

Generated using the official AMS L^AT_EX template v6.1

1 **Characteristics of Dust Storms Generated by Trapped Waves in the Lee of
2 Mountains**

3 Amato T. Evan,^a William C. Porter,^b Rachel Clemesha,^a Alex Kuwano,^a and Robert Frouin,^a

4 ^a *Scripps Institution of Oceanography, University of California San Diego*

5 ^b *Department of Environmental Sciences, University of California Riverside*

6 *Corresponding author:* Amato Evan, aevan@ucsd.edu

7 ABSTRACT: In-situ observations and output from a numerical model are utilized to examine
8 three dust outbreaks that occurred in the northwestern Sonoran Desert. Via analysis of these
9 events it is shown that trapped waves generated in the lee of an upwind mountain range produced
10 high surface wind speeds along the desert floor and the observed dust storms. Based on analysis
11 of observational and model output general characteristics of dust outbreaks generated by trapped
12 waves are suggested, including dust layer depths and concentrations that are dependent upon wave
13 phase and height above the surface, emission and transport associated with the presence of a low-
14 level jet, and wave-generated high wind speeds and thus emission that occurs far downwind of the
15 wave source. Trapped lee waves are ubiquitous in the Earth's atmosphere and thus it is likely that
16 the meteorological aspects of the dust storms examined here are also relevant to understanding dust
17 in other regions. These dust outbreaks occurred near the Salton Sea, an endorheic inland body of
18 water that is rapidly drying due to changes in water use management. As such, these findings are
19 also relevant in terms of understanding how future changes in size of the Salton Sea will impact
20 dust storms and air quality there.

21 SIGNIFICANCE STATEMENT: Dust storms are ubiquitous in the Earth's atmosphere, yet the
22 physical processes underlying dust emission and subsequent transport are not always understood,
23 in-part due to the wide variety of meteorological processes that can generate high winds and dust.
24 Here we use in-situ measurements and numerical modeling to demonstrate that vertically trapped
25 atmospheric waves generated by air flowing over a mountain are one such mechanism that can
26 produce dust storms. We suggest several features of these dust outbreaks that are specific to their
27 production by trapped waves. As the study area is a region undergoing rapid environmental change,
28 these results are relevant in terms of predicting future dust there.

29 1. Introduction

30 Aeolian dust is one of the most pervasive aerosols in the Earth's atmosphere (Huneeus et al.
31 2011). Dust alters the planet's radiative budget and hydrological cycles via aerosol direct and
32 indirect effects (Choobari et al. 2014) and affects nutrient cycling in the marine and terrestrial
33 ecosystems where dust emission and deposition occurs (Field et al. 2010). As such, there is a need
34 to understand how planetary climate change has—and will continue to— influence the processes of
35 dust emission, transport, and deposition, the so-called dust cycle (Shao et al. 2011), as well as
36 to understand how those forced changes in the dust-cycle feedback onto the Earth's climate (Kok
37 et al. 2018). However, studies examining the representation of dust in model output from the fifth
38 and sixth Climate Model Intercomparison Projects have identified model biases in the dust mean
39 state, poor reproduction of historical dust variability, and insufficient sensitivity of dust emission
40 to changes in surface conditions (Pu and Ginoux 2018; Zhao et al. 2022), casting doubt on our
41 ability to model future dust.

42 Improving understanding of the physical processes leading to dust emission and transport can lead
43 to advances in the representation of dust in models. Although there is a growing body of knowledge
44 of the meteorological processes underlying dust storms (Knippertz 2014), there remains a dearth
45 of representative in-situ observations in dust emitting regions, which is not entirely surprising
46 given that most dust outbreaks occur in sparsely populated regions (Prospero et al. 2002) where
47 challenges associated with access can be significant (e.g., Giles 2005). This study aims to add to
48 understanding of the meteorological processes affecting dust storms by examining measurements
49 made during three dust outbreaks in a region of southeastern California, with a specific focus

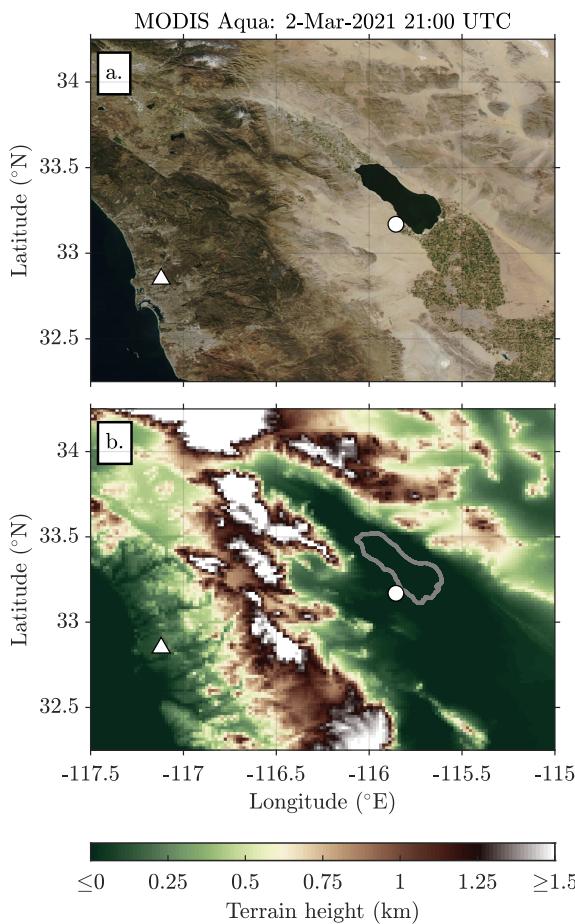
50 on the role of complex terrain in shaping the characteristics of the high winds and lofted dust.
51 Previous studies have identified several processes associated with orographically-forced flow that
52 result in high winds and dust lofting, including gap flow (Evan et al. 2016; Jiang et al. 2009; Todd
53 et al. 2008), downslope winds due to orographic precipitation and latent cooling of air (Knippertz
54 et al. 2007; Evan et al. 2022c), generic Foehn events (Gläser et al. 2012; Evan 2019), and lee-side
55 rotor circulations (Grubišić and Billings 2007; Pokharel et al. 2017). Here we focus on the role of
56 trapped lee-waves in generating dust outbreaks.

