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Asymptotic behaviour of rotating
convection-driven dynamos in the plane
layer geometry
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Dynamos driven by rotating convection in the plane layer geometry are investigated
numerically for a range of Ekman number (E), magnetic Prandtl number (Pm) and
Rayleigh number (Ra). The primary purpose of the investigation is to compare results
of the simulations with previously developed asymptotic theory that is applicable in the
limit of rapid rotation. We find that all of the simulations are in the quasi-geostrophic
regime in which the Coriolis and pressure gradient forces are approximately balanced at
leading order, whereas all other forces, including the Lorentz force, act as perturbations.
Agreement between simulation output and asymptotic scalings for the energetics, flow
speeds, magnetic field amplitude and length scales is found. The transition from large-scale
dynamos to small-scale dynamos is well described by the magnetic Reynolds number
based on the small convective length scale, R̃m, with large-scale dynamos preferred when
R̃m � O(1). The magnitude of the large-scale magnetic field is observed to saturate and
become approximately constant with increasing Rayleigh number. Energy spectra show
that all length scales present in the flow field and the small-scale magnetic field are
consistent with a scaling of E1/3, even in the turbulent regime. For a fixed value of E, we
find that the viscous dissipation length scale is approximately constant over a broad range
of Ra; the ohmic dissipation length scale is approximately constant within the large-scale

dynamo regime, but transitions to a R̃m−1/2 scaling in the small-scale dynamo regime.

Key words: geodynamo, dynamo theory, Bénard convection

1. Introduction

The majority of solar system planets possess global-scale magnetic fields. These fields are
believed to be generated by the convective motion of electrically conducting fluid within
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the interior regions of the planets (Jones 2011). For example, the geomagnetic field of
the Earth is thought to originate in the liquid metal outer core where buoyancy-driven
flows continuously generate electric currents and associated magnetic field (Roberts &
King 2013). One particular physical ingredient that is thought to be critical for sustaining
large, or global, scale magnetic field is the Coriolis force (Parker 1955; Steenbeck, Krause
& Rädler 1966). Although many previous investigations have shown the tendency for
rotating convection to generate magnetic fields (beginning with Childress & Soward
(1972) and Soward (1974)), it is still not completely understood how the various input
parameters influence: (i) the characteristic length scales of the velocity and magnetic
fields; (ii) the strength of the resulting magnetic fields; and (iii) the prevailing force balance
that characterises the dynamics. However, the asymptotic theory developed by Calkins
et al. (2015) provides predictions for these various properties. In this regard, we utilise
direct numerical simulation (DNS) in the plane layer geometry to better understand how
rotation, buoyancy and the relative influence of diffusion influence system behaviour. The
simulation output is used to test various predictions from the asymptotic theory.
Natural dynamo systems such as the Earth’s outer core are characterised by several small

(or large) physical parameters (Jones 2011; Schubert & Soderlund 2011). In particular, the
Ekman number, defined as E = ν/(ΩH2) (where ν is the kinematic viscosity, Ω is the
rotation rate and H is the characteristic length scale), is very small; estimates suggest E =
O(10−15) in the core. The Rossby number, representing the ratio of inertia to the Coriolis
force, is also small in the core; Ro = U/(ΩH) = O(10−6), where U is a characteristic
speed. It is therefore of interest to understand how dynamos and rotating convection behave
in the dual limit (E,Ro) → 0.
Rotating convection has been investigated extensively in both the spherical and plane

layer geometries, although computational restrictions prevent the use of realistic values
of E. Significant progress has been made toward understanding the asymptotic theory of
plane layer rotating convection; output from simulations of the fully nonlinear asymptotic
model developed by Julien, Knobloch &Werne (1998) agrees well with the corresponding
output from DNS (Stellmach et al. 2014; Plumley et al. 2016). In particular, this theory
predicts that the flow will be geostrophically balanced to leading order – i.e. the Coriolis
and pressure gradient forces should be approximately balanced and all other forces act as
perturbations. Guzmán et al. (2021) explicitly computed the forces in plane layer rotating
convection and have confirmed the dynamics is quasi-geostrophic (QG), provided the
Rossby number remains small.
In comparison with the purely hydrodynamic rotating convection problem, the

asymptotic behaviour of the dynamo problem is less well understood. In particular,
accurately diagnosing the force balance remains an ongoing effort, and to complicate
matters it appears that the force balance depends on the geometry, as well as the particular
length scale on which the dynamics is analysed. Recent work in the spherical geometry
points to a leading-order geostrophic balance on the small-scale motions (Yadav, Gastine
& Christensen 2016; Aubert, Gastine & Fournier 2017; Schaeffer et al. 2017; Schwaiger,
Gastine & Aubert 2021) and a semi-magnetostrophic force balance on the large scales
(Aubert 2005; Calkins, Orvedahl & Featherstone 2021; Orvedahl, Featherstone & Calkins
2021). Here, the term ‘semi-magnetostrophic’ is used because the Lorentz force only enters
the leading-order force balance in the zonal component of the large-scale momentum
equation, and it is of smaller magnitude than the mean buoyancy force. For the small-scale
dynamics in a spherical geometry, i.e. on the scale of the convection, the Lorentz force
acts as a perturbation to the leading-order geostrophic balance (Yadav et al. 2016).
Another important parameter in natural dynamos is the magnetic Prandtl number,

Pm = ν/η, where η is the magnetic diffusivity. Estimates suggest values that range from
951 A24-2
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Pm = O(10−3) in the interior regions of stars to as small as Pm = O(10−6) in planetary
interiors and the outer regions of stars (Ossendrijver 2003). Self-sustaining dynamos
require sufficiently large flow speeds to counteract the effects of ohmic dissipation,
as characterised by the magnetic Reynolds number, Rm = UH/η. The magnetic and
hydrodynamic Reynolds numbers are related by Rm = PmRe, where Re = UH/ν = Ro/E.
Rotating dynamos typically require at least Rm = O(10) to sustain dynamo action. Thus,
for Pm = O(10−6), Reynolds numbers in excess of Re = O(107) would be required to
generate self-sustaining magnetic fields. Such values of Re are well beyond the reach of
current DNS and studies therefore must use unrealistically large values of Pm – typically
Pm = O(1). Recent state-of-the-art simulations in a spherical geometry have used values
as small as Pm = 0.05 (Sheyko et al. 2018), though such simulations require enormous
computational resources and therefore parameters cannot be varied systematically. The
disparity in parameter values between DNS and natural dynamos leads to reasonable
suspicion as to how the dynamics of these two systems relate to one another.
Dynamos are often distinguished by the typical length scale of the magnetic field (e.g.

Tobias 2021). Large-scale dynamos have a component of the magnetic field that varies
on a global length scale. In contrast, small-scale dynamos have a negligible large-scale
component and are instead dominated by length scales comparable to that of the velocity
field. Using weakly nonlinear asymptotic theory, Childress & Soward (1972) and Soward
(1974) showed that rapidly rotating convection in the plane layer geometry can readily
drive large-scale dynamo action near the onset of convection. In this geometry, the
large-scale magnetic field is often defined as the horizontally averaged component of the
field, which is required to be purely horizontal due to the solenoidal constraint on the
magnetic field. Using the methods of Sprague et al. (2006), Calkins et al. (2015) developed
a fully nonlinear extension of the Childress–Soward dynamo model – this extended model
suggests that large-scale dynamo action is achievable for arbitrarily large forcing, so
long as the convection remains geostrophically balanced. This model also predicts that
the large-scale magnetic field remains energetically dominant relative to the small-scale
magnetic field provided the magnetic Reynolds number based on the small, horizontal
convective length scale is less than unity (Calkins, Julien & Tobias 2017; Calkins 2018) –
this prediction is supported by recent numerical simulations (Yan & Calkins 2022). Other
aspects of this asymptotic theory, including the scaling behaviour of the various physical
quantities and the associated force balance remain untested.
Previous DNS investigations of dynamos in the plane layer geometry have confirmed

