al., (2009) and CARDAMOM sample code for details on 212 

sequential allocation fraction sampling in DALEC models. 213 
2Only initial conditions (at time t=0) are optimized in DALECv2.1.6. 214 
3Using the ecological and dynamical constraint approach (Bloom & Williams, 2015) we ensure that that πfoliar> 215 

πbiomass and πfoliar> πSOM 216 

 217 

 218 

2.1.2 Assimilated Carbon Cycle Observations  219 

Our whole assimilation run spanned 1920 – 2015, with assimilated observations from 220 

2000 – 2015. All variables in Table 1 were optimized. The suite of observations (summarized in 221 

Table 1) was chosen to leverage new remote sensing observations of the global carbon cycle. A 222 

key set of assimilated observations is CMS-Flux net biome exchange (NBE), which was 223 

determined through atmospheric inversion (Bey et al., 2001; Liu et al., 2017, 2021). These NBE 224 

estimates had previously been used to better constrain global respiration fluxes (Konings et al., 225 

2019), as well as the balance of photosynthesis and respiration across the tropics (Liu et al., 226 

2017), and as emergent constraints on carbon-climate feedbacks (Barkhordarian et al., 2021), 227 

among others. Additional observations were derived from the following gridded datasets: 228 

remotely sensed solar induced fluorescence (SIF) as a proportional constraint for GPP (Bloom et 229 

al., 2020; Frankenberg et al., 2011), remotely sensed leaf area index (LAI) (Bi et al., 2015), 230 

remotely sensed carbon monoxide (CO) to constrain the fraction of carbon lost from pools due to 231 

fire (Bowman et al., 2017; Worden et al., 2017), remotely sensed total biomass (Carreiras et al., 232 
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2017; Saatchi et al., 2011), and soil organic matter from the Harmonized World Soil Database 233 

(HWSD) (Hiederer & Köchy, 2011).  234 

The biomass and soil organic material observations were both drawn from a static map 235 

and assimilated in the year and/or month most representative of their observation (June of 2015 236 

for biomass and the year 2000 for soil organic material) as in (Bloom et al., 2016; Quetin et al., 237 

2020). By contrast, NBE and SIF were assimilated as monthly time series from 2010 – 2015 and 238 

LAI as the long term mean from 2010 – 2015. The CO observations constrain biomass burning 239 

emissions fractions (see Table 1). Each dataset was re-gridded to 4ox5o latitude/longitude on the 240 

Goddard Earth Observing System - Chem (GEOS-Chem) for consistency with the CMS-Flux 241 

estimates (see Table 2, Supporting Information Section S3). All CARDAMOM assimilation and 242 

forward runs (i.e., DALEC model runs with the retrieved optimal parameters) were also 243 

performed at this resolution. 244 

 245 

Table 2. Observation-based datasets assimilated into the 4°×5° CARDAMOM simulation. Adapted with 246 

modification from (Bloom et al., 2020; Quetin et al., 2020). 247 

Observation  Years Dataset description Uncertainty4 

Leaf area index (LAI) 2010 – 2015 MODIS LAI retrievals1.  ±log(1.2)  

Soil organic matter 

(SOM) 

2000 Soil C from harmonized 

world soils database 

(HWSD) (Hiederer & Köchy, 

2011)  

±log(1.5)  

Above- and below-

ground biomass (ABGB) 

2015 GLAS-informed biomass map 

(Carreiras et al., 2017; Saatchi 

et al., 2011) 

≥ ±log(1.5) see 3   

Solar-induced 

Fluorescence (SIF) 

2010 – 2015 GOSAT retrievals of 

fluorescence (Frankenberg et 

al., 2011)2 

±log(2) see 2 

Fire C emissions (BB) 2010 – 2015 4°×5° inverse estimates of fire 

C emissions (Bowman et al., 

2017; Worden et al., 2017).  

±20% 

Net Biosphere exchange 

(NBE)5 

2010 – 2015 GOSAT CO2 and OCO2 CO2 

derived 4°×5° inverse 

Seasonal=±0.05 g C/m2/d 

Annual= ±0.02 g C/m2/d 
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estimates of terrestrial NBE 

(Liu et al., 2017, 2021). 

1Only mean 2010-2015 LAI is assimilated into CARDAMOM, in order to mitigate the influence of 248 

seasonal LAI retrieval biases (Bi et al., 2015). 249 
2Time-resoved SIF is assimilated as a relative constraint on the temporal variability of GPP when 250 

temperatures are greater than 5°C and LAI is greater than 0.2. 251 
3see ref (Bloom et al., 2016) for details on the uncertainty on ABGB. 252 
4Uncertainties denoted as ±log() indicates log-transformed model and observed quantities. 253 
5The CMS-Flux NBE is spatially smoothed using a 3x3 gaussian smoother to reduce noise. 254 

 255 

2.1.3 Data assimilation methodology 256 

CARDAMOM parameter optimization was performed with Bayesian inference in which 257 

observations O are paired to model parameters, states, and fluxes (y) to form the likelihood 258 

function (Bloom et al., 2016, 2020; Bloom & Williams, 2015; Quetin et al., 2020). The 259 

likelihood probability function was calculated as the product of individual likelihoods: 260 

P(𝑶|𝒚)  =  𝑃𝐿𝐴𝐼 𝑃𝑆𝑂𝑀 𝑃𝐴𝐵𝐺𝐵  𝑃𝑆𝐼𝐹  𝑃𝑁𝐵𝐸 𝑃𝐶𝑂      (1) 261 

where P(O|y) was the likelihood of y given observations (O) and PX was the probability 262 

of variable X given the observations of that variable (Table 2). This formulation assumes that the 263 

error between observations was independent. The PLAI, PSOM and PABGB, and PCO were derived as 264 

(Bloom et al., 2020; Quetin et al., 2020): 265 

𝑃 ∝ e
−

1

2
∑ (

𝑚i−𝑜𝑖
𝜎𝑖

)
2

𝑖
        (2) 266 

where mi and oi corresponds to the ith observation of the corresponding DALEC-modeled 267 

quantity and σi accounts for the combined effects of DALEC model structural error, model 268 

inputs, and observation errors. To better capture the interannual variability, PNBE included 269 
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separate probability calculations with different uncertainty estimates for monthly and annual 270 

likelihoods and the units of SIF and GPP in PSIF were normalized by the mean, such that GPP 271 

dynamics were constrained by SIF even though the units are not the same. Consistent with 272 

previous CARDAMOM runs (e.g. (Bloom et al., 2016, 2020; Quetin et al., 2020)), uncertainties 273 

were ultimately chosen manually based on expert experience of the underlying dataset and the 274 

impact on CARDAMOM’s match to the observations. For example, the seasonal uncertainty of 275 