57 Trapped lee waves are a class of orographically forced waves (i.e., generated by air flowing over a
58 mountain range) for which the waves are trapped in the lower atmosphere, rather than propagating
59 upwards through the troposphere (Nappo 2013), propagating laterally well beyond the location of
60 wave generation (Durran 2003). Vertical variations in stability and shear in the upstream flow (i.e.,
61 upwind of the mountain range) give rise to trapped waves (Scorer 1949), and temporal changes in
62 these properties result in non-stationary waves (Ralph et al. 1997). Trapped waves can give rise
63 to rotors in the downslope flow, in which rapid vertical ascent in the upward branch of a wave can
64 produce flow separation at the surface and reversed surface winds under the wave crest (Doyle and
65 Durran 2002), and modify (both accelerate and decelerate) surface wind speeds far beyond the
66 wave source (Durran 1986).

67 While there is a rich history of scholarly work on the topic of trapped lee waves (c.f., Smith
68 2019), to the best of our knowledge studies connecting trapped waves to dust emission and transport
69 have been limited to the Owen's Valley, and more strongly focused on the dynamics of the lee-side
70 circulation than the characteristics of the subsequent dust storms (Grubišić et al. 2008; De Wekker
71 and Mayor 2009; Jiang et al. 2011; Strauss et al. 2016). Additionally, Owen's Valley is narrow and
72 consequently waves forming in the lee of the Eastern Sierra are distinct from trapped lee waves that
73 are able to propagate long distances downwind of the region of wave generation. Given the ubiquity
74 of trapped lee waves in the Earth's atmosphere it is at least plausible that these orographically forced
75 phenomena are responsible for a non-negligible fraction of the global dust uplift (e.g., downwind
76 of the Atlas or Andes mountains).

77 Our area of interest is the Salton Basin, a sub-sea level terminal basin located at the northwestern
78 corner of the Sonoran Desert that is part of the greater Salton Trough, a northwest-southeast
79 oriented rift valley along the San Andreas Fault (Fig. 1). At the lowest elevations of the basin lies

80 the Salton Sea, an endorheic body of water having an average surface height of -72.7 m AMSL
81 in 2021 (dashboard.waterdata.usgs.gov accessed on March 24, 2022). Dust storms are a
82 frequent occurrence in this region (Evan 2019), which is due in part to the prevalence of erodible
83 soils (Buck et al. 2011; Sweeney et al. 2011). The Salton Sea was accidentally created in 1905
84 during an attempt to irrigate the southern portion of the Salton Trough (the Imperial Valley), but
85 more recently the volume of the Sea has been declining due to a 2003 water transfer agreement
86 that resulted in diversion of water from the Sea. Consequently, the size of the Salton Sea is rapidly
87 declining (Poudel et al. 2021).


88 Playa sources represent a significant fraction of all dust emission associated with human activity
89 (Ginoux et al. 2012), and the drying of bodies of water in arid regions increases the incidence and
90 intensity of dust storms there (Zucca et al. 2021). A simulation of a single dust event in the Salton
91 Basin estimated an approximately 10% increase in dust burden with a nearly 40% growth in the
92 playa surface (Parajuli and Zender 2018), which is significant given that the playa is surrounded
93 by desert dust sources that are vastly larger in spatial extent. Other work has shown adverse health
94 effects from exposure to dust emitted from the playa (Burr et al. 2021; Biddle et al. 2021), which
95 contains anthropogenic trace metals (Frie et al. 2019). As such, improving understanding of the
96 meteorology underlying dust events in this region is useful in terms of understanding the changing
97 dust burden and the associated human health impacts.

98 The remainder of this article is organized as follows. In Section 2 we describe the observational
99 data and model output used in the study. In Section 3 we examine the meteorological and physical
100 aspects of three dust storms via measurements and model output. In Section 4 we discuss general
101 characteristics of dust storms generated by trapped lee waves. In Section 5 we summarize the work
102 presented here, note the broader implications of the findings, and suggest additional observations
103 and modeling studies to address remaining questions.

104 2. Observations and Model

105 We start by describing the region of interest (Fig. 1). The Salton Basin is an arid endoheric
106 basin that typically receives less than 100 mm of precipitation each year (Stephen and Gorsline
107 1975; NCEI). The morphology of the area includes alluvial fans, sand and sand dunes, dry washes,
108 paleo lakebed, and rock and vegetated surfaces (IID 2016). Within the basin, the Salton Sea is a

109 spatially large yet shallow inland body of water. Agriculture land is found immediately to the north
 110 and south of the Salton Sea, whereas the Anza desert, from which many dust storms in the area
 111 originate, lies immediately to its west (Fig. 1a). The Basin is bounded to the west by the Peninsular
 112 Range, to the north by the San Bernardino Mountains, and to the east by the Transverse Range,
 113 while the topography gradually slopes upward to the south before dropping into the Colorado River
 114 Delta (Fig. 1b).

115 FIG. 1. Terrain of the region of interest. Shown in 1a is a true color image acquired from MODIS-Aqua on
 116 March 2, 2021 at 21:00 UTC. Shown in 1b is an elevation map of the same region. The approximate shoreline
 117 of the Salton Sea during March 2021 is indicated by the gray contour. The locations of the field and the NKX
 118 radiosonde sites are indicated by the white circles and triangles, respectively, in both panels. The desert that lies
 119 immediately west of the field site is the source region for the airborne dust measured at the site.

120 *a. Field site and in-situ Observations*

121 Much of the observational data presented here was collected from a field site located near the
122 current western coastline of the Salton Sea, at approximately 33.2 N and -115.9 E (Fig. 1). The
123 site is adjacent to a large citrus and date palm farm, which provides physical security for the station
124 and allows for access to a stable source of power for instrumentation and telemetry. The landscape
125 immediately surrounding the site is characterized by narrow dry washes and cobbles distributed
126 over silt-dominated paleo lakebed with sparse shrub vegetation.

127 An AERONET CIMEL Electronique Sun-sky photometer is located at the site, which is used
128 to measure Sun collimated direct beam irradiance and directional sky radiance at 8 spectral bands
129 centered on 1020, 870, 675, 440, 936, 500, 380, and 340 nm (Holben et al. 1998). The instrument
130 base is mounted approximately 2 m above ground level. Direct solar irradiance measurements
131 are made at 5-minute intervals. Here we utilize data from the AERONET Level 1.5 products
132 processed by the Version 3 AERONET algorithm, which provides fully automatic cloud screening
133 and instrument anomaly quality controls in near-real-time (Giles et al. 2019). We include dusty
134 observations that were erroneously classified as cloud-contaminated using the restoring algorithm
135 described in Evan et al. (2022a).