that large-scale dynamo action is achievable, provided that the convection is rotationally
constrained and Rm is not too large (e.g. Jones & Roberts 2000; Stellmach &Hansen 2004;
Käpylä, Korpi & Brandenburg 2009; Guervilly, Hughes & Jones 2017). As the buoyancy
forcing is increased at a fixed value of E, the dynamo transitions from a large-scale dynamo
to a small-scale dynamo (e.g. Tilgner 2012), although the influence of rotation must be
sufficiently strong to observe this transition (e.g. Cattaneo & Hughes 2006; Favier &
Bushby 2013). A similar relationship between the effects of rotation, buoyancy force and
magnetic field morphology is well known in spherical geometries (Kutzner & Christensen
2002; Christensen & Aubert 2006; Soderlund, King & Aurnou 2012). For certain values
of Pm there exists an intermediate regime in the plane layer geometry in which no dynamo
is observed (Tilgner 2012; Guervilly et al. 2017). Moreover, Guervilly et al. (2017) found
that significant large-scale magnetic energy could be generated for strongly supercritical
flows if large-scale vortices (LSVs) are present. Such LSVs are the consequence of an
inverse kinetic energy cascade in which kinetic energy is transferred from small-scale
convective motions to domain-scale flows (Julien et al. 2012; Favier, Silvers & Proctor
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2014; Guervilly, Hughes & Jones 2014; Rubio et al. 2014). In a Cartesian domain of square
cross-section the vortices are depth invariant, and for sufficiently small Rossby numbers
are dipolar in structure (Stellmach et al. 2014), but become predominantly cyclonic at
larger Rossby numbers (Favier et al. 2014; Guervilly et al. 2014). Magnetic fields of
sufficient magnitude can damp the vortices and prevent their formation (Guervilly et al.
2017; Bushby et al. 2018; Maffei et al. 2019).
In the present study we investigate convection-driven dynamos in the rapidly rotating

regime. One of our primary goals is to understand the asymptotic behaviour of the
resulting dynamos, including heat transfer, flow speed, magnetic field strength, length
scales and force balances. This analysis has not been performed previously, and we find
that the simulations are consistent with much of the theory of Calkins et al. (2015),
including the asymptotic scaling behaviour and the prediction that large-scale dynamo
action is achieved for arbitrarily large forcing as long as E → 0 and Pm → 0. In § 2 we
present the non-dimensional equations, physical parameters and the numerical methods
employed. The asymptotic theory of rapidly rotating dynamos in the plane layer geometry
is briefly summarised in § 3, results are discussed in § 4 and a discussion is given in § 5.

2. Governing equations and methods

We consider an electrically conducting Boussinesq fluid layer of depth H contained
between two plane parallel boundaries. The system is heated from the bottom and cooled
from the top, with the temperature difference �T = Tbot − Ttop > 0, where Tbot and
Ttop are the temperatures at the bottom and top boundaries, respectively. A constant
gravitational acceleration is used and given by g = −gẑ, where ẑ points from the bottom
boundary to the top boundary. The rotation of the system is characterised by a constant
rotation rate, Ω = Ω ẑ. The fluid has density ρ, kinematic viscosity ν, thermal diffusivity
κ , thermal expansion coefficient γ , magnetic diffusivity η and vacuum permeability μ0.
The governing equations are non-dimensionalised with depth H, time scale 2Ω−1 and
magnetic field scale B = 2ΩH

√
ρμ0, and are given by

Dtu + ẑ × u = −∇p + (∇ × B) × B + E2Ra
Pr

θ ẑ + E∇2u, (2.1)

Dtθ = E
Pr

∇2θ, (2.2)

∂tB = ∇ × (u × B) + E
Pm

∇2B, (2.3)

∇ · u = 0, (2.4)

∇ · B = 0, (2.5)

where the material derivative is denoted by Dt( · ) = ∂t( · ) + u · ∇( · ). We denote the
velocity field as u = (u, v,w), the magnetic field as B = (Bx,By,Bz), the temperature as
θ , the pressure as p and the Cartesian coordinate system as (x, y, z).
The non-dimensional control parameters are the Rayleigh number (Ra), the thermal

Prandtl number (Pr), the magnetic Prandtl number (Pm) and the Ekman number (E),
defined as

Ra = gγ�TH3

νκ
, Pr = ν

κ
, Pm = ν

η
, E = ν

2ΩH2 . (2.6a–d)

For simplicity we fix the thermal Prandtl number at Pr = 1 for all simulations.
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In the limit of asymptotically small Ekman number the dynamics depends not on Ra and
E independently, but on the combination (e.g. see Julien et al. 2012)

R̃a ≡ E4/3Ra, (2.7)

which is consistent with the asymptotic scaling for the critical Rayleigh number, i.e. Rac =
O(E−4/3) (Chandrasekhar 1961). This asymptotically rescaled Rayleigh number will be
used throughout.
We apply impenetrable and stress-free velocity boundary conditions at the top and

bottom boundaries,

w = ∂u
∂z

= ∂v

∂z
= 0 at z = 0, 1. (2.8)

We use vertical magnetic field boundary conditions such that

Bx = By = ∂Bz

∂z
= 0 at z = 0, 1. (2.9)

The thermal boundary conditions are isothermal,

θ = 1 at z = 0, and θ = 0 at z = 1. (2.10a,b)

Periodic boundary conditions are used in the horizontal directions. For a detailed
discussion on the influence of thermal, mechanical and electromagnetic boundary
conditions on dynamos we refer the reader to Kolhey, Stellmach & Heyner (2022). In
addition, Roberts & Zhang (2000) have shown that the choice of electromagnetic boundary
conditions can have a strong influence on the linear properties of magnetoconvection.

2.1. Diagnostic quantities
The volumetric and time-averaged kinetic energy density Ekin and magnetic energy density
Emag are calculated as

Ekin ≡ 1
2E2 〈u2〉, (2.11)

and

Emag ≡ 1
2E2 〈B2〉, (2.12)

where angled brackets, 〈 · 〉, denote a volumetric and time average.
We decompose the magnetic field into horizontally averaged (mean) and fluctuating

components according to B(x, y, z, t) = B̄(z, t) + B′(x, y, z, t), where the overline ( · )

denotes a horizontal average. The corresponding mean and fluctuating magnetic energy
are then defined by, respectively,

Ēmag = 1
2E2

∫ 1

0
B̄2 dz, (2.13)

and
E′
mag = Emag − Ēmag. (2.14)

Note that, while this particular definition of the mean magnetic field is simple, it has the
disadvantage that any motion characterised by a horizontal wavenumber greater than zero
is defined as small scale.
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The Reynolds number Re is used to quantify the non-dimensional flow speed and is
computed by

Re =
√
2Ekin. (2.15)

Decomposing the temperature into mean and fluctuating components, θ(x, y, z, t) =
θ̄ (z, t) + θ ′(x, y, z, t), we define the Nusselt number Nu according to

Nu = − ∂ ¯̄θ
∂z

∣∣∣∣∣
z=0

, (2.16)

where the additional overline indicates the quantity is also averaged in time. The exact
relationship between the Nusselt number and the two sources of dissipation can be derived
from the governing equations to give (e.g. Yan, Tobias & Calkins 2021)

Ra
Pr2

(Nu − 1) = εu + εB. (2.17)

The viscous dissipation and ohmic dissipation are defined by, respectively,

εu = 1
E2 〈ζ 2〉, εB = 1

PmE2 〈J 2〉, (2.18a,b)

where the vorticity and current density vectors are denoted by ζ = ∇ × u and J = ∇ × B,
respectively.

2.2. Numerical methods
The velocity and magnetic field vectors are represented in terms of poloidal and toroidal
scalars such that the solenoidal conditions are satisfied exactly (e.g. Jones & Roberts 2000;
Marti, Calkins & Julien 2016). The resulting variables are expanded in Fourier series
in the horizontal dimensions and Chebyshev polynomials in the vertical dimension. The
nonlinear terms are de-aliased with the standard 2/3-rule. The equations are discretised in
time with a third-order implicit–explicit Runge–Kutta scheme (Spalart, Moser & Rogers
1991). The code has been used in previous investigations (e.g. Yan et al. 2019, 2021), and
the dynamo model used for the present study has been benchmarked with the work of
Stellmach & Hansen (2004).
An important non-dimensional parameter characterising the geometry is the aspect ratio

Γ , defined as

Γ = L
H

, (2.19)

where L is the periodicity length in the horizontal direction. In the present work only
domains of square cross-section are used. We scale the horizontal periodicity length with
the (non-dimensional) critical horizontal wavelength, λc, so that

L = nλcH, (2.20)

where n is the integer number of critical horizontal wavelengths. This normalisation for
the horizontal dimensions is done to ensure that the most unstable wavelength is present
near the onset of convection. Thus, for our simulations, the aspect ratio is given by

Γ = nλc. (2.21)

All of the results presented use n = 10 since this value was found to be sufficient for
observing convergence of the primary global diagnostic quantities. The critical wavelength
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is determined from the relationship (Chandrasekhar 1961)

2k6c + 3k4cπ
2 − π6 − π2E−2 = 0, (2.22)

where kc = 2π/λc is the critical horizontal wavenumber. The above relationship can be
derived from the governing equations upon linearising about a state of rest.