NBE is held within a reasonable range of observed uncertainty but small enough to induce a 276 

seasonal cycle in NBE. See Quetin et al. (2020) and included references for further details. 277 

Additionally, CARDAMOM applied ‘ecological and dynamical constraints’ that reduce 278 

equifinality (Huntzinger et al., 2017) by eliminating parameter combinations that may match 279 

observations despite limited ecological plausibility (Bloom & Williams, 2015). 280 

Finally, we replaced the Adaptive Metropolis-Hastings Markov Chain Monte Carlo 281 

(MHMCMC) algorithm which was previously used in CARDAMOM (described in Bloom et al. 282 

(2020)) with a Differential Evolution Markov Chain Monte Carlo (DEMCMC) to sample P(y|O) 283 

(Braak, 2006) (Levine et al. 2022, in prep). The DEMCMC allowed for an order of magnitude 284 

increase in random starting points to avoid local minima and path dependency, while it also 285 

provided modest improvement in computation time. The DEMCMC produced similar results to 286 
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the MHMCMC algorithm in minimizing the mismatch between carbon cycle observations and 287 

model values. 288 

 289 

2.1.4 Model inputs for assimilation and attribution 290 

CARDAMOM requires external inputs for climate variables (insolation, precipitation, 291 

temperature, and vapor pressure deficit), atmospheric concentration of CO2, and burned area. For 292 

the assimilation runs, the climate inputs were taken from monthly CRUNCEP v7 reanalysis, 293 

which was chosen primarily for being available for most of the past century. CRUNCEP v7 is a 294 

combined datasets of the Climate Research Unit (CRU) and reanalysis data from National 295 

Centers for Environmental Prediction (NCEP) (Viovy, 2018). The atmospheric concentrations of 296 

CO2 were taken from the historical values of the globally-averaged annual means used by the 297 

Intergovernmental Panel on Climate Change with values for 2006 – 2015 taken from RCP8.5 298 

scenario which include a rise in CO2 of 98.6 ppm between 1920 and 2015 (Pachauri & 299 

Reisinger, 2008; Taylor et al., 2012).  300 

CARDAMOM simulates fire fluxes based on burned area inputs and optimized emissions 301 

factors relating burned area to emission rates of CO and CO2. These simulations are necessary to 302 

relate simulated net ecosystem productivity with observed net biome exchange (since the latter 303 

also accounts for fire fluxes). We used the Global Fire Emissions Database (GFED) V4.1s 304 

burned area to drive CARDAMOM during the observational period (1997 – 2015) (Randerson et 305 

al., 2017). Prior to the observational period, we synthesized burned area at each point for the last 306 

century by randomly resampling from the distribution of observed GFED V4.1s observations for 307 

a given month. This synthesized burned area contained the same variance as the observations and 308 
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did not have a long-term trend. We also investigated an empirical linkage between burned area 309 

and climate inputs but found the burned area synthesized from observations had less error 310 

relative to observed burned area in recent decades (not shown). Although we did not investigate 311 

fire specifically in this study, fire is accounted for implicitly in the carbon cycle data assimilation 312 

in CARDAMOM (Exbrayat et al., 2018).  313 

 314 

2.2 Attributing Change in the Carbon Cycle 315 

Our overall approach for attributing the carbon cycle response to different past 316 

environmental changes is illustrated in Figure 2. We ran factorial forcing scenarios that included 317 

different combinations of climate change and historically rising CO2: i) historical climate change 318 

and increased atmospheric CO2 concentrations, as during the assimilation stage (referred to as the 319 

‘Total’ scenario); ii) a control climate – repeating 1920 CRUNCEP meteorology – and steady 320 

atmospheric concentrations of CO2 equal to those in the 1920s (‘Control’ scenario); iii) a 321 

historically rising (enhanced) atmospheric concentration of CO2 with a control climate (‘eCO2’ 322 

scenario); and iv) a scenario with historical climate changes but constant CO2 at 1920 levels 323 

(‘Climate’ scenario, i.e. without CO2 fertilization). The burned area was left the same as the 324 

assimilation runs across experiments. These combined Total, Control, eCO2, and Climate 325 

experiments are similar to the approach used in previous studies to diagnose climate-carbon 326 

feedbacks in C4MIP (Arora et al., 2020; Friedlingstein et al., 2014; Jones et al., 2016), thus 327 
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isolating the effect of CO2 on plant physiology from the effect of climate change on the carbon 328 

cycle.  329 

Attribution of change in carbon fluxes was then determined as the difference between the 330 

respective carbon fluxes of the forced scenarios (‘Total’,’eCO2’, and ‘Climate’) minus the 331 

control run (‘Control’). Throughout this manuscript, we denote the attributed change in a flux 332 

due to enhanced CO2 as ∆𝑋𝑒𝐶𝑂2, the attributed change in a flux to climate as ∆𝑋𝑐𝑙𝑖𝑚𝑎𝑡𝑒, and the 333 

attributed change when they both are combined as ∆𝑋𝑡𝑜𝑡𝑎𝑙. In each of the above cases, X denotes 334 

the carbon flux variable, such as GPP or Rh. For example, net ecosystem productivity due to 335 

enhanced CO2 (∆𝑁𝐸𝑃𝑒𝐶𝑂2) is calculated as in Equation 3: 336 

 337 

∆𝑁𝐸𝑃𝑒𝐶𝑂2 = 𝑁𝐸𝑃𝑒𝐶𝑂2 −  𝑁𝐸𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙      (3) 338 

= 𝑁𝐸𝑃(𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑙𝑖𝑚𝑎𝑡𝑒, ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑂2) − 𝑁𝐸𝑃(𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑙𝑖𝑚𝑎𝑡𝑒, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐶𝑂2) 339 

       340 

Attribution was performed at each grid point on the cumulative sums from 1920 – 2015 and then 341 

spatially aggregated to calculate global and regional attribution, with regions defined as in Figure 342 

3. The spatial aggregation method is discussed in Supplementary Text S2.  343 

 344 

 345 

 346 

 347 
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 348 

Figure 2:  Summary of experimental design. We combine (pink) contemporary (2001-2016) 349 

atmospheric and land surface carbon cycle observations and historical climate forcing datasets 350 