136 Located at the field site is a Vaisala CL51 ceilometer, which is a single lens lidar system that makes
137 continuous profiles of attenuated backscatter at a nominal wavelength of 910 nm and up to heights
138 of 15 km. The CL51 range corrected backscatter profiles used here are generated at a 36 s temporal
139 resolution and a 10 m vertical resolution. In addition to cloud detection, ceilometers, including the
140 CL51, have shown to be useful in the detection of aerosol layers in the lower troposphere (Münkel
141 et al. 2007; Wiegner et al. 2014; Jin et al. 2015; Marcos et al. 2018; Yang et al. 2020). The Vaisala
142 processing software for the CL51 measurements, BLView, produces retrievals of vertical profiles of
143 extinction σ and optical depth τ from the backscatter profiles for the clear-sky atmosphere below 5
144 km. Although details regarding the retrieval process used in BLView are not publicly available, we
145 are able to approximately reproduce the extinction profile retrievals using the methods described
146 in (Fernald 1984), as discussed in Evan et al. (2022c). We calibrate the 910 nm aerosol optical
147 depth (AOD) retrieved from the CL51, which is obtained by integrating the retrieved extinction
148 profiles in the vertical dimension to an equivalent 500 nm value by comparing values of 500 nm

149 AOD from AERONET to the 910 nm AOD retrieved from the CL51, following the methods in
150 Evan et al. (2022a).

151 At this site also sits a cabled Vantage Pro2 Davis Met Station, which has a suite of sensors
152 including temperature and humidity sensors under a passive radiation shield, a wind anemometer,
153 a barometer, and rainfall measurements. Data are logged at a 1-min interval. The site anemometer
154 sits approximately 2-m above ground level. The 2-m wind speed and gust measurements were
155 calibrated to an equivalent 10-m wind speed value by multiplying the 2-m values by a factor of
156 1.37, which was empirically derived via comparison to an adjacent 10-m mounted anemometer
157 (Evan et al. 2022a). We note that at present only hourly averaged values are available from the 10-m
158 anemometer, which is managed by the local water and power utility, Imperial Irrigation District.

159 Vertical profiles of temperature, humidity, pressure and wind are obtained from Vaisala RS-41
160 sondes launched at the site on March 9, 2021 (at 1203, 1505, 1803, 1934, 2102, 2234, and 2359
161 UTC), March 15, 2021 (at 2114 and 2320 UTC), and February 15, 2022 (at 2105, 2242, and 2340
162 UTC). Lastly, all heights from soundings and the CL51 are referenced to ground level of the station,
163 which sits approximately 32 m below mean sea level. Radiosonde, meteorological station, and
164 ceilometer profiles made at the field site are permanently archived and publicly available (Evan
165 et al. 2022b).

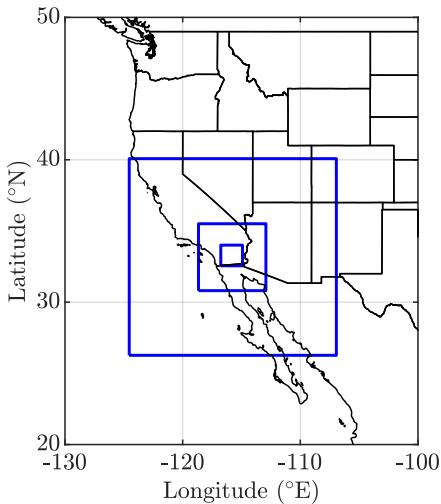
166 *b. Other Data*

167 In addition to the measurements made at the field site we utilize surface meteorological and
168 PM₁₀ measurements made from stations around the Salton Sea. We examine measurements of
169 PM₁₀ since in this area elevated values of PM₁₀ are an unambiguous indication of the presence of
170 suspended dust, whereas, for example, PM_{2.5} may indicate the presence of dust as well as other
171 local sources of particulates. The meteorological and PM₁₀ data were accessed via the MesoWest
172 network (Horel et al. 2002) and the California Air Resources Board Air Quality and Meteorological
173 Information System. We also utilize imagery from a 360° Roundshot web camera that is located
174 28 km west of the field site at an elevation of 300 m AGL, which are available at approximately
175 10 min intervals during daytime hours. We incorporate into our analysis satellite imagery from
176 the Moderate Resolution Imaging Spectrometer (MODIS) flying onboard the Aqua satellite, which
177 were generated from the NASA Earth Observing System Data and Information System (EOSDIS)

178 Worldview application. We also generated imagery from radiance measurements made by the
179 Advanced Baseline Imager (ABI) flying onboard GOES-17. These data were accessed from
180 the NOAA Comprehensive Large Array-data Stewardship System. We examine measurements
181 collected from radiosondes launched from the NXX sounding station, which is near the coastline
182 (white triangle, Fig. 1), where radiosondes are launched twice daily at 00:00 and 24:00 UTC.
183 Three-hourly output from the North American Regional Reanalysis (NARR), which is provided on
184 29 vertical layers at a 32-km horizontal resolution, is used to examine the synoptic environment
185 associated with the dust outbreaks studied here (Mesinger et al. 2006).

186 *c. WRF Model*

187 Numerical simulations of the meteorology underlying the dust cases examined here were made
188 using the Advanced Research version of the Weather Research and Forecasting (WRF) Model
189 (Skamarock et al. 2019) version 4.3. The model was run using 3-domain, nested 2-way interactive
190 grid with horizontal resolutions of 15, 5, and 1 km (Fig. 2). The model was initialized using data
191 from the Global Forecast System (GFS) output (NCEP 2013) at 06:00 UTC on March 8 2021,
192 March 14 2022, and February 14 2022, and was integrated forward for the subsequent 72 hours
193 for each case with the lateral boundaries of the outermost domain continuously forced by the GFS
194 output. WRF model output shown here is from the innermost domain.


195 The model top is at 10 hPa and 51 sigma vertical levels are employed, with the highest vertical
196 resolution found in the lower troposphere. Approximately 7 half-sigma levels are found in the
197 lowest kilometer AGL, with the first level at a height of 27 m AGL. The output shown here is
198 from simulations using the Mellor–Yamada–Janjić (Janjić 1994) planetary boundary layer scheme,
199 which, when compared to other boundary layer schemes, was found to best reproduce in-situ
200 observations, particularly the surface wind speeds, in the region (Evan et al. 2022c). The model
201 physics parameterizations used in this study are shown in Table 1. Comparisons of WRF output
202 to surface wind measurements at the field site and radiosondes launched during the dust outbreaks
203 considered here can be found in Supplemental Figures S1–S13.