3. Asymptotic theory

One of the main purposes of the present investigation is to shed light on the behaviour
of rotating convection-driven dynamos in the asymptotic limit E → 0, since this limit is
relevant for natural systems. Since the asymptotic scalings will be used in the analysis of
the results, we briefly summarise the theory here. This approach is general and can be used
to analyse the asymptotic behaviour of DNS output, although the observed scalings will
be dependent on the particular non-dimensionalisation that is employed.
If both the Rossby number and the Ekman number are small, the leading-order

force balance will be geostrophic and the resulting QG dynamics is the result of small
perturbations away from this balance. As previously mentioned, QG dynamo theory can
be considered a fully nonlinear generalisation of the weakly nonlinear theory developed
by Childress & Soward (1972), and studied in detail by Soward (1974). We note that the
hydrodynamic QG theory shows excellent agreement with DNS results (Stellmach et al.
2014; Plumley et al. 2016); in the present work we demonstrate that the corresponding QG
dynamo theory also shows excellent agreement with DNS.
The aim of QG theory is to understand the dynamics of rapidly rotating

convection-driven dynamos based on a perturbation expansion. The relevant small
parameter is the Rossby number based on the small-scale horizontal convective length
scale, 
,

ε ≡ U
2Ω


. (3.1)

We recall that U is the characteristic dimensional scale for the velocity field. Here, we
scale the velocity in small-scale viscous diffusion units, U = ν/
, such that

ε = ν

2Ω
2
=

( ν

2ΩH2

) (
H



)2

. (3.2)

Using 
 = HE1/3 the above relationship becomes

ε = E1/3. (3.3)

This scaling is the relevant distinguished limit relating the small-scale Rossby number
and the large-scale Ekman number, and allows for a self-consistent set of asymptotically
reduced equations (Julien et al. 1998; Calkins et al. 2015).
The large-scale Rossby number and the small-scale Rossby number are related via

Ro = U
2ΩH

= U
2Ω





H
= E2/3 = ε2. (3.4)

This relationship is useful for scaling the various terms in the momentum equation, since
our particular choice of non-dimensionalisation implies that flow speeds are in units of the
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large-scale Rossby number. Thus, denoting the magnitude of the velocity as u, we have

u = O
(
ε2

)
, (3.5)

where we note that all three velocity components have the same asymptotic scaling
behaviour. With this asymptotic scaling for the flow speed, and assuming that all
horizontal derivatives are O(ε−1) and vertical derivatives are order one, i.e. ∂z = O(1),
we can estimate the asymptotic size of various terms in the momentum equation and other
quantities that will be useful for analysing the results of the numerical simulations.
The leading-order geostrophic force balance implies that the Coriolis force and the

pressure gradient force are the largest terms in the momentum equation. The asymptotic
size of the Coriolis force is then

|ẑ × u| = O(ε2) = O(E2/3). (3.6)

With the exception of the leading-order pressure gradient force, all other terms are
asymptotically smaller than the above scaling, although the relative size of these
asymptotically subdominant terms is crucial for the resulting QG dynamics. The viscous
force is of size

|E∇2u| = O(ε3) = O(E). (3.7)

The buoyancy force must be of the same asymptotic size as the viscous force; this requires
that the temperature perturbation θ ′ = θ − θ̄ = O(ε) such that∣∣∣∣RaE2

Pr
θ ′

∣∣∣∣ = R̃aE2/3

Pr

∣∣θ ′∣∣ = O(ε3) = O(E). (3.8)

The asymptotic size of the nonlinear momentum advection term is then

|u · ∇u| = O(ε3) = O(E). (3.9)

If we assume the Lorentz force is also of the same size as these asymptotically
subdominant terms then we have

| (∇ × B) × B| = O(ε3) = O(E) ⇒ B = O(ε2) = O(E2/3), (3.10)

where B is the magnitude of the magnetic field vector. Like the velocity field, the
asymptotic scaling is the same for all three components of the magnetic field. To
summarise, the Coriolis and pressure gradient forces are both of size O(E2/3), and all
other forces are smaller by a factor of E1/3. We note that the magnitude of the mean
magnetic field can become asymptotically larger than the magnitude of the fluctuating
magnetic field, although this requires RmE1/3 
 1 (Calkins et al. 2015). Our estimate for
the asymptotic size of the magnetic field given above assumes that RmE1/3 = O(1).
With the above scalings we can provide asymptotic estimates for other quantities of

interest. The viscous dissipation scales as

εu = 1
E2 〈(∇ × u)2〉 = O(ε−4) = O(E−4/3). (3.11)

Similarly, the ohmic dissipation scales as

εB = 1
PmE2 〈(∇ × B)2〉 = O(ε−4) = O(E−4/3). (3.12)
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An alternative derivation of these scalings is to use (2.17) and to substitute Ra = ε−4R̃a
such that

R̃a
Pr2

(Nu − 1) = ε4 (εu + εB) . (3.13)

In order for Nu to be independent of the Ekman number, this requires ε4εu = O(1) and
ε4εB = O(1), and therefore both forms of dissipation must scale as ε−4.
The kinetic and magnetic energy scale as

Ekin = O
(
u2

E2

)
= O

(
ε−2

)
= O

(
E−2/3

)
, (3.14)

and

Emag = O
(
B2

E2

)
= O

(
ε−2

)
= O

(
E−2/3

)
. (3.15)

We emphasise that the above asymptotic relationships only specify the dependence on
the Ekman number. In general, the various quantities still depend on the reduced Rayleigh
number.

4. Results

In the simulations we vary the Ekman number, the Rayleigh number and the magnetic
Prandtl number. The thermal Prandtl number is fixed at Pr = 1 for all simulations – we
refer the reader to Aurnou et al. (2018) and Vogt, Horn & Aurnou (2021) for detailed
investigations on the influence of small values of Pr, as relevant to liquid metals and
plasmas. The Ekman number is varied from E = 10−8 to E = 10−4. The Rayleigh number
is varied from 1.3Rac up to 9Rac. For simplicity we will often translate these supercritical
values to reduced Rayleigh numbers R̃a; we reach up to R̃a ≈ 78. The magnetic Prandtl
number is varied less extensively, but we consider values of Pm = (1, 0.3, 0.2, 0.1, 0.05).
For Pm = 1 we consider Ekman numbers from E = 10−4 down to E = 10−6. Since
smaller values of E allow us to reach smaller values of Pm, we consider Pm < 1 for
E � 10−6. Various input and output quantities, along with numerical parameters, are listed
in Tables 1–4 of the Appendix.

4.1. Dynamo and flow regimes
The different dynamo regimes can be characterised by the fraction of the mean magnetic
energy to the total magnetic energy, Ēmag/Emag, as shown in figures 1(a) and 1(b), where
this quantity is plotted as a function of R̃a and the reduced magnetic Reynolds number,
R̃m = E1/3Rm, respectively. For the purpose of discussion we classify dynamos as large
scale if Ēmag/Emag � 0.5; dynamos with smaller values are then referred to as small-scale
dynamos. For fixed values of E and Pm the mean energy fraction generally decreases
with increasing R̃a. In general we find that smaller values of Pm allow for larger values
of Ēmag/Emag, with some cases approaching unity. As shown in panel (a), larger values
of Ēmag/Emag exist over a larger range in R̃a for decreasing values of Pm, indicating
that magnetic diffusion plays an important role in the relative strength of the large-scale
magnetic field (e.g. Yan & Calkins 2022). When the energy fraction is plotted as a function
of R̃m in panel (b), we find a collapse of the data. In agreement with the theory of Calkins
et al. (2015), the mean magnetic energy is predicted to dominate when R̃m 
 1. Although
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Figure 1. Overview of the dynamo regimes, as characterised by the fraction of the mean magnetic energy to
the total magnetic energy, Ēmag/Emag, in all simulations: (a) Ēmag/Emag vs reduced Rayleigh number, R̃a; (b)
Ēmag/Emag vs reduced magnetic Reynolds number, R̃m. Symbol shape represents different values of the Ekman
number (E) and colour represents different values of the magnetic (Pm): black indicates Pm = 1; red indicates
Pm = 0.3; green indicates Pm = 0.2; magenta indicates Pm = 0.1; blue indicates Pm = 0.05.