(1920-2015) to constrain mechanistic carbon cycle responses to climate and atmospheric CO2. 351 

Model runs (grey) forced by combinations of historical or control climate and CO2 352 

concentrations to create the ‘Total’, ‘Control’, ‘eCO2’, and ‘Climate’ scenarios. 353 

 354 

 355 
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 356 

Figure 3: Regional divisions used for analysis. boreal (dark green), temperate (light green), wet 357 

tropics (blue), dry tropics (light blue). Black dots show points where CARDAMOM was able to 358 

complete the inversion (i.e. find a solution) in the simulated number of iterations. 359 

 360 

 361 

3 Results and Discussion 362 

3.1 Comparison of CARDAMOM simulations to assimilated estimates 363 

We compared CARDAMOM to assimilated observations for verification, as well as to 364 

alternate independent modeled and observed estimates of the carbon cycle. Compared to 365 

assimilated observations, CARDAMOM has a strong match of the seasonal cycle of net 366 

biosphere exchange for all regions and a slightly muted interannual variation (Figure S1). Across 367 

space, the observations generally fall within CARDAMOM’s uncertainty, although simulated 368 

leaf area is high and net biosphere exchange is somewhat lower than observations (that is, 369 

simulated uptake is higher than observed) around the equator. In the Sahel region, biomass is low 370 

and soil organic matter high relative to observations (Figure S2, Text S3). For the majority of 371 
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land points, CARDAMOM was able to retrieve a solution (Figure 3, black dots). Failed points 372 

primarily fell within the highly arid regions of the globe where there is relatively little carbon 373 

cycle activity. Some failed points may encompass regions important to the interannual variation 374 

of the carbon cycle (Poulter et al., 2014). 375 

 376 

3.2 Comparison of CARDAMOM simulations to independent estimates 377 

CARDAMOM’s simulated carbon cycle dynamics are within range of several 378 

independent constraints that were not directly assimilated. The average global GPP from 379 

CARDAMOM (90 ± 1.3 Pg C/yr, 25-75th percentile uncertainty for the period 2003 – 2015) is at 380 

the low end – but within the range of – several alternative estimates (Figure 4). CARDAMOM 381 

GPP are generally on the low end of other estimates in the tropical regions, while CARDAMOM 382 

GPP is more similar in both the seasonal cycle and mean annual value in the Boreal and 383 

Temperate regions (Figure S4). These alternative estimates include observations (i.e. optical 384 

retrievals from NIRv and δO18 ratios), an observationally-informed machine learning model 385 

(FLUXCOM), or model ensembles (i.e. the Multi-scale synthesis and Terrestrial Model 386 

Intercomparison Project (MsTMIP) and Trends in Net Land-Atmosphere Carbon Exchange 387 

(TRENDY V9), see Table S1 for list of models used) (Badgley et al., 2019; Friedlingstein et al., 388 

2020; Huntzinger et al., 2013; Sitch et al., 2008; Welp et al., 2011).  389 
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 390 

Figure 4: CARDAMOM mean annual Gross Primary Productivity (GPP, Pg C/yr) parameter 391 

ensemble spread with CRUNCEP climate 2003 – 2015 (Orange). Compared with observation-392 

based estimates of global GPP from NIRv (2003 – 2015), FLUXCOM (2003 – 2015), and O18 393 

(1980 – 2010), and terrestrial biosphere estimates from TRENDY V9 (2003 – 2015), MsTMIP 394 

(2003 – 2010) (all in grey). Figure structure and data for NIRv, FLUXCOM, MsTMIP, and 395 

O18 adapted from (Badgley et al., 2019). Whiskers of boxplot show 5th – 95th percentiles. Grey 396 

shading demarks literature values that do not directly overlap in time. 397 

  398 

 399 

The zonal pattern of the apparent turnover time of the total ecosystem carbon for 400 

CARDAMOM (calculated using the total summed soil and vegetation carbon stocks, as in Fan et 401 

al. (2020)) is broadly similar to that of a recent observation-derived estimate of global turnover 402 

times for the same time span (Fan et al., (2020), which is an updated version of the estimate in 403 

Carvalhais et al. (2014)), at least between the latitudes of 46o S and 46o N (Figure 5). This is 404 
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reflected in the average values – 41 years for CARDAMOM and 30 years for that of Fan et al. 405 

(2020) (Figure 5). At high latitudes, however, the two estimates in Figure 5 diverge significantly, 406 

with CARDAMOM predicting a shorter turnover time. This divergence may relate to an under-407 

prediction of the size of soil carbon pools in CARDAMOM in regions with complex permafrost 408 

dynamics, since CARDAMOM does not have an explicit representation of the dynamics for 409 

permafrost and frozen soils. In addition, the soil organic matter estimates at high latitudes are 410 

highly uncertain because of the limited number of measurements. The HWSD soil organic matter 411 

dataset assimilated in CARDAMOM was shown to be on the low end of estimates in Fan et al. 412 

(2020), which would tend to drive CARDAMOM towards a shorter turnover time as well. 413 

Resolving this divergence and others illustrated above is likely to improve the accuracy and 414 

precision of carbon cycle analyses derived from CARDAMOM. 415 

The difficulty in acquiring observations of soil carbon dynamics and their complexity 416 

makes the parameterization of turnover times in land surface models highly uncertain 417 

(Carvalhais et al., 2014; Friend et al., 2014; Koven et al., 2015), including at high latitudes 418 

(Koven et al., 2017). By contrast, the soil carbon turnover rates and initial carbon pool sizes in 419 

CARDAMOM are informed by observations of carbon fluxes and carbon states through data 420 

assimilation. The close match between the turnover times estimated by CARDAMOM and those 421 

estimated by observationally-driven and quasi-independent (some datasets included in Fan et al. 422 

(2020) are assimilated in CARDAMOM, some are not) values hints at the success of 423 

CARDAMOM's ability to accurately infer carbon cycle dynamics based on the assimilated 424 

observations. 425 
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 426 

Figure 5: The zonally averaged turnover time for total ecosystem C in CARDAMOM (orange) 427 

compared to the quasi-independent estimates of Fan et al. 2020 (black), calculated between 428 

2001 – 2014. Shading demarks 5th – 95th range of ensembles, solid line is median. 429 