204 We also conduct simulations using the WRF-Chem model (Grell et al. 2005; Fast et al. 2006;
205 Peckham et al. 1991), employing the GOCART aerosol scheme without ozone chemistry (Chin
206 et al. 2000; Ginoux et al. 2001) and the Air Force Weather Agency dust emission scheme (AFWA

TABLE 1. Physics schemes employed in the WRF simulations

Parameterization	Scheme
Planetary boundary layer	Mellor–Yamada–Janjić (Janjić 1994; Janjić 2001)
Surface layer	Monin-Obukhov with Janjic Eta (Monin and Obukhov 1954; Janjić 2001)
Land surface physics	Noah Land Surface Model (Chen and Dudhia 2001)
Longwave & shortwave radiation	RRTMG & RRTMG (Iacono et al. 2008)
Purdue Lin scheme	(Chen and Sun 2002)
Cumulus scheme (5 & 15 km domains)	Grell3D (Grell 1993; Grell and Dévényi 2002)

210 LeGrand et al. 2019), with other model parameterizations, setup, and forcing identical to that
 211 described for the WRF simulations (Table 1). The AFWA emissions scheme, which uses a modified
 212 version of the saltation-based dust emission function of Marticorena and Bergametti (1995), is
 213 one of several available by default in current versions of WRF-Chem. This scheme represents
 214 an update to the earlier GOCART-WRF emissions scheme, incorporating separately modeled
 215 saltation processes driving subsequent dust emissions rather than the single-step parameterization
 216 used previously. Since its addition to WRF-Chem, the AFWA scheme has been used and evaluated

195 FIG. 2. Domains for the nested WRF simulations. Plotted in blue are the horizontal extents of the nested
 196 domains utilized in the WRF simulations. The horizontal resolutions of the outermost to innermost domains are
 197 15, 5, and 1 km, respectively.

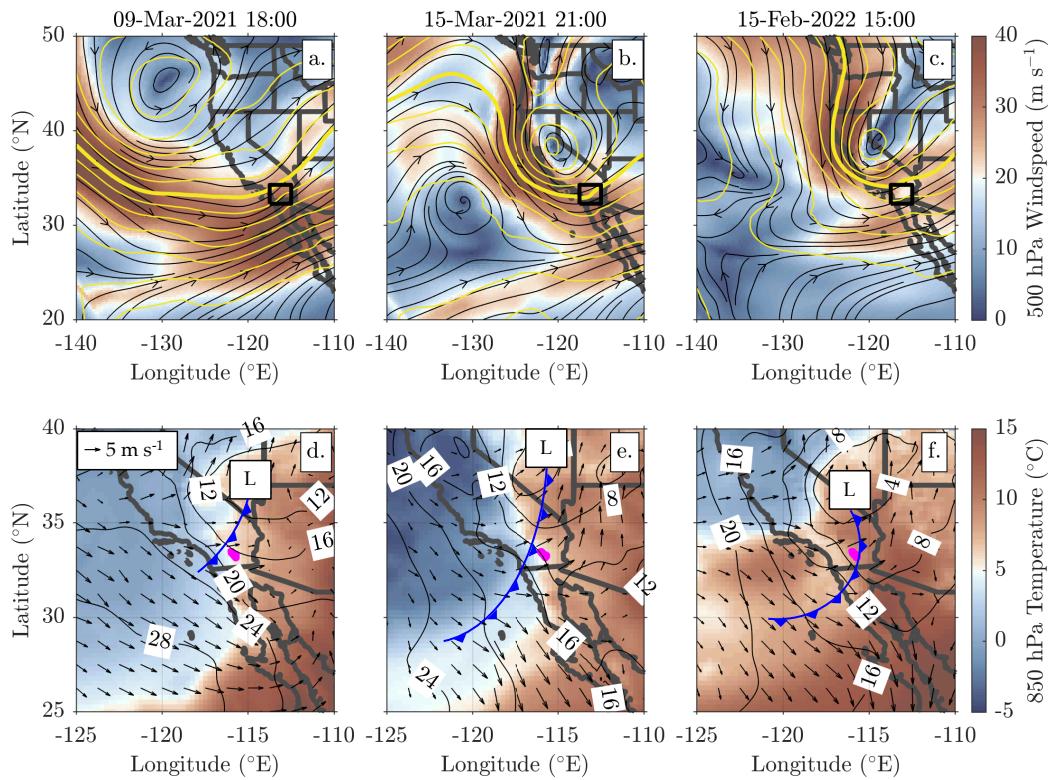
217 in dust modeling research and case studies around the world (e.g. Yuan et al. 2019; Kim et al. 2021;
218 Miller et al. 2021). In the model dust in the size range of 0.2-20 μm is simulated in 5 bins.

219 When comparing the model simulated dust to aerosol measurements at the field site and surface
220 PM_{10} measurements at a number of locations around the Salton Sea we found that the model
221 produced too much dust at weak wind speeds and too small an increase in dust as the wind
222 speed increased. We also found via comparison to surface PM_{10} measurements that dust surface
223 concentrations were biased low in the region of the research site, and biased high to the north and
224 south of the site (not shown). These biases persisted across two different soil erodibility input
225 maps, including the default GOCART topographic erodibility dataset of Ginoux et al. (2001), as
226 well as the more recent data set of Parajuli and Zender (2017). Based on their consistency across
227 erodibility map inputs, we suspect that these biases are related to other surface property inputs,
228 such as soil and land surface cover type.

229 Due to concerns over the representation of dust emission in the model we only utilize output
230 from a WRF-Chem simulation of the dust outbreak on March 15, 2021 in order to examine the
231 general relationship between trapped lee wave phase and the vertical and horizontal distribution of
232 dust (Section 4). We leave improvement of the representation of modeled dust in this region for
233 future work.

234 *d. Salton Sea Extent*

235 The extent of the Salton Sea was estimated using MODIS Aqua visible satellite imagery from
236 March 2, 2021 (Fig. 1a). To estimate the shoreline we applied an arbitrary threshold to the
237 reflectances of each of the three image color channels (i.e., red, green, blue) in order to distinguish
238 the dark Salton Sea against the bright desert surface, manually excluding any pixels that were dark
239 enough to pass this threshold test from the vegetated croplands to the south of the sea. We then
240 used these data to define the shoreline of the sea (gray contour, Fig. 1b). The shoreline estimate is
241 used as a visual aid in several figures found throughout this manuscript.


242 **3. Characteristics of the Dust Storms**

243 Here we consider three dust outbreaks within the Salton Basin: March 9 and 15, 2021, and
244 February 15, 2022. When convenient we only refer to these cases using their respective months

245 and days. These events were chosen because of the similarities in their meteorological aspects and
 246 dust characteristics, and the availability of radiosonde measurements made at the field site.