the simulations do not reach very small values of R̃m, there is nevertheless an observed
trend of increasing Ēmag/Emag as R̃m is decreased.
Guervilly et al. (2017) have found that it is possible to generate large-scale dynamos

with the aid of LSVs for E = 5 × 10−6, provided that the magnetic Reynolds number
is within the range 100 � Rm � 550 and Pm < 1; in terms of the small-scale magnetic
Reynolds number this range becomes 1.7 � R̃m � 9.4. Guervilly et al. (2017) do not
list values of Ēmag/Emag, although visual inspection of their magnetic energy spectra
shows that they do not observe large-scale dynamos in which the large-scale magnetic
field is energetically dominant relative to the small-scale magnetic field. This finding
is consistent with figure 1(b) for comparable parameter values in which Ēmag/Emag �
0.5. For hydrodynamic convection with E 
 1 and Pr = 1, LSVs become energetically
dominant (relative to the small-scale velocity field) for R̃a � 20 (Maffei et al. 2021), so
that they are certainly present in many of the simulations presented here. However, our
data and the asymptotic theory (e.g. see Yan & Calkins 2022) indicate that large-scale
dynamo action is more directly controlled by the small-scale magnetic Reynolds number.
Moreover, kinematic investigations of QG convection suggest that LSVs do not appear to
alter the onset of dynamo action (Calkins et al. 2016). Additional insight into the role that
LSVs play in dynamo action could be made by performing a set of simulations in which
the depth-averaged flow is set to zero at each timestep (e.g. Maffei et al. 2021).
The flow regimes observed in the present study are broadly consistent with the regimes

identified in previous studies of non-magnetic rotating convection (e.g. Julien et al. 2012),
though in the present study we do not attempt to characterise precisely the location (in
parameter space) of possible transitions. The presence of a magnetic field can certainly
influence the regimes, as discussed, for instance, by Guervilly et al. (2017) and Maffei
et al. (2019). Given the broad range of parameter values used here, we simply highlight
some of the main effects of varying parameters on the observed flow regimes.
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(a) (b) (c)

Figure 2. Volumetric renderings of the instantaneous vertical vorticity for E = 10−8, Pm = 0.1 and increasing
Rayleigh number from left to right: (a) Ra = 1.7Rac (R̃a ≈ 15); (b) Ra = 3.5Rac (R̃a ≈ 30); (c) Ra = 9Rac
(R̃a ≈ 78). Red denotes positive (cyclonic) vorticity and blue denotes negative (anti-cyclonic) vorticity.

Figure 2 shows perspective views of the instantaneous vertical vorticity for three
values of the Rayleigh number at the lowest Ekman number considered here, E = 10−8,
and Pm = 0.1. The corresponding mean magnetic energy fraction for panels (a–c) is,
respectively, Ēmag/Emag ≈ (0.98, 0.7, 0.18). Thus, cases shown in (a,b) are well within
the large-scale dynamo regime. For relatively small reduced Rayleigh numbers (R̃a ≈ 15)
we find cellular structures, in the sense that the horizontal structure of the flow is relatively
simple and dominated by the critical wavenumber. These cells become less coherent as R̃a
is increased, and geostrophic turbulence, as characterised by a leading-order geostrophic
balance with a broad range of length scales that lack significant vertical coherence (e.g.
Julien et al. 2012) is observed for sufficiently large (R̃a � 40) Rayleigh number, as shown
in figure 2(c). For the particular set of parameters shown in figure 2, we do not observe an
obvious LSV at any value of R̃a, even for R̃a ≈ 78 in which R̃e ≈ 30. As discussed later,
cases with energetically dominant LSVs are characterised by horizontal kinetic energy
spectra that show a peak at the smallest wavenumber, although these LSVs can become
damped by the magnetic field (Guervilly et al. 2017; Maffei et al. 2019). Previous studies
of hydrodynamic convection show that LSVs become energetically dominant when R̃e � 6
(Maffei et al. 2021), although this criterion is no longer valid when magnetic field is
present.
A comparison of the flow morphology observed for different Ekman numbers is

presented in figure 3, where top-down views of the vertical component of the vorticity
are shown for E = (10−4, 10−6, 10−8) (top to bottom in the figure) and R̃a ≈ 30 (a,c,e)
and R̃a ≈ 78 (b,d, f ). In terms of the dynamo regimes represented by these visualisations,
only case (e) is within the large-scale dynamo regime, and all other cases are classified as
small-scale dynamos. Whereas similar flow structures are observed for E = 10−6 and E =
10−8 when R̃a ≈ 30 in which both positive (cyclonic, red) and negative (anti-cyclonic,
blue) vorticity show similar structure, the case with E = 10−4 and R̃a ≈ 30 (figure 3a)
shows significant asymmetry between cyclonic and anti-cyclonic vorticity. For this latter
case we find that cyclonic structures occur in thin sheets that surround anti-cyclonic
vortices. As the Rayleigh number is increased to R̃a ≈ 78, figure 3(b) shows that the
anti-cyclonic structures near the top boundary become weak and the cyclonic sheets are
more distinct for E = 10−4. We note that this particular case for E = 10−4 and R̃a ≈ 78 is
in the small-scale dynamo regime in which the large-scale magnetic field represents less
than 0.6% of the total magnetic energy.
For R̃a ≈ 78, we observe differences in the flow morphology between E = 10−6 and

E = 10−8, as shown in figures 3(d) and 3( f ). The case shown in panel (d) appears similar
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(a) (b)

(c) (d)

(e) ( f )

Figure 3. Top-down view of volumetric renderings of the instantaneous vertical vorticity for a range of Ekman
and Rayleigh numbers. The Rayleigh number R̃a increases from left to right and the Ekman number E decreases
from top to bottom: (a) E = 10−4, Ra = 3.5Rac (R̃a ≈ 31) and Pm = 1; (b) E = 10−4, Ra = 9Rac (R̃a ≈ 79)
and Pm = 1; (c) E = 10−6, Ra = 3Rac (R̃a ≈ 26) and Pm = 1; (d) E = 10−6, Ra = 9Rac (R̃a ≈ 78) and Pm =
1; (e) E = 10−8, Ra = 3.5Rac (R̃a ≈ 30) and Pm = 0.1; ( f ) E = 10−8, Ra = 9Rac (R̃a ≈ 78) and Pm = 0.1.

in structure to panel (a); this similarity hints at a finite Rossby number effect, suggesting
that such structure might also be observed for E = 10−8 if the Rayleigh number could be
extended to larger values beyond those accessible in the present study. In contrast, panel
( f ) shows a more symmetric state. Whereas the case shown in (d) is within the small-scale
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Figure 4. Heat transfer data: (a) Nusselt number, Nu, vs Rayleigh number, Ra; (b) Nu vs reduced Rayleigh
number, R̃a = E4/3Ra. Symbol shape represents different values of the Ekman number (E) and colour
represents different values of the magnetic (Pm): black indicates Pm = 1; red indicates Pm = 0.3; green
indicates Pm = 0.2; magenta indicates Pm = 0.1; blue indicates Pm = 0.05.

dynamo regime, the large-scale magnetic field for the case shown in ( f ) remains significant
(≈20% of the total magnetic energy). We note that the asymptotic scalings presented in
the previous section are strictly valid only when the Rossby number remains small and
symmetry is preserved.

4.2. Heat transfer and dissipation
The Nusselt number is shown as a function of the Rayleigh number in figure 4(a) for all
cases; it is shown as a function of R̃a in panel (b). As with the flow regimes discussed in the
previous subsection, we observe heat transport behaviour that is similar to hydrodynamic
rotating convection (e.g. Aurnou et al. 2015). While there is some variation in the data for
different values of E, all of the cases show broadly similar behaviour when plotted as a
function of the reduced Rayleigh number, indicating the simulations are in an asymptotic
dynamical regime. The Nusselt number shows a characteristic ‘s’-shaped dependence on
R̃a that is well known in the literature for rotating convection (e.g. Cheng et al. 2015);
for the smallest values of R̃a, Nu rises steeply at first, then slows at larger values of R̃a
as the Rossby number increases. For a fixed value of R̃a, the variation in Nu may be
due to the differences in observed dynamo behaviour. For instance, whereas some of the
cases shown have significant mean magnetic fields, other cases are within the small-scale
dynamo regime and therefore generate mean magnetic fields with negligible amplitude.
Figures 5(a) and 5(b) show the asymptotically rescaled viscous dissipation εuE4/3 and

the asymptotically rescaled ohmic dissipation εBE4/3 plotted as a function of the reduced
Rayleigh number R̃a. Consistent with the energy relationship (2.17), both forms of the
dissipation show behaviour that is consistent with the Nusselt number. Sudden changes in
εu, and discontinuities εB, appear when (large-scale) dynamo action ceases; this behaviour
is perhaps most noticeable for E = 10−4 where the viscous dissipation shows a plateau
in the vicinity of R̃a ≈ 25, in which different values of R̃a yield similar values of εu.
This plateau is associated with a rapid increase in εB as the small-scale dynamo becomes
activated. At a fixed value of R̃a we observe scatter for different values of Pm which is
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Figure 5. Dissipation as a function of reduced Rayleigh number R̃a for all simulations: (a) rescaled viscous
dissipation, εuE4/3; (b) rescaled ohmic dissipation, εBE4/3; (c) fraction of ohmic dissipation, fohm = εB/(εB +
εu). Symbol shape represents different values of the Ekman number (E) and colour represents different values
of the magnetic (Pm): black indicates Pm = 1; red indicates Pm = 0.3; green indicates Pm = 0.2; magenta
indicates Pm = 0.1; blue indicates Pm = 0.05.