 430 

 431 

For more complete insight into the full historical dynamics simulated by CARDAMOM, 432 

we further compared it to independent model estimates of carbon flux timeseries from TRENDY 433 

V9 scenario 2 (change in climate and CO2 but not land use change) (Figure 6, S3) and estimates 434 

of the sensitivity of GPP and NEP to increased CO2 (Figure 7) (Friedlingstein et al., 2020). We 435 

find that the net primary productivity in the CARDAMOM ‘Total’ (Historical) run falls just 436 

below the TRENDY V9 set of models between 1920 and about 1980 (Figure 6). Up until 1960, 437 

CARDAMOM is a weak source to the atmosphere, while TRENDY V9 is neutral to a sink 438 
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throughout. These early differences highlight the difference in initial conditions between 439 

CARDAMOM and the models contained in TRENDY. While TRENDY models are run to 440 

equilibrium in 1700, CARDAMOM retrieves the initial carbon and water pools that serve to best 441 

match the observations assimilated. After 1980, the CARDAMOM Historical runs fall within the 442 

spread of models contained in TRENDY, ending in 2015 very close to the mean of the TRENDY 443 

models (Figure 6). This convergence in modern times may be due to the influence of similar 444 

observations on both models, which are systematically assimilated in CARDAMOM and assert 445 

influence over TRENDY as they are often used as validation. Like for NEP, the growth in 446 

CARDAMOM GPP since 1960 is much faster in CARDAMOM than in the TRENDY 447 

simulations (Figure S3), possibly due to analogous differences in initial condition 448 

parameterization and the influence of modern measurements. The relatively rapid CARDAMOM 449 

GPP growth compared to TRENDY is consistent with the results of Campbell et al. (2017), who 450 

used carbonyl sulfide records to show that historical GPP growth is higher than simulated by 451 

earth system models. During the period 1900 - 2013, GPP was estimated to grow by 31  5%, 452 

consistent with the 39  7%, simulated here during the slightly later period 1920 – 2015. As also 453 

shown in Fig. 4, the historical GPP simulated by CARDAMOM is lower than that simulated by 454 

the TRENDY models. Consistent with this pattern, autotrophic respiration is also lower than in 455 

the TRENDY models, while the heterotrophic respiration and LAI simulated by CARDAMOM 456 

are lower than most TRENDY models, but still fall within the low end of their range (Figure S3).  457 

 458 



manuscript submitted to Global Biogeochemical Cycles 

 

 

26 

 459 

Figure 6: The annual timeseries of Net Ecosystem Productivity (NEP) from 1920 – 2015 from 460 

the CARDAMOM Historical run (orange, shading 5th – 95th percentile of ensemble), the 461 

individual TRENDY v9 models (grey solid) (Friedlingstein et al., 2020), and their multi-model 462 

mean (grey dashed). For a fair comparison, the global aggregation was performed only where 463 

there was a successful CARDAMOM run (black dots in Figure 3). 464 

 465 

 466 

Lastly, because our study focused in part on the effect of historical atmospheric CO2 467 

increases on terrestrial carbon fluxes, we investigated whether the GPP and NEP CO2 sensitivity 468 

calculated by CARDAMOM was in line with that of alternative estimates. Specifically, we 469 

calculated the CARDAMOM sensitivity of gross primary productivity as a percentage (𝛽GPP) and 470 

net ecosystem production (𝛽NEP) to enhanced CO2. The 𝛽GPP and 𝛽NEP were calculated by 471 

dividing the fractional gain of GPP or the carbon gained through NEP from 1920 – 2015 that was 472 

attributed to enhanced CO2 by the change in atmospheric concentration of CO2 over this period. 473 

Note that when calculating 𝛽GPP, unlike when calculating 𝛽NEP, the numerator was calculated as 474 

a percentage gain over 1920-2015 to facilitate comparison with literature values. Experimental 475 

manipulations in Free Air CO2 Enrichment (FACE) studies provided observation-based but site-476 
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specific estimates of relative GPP sensitivity to increased CO2 (Hickler et al., 2008, p. 200), 477 

which cannot be directly compared to CARDAMOM because of its coarse resolution. Some 478 

differences in results between FACE studies and CARDAMOM would also be expected because 479 

of differences in the absolute atmospheric CO2 levels between the two. Nevertheless, when 480 

considering CARDAMOM’s relative GPP sensitivity to CO2 across pixels, many pixels within 481 

the 5-95th percentile CARDAMOM range show the same sensitivity as observationally observed 482 

at four FACE experiments, which fall slightly below the 25th CARDAMOM percentile (Figure 483 

7). Across the globe, model ensembles provide a further point of comparison. The GPP 484 

sensitivity to CO2 simulated by TRENDY V9 models and sampled at the CARDAMOM 485 

simulation points for 1920 - 2015 is generally considerably lower than that of CARDAMOM 486 

(Figure 7b). Like CARDAMOM’s, the TRENDY GPP CO2 sensitivity is also uncertain, both 487 

because of imperfect modelling assumptions and because no data are assimilated into TRENDY. 488 

It is thus difficult to ascertain whether or by how much CARDAMOM’s GPP CO2 sensitivity is 489 

too high or TRENDY’s is too low.  490 

The relatively high CARDAMOM GPP sensitivity to CO2 relative to that of conventional 491 

models is also reflected in the comparison between CARDAMOM NEP sensitivity to CO2 and 492 

that of model intercomparisons, including estimates from TRENDY V9, which were regridded to 493 

CARDAMOM resolution and sampled where CARDAMOM provided a solution (black dots 494 

Figure 3), the Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP), and 495 

MsTMIP (Arora et al., 2013; Friedlingstein et al., 2006, 2020; Huntzinger et al., 2017) (Figure 496 

7c). CARDAMOM’s NEP sensitivity is on the high end of estimates from TRENDY and 497 

C4MIP, but in the middle of the range for MsTMIP. The different sensitivities exhibited by 498 

models from different intercomparison systems is reflective of their uncertainty. Nevertheless, 499 
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the differences between conventional model ensembles and CARDAMOM add a note of caution 500 

to the results described in the manuscript. 501 

Taken together, the reasonable – though imperfect – match between the CARDAMOM-502 

simulated historical carbon cycle (Figures 4-7, S3-S4) and independent estimates demonstrates 503 

CARDAMOM's utility for process attribution of historical fluxes, as performed below. 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 



manuscript submitted to Global Biogeochemical Cycles 

 

 