256 *a. Synoptic Situation*

257 We first describe the synoptic environments for the three dust events considered here. For all
 258 cases streamlines and heights of the 500 hPa pressure surfaces from NARR show an upper level low

247 FIG. 3. Synoptic situations immediately preceding the dust outbreaks: March 9, 2021 at 18:00 UTC (3a, d),
 248 March 15, 2021 at 21:00 UTC (3b, e), and February 15, 2022 at 15:00 UTC (3c, f). Shown in the top row (3a-c)
 249 are maps of NARR 500 hPa wind speeds (shading), streamlines (black), and heights (yellow contours). Heights
 250 of the 500 hPa pressure surfaces are represented by the yellow contours at intervals of 5 dm, with the thick
 251 contour representing the 560 dm surface. The black box indicates the area shown in Fig. 1. Shown in the bottom
 252 row (3d-f) are maps of 850 hPa temperature (shading), sea level pressure (black), and vector winds (arrows).
 253 Cold fronts (blue) and surface lows (boxed "L") locations are based on NOAA Weather Prediction Center surface
 254 analysis. Sea level pressure contours are hPa greater than 1000 hPa. The magenta shading represents the location
 255 of the Salton Sea. The horizontal extents of the maps in the top and bottom rows are not identical.

259 displaced to the northwest of the region of interest, with the lows' centers of action approximately
260 located at 45° and -130°E on March 9, 2021 (Fig. 3a), and 40°N and -120°E on March 15, 2021
261 and February 15, 2022 (Figs. 3b, c, respectively). For each case the elevated lows direct westerly
262 flow across the region of interest (black squares), with all exhibiting tightly packed height contours
263 and cross barrier (i.e., westerly) wind speeds greater than 20 m s^{-1} . We note that that for the
264 March 9 case the westerly flow is driven by both the broad low located to the north over the Pacific
265 and an anti-cyclone located to the southeast (anti-cyclone not seen in Fig. 3a). Sea level pressure
266 contours for these three cases show surface low pressure centers north of the Salton Sea and near
267 exit regions of the the upper level jets, with trailing cold fronts pushing through the Salton Basin at
268 approximately 18:00, 21:00, and 15:00 UTC (Figs. 3d, e, f, respectively). Temperatures and vector
269 winds at 850 hPa imply low-level northwesterly cold air advection behind the fronts and westerly
270 flow directed at the coastline and over the Salton Sea. The synoptic situations for these cases are
271 similar to that described for dust outbreaks occurring on February 22, 2020 (Evan et al. 2022c)
272 and March 14, 2018 (Evan 2019).

277 The characteristics of these mature cyclone wave and frontal systems (Fig. 3) generate unique
278 conditions that are favorable for trapping waves, including low-level cold air advection below a
279 westerly jet streak. For the March 9 case (Figs. 3a, d) the upper level trough is open and exhibits a
280 slight negative tilt. Vertical profiles of potential temperature θ and wind speed and direction made
281 from radiosondes launched from the NXK sounding station (see location in Fig. 1) at 12:00 UTC on
282 this day show a 5 C increase in θ in the 725-775 hPa layer (Fig. 4a), which is within a deeper layer
283 (700-800 hPa) of backing winds (Fig. 4c), implying low level cold air advection and cold frontal
284 passage. The sounding made 12 hours later on this day, and after the surface front had passed
285 over the Salton Sea region, shows lifting of the isentropic surfaces from 500-800 hPa (Fig. 4a),
286 indicating a deeper layer of cold air. The 30 m s^{-1} increase in wind speed from 300-500 hPa reflects
287 displacement of the associated jet streak over the region (Fig. 4b). The westerly flow throughout
288 much of the troposphere in the later sounding (Fig. 4c) reflects the strongly zonal nature of the jet
289 at this latitude, which results in part from the continued deepening and southward migration of the
290 low at -130°E and 45°N (not shown).

291 The low in the March 15 case (Figs. 3b, e) is better developed than that for March 9, exhibiting
292 a neutrally tilted trough digging down the western US coastline. The NXK soundings from this

day (Figs. 4d–f) are similar to those from March 9 in several ways, including a 6 C increase in θ at 850 hPa and a layer of backing winds from 800-850 hPa. The sounding made 12 hours later shows lifting of the θ inversion layer to 775 hPa and the layer of backing winds to 775-825 hPa heights. The later sounding also suggests warm air advection in the 750-600 hPa layer, as evidenced by the veering flow from 750-600 hPa and similarity in θ at those heights over the 12-hour time period. Similar to the March 9 case is the presence of a westerly jet with maximum wind speeds at 400-300 hPa.

Lastly the February 15 positively-tilted short wave trough (Fig. 3c) was a fast-moving system and neither NXK sounding for this day exhibits clear signs of cold frontal passage (Figs. 4g–i). The measurements indicate a large 8 C increase in θ at 870 hPa in the 12:00 UTC sounding, that lifts to approximately 775 hPa 12 hours later, with cooling throughout the 400-900 hPa heights during this time period. The latter sounding also shows an approximately 15 m s^{-1} increase in wind speed