related to the magnetic Reynolds number and the corresponding magnetic field behaviour
(i.e. see figures 5 and 7).
We compute the relative size of the ohmic dissipation to the total dissipation using the

fraction of ohmic dissipation, fohm, defined as

fohm = εB

εB + εu
. (4.1)

Figure 5(c) shows fohm vs R̃a. For the majority of our cases the flow is dominated by
viscous dissipation (εu > εB), which is consistent with previous plane layer dynamo
studies (Tilgner 2014). In the small-scale dynamo regime, the majority of our cases
have a fraction of ohmic dissipation fohm ∼ 0.2. In comparison with previous studies of
dynamos in spherical geometries, we find fohm values that are relatively small. For instance,
Schaeffer et al. (2017) find fohm = 0.86 with Pm = 0.1 and E = 5 × 10−8. The differences
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in these values may be due to the differences in both magnetic field structure and saturation
mechanisms in the two geometries.

4.3. Velocity and magnetic field scaling
Figure 6(a) shows the scaling behaviour of the Reynolds number, Re. For a fixed value of
R̃a, the flow speed shows a systematic increase with decreasing Ekman number. We note
that, for the E = 10−4 and 3 × 10−5 cases, we observe a regime near Ra ∼ 3Rac (R̃a ≈ 26)
where the Reynolds number increases slowly (or remains constant) as Ra increases, while
the Nusselt number still increases with increasing the Ra. Over this same parameter range
we also observe a relatively large increase in the ohmic dissipation (as shown in figure 5b)
and the magnetic energy (discussed in the next subsection), suggesting that the energy
from the thermal forcing is transformed into magnetic energy very efficiently for these
cases. The reduced Reynolds number, R̃e = ReE1/3, is plotted in figure 6(b) where a
collapse is observed. Moreover, that these dynamos are characterised by R̃e = O(1) for a
wide range of Ekman numbers suggests that the Re = O

(
E−1/3) scaling is the appropriate

asymptotic relationship for describing the characteristic flow speeds. A change in the
scaling behaviour of R̃e is observed around Ra ∼ 3Rac (R̃a ∼ 30). For cases just above the

onset of convection (Ra < 3Rac), an approximate scaling relation of R̃e ∼ R̃a2 is found;
while for cases with relatively high supercriticality (Ra > 3Rac), the scaling becomes
weaker and a trend of R̃e ∼ R̃a is shown for reference.
The magnetic Reynolds number Rm and rescaled magnetic Reynolds number R̃m =

RmE1/3 are shown in figures 6(c) and 6(d). Values of the magnetic Reynolds number up
to Rm ≈ 3000 are reached for E = 10−6 and Pm = 1. The use of R̃m in figure 6(d) shows
how different values of Pm collapse onto different curves, although we find similar scaling
behaviour with R̃a. For Pm < 1, the R̃m < 1 regime that is relevant to planetary interiors
is accessible provided that the Ekman number is also reduced. We find that the regime
where large-scale dynamo action is no longer important occurs at R̃m ≈ 5; a value of
R̃m ≈ 13.5 for the transition was identified by Tilgner (2012), although larger values of
Pm were employed in that investigation.
The magnetic energy Emag and the rescaled magnetic energy Ẽmag = EmagE2/3 are

shown in figures 7(a) and 7(b), respectively. For the majority of our cases, a smaller value
of the Ekman number tends to produce a stronger magnetic field (as measured by the
magnetic energy) when R̃a and Pm are fixed. For all cases with Pm = 1, and cases with
Pm = 0.3 and E � 3 × 10−7, there is either a significant drop in magnetic energy or a
lack of dynamo action in the approximate range 20 � R̃a � 30. This behaviour was also
observed in the investigations of Tilgner (2012) and Guervilly et al. (2017) for E � 10−6.
However, this drop in magnetic energy becomes less significant or is not observed at
all for cases with E � 1 × 10−7. Although we have not investigated this effect in detail,
it appears that, as the Ekman number is reduced, the small-scale dynamo has already
been fully activated once large-scale dynamo action ceases. As suggested in figure 7(b), a
factor of E2/3 appears to collapse the majority of the data to order-unity values, although
significant scatter in the data remains due to differences in Pm and the corresponding
dynamo behaviour.
The mean magnetic energy is shown in figure 7(c); the corresponding asymptotically

rescaled data are shown in panel (d). In the large-scale dynamo regime, the mean magnetic
energy appears to saturate and then decreases slightly as R̃a increases. This behaviour is
similar to that observed in spherical dynamo simulations, which show a saturation of the
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Figure 6. Reynolds number and magnetic Reynolds number vs reduced Rayleigh number R̃a: (a) large-scale
Reynolds number, Re; (b) small-scale Reynolds number, R̃e = ReE1/3; (c) large-scale magnetic Reynolds
number, Rm; (d) small-scale magnetic Reynolds number, R̃m = RmE1/3. Symbol shape represents different
values of the Ekman number (E) and colour represents different values of the magnetic (Pm): black indicates
Pm = 1; red indicates Pm = 0.3; green indicates Pm = 0.2; magenta indicates Pm = 0.1; blue indicates
Pm = 0.05.

axisymmetric component of the magnetic field (Calkins et al. 2021; Orvedahl et al. 2021).
The exact cause of this effect is not currently known, but we speculate that it may be due
to the breakdown of the α2-dynamo that occurs at finite R̃m, perhaps related to so-called
α-quenching (e.g. Vainshtein & Cattaneo 1992; Cattaneo & Hughes 1996). As shown in
previous work (e.g. Steenbeck et al. 1966; Moffatt & Dormy 2019), dynamos can only be
rigorously classified as α2 if the small-scale magnetic Reynolds number is small. In the
rapidly rotating limit in which significant separation exists between the small horizontal
convective length scale and the layer depth, the requirement for an α2-dynamo is that
R̃m 
 1 (Calkins et al. 2015). In contrast, for R̃m = O(1) there is no rigorous closure
relating the large- and small-scale magnetic field components.
We can further characterise the dynamos by plotting the ratio of the magnetic energy

to the kinetic energy, as shown in figure 8. We find that the energy ratio is greater than
unity only for relatively small Rayleigh numbers, R̃a < 20, indicating that kinetic energy
dominates in the majority of our simulations. The decrease of this ratio with increasing
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Figure 7. Magnetic energy for all simulations: (a) Emag vs R̃a; (b) rescaled magnetic energy, Ẽmag = EmagE2/3,
vs R̃a; (c) mean magnetic energy Ēmag vs R̃a; (d) rescaled mean magnetic energy ĒmagE2/3 vs R̃a. Symbol shape
represents different values of the Ekman number (E) and colour represents different values of the magnetic
(Pm): black indicates Pm = 1; red indicates Pm = 0.3; green indicates Pm = 0.2; magenta indicates Pm = 0.1;
blue indicates Pm = 0.05.

R̃a suggests that small-scale dynamos are more likely to yield smaller magnetic energy
relative to kinetic energy. Within this small-scale dynamo regime we find many of the
simulations have an energy ratio of O(10−1).
The asymptotic theory predicts that the energy ratio becomes large in the limit R̃m → 0.

While we do find energy ratios that exceed unity, for computational reasons the majority
of our simulations are within the regime R̃m = O(1), so it might be expected that we do
not observe large values of the energy ratio. In the Earth’s outer core, R̃m = O(10−2),
and the energy ratio is thought to be as large as ≈ 104. Spherical dynamo investigations
find energy ratios that exceed those observed here, although these values rarely exceed
10. The reader is referred to Schaeffer et al. (2017) where a comparison of these values is
made for several spherical dynamo investigations. A possible reason for the difference in
values of this energy ratio for the two geometries may simply be related to the magnetic
field morphology. Whereas spherical dynamos can generate large-scale fields in both the
horizontal and vertical directions, the plane layer is only capable of generating a large-scale
field in the horizontal direction.
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Figure 8. Ratio of magnetic energy to kinetic energy for all simulations. Symbol shape represents different
values of the Ekman number (E) and colour represents different values of the magnetic (Pm): black indicates
Pm = 1; red indicates Pm = 0.3; green indicates Pm = 0.2; magenta indicates Pm = 0.1; blue indicates Pm =
0.05.