29 

 514 

Figure 7: Comparison of the CARDAMOM mean sensitivity of carbon to eCO2 for percent change 515 

in GPP with a) the CARDAMOM spread across space with FACE sites, b) CARDAMOM 516 

parameter spread of global mean with TRENDY V9 model spread. In c) the absolute change in 517 

NEP per change in ppm CO2 for CARDAMOM simulations (orange, 1920 - 2015) including the 518 

ensemble uncertainty of the global mean and TRENDY V9 (1920 – 2015) models (Friedlingstein 519 

et al., 2020) and values drawn from literature for C4MIP (1901 – 2015) circles for 520 

(Friedlingstein et al., 2006, p. 20) and diamonds for (Arora et al., 2013) estimates, MsTMIP 521 

(1959 – 2010) from (Huntzinger et al., 2017) (all in grey). All CARDAMOM values are for 1920 522 

– 2015 For a fair comparison, the global aggregation was performed only where there was a 523 

successful CARDAMOM run (black dots in Figure 3). Whiskers of boxplot show 5th – 95th 524 

percentiles. Grey shading demarks literature values that do not directly overlap in time. 525 

 526 

 527 
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3.3 Large gains in GPP under rising CO2 are largely offset by the response of respiration to 528 

increased plant growth 529 

Over the past century, the CARDAMOM simulations attribute large increases in global 530 

GPP to the combination of the historical enhanced atmospheric concentrations of CO2 and 531 

climate change (∆𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙 = 1294 ± 57 Pg C, where the uncertainty is ± the 25th – 75th range 532 

divided by two) (Figure 8). This modeled increase in global GPP is consistent with increasing 533 

GPP driving the satellite-observed greening of the Earth (Zhu et al., 2016). The increase in 534 

global GPP is primarily attributed to the GPP response to enhanced atmospheric concentrations 535 

of CO2 (∆𝐺𝑃𝑃𝑒𝐶𝑂2 = 974 ± 76 Pg C), which accounts for 75% of the total GPP change. The 536 

larger response to CO2 than the response to climate is consistent with past studies using 537 

traditional model ensembles (Arora et al., 2013; Melnikova & Sasai, 2020; Piao et al., 2013; 538 

Schwalm et al., 2020), although this study is the first to quantify this effect using a data-539 

constrained methodology.  540 

Changes in climate over the past century have also impacted the carbon cycle. When only 541 

climate change is simulated, GPP decreases globally relative to the control experiment 542 

(∆𝐺𝑃𝑃𝐶𝑙𝑖𝑚𝑎𝑡𝑒= -551 ± 72 Pg C). The negative response of GPP to the Climate only scenario is 543 

broadly consistent with negative responses of NPP seen in C4MIP experiments (Friedlingstein et 544 

al., 2006). Except under particularly hot conditions in the wet tropics, increased temperatures 545 

generally increase GPP by increasing chemical activity, but increased vapor pressure deficit 546 

reduces GPP by causing stomatal closure and reducing stomatal conductance (Fu et al., 2022). 547 

Overall, the potential benefits from warming due to climate change are offset by the effects of 548 

vapor pressure deficit-driven stomatal closure. (Note that changes in sunlight and precipitation 549 

were relatively small between 1920 – 2015, such that direct temperature and VPD effects were 550 
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the dominant climate drivers). This explains the global decrease in GPP in the climate change-551 

only scenario. By contrast, the fact that GPP is larger in the total scenario (∆𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙 = 1294 ± 552 

57 Pg C) than in the enhanced CO2-only scenario (∆𝐺𝑃𝑃𝑒𝐶𝑂2 = 974 ± 76 Pg C) suggests that 553 

when CO2 and climate changes interact, climate has a positive (rather than negative as in 554 

∆𝐺𝑃𝑃𝐶𝑙𝑖𝑚𝑎𝑡𝑒) influence on the Total scenario. Under the increased CO2 scenario, CO2-induced 555 

stomatal closure limits the impact of vapor pressure deficit-induced stomatal closure. This is 556 

consistent with observations (Dusenge et al., 2019) and with the recognition that stomatal closure 557 

in response to enhanced CO2 reduces evaporation (Lemordant et al., 2018; Swann et al., 2016). 558 

As a result, the direct positive effects of increasing temperature on GPP dominate, and the effect 559 

of climate change on GPP is positive. This coupling between the carbon-concentration and 560 

carbon-climate feedbacks allows climate changes to have a positive impact on GPP when 561 

increases in atmospheric CO2 are present.  562 

 563 

 564 
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 565 

Figure 8: Magnitude of global cumulative sum of terrestrial carbon fluxes from 1920 - 2015 566 

attributed to a) combined climate change and enhanced CO2 (‘Total’ minus ‘Control’), b) 567 

enhanced CO2 alone (‘eCO2’ minus ‘Control’), and c) climate change alone (‘Climate’ minus 568 

‘Control’). Distributions for gross primary productivity (∆GPP), ecosystem respiration (∆Reco), 569 

autotrophic respiration (∆Ra), and heterotrophic respiration from litter and soils (∆Rh) (Pg C). 570 

Colors per legend. The median of the whole distribution is shown as a colored dot-dashed line, 571 

while the percentiles of 5th – 95th and 25th – 75th percentile are shown as gradually darker 572 

shading. Reco is equal to Rh + Ra. 573 
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 574 

The majority of the enhanced ecosystem respiration over the last century is due to a 575 

change in plant growth (i.e., input of additional carbon into the ecosystem), rather than an 576 

acceleration in the turnover of carbon due to the sensitivity to increasing temperature. Our 577 

analysis attributes a large increase of ecosystem respiration in response to the increased plant 578 

growth that occurs due to CO2 fertilization. The majority of ∆𝐺𝑃𝑃𝑒𝐶𝑂2 is lost to respiration 579 

(∆𝑅𝑒𝑐𝑜
𝑒𝐶𝑂2 = 774 ± 72 Pg C out of ∆𝐺𝑃𝑃𝑒𝐶𝑂2 = 974 ± 76 Pg C) (Figure 8). This increase in 580 

respiration is due to both autotrophic respiration (∆𝑅𝑎
𝑒𝐶𝑂2 = 460 ± 46 Pg C) and heterotrophic 581 

respiration (∆𝑅ℎ
𝑒𝐶𝑂2 = 315 ± 28 Pg C) rising significantly. This large respiration response to CO2-582 

fertilization-driven increases in photosynthesis is consistent with observations at site-scale free-583 

air carbon dioxide enrichment (FACE) studies, which have found that elevated atmospheric CO2 584 

concentrations lead to increases in soil respiration (King et al., 2004). By contrast, FACE studies 585 

find only mixed evidence for significant increases in soil organic matter (Hungate et al., 2009; 586 