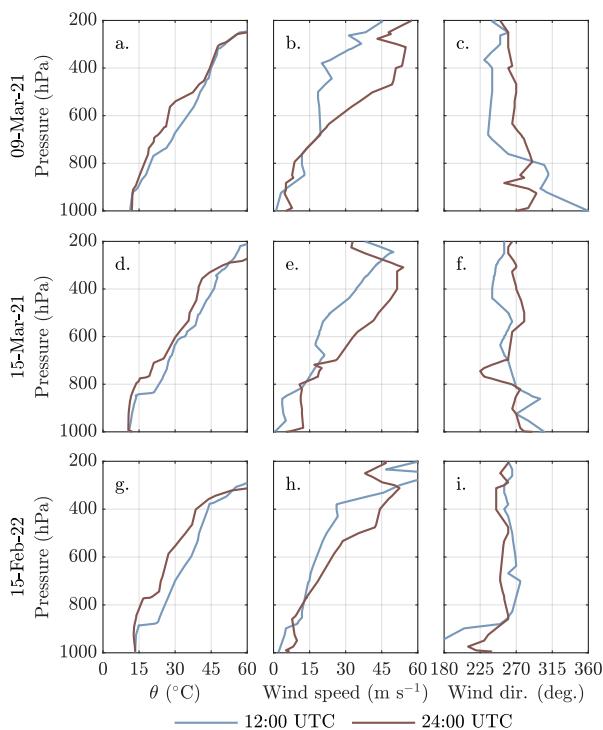
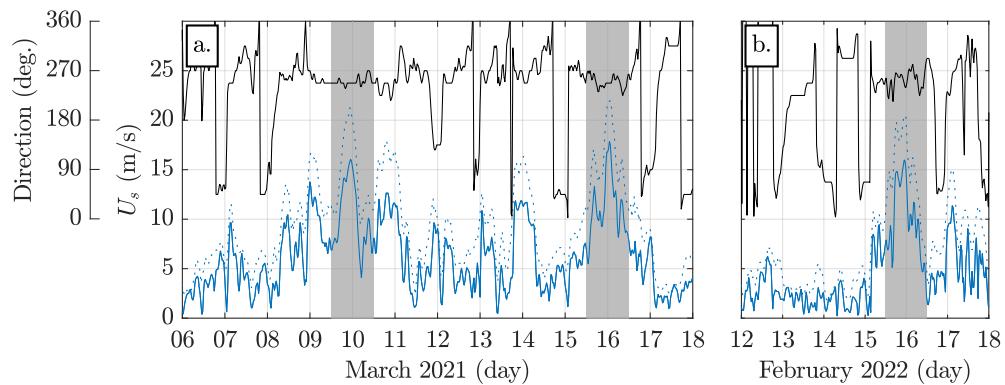
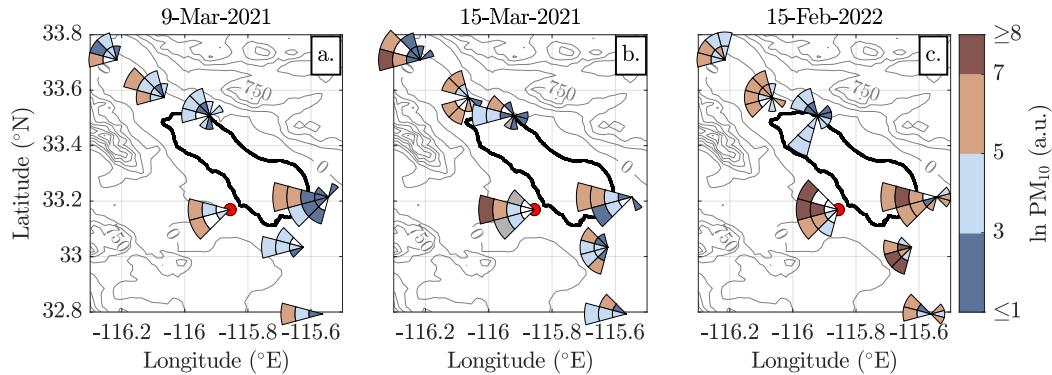



Fig. 4. Measurements from soundings made at the NXK station (see location in Fig. 1). Shown are vertical profiles of potential temperature θ (4a, d, g), wind speed (4b, e, h), and wind direction (4c, f, i) collected from radiosondes launched at 12:00 (light blue) and 24:00 (rust) UTC on March 9, 2021 (4a–c), March 15, 2021 (4d–f), and February 15, 2022 (4g–i).

305 during this period in the 500-400 hPa layer. Noting that the veering flow below 850 hPa may be
 306 the result of surface friction rather than indicating warm air advection, both radiosondes suggest a
 307 deep layer of positive zonal flow.

308 As we discuss in Section 4, these profiles all exhibit characteristics favorable to the generation
 309 of trapped lee waves, including low-level cold air advection, with warm air advection aloft in the
 310 February 15 case, strongly zonal (i.e., cross-barrier) flow, and positively sheared winds, especially
 311 above the heights of the mountain ridges, which in Fig. 4 is approximately located in the 850-800
 312 hPa range.

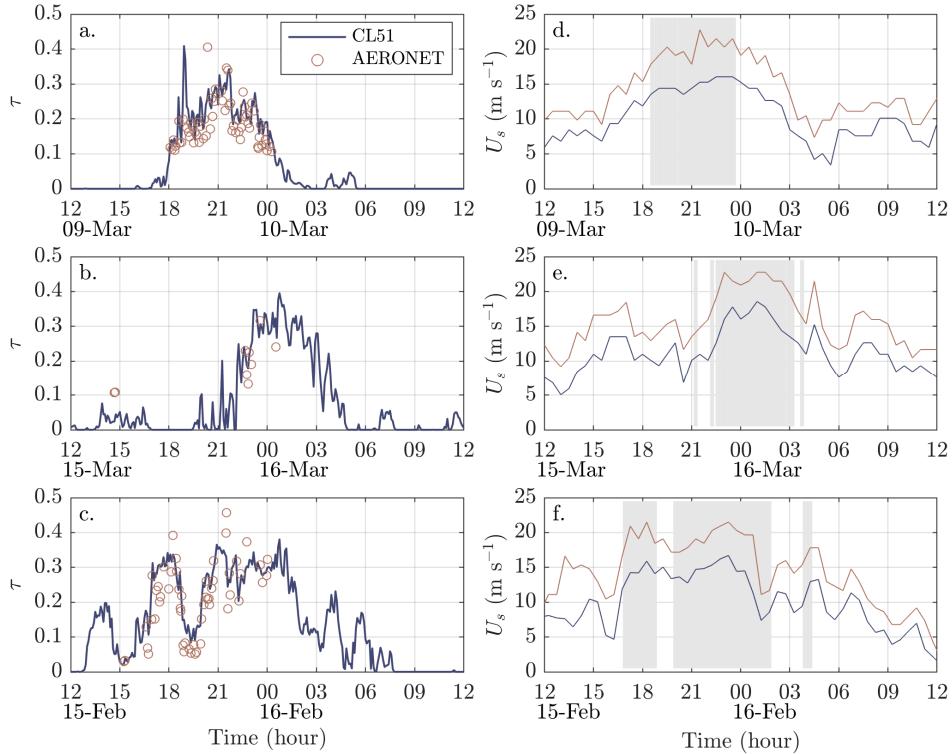
313 Within the Salton Basin the passage of these three frontal systems generated a similar response
 314 in the surface meteorological conditions. During each the 30-minute averaged surface wind speeds
 315 U_s and gusts measured at the field site exceeded 10 and 20 m s^{-1} , respectively, and were westerly
 316 in direction (Fig. 5). The persistently westerly flow during the dust outbreaks is in contrast to
 317 the typical patterns of wind speed and direction in the basin, which can be characterized as a
 318 thermally-driven daytime upslope (easterly) and downslope (westerly) circulation forced by the
 319 mountains that lie to the west of the site (e.g., March 6–8, March 12–14 Fig. 5a).