4.4. Length scales and energy spectra
In this subsection we quantify the length scales present in both the velocity field
and the magnetic field using a combination of energy spectra and Taylor microscales.
This procedure is important for understanding how the length scales depend on the
non-dimensional parameters. Both the kinetic and magnetic energy spectra are separated
into horizontal and vertical components denoted by superscriptsH and V , respectively. The
spectra are averaged in time and depth. For example, the (time-averaged) kinetic energy
spectra at depth z are defined as

ÊH
kin(k, z) = 1

2E2

∑
k

(û∗û + v̂∗v̂), (4.2)

and

ÊV
kin(k, z) = 1

2E2

∑
k

(ŵ∗ŵ), (4.3)

where û, v̂ and ŵ are the Fourier coefficients of the three velocity field components, and the
superscript (∗) denotes a complex conjugate. The horizontal wavenumber is k = (kx, ky),

where the modulus is denoted by k =
√
k2x + k2y . The corresponding depth-averaged

spectra are then computed via

ÊH
kin(k) =

∫ 1

0
ÊH
kin(k, z) dz, (4.4)

and

ÊV
kin(k) =

∫ 1

0
ÊV
kin(k, z) dz. (4.5)

Asymptotically rescaled kinetic energy spectra are shown in figure 9 for two
representative Rayleigh numbers: a relatively low value of Ra = 1.7Rac (R̃a ≈ 15) is
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Figure 9. Asymptotically rescaled horizontal (a,c) and vertical (b,d) kinetic energy spectra for (a,b) Ra =
1.7Rac (R̃a ≈ 15) and (c,d) Ra = 9Rac (R̃a ≈ 78). The asymptotically rescaled horizontal wavenumber
is defined by k̃ = kE1/3. The vertical dashed line denotes the asymptotically rescaled critical horizontal
wavenumber, k̃c ≈ 1.3048.

shown in panels (a,b) and the highest Rayleigh number of Ra = 9Rac (R̃a ≈ 78) in
shown in panels (c,d). As illustrated in figure 2, cases with R̃a ≈ 15 can be considered
quasi-laminar, whereas cases with R̃a ≈ 78 are turbulent. The spectra are plotted in terms
of the rescaled horizontal wavenumber, k̃ = kE1/3; the critical value of k̃c ≈ 1.3048
is shown by the dashed vertical line. The kinetic energy scaling of ÊH

kin(k) ∼ E−2/3

(or ÊV
kin(k) ∼ E−2/3) was given in (3.14). We note that all of the cases shown have

qualitatively, and to some degree, quantitatively, similar behaviour across varying Ekman
and magnetic Prandtl numbers. The collapse of the spectra in wavenumber space indicates
that all length scales in the flow scale as E1/3, even for turbulent flows. These similarities
in the spectra are expected given the asymptotic state of the system (i.e. small Ekman
and Rossby numbers). As expected, a peak in the spectra is observed near k̃c ≈ 1.3048
for cases near convection onset (i.e. R̃a ≈ 15); by comparison the spectra for R̃a ≈ 78
are flatter in the vicinity of k̃c. Figure 9(a) shows that no dominant large-scale horizontal
motion, as characterised by significant energy in the smallest wavenumbers, is observed
near convection onset. On the other hand, figure 9(b) suggests that strong large-scale
horizontal flows develop for sufficiently large R̃a, as indicated by the peak at the lowest
rescaled wavenumber. We do not observe an obvious systematic influence of Pm on the
kinetic energy spectra. For instance, whereas some cases with Pm < 1 show a tendency
for LSV formation with a peak in the horizontal kinetic energy spectra at the smallest
rescaled wavenumber, other cases with different Ekman numbers do not exhibit an obvious
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signature of LSV formation. We note that when Pm and R̃a are fixed, the large-scale
horizontal motion appears to be suppressed as E decreases. Although we do not investigate
this observation in detail, it is likely due the effect of magnetic damping on these flows
(e.g. Guervilly et al. 2017; Maffei et al. 2019).
The magnetic energy equivalents of (4.4) and (4.5) are also computed and shown in

figure 10. As for the kinetic energy spectra, we observe a collapse of the spectra with
respect to the wavenumber scaling. In contrast to the kinetic energy spectra, there is
considerably more spread in the rescaled magnitudes of the spectra, although the most
energetic modes rescale approximately to O(1) values. This spread is consistent with data
reported in previous subsections. For instance, the relative size of the mean field varies
considerably for a given value of R̃a (and Pm). We notice that, for R̃a ≈ 15, all of the
dynamos show a peak in the horizontal spectra at the smallest value of k̃, indicating the
presence of a mean magnetic field. We observe two classes of dynamo spectra: cases with
Pm < 1 show a steep drop in magnitude for k̃ � k̃c, whereas cases with Pm = 1 show a
much weaker drop in magnitude. At this same value of R̃a ≈ 15, the corresponding vertical
spectra show a nearly flat spectra for k̃ � k̃c, and a rapid drop in magnitude for k̃ � k̃c.
This distinction between spectra with Pm < 1 and those with Pm = 1 persists at R̃a ≈ 78
shown in figures 10(b) and 10(d), although these higher Rayleigh number spectra are
understandably more broadband in structure. The rapid drop in the spectra with increasing
k̃ for Pm < 1 is expected when magnetic diffusion and mean field stretching balance in
the fluctuating induction equation (Golitsyn 1960; Schekochihin et al. 2007).
The Taylor microscale for both the velocity field and the magnetic field are defined by,

respectively,

λu =
√

〈u2〉
〈(∇ × u)2〉 , (4.6)

and

λB =
√

〈B′2〉
〈(∇ × B)2〉 . (4.7)

The corresponding asymptotically rescaled Taylor microscales are defined by

λ̃u = λuE−1/3, λ̃B = λBE−1/3. (4.8a,b)

The above definitions follow from assuming that the derivatives appearing in the definition
of the Taylor microscales are dominated by the horizontal, E−1/3 factor. Note that we use
the fluctuating magnetic energy to calculate the magnetic Taylor microscale because we
are interested in the length scale of the fluctuating magnetic field. On the other hand, we
find that the dissipation contribution from the mean magnetic field is negligible compared
with that from the fluctuating magnetic field. For simplicity, we therefore use the total
dissipation in the calculations shown here.
Figures 11(a) and 11(c) show the velocity and magnetic Taylor microscales as a function

of R̃a, respectively; the corresponding rescaled microscales are shown in panels (b,d).
Good collapse is observed for both microscales when the E−1/3 rescaling is applied,
although this is to be expected in light of the collapse of the full spectra shown in
figures 9 and 10. The rescaled velocity microscale is nearly constant over the range of
investigated Rayleigh numbers; similar behaviour was found for a fixed value of E in a
recent experimental study of rotating convection (Madonia et al. 2021). In contrast, we
find two different regimes for λB, depending on the particular combination of Pm and R̃a,
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Figure 10. Asymptotically rescaled horizontal (a,c) and vertical (b,d) magnetic energy spectra for (a,b)
Ra = 1.7Rac (R̃a ≈ 15) and (b,d) Ra = 9Rac (R̃a ≈ 78). The asymptotically rescaled horizontal wavenumber
is defined by k̃ = kE1/3. The vertical dashed line denotes the asymptotically rescaled critical horizontal
wavenumber, k̃c ≈ 1.3048. The colours have the same meaning as defined in figure 9.

as shown in figure 11(d). These regimes become more clear when plotted vs the reduced
magnetic Reynolds number, R̃m, as shown in figure 11(e): when R̃m � 3 the magnetic
microscale is nearly constant and we find λB ∼ λu (or equivalently λ̃B ∼ λ̃u); for R̃m � 3
we find λB < λu. This change in scaling behaviour can be attributed to the transition
from large-scale dynamo action to small-scale dynamo action. As previously shown for
the mean magnetic energy fraction, and suggested by theory (Calkins et al. 2015), this
transition is well characterised by the size of R̃m.
The scaling behaviour of λB can be understood by considering the fluctuating induction

equation

∂tB′ + u · ∇B′ = B̄ · ∇u + B′ · ∇u + E
Pm

∇2B′. (4.9)