Norby & Zak, 2011), which is consistent with our result that a large portion of stimulated 587 

photosynthesis is ultimately respired rather than stored in carbon pools. 588 

The increase in respiration in the eCO2 scenario (∆𝑅𝑒𝑐𝑜
𝑒𝐶𝑂2 = 774 ± 72 Pg C) is large 589 

relative to that of the Total scenario (∆𝑅𝑒𝑐𝑜
𝑡𝑜𝑡𝑎𝑙 = 1074 ± 52 Pg C), suggesting that most of the 590 

attributable respiration increase is due to increases in the magnitude of respiring carbon pools, 591 

rather than climate-driven increases in respiration rates. The importance of plant growth to 592 

changes in respiration over long periods of time in our experiments is consistent with 593 

observations of both a tight coupling between GPP and respiration across space and a strong 594 

relationship between interannual variations in GPP and respiration in flux tower observations 595 

(Baldocchi, 2008; Dusenge et al., 2019; Fernández-Martínez et al., 2014). The high respiration 596 
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response to plant growth is driven by both autotrophic (∆𝑅𝑎
𝑡𝑜𝑡𝑎𝑙 = 595 ± 33 Pg C) and 597 

heterotrophic respiration (∆𝑅ℎ
𝑡𝑜𝑡𝑎𝑙 = 481 ± 21 Pg C) in both the total and eCO2 scenarios. 598 

The dominance of the respiration response to carbon inputs alone, rather than to soil 599 

warming for example, highlights how the baseline (unmodified by climate) turnover times of 600 

different carbon pools play a large role in determining how much of the increased plant growth 601 

will stay in the ecosystem and the ultimate net carbon sink. These baseline turnover rates are set 602 

by many processes, including allocation of carbon between different plant pools with different 603 

respiration rates and microbial effects on heterotrophic respiration. This emphasizes the need for 604 

global carbon cycle studies to consider how the base turnover rates of different respiration pools 605 

are calibrated across the globe, not just their extensively-studied climatic sensitivities e.g. 606 

(Mahecha et al., 2010; Nottingham et al., 2020). 607 

 608 
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 609 

Figure 9: Distribution of cumulative per area change in ∆𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙 (a, c, e, g) and ∆𝑁𝐸𝑃𝑡𝑜𝑡𝑎𝑙  610 

(b, d, f, h). Note: NEP = - NEE. Carbon flux change by region attributed to the Total forcing 611 

(i.e., Total – Control) which includes both increasing CO2 and changing climate. Darker 612 

shading corresponds to 5th – 95th percentile and 25th – 75th percentile of distributions due to both 613 

parameter and climate spread. Note that the y-axis is the same scale for all subplots in each 614 

column. 615 
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3.4 Respiration response to CO2 shapes regional balance of the net carbon flux 616 

The changes in carbon sinks from rising CO2 concentrations and changing climate vary 617 

across regions due to both spatial variation in enhanced carbon input (GPP) (Figure 9) and the 618 

respiration response. It is not surprising that the wet tropics, the region with the highest GPP on 619 

Earth (Badgley et al., 2019), also has the largest GPP increase due to enhanced CO2. However, 620 

even though the greatest increase in ecosystem carbon input (GPP) is in the wet tropics, the total 621 

attributed ∆𝑁𝐸𝑃𝑡𝑜𝑡𝑎𝑙  is largest in the temperate region (17.8 ± 0.7 Mg C/ha). This increase in the 622 

temperate carbon sink per unit area is larger than that in the wet tropics (14.2 ± 1.1 Mg C/ha), 623 

about twice as large as in the boreal (7.9 ± 1.0 Mg C/ha) and in the dry tropics (11.6 ± 0.9 Mg 624 

C/ha) (Figure 9). Thus, the net carbon sink in the temperate region has increased more than the 625 

net carbon sink in the wet tropics, despite GPP increasing more in the wet tropics (∆𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙 = 626 

133.5 ± 15.5 Mg C/ha for wet tropics and ∆𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙 = 92.8 ± 4.6 Mg C/ha for temperate). 627 

Independent atmospheric inversions for net carbon flux also find a strong carbon sink in the 628 

present-day temperate region compared to the nearly neutral tropics (Byrne et al., 2020; Gaubert 629 

et al., 2019). This geographic mismatch between the largest increase in GPP and largest increase 630 

in the carbon sink demonstrates the importance of respiration dynamics in determining the 631 

carbon balance of an ecosystem. 632 

We can quantitatively summarize the response of the ecosystem to increased carbon input 633 

as the amount of new carbon lost compared to the increased carbon input, or the “loss ratio of 634 

carbon gained” (∆𝑅 ∆𝐺𝑃𝑃⁄ ). Note that the loss ratio of carbon gained is a distinct quantity from 635 

the ratio between total Reco and GPP in historical fluxes (Baldocchi, 2008), as it reflects the 636 

response to added carbon input, rather than to total carbon input. As future ecosystem dynamics 637 

respond to climate change and increasing atmospheric CO2 concentrations, the loss ratio of 638 
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carbon gained tracks how well they will serve as a sink in comparison to changes in carbon 639 

input. The (∆𝑅𝑒𝑐𝑜 ∆𝐺𝑃𝑃⁄ )𝑡𝑜𝑡𝑎𝑙 changes significantly across regions (Figure 10). It is highest in 640 

the wet tropics (89 ± 1%), where the highest portion of increased GPP is lost to respiration. It is 641 

lowest in the boreal region (76 ± 4%), such that more of the increased GPP remains stored in 642 

boreal ecosystems than in other regions.  Both the temperate (81 ± 0.5%) and dry tropics (84 ± 643 

1%) regions have values between the boreal and wet tropics. Across regions, the loss ratios of 644 

carbon gained in the Total scenarios are only a few percentage points larger than the equivalent 645 

values in the eCO2 scenario, which does not experience climate change (Figure 10). The small 646 

change due to climate change shows that the loss ratio of carbon gained is primarily set by the 647 

base turnover rates in different regions, rather than changes in the turnover rates due to their 648 

climatic sensitivities.   649 

The loss ratio of carbon gained due to heterotrophic respiration varies more between 650 

regions (e.g., from 44 ± 1.5% in the dry tropics to 24 ± 3.4% in the boreal) than that due to 651 

autotrophic respiration, which varies no more than 12 percentage points across regions (Figure 652 