313 FIG. 5. Time series of surface meteorological measurements made from the field site during March 2021 (5a)
 314 and February 2022 (5b). Plotted are 30-minute averaged values of surface wind speed U_s (blue solid line), wind
 315 gust speed (blue dotted line), and wind direction (black solid line), with the value of direction indicated by the
 316 left-most vertical axis. The gray shaded regions indicate 24-hour periods commencing at 12:00 UTC on March
 317 9 and March 15, 2021, and February 15, 2022, during which the dust outbreaks occurred.

325 *b. Observations of Dust*

326 We next consider the spatial and temporal variability of the dust generated by the high winds
 327 present over the Salton Basin. In order to simultaneously visualize wind speed and direction and
 328 PM₁₀ we generated modified versions of wind roses. For each, the station physical location is at
 329 the center point of the rose. Concentric circles indicate wind speed ranges, where the area from
 330 the center point to the first concentric circle represents wind speeds in the range of 0-4 m s⁻¹, the
 331 area from the first to the second circles represents wind speeds in the range of 4-8 m s⁻¹, and so
 332 on in increments of 4 m s⁻¹. The radial divisions represent wind direction. Shading refers to the
 333 natural logarithm of the maximum hourly PM₁₀ measured for a given wind speed and direction
 334 range, where ln PM₁₀ values ≥ 5 are above the US EPA 24-hour air quality standard of 150 μg
 335 m⁻³. The data displayed in Fig. 6 corresponds to the time periods highlighted in gray in Fig. 5.
 336 Hourly-averaged PM₁₀ and wind speed measurements are used to generate these plots.

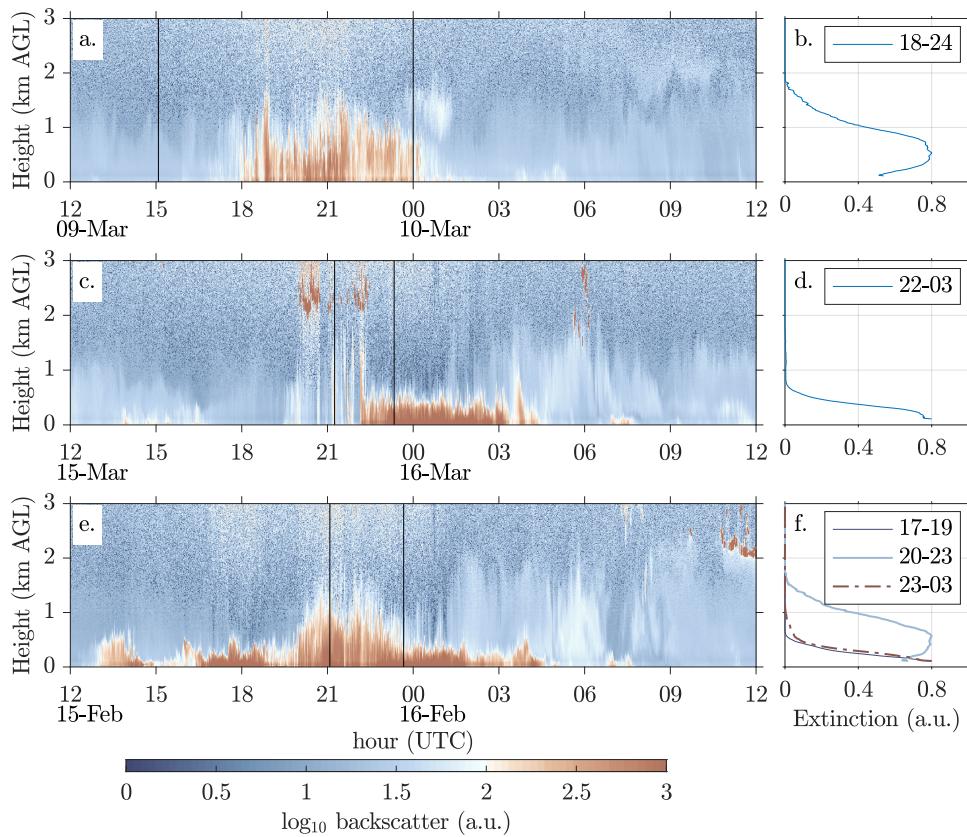

343 For all of three cases PM₁₀ values exceeding 150 μg m⁻³ (ln PM₁₀ ≥ 5) were observed for at
 344 least five of the seven stations, with PM₁₀ exceeding 150 μg m⁻³ at all stations during the March
 345 15 case (Fig. 6b). At the northernmost station the strongest wind speed and PM₁₀ values occur
 346 during northwesterly winds, likely due to flow channeling through Banning Pass (Ryerson et al.

337 FIG. 6. Modified wind roses indicating peak concentrations of PM₁₀ during the three dust outbreaks. Shown
 338 in each map are roses (see text for description) made from measurements collected during the dust outbreaks on
 339 March 9 (6a) and March 15, 2021 (6b), and February 15, 2022 (6c). Gray shaded rose sections in 6b indicate
 340 wind speeds and directions for which corresponding PM₁₀ measurements were missing. The gray contours
 341 represent surface elevations at intervals of 250 m, and the thick black line represents an estimate of the Salton
 342 Sea shoreline in March 2021. The location of the field site is indicated by the red circular marker.

347 2013), which sits at the northern terminus of the Salton Trough (Fig. 1b). Further to the south the
 348 strongest wind speeds and PM_{10} values correspond to increasingly westerly flow, which reflects
 349 the widening of the basin and the proximity of the Anza desert, which lies to the west of the Salton
 350 Sea and is upwind of the field site (Fig. 1a). Based on the prevalence of measurements for which ln
 351 $PM_{10} \geq 5$, the February 15 event exhibited the largest number of high surface dust concentrations
 352 (Fig. 6c), and the March 9 case exhibited the lowest surface dust concentrations (Fig. 6a).

353 Retrievals of aerosol optical depth τ from the CIMEL sun photometer show maximum aerosol
 354 optical depths of approximately 0.4 on March 9 and March 15, and 0.45 on February 15 (Fig. 7a, b,
 355 c, respectively). The number of CIMEL τ retrievals is related to the presence of daytime clear-sky
 356 conditions; cloud cover was present over the site prior to 18:00 UTC on March 9, and there was
 357

353 FIG. 7. Aerosol optical depth τ retrievals and surface wind speeds measured at the field site during the three
 354 dust cases. Shown in 7a–c are time series of τ retrieved from the CL51 (solid line) and the AERONET sun
 355 photometer (circles) during each of the three dust outbreaks. Shown in 7d–f are corresponding measurements of
 356 surface wind speeds (blue) and gusts (red-orange), with time periods during which $\tau \geq 0.2$ indicated by the gray
 357 shading.