We assume that, in the small-scale dynamo regime, the large-scale magnetic field is small
relative to the fluctuating magnetic field, |B̄| 
 |B′|. As the magnetic Reynolds number
increases the two terms on the left-hand side of (4.9) will tend to dominate, but the
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Figure 11. Taylor microscales for the velocity and magnetic fields: (a) velocity microscale vs R̃a; (b) rescaled
velocity microscale (λ̃u = λuE−1/3) vs R̃a; (c) magnetic microscale vs R̃a; (d) rescaled magnetic microscale
(λ̃B = λBE−1/3) vs R̃a; (e) rescaled magnetic microscale vs R̃m. Symbol shape represents different values of
the Ekman number (E) and colour represents different values of the magnetic (Pm): black indicates Pm = 1;
red indicates Pm = 0.3; green indicates Pm = 0.2; magenta indicates Pm = 0.1; blue indicates Pm = 0.05.
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stretching and diffusion terms will reach a subdominant balance such that

B′ · ∇u ∼ E
Pm

∇2B′ ⇒ U
λu

∼ E
Pm

1
λ2B

. (4.10)

Noting that U has units of the large-scale Rossby number we can use U = ReE ∼ R̃eE2/3

such that
λB ∼ E1/3R̃m−1/2

, (4.11)

which agrees with the observed scaling. These results suggest that the length scale of the
magnetic field is controlled by both E and R̃m, depending on the particular regime. In terms
of large-scale quantities, this suggests that the scaling behaviour of the ohmic dissipation
scale in both the large-scale dynamo regime and the small-scale dynamo regime becomes

Large-scale dynamo regime : λB ∼ E1/3, (4.12)

Small-scale dynamo regime : λB ∼ Rm−1/2E1/6. (4.13)

4.5. Force balances
In this subsection we numerically analyse the forces in the simulations. A similar analysis
has been completed by Guzmán et al. (2021) for the hydrodynamic convection problem,
although they did not consider the asymptotic scaling behaviour of the system. In
comparison with Guzmán et al. (2021), our parameter space is restricted to the rapidly
rotating regime. Here, we extend the force balance analysis to the dynamo problem
and show that the asymptotic predictions of § 3 are consistent with the numerical data,
confirming that dynamos in the plane layer geometry are QG in the limit of rapid rotation.
Each force is denoted according to

∂tu︸︷︷︸
Ft

= E∇2u︸ ︷︷ ︸
Fv

+ (−u · ∇u)︸ ︷︷ ︸
Fa

+ (B · ∇B)︸ ︷︷ ︸
Fl

+ RaE2

Pr
θ ′ẑ︸ ︷︷ ︸

Fb

+ (−ẑ × u)︸ ︷︷ ︸
Fc

+ (−∇⊥p′ − ∂zp′ẑ)︸ ︷︷ ︸
Fp

.

(4.14)
The hydrostatic balance in the vertical component of the momentum equation has been
removed by defining the fluctuating pressure according to p′(x, y, z, t) = p(x, y, z, t) −
p̄(z, t). In what follows we report time-averaged global root-mean-square (r.m.s.) values
of the above forces.
Figure 12 shows r.m.s. values of the forces as a function of R̃a for the specific case

of E = 1 × 10−8 and Pm = 0.1. The horizontal components of the forces are shown in
panel (a) and the vertical components are shown in panel (b). Other combinations of
non-dimensional parameters were computed and show similar trends to the particular
cases shown. For all cases, we find a dominant balance between the Coriolis force and
the pressure gradient force in the horizontal dimensions, which suggests that all cases
are in the QG dynamo regime. The global r.m.s. of the sum of the Coriolis and pressure
gradient forces, defined by

F′
c = Fc + Fp, (4.15)

is also shown and can be considered the ageostrophic component of the Coriolis force.
As expected from QG theory this ageostrophic component is comparable in magnitude
to all other terms in the (horizontal) momentum equation. Near the onset of convection
we find that all of the subdominant terms are of the same order of magnitude; as R̃a

951 A24-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

84
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.848


M. Yan and M.A. Calkins

10–4

10–5

10–6

10–7

10–8

10–9

10–6

Fxy Fz

Fl
FlFa
Fa

Ft
Fp
Ft

Fp
Fb

Fv

Fv
Fc

F′
c

10–8

10–10

101 101102 102

RaRa

(a) (b)

Figure 12. Global r.m.s. values of all forces for cases with E = 1 × 10−8 and Pm = 0.1. (a) The r.m.s. forces
in the horizontal direction vs R̃a; (b) r.m.s. forces in the vertical direction vs R̃a. Note that the data points for
the Coriolis and pressure gradient forces are directly on top of one another in panel (a).

is increased we find that advection, inertia and F′
c become larger in magnitude than the

viscous force and the Lorentz force. In particular, we find that inertia becomes one of the
largest subdominant terms for R̃a � 40, suggesting that these flows become fully turbulent
for Rayleigh numbers larger than this value. These observations suggest that the system
enters a state that is well described by the so-called Coriolis–inertia–Archimedean balance
(e.g. Jones 2015), although further investigation is necessary to confirm if the dominant
length scales that arise in the system are consistent with this balance. The Lorentz force
and viscous force remain comparable in magnitude over the investigated range of R̃a,
although we find the differences are larger in the vertical component of the momentum
equation, as shown in panel (b). Non-rotating dynamos also exhibit an approximate
balance between the Lorentz and viscous forces (Yan et al. 2021). The buoyancy force
and the vertical pressure gradient force remain the largest terms in the vertical component
of the momentum equation for R̃a � 40; for larger R̃a we find that inertia, advection and
the pressure gradient force dominate.
A comparison of forces for a selection of different Ekman numbers (and different Pm)

is made in figure 13. Here, we plot (a,b) the viscous force; (c,d) the Lorentz force; and
(e, f ) the buoyancy force for Ekman numbers E = 10−5 (Pm = 1), 10−6 (Pm = 1), 10−7

(Pm = 0.3) and 10−8 (Pm = 0.1). The left column of the figure shows the unscaled data
and the right column shows the asymptotically rescaled data. The forces show a good
collapse when rescaled via the asymptotic predictions of § 3. Of the three forces shown,
the Lorentz force shows the most scatter, which can be attributed to different values of Pm
(or, equivalently, R̃m). As shown in panel ( f ), varying Pm has no significant effect on the
scaling behaviour of either the viscous force or the buoyancy force.

5. Discussion

A systematic numerical investigation of convection-driven dynamos in the rotating plane
layer geometry has been carried out for varying Ekman number, Rayleigh number
and magnetic Prandtl number. The observed flow regimes ranged from quasi-laminar
convection cells to geostrophic turbulence, similar to the regimes found in hydrodynamic
rotating convection (e.g. Julien et al. 2012). A primary purpose of this investigation
was to test the asymptotic theory developed by Calkins et al. (2015). In this regard, a
variety of physical quantities were computed across the entire range of input parameters
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Figure 13. Scaling behaviour of (a,b) the viscous force; (c,d) the Lorentz force; and (e, f ) the buoyancy force
for different Ekman numbers. Panels (a,c,e) show the unscaled forces and (b,d, f ) show the asymptotically
rescaled forces. The markers have the same meaning in all figures.

to characterise the asymptotic scaling behaviour of the system. In general, excellent
agreement between theory and simulation output was found.
The observed heat transport behaviour in the dynamo simulations is broadly similar to

that observed in hydrodynamic rotating convection. More specifically, as a function of
Rayleigh number, the Nusselt number initially grows quickly, then a more shallow slope is
observed once the flow becomes turbulent. When plotted as a function of the reduced
Rayleigh number R̃a = RaE4/3, we find that the Nusselt number shows qualitatively,
and even quantitatively, similar behaviour for all Ekman numbers and magnetic Prandtl
numbers. As expected from the energy balance, the viscous and ohmic dissipation also
show similar behaviour with increasing R̃a and the dissipation data can be collapsed
with a scaling of E4/3. In the majority of the dynamos simulated, viscous dissipation
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dominates over ohmic dissipation. In the turbulent regime, the ohmic dissipation fraction is
fohm � 0.5 for the majority of the cases. This behaviour should be contrasted with spherical
dynamo studies (Christensen & Aubert 2006), or magnetoconvection studies (Yan et al.
2019), where regimes can be found in which ohmic dissipation dominates over viscous
dissipation.
Momentum transport, as characterised by the large-scale Reynolds number, scales with

the Ekman number according to E−1/3, consistent with asymptotic theory (Julien et al.
1998; Calkins et al. 2015). This scaling behaviour is a direct result of the geostrophic
balance that occurs on the small, horizontal convective length scale. Although we do
not attempt to provide detailed numerical fits to the data, the Reynolds number increases
steeply for small R̃a, then transitions to a shallower scaling in the turbulent regime (beyond
values of R̃a ≈ 40), which is roughly consistent with asymptotic studies of non-magnetic
rotating convection (e.g. Julien et al. 2012; Calkins et al. 2016; Maffei et al. 2021).
The magnetic energy of the simulated dynamos shows considerable scatter with the