10). Thus, spatial variations in the loss ratio of carbon gained are primarily driven by spatial 653 

patterns of the heterotrophic respiration’s loss ratio of carbon gained (i.e.  (∆𝑅ℎ ∆𝐺𝑃𝑃⁄ )𝑡𝑜𝑡𝑎𝑙), 654 

rather than by that for autotrophic respiration (Figure 10). The higher heterotrophic respiration 655 

responses to enhanced CO2 in tropical regions offsets the much larger response of GPP to CO2 656 

fertilization in the (wet) tropics, dropping the attributable net carbon flux below that of other 657 

regions. Note that our finding that the relatively large enhancements of CO2 in the wet tropics 658 

translate to greater heterotrophic respiration fluxes is consistent with isotopic evidence from the 659 

flanks of two Costa Rican volcanoes, which are exposed to higher CO2 concentrations. In these 660 

areas a strong relationship was found between trees with high xylem concentrations of CO2 – 661 
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suggesting higher CO2 fertilization – and higher nearby soil respiration fluxes (Bogue et al., 662 

2019).  663 

This study is the first to explicitly compare the amount of additional carbon fluxes across 664 

regions. The pattern of spatial variability in the loss ratio of carbon gained has significant 665 

consequences for the land carbon sink. While the increase in wet tropical GPP attributable to 666 

climate change and CO2 is 1.4 – 4.0 times higher than in other regions, the high loss ratio of 667 

carbon gained causes the wet tropical gain in NEP to be only 0.8 – 1.8 times higher than that of 668 

other regions. This suggests a more limited regional importance for the wet tropics than would be 669 

apparent if only photosynthesis CO2 fertilization rates were considered. Additionally, if it can be 670 

further supported, the finding of a particularly high respiration response to CO2 fertilization in 671 

the wet tropics, driven by both soil and plant respiration rates, could be a useful constraint for 672 

understanding the net carbon flux of undisturbed tropical forests, particularly since they are 673 

under-represented in most in situ observational networks (Bond-Lamberty & Thomson, 2018; 674 

Jian et al., 2020; Schimel et al., 2015). 675 

 676 

 677 

 678 
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 679 

Figure 10: Ranges for the loss ratio of carbon gained (∆R/∆GPP) for a) heterotrophic 680 

respiration, b) autotrophic respiration, and c) ecosystem respiration. Larger values mean more 681 

carbon lost to the atmosphere. Gray denotes Total run minus Control and green denotes elevated 682 

CO2 run minus Control. Vertical line is the median, colored box is the 25th – 75th range, and 683 

whiskers are the 5th to 95th range. Note that the x-axis is not the same scale for all subplots. 684 

 685 

 686 

3.5 Strong relationship between respiration and GPP constrained by observations 687 

CARDAMOM-derived loss ratios of carbon gained show reasonably high overlap with 688 

those from land surface models included in the TRENDY V9 S2 experiment. This holds true for 689 

each of the cases where either the total, heterotrophic, or autotrophic respiration is considered – 690 

though TRENDY generally has a higher loss ratio of carbon gained for autotrophic respiration 691 

and thus total respiration (Figure 11). This similarity occurs despite the disagreement between 692 

CARDAMOM and TRENDY in the mean GPP magnitude and the sensitivity of GPP to 693 

increasing CO2 (Figures 4, 7), and despite the very different inputs used to parameterize 694 
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CARDAMOM and TRENDY (i.e. parameters derived from observations in CARDAMOM, 695 

using plant functional types in TRENDY). This similarity is likely due to the similar process 696 

representations of carbon allocation and respiration in the two ensembles. However, the 697 

uncertainty across the TRENDY models is considerably larger than that of the observationally-698 

constrained CARDAMOM ensemble. 699 

The CARDAMOM loss ratio of carbon gained varies within a few percentage points at 700 

regional and global scales (Figures 10, 11). Put another way, there is a strong proportional 701 

relationship between the ∆𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙 and the ∆𝑅𝑒𝑐𝑜
𝑡𝑜𝑡𝑎𝑙, ∆𝑅𝑎

𝑡𝑜𝑡𝑎𝑙, and ∆𝑅ℎ
𝑡𝑜𝑡𝑎𝑙 (as well as in the eCO2 702 

and Climate scenarios, not shown). This strong relationship echoes a previous finding by Hajima 703 

et al. (2014), who found a tightly constrained ratio of changes in heterotrophic respiration to net 704 

primary productivity in response to climate change and enhanced atmospheric concentrations of 705 

CO2 in Earth System Models. Overall, the loss ratio of carbon gained may be a useful additional 706 

constraint on model representations of carbon cycle responses to global change, particularly 707 

given the large remaining uncertainties in the magnitude of global fluxes of respiration (Bond-708 

Lamberty, 2018; Jian et al., 2022) and GPP (Badgley et al., 2019; Welp et al., 2011),. 709 

Nevertheless, the tightly constrained nature and value of the loss ratio of carbon gained 710 

are subject to the uncertainties in the CARDAMOM system (as further discussed in Sec. 3.6 711 

below) that will require further validation, ideally across different assimilation systems driven by 712 

observational data. These could include, e.g. other data assimilation systems (Fox et al., 2018; 713 

Peylin et al., 2016; Smith et al., 2020), or CARDAMOM runs with alternative observational 714 

constraints. For example, studies using radiocarbon have found that most carbon cycle models 715 

simulate unrealistically young median ages of soil C (Shi et al., 2020), suggesting our simulation 716 

and related studies would benefit from the explicit assimilation of radiocarbon observations. 717 
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Overall, as more and longer time series of observations become available, CARDAMOM and 718 

other data assimilation systems have the potential to further constrain the loss ratio of carbon 719 

gained.  720 

 721 

 722 

 723 

Figure 11: The global distributions of loss ratio of carbon gained (∆Rtotal/∆GPPtotal) for a) 724 

heterotrophic respiration (Rh) and autotrophic respiration (Ra), and b) the ecosystem respiration 725 

(Reco) over GPP. Points are the same ratio for individual TRENDY V9 models (Friedlingstein et 726 

al., 2020). Darker shading in the histograms for CARDAMOM distributions is for the 5th – 95th 727 

and 25th – 75th range. Note that the y-axis is the same scale for both subplots. 728 