various input parameters, although a scaling of E−2/3, as predicted by theory, provides
some collapse to the data. We show that a near unity mean magnetic energy fraction,
Ēmag/Emag ≈ 1, is obtainable so long as the Ekman number is small and Pm < 1.
It is shown that the asymptotically scaled magnetic Reynolds number, R̃m = RmE1/3,
controls the value Ēmag/Emag, and distinguishes dynamos dominated (energetically) by
the large-scale magnetic field, from those dominated by the small-scale magnetic field.
It is well known that large-scale magnetic fields can be generated when the magnetic
Reynolds number is sufficiently small and the flow is coherent, i.e. laminar (e.g. Moffatt
& Dormy 2019). Small values of R̃m indicate that magnetic diffusion is important on the
small convective length scales. Here, we find that robust large-scale magnetic field can
readily be generated even in the presence of incoherent, turbulent flows (Yan & Calkins
2022), provided R̃m remains small. In rough agreement with Tilgner (2012), small-scale
dynamos are consistently achieved when R̃m � 1.
The mean magnetic field shows a saturation with increasing Rayleigh number, despite

the fact that the fluctuating magnetic field and associated electromotive force (e.m.f.)
grow with increasing R̃a. Similar behaviour of the mean magnetic field is observed in
spherical dynamos, where the azimuthally averaged component of the magnetic field
shows a saturation with Rayleigh number (Calkins et al. 2021; Orvedahl et al. 2021). The
exact cause of this saturation is not currently known, but it may be due to a breakdown
of the α2-dynamo mechanism that operates only when R̃m � O(1) (Calkins et al. 2015).
However, further investigation is necessary to confirm this hypothesis.
Linear theory predicts that the horizontal length scale at the onset of rotating convection

scales with the Ekman number as E1/3 in the limit E → 0 (Chandrasekhar 1961). Whether
these scales persist in the turbulent regime has remained an open question. Our analysis of
both the kinetic and magnetic energy spectra suggests that all length scales in the velocity
field and fluctuating magnetic field scale predominantly as E1/3, even in the turbulent
regime (R̃a � 40). The viscous dissipation length scale (Taylor microscale) and the ohmic
dissipation length scale are computed from these spectra and show good collapse when
rescaled with E1/3. The viscous dissipation length scale is approximately constant across a
broad range of Rayleigh numbers – this behaviour has also been observed in hydrodynamic
rotating convection experiments (Madonia et al. 2021). The ohmic dissipation length
scale is approximately constant (and of the same order as the viscous dissipation length
scale) within the large-scale dynamo regime, but transitions to a R̃m−1/2 scaling in the
small-scale dynamo regime.
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All of the dynamos within our suite of simulations show a leading-order geostrophic
force balance, with all other forces, including the Lorentz force, acting as perturbations.
Thus, the simulated dynamos are within a QG dynamical state. Of course, the relative
sizes of the various perturbing forces is fundamental to the resulting QG dynamics. We
find that the Lorentz force tends to be approximately equal in magnitude to the viscous
force across the entire range of investigated parameters; this behaviour is similar to that
observed in non-rotating convection-driven dynamos (Yan et al. 2021).
It is often assumed that the amplitude of the magnetic field generated by a rapidly

rotating dynamo will saturate once the Lorentz force becomes comparable in magnitude
to the Coriolis force (e.g. Fautrelle & Childress 1982; Roberts 1988). For the QG dynamos
studied here, such a balance does not occur at leading order, although a higher-order
balance can take place in which the Lorentz force becomes comparable in magnitude
to the ageostrophic component of the Coriolis force (e.g. Calkins 2018). However, since
all forces in the momentum equation are of comparable magnitude at this perturbative
order of the dynamics, it is less clear whether the comparison of the Lorentz force
with only the Coriolis force is meaningful. In particular, for a fixed Ekman number,
our simulations show that inertia becomes important in the turbulent regime. Further
investigation, perhaps at a fixed small value of the Ekman number, and finer-scale
variations of the Rayleigh number would help to isolate the effects of these perturbing
forces.
Several previous studies have examined the relative sizes of the terms in the vorticity

equation in both spherical (Dormy 2016) and plane layer dynamos (Hughes & Cattaneo
2016; Cattaneo & Hughes 2017; Hughes & Cattaneo 2019). These studies focused on
so-called ‘strong-field’ dynamos in which the curl of the Lorentz force balances the
vortex stretching term. In order to reach this balance it is typically necessary to use
relatively large values of Pm (Dormy 2016) or to neglect inertia in the momentum
equation (Hughes & Cattaneo 2016; Cattaneo & Hughes 2017; Hughes & Cattaneo
2019), since the relative size of inertia will grow with increasing Rayleigh number
and eventually dominate the Lorentz force, as observed in the present study. Given the
linearity of the momentum equation when inertia is absent, Hughes & Cattaneo (2019)
decomposed the velocity field into ‘thermal’ and ‘magnetic’ components. Their analysis
showed that whereas viscosity was small relative to buoyancy and the Coriolis terms in
the thermal component of the vorticity equation, viscosity remained significant in the
corresponding magnetic component. This observation is roughly consistent with our own
results which show that the viscous force and the Lorentz force are comparable to one
another.
It is well known that in homogenous, isotropic turbulence the largest eddies present

in the flow tend to control the viscous dissipation rate such that the Taylor microscale
is a strongly decreasing function of the Reynolds number (e.g. Pope 2000). Indeed, this
behaviour is observed in non-rotating Rayleigh–Bénard convection and the corresponding
dynamos (e.g. Yan et al. 2021). That the dissipation length scales in our simulations, and
those in the hydrodynamic study of Madonia et al. (2021), do not change appreciably
with the Rayleigh number indicates that rotationally constrained convective turbulence
behaves very differently in comparison with non-rotating convection. This difference may
simply be due to the fact that a small, viscous length scale is necessary in order to
overcome the constraints imposed by rotation, as is known from linear theory. Provided
that the Rossby and Ekman number are both small, the convection remains geostrophically
balanced even in the turbulent regime. We stress that the predominance of the E1/3

viscous length scale does not require that the viscous force is the largest perturbative
force. Indeed, the simulations show that other perturbative forces such as inertia can
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become larger than the viscous force as the Rayleigh number is increased. However, this
perturbation of the geostrophic balance can still occur on the E1/3 length scale. One might
argue that the predominance of the E1/3 length scale suggests that the Rayleigh numbers
(or, equivalently, the Reynolds numbers) accessible in the present simulations are not
sufficiently large to access the fully turbulent regime. However, there are two problems
with this view. First, to our knowledge, the present set of simulations represent the most
extreme DNS of either rotating convection or rotating convection-driven dynamos carried
out to date, as based on the combination of Ekman numbers and Reynolds numbers. While
the possibility remains that an additional transition in the dynamics might appear at larger
Rayleigh numbers (and perhaps smaller Ekman numbers), simulations of the QG model
for hydrodynamic rotating convection do not observe such a transition up to R̃a = 200
(Maffei et al. 2021).
The present investigation highlights significant differences between rotating dynamos

in the plane geometry and those that occur in spherical geometries. Some of these
differences include the observed sequence of force balances and the relative magnitude
of the Lorentz force, and the number of asymptotically distinct convective length scales.
It is typical to define the large-scale fields in a spherical domain as a zonal average, and
small scales as fluctuations away from this average. On the small scales, the leading-order
force balance is geostrophic in spherical geometries, with the Lorentz force and buoyancy
force entering at the next (higher) order in the dynamics, and all other forces are smaller
still (Yadav et al. 2016). In contrast, simulations show that the large-scale dynamics
in spherical dynamos is semi-magnetostrophic with a thermal wind balance in the
meridional plane and a Coriolis–Lorentz force balance in the zonal direction (Aubert
2005; Calkins et al. 2021). This latter balance allows for saturation of the large-scale
magnetic field via the Malkus–Proctor mechanism (Malkus & Proctor 1975). However,
no equivalent saturation mechanism for the large-scale magnetic field is present in the
plane layer geometry. The linear theory of rotating convection in spherical shells shows
the presence of two asymptotically distinct convective length scales – one is the familiar
E1/3 zonal length and the other is the E2/9 radial length scale (Dormy et al. 2004).
The influence of different length scales, and the associated anisotropy in the fluctuating
velocity field, may play a role in the different sequence of force balances that are
observed in the two geometries, although further investigation is necessary to test this
hypothesis.
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Appendix. Simulation data
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