 729 
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3.6 Uncertainties in CARDAMOM flux estimates 730 

A number of relevant terrestrial carbon cycle processes are not explicitly represented in 731 

CARDAMOM, adding uncertainty to the above results. These include soil priming (van 732 

Groenigen et al., 2014), changes in microbial biomass (Wieder et al., 2013), lateral carbon flux 733 

(Regnier et al., 2013) and vegetation demography (Fisher et al., 2018). CARDAMOM uses 734 

relatively simplistic treatments of autotrophic respiration (proportional to photosynthesis with 735 

spatially variable carbon use efficiency) and heterotrophic respiration (using just two pools, litter 736 

and soil organic matter). Temporally variable nutrient limitations are also not represented, 737 

though spatial variability in nutrient limitations can be partially accounted for through reduced 738 

Vcmax25 values. Past attribution studies using conventional model ensembles have found a 739 

significant effect from including the nitrogen cycle by lowering the carbon gained due to 740 

increased atmospheric concentrations of CO2 (Huntzinger et al., 2017), lowering accumulation of 741 

soil carbon (Huntingford et al., 2022), and nutrient deposition impacts on photosynthesis 742 

(Schwalm et al., 2020). However, note that Chen et al. (2019) found that accounting for nitrogen 743 

deposition only mildly enhanced the simulated NEP since 1981 (Chen et al., 2019).  744 

 Another key source of uncertainty in this study is the fact that CARDAMOM does not 745 

explicitly represent land use and land cover change (LULCC). Because a model without an 746 

explicit LULCC representation is assimilating observations that are influenced by the true 747 

historical LULCC, the CARDAMOM-retrieved parameters (and the associated carbon pools and 748 

fluxes) are likely to partially reflect historical LULCC. The lack of sub-grid scale heterogeneity 749 

in vegetation type in CARDAMOM makes it difficult to simulate LULCC. However, a 750 

sensitivity analysis can be performed by altering simulated burned area patterns to mimic land 751 

cover changes due to LULCC. When tested for several representative locations, this sensitivity 752 
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analysis did not lead to any systematic change in the loss ratio of carbon gained, nor any other 753 

significant qualitative changes to the results discussed above (not shown). This suggests that the 754 

key qualitative conclusions of this manuscript are robust to LULCC effects, consistent with 755 

Schwalm et al. (2020), who found LULCC to be a relatively minor factor affecting GPP over the 756 

last century, and much smaller than CO2 fertilization. Nevertheless, our sensitivity analyses were 757 

performed only on a small number of representative pixels and do not fully capture the potential 758 

effects of LULCC, which adds some uncertainty to our results. 759 

CARDAMOM’s advantage relative to conventional terrestrial biosphere model 760 

ensembles is not that it has an inherently more accurate ecosystem respiration representation, but 761 

that the observational constraints allow an exploration of the dynamics of carbon fluxes that is 762 

not dependent on a priori assumptions of the magnitude of the climatic sensitivities or base 763 

turnover times of various respiring carbon pools. Because dynamic net biome exchange and a 764 

snapshot of carbon stocks are assimilated into CARDAMOM (along with other observations 765 

such as SIF and LAI, and uncertainty accounting), turnover and respiration parameters can be 766 

explicitly constrained. This constraint is dependent in part on the observational uncertainty 767 

assumed. Although data assimilation systems can suffer from equifinality issues that can limit 768 

the utility of the assimilation outside the observational period, CARDAMOM’s ecological and 769 

dynamic constraints (Bloom & Williams, 2015) and intermediate structural complexity 770 

(Famiglietti et al., 2021) help to reduce such equifinality. Thus, turnover should be more 771 

accurately constrained (see Figure 5) than in past prognostic models that use only information 772 

about vegetation states (e.g. Chen et al., (2019), Melnikova & Sesai, (2020)).  773 

Despite the above limitations, previous research has shown that CARDAMOM is capable 774 

of representing ecosystem temporal dynamics similar to those of more structurally complex 775 
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conventional carbon cycle models (See Figure 6, 7 and 8 in Quetin et al. (2020)). In effect, 776 

CARDAMOM’s explicit treatment of parameter uncertainty allows it to partially compensate for 777 

the added structural uncertainty compared to more complex models. As such, and based on the 778 

reasonable match to observations discussed in Text S3 and Sec 3.1, we expect the qualitative 779 

conclusions of our attribution calculations above to be robust. 780 

 781 

4. Conclusions 782 

We used data assimilation in CARDAMOM to attribute change in the terrestrial carbon 783 

cycle in response to enhanced atmospheric concentrations of CO2 and climate change over the 784 

past century. Our analysis allowed for the retrieval of a parameters, including initial conditions, 785 

that are consistent with present-day observations of the carbon cycle at each grid point. This 786 

approach avoids the assumed spin-up to equilibrium that is common in other modeled 787 

projections of the carbon cycle, and estimates carbon cycle dynamics based on ecosystem 788 

observations rather than broad distributions of plant functional types. 789 

The response of the carbon cycle is dominated by increased plant growth due to CO2 790 

fertilization across the globe and all regions. We identify the largest per area increase of GPP to 791 

be in the wet tropics, and the largest per area carbon sink to be in the temperate region. The 792 

location of the largest net carbon sink region per area is due the combination of large increases in 793 

plant growth with a relatively low ‘loss ratio of carbon gained’ in the temperate region compared 794 

to the more productive wet tropics. While the increase in wet tropical GPP is 1.4 – 4.0 times 795 

higher than in other regions, the wet tropical gain in NEP is only 0.8 – 1.8 times higher, because 796 

respiration fluxes are so much more responsive than in other regions even without considering 797 

changes in soil temperature.  798 



manuscript submitted to Global Biogeochemical Cycles 

 

 

45 

The global loss ratio of carbon gained (globally, 83 ± 0.6%) across the CARDAMOM 799 

ensemble’s range of parameters is much less uncertain than the range of GPP increase, and 800 

accounts for the majority of increased productivity respired to the atmosphere. A significant 801 

portion of the loss ratio of carbon gained is due to heterotrophic respiration as a response to 802 

increased plant growth. This suggests that the base turnover rates of an ecosystem – rather than 803 

the sensitivity of those turnover rates to climate change – is the dominant driver of how much of 804 

and where the carbon fixed by enhanced CO2 is stored in ecosystems under past and near-term 805 

climate change. 806 
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