362 intermittent cloud cover throughout the March 15 event, whereas the sky was clear on February
363 15 (see animations M1–3 in the Supplement). Post-processed values of τ retrieved from the CL51
364 are broadly in agreement with those from AERONET, and thus can be used to estimate τ in the
365 subcloud layers and at nighttime. If we arbitrarily define a dust outbreak as $\tau \geq 0.2$, from these
366 data the duration of the March 9 event was approximately 5 hours (Fig. 7a, 18:35 to 23:35 UTC),
367 the March 15 event lasted 5.5 hours (Fig. 7b, 22:15 to 03:45 UTC), and the February 15 event had
368 a duration of 11.17 hours (Fig. 7c, 17:05 to 04:15 UTC), although the latter event was punctuated
369 by distinct periods of $\tau < 0.2$ at 15:00, 19:30, and 03:00 UTC.

370 A comparison of measurements of τ and the corresponding surface wind speed U_s suggests that,
371 in general, $\tau \geq 0.2$ when the surface wind speeds and gusts exceed 9 and 17 m s^{-1} , respectively
372 (gray shading in Figs. 7d–f). Although for the February 15 case there are several time periods
373 during which $\tau > 0.2$ but wind speeds are well below 9 m s^{-1} , and when $\tau < 0.2$ but wind speeds
374 are above 9 m s^{-1} (Fig. 7f). For these cases dust over the field site is emitted from the upwind
375 desert region to the west (see animations M1–3 in the Supplement), and as discussed in Section
376 4, decoupling of τ and U_s in the February 15 case may be due to the influence of non-stationary
377 trapped waves.

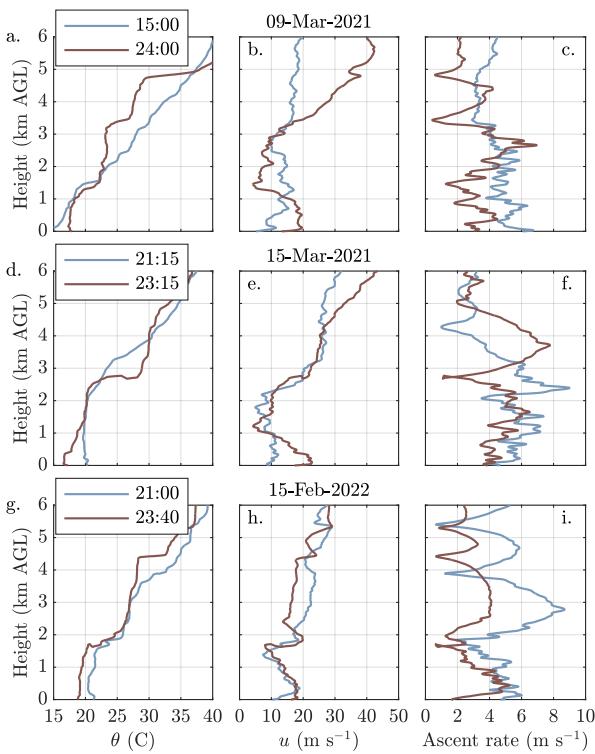
383 Measurements of backscatter made from the CL51 ceilometer located at the field site provide
384 information about the vertical structure of the dust storms. Plotted in Fig. 8 are \log_{10} of the
385 ceilometer range corrected backscatter signal within the lower 4 km of the atmosphere for 24 hour
386 periods commencing at 12:00 UTC on March 9 (Fig. 8a) and 15, 2021 (Fig. 8c) and February 15,
387 2022 (Fig. 8e). Values of \log_{10} backscatter that are greater than 2 are a reasonable indication of
388 the presence of suspended dust based on comparisons with aerosol optical depth retrievals from
389 the collocated sun photometer (Evan et al. 2022a), and backscatter values greater than 2 that are
390 located well above the surface indicated the presence of clouds (e.g., 2-3 km AGL at 20:00 UTC
391 on March 15 in Fig. 8c).

392 The CL51 data show that for all three cases dust is confined to a layer below 2 km AGL, but
393 that the depth of the dust plume and the vertical distribution of the aerosols vary both between
394 events and within the individual dust outbreaks. For example, the dust outbreak on March 9 is
395 characterized by a plume having depth 1-2 km AGL (Fig. 8a) with extinction values peaking at
396 500 m AGL (Fig. 8b). For the March 15 case dust is confined to the shallow layer of 300-700

397 m AGL (Fig. 8c), with extinction peaking at the lowest retrievable level of 100 m AGL (Fig. 8b).
 398 Differences in the shapes of the extinction profiles for the March 9 and 15 cases explain why surface
 399 PM₁₀ measurements for the March 15 case were far greater than those for March 9 (Figs. 6a, b)
 400 although the dust optical depth for these two events are nearly identical in magnitude (Figs. 7a, b).
 401 The ceilometer data for February 15 exhibits distinct periods of dust layer depths, ranging from
 402 600 m to 2 km AGL (Fig. 8e). We consider the factors affecting the vertical distribution of dust in
 403 Section 4.

378 FIG. 8. Ceilometer backscatter and extinction profiles from CL51 measurements made at the field site. Shown
 379 are vertical profiles of the log of the CL51 range corrected signal during the dust outbreaks on March 9 & 10
 380 (8a) and 15 & 16, 2021 (8c), and February 15 & 16, 2022 (8e). The vertical black lines in each represent times
 381 radiosondes were launched at the site (Fig. 9). Plotted in 8b, d, f are extinction profiles averaged over the time
 382 period indicated in the legends (in hours UTC), and corresponding to the days indicated in the adjacent panels.

404 *c. Terrain Forced Flow*


405 Having provided an overview of the synoptic situation for these dust events and examined the
406 physical characteristics of the airborne dust, we next consider the role of orography in generating
407 the high winds that gave rise to the dust outbreaks. The mountain range that lies immediately to
408 the west of the Salton Basin (the Peninsular Mountains) is north-south oriented and rises gradually
409 from the Pacific Ocean to peak heights up to 3 km, with steep eastern slopes that plunge into the
410 sub-sea level Salton Basin (Fig. 1b, see also Fig. 5 in Evan 2019). Given the characteristics of the
411 Peninsular Mountains (which hereafter we also refer to as the upwind barrier), wind in the zonal
412 direction is cross-barrier and thus westerly flow has the potential to generate strong downslope
413 windstorms in the lee of these mountains (Durran 1990). In order to elucidate the influence of the
414 orography on the lee-side flow we examine radiosondes launched from the field site on each of the
415 days in question and output from WRF simulations of these events.

420 A profile of potential temperature θ obtained from a radiosonde launched prior to the March
421 9 dust outbreak at 15:00 UTC (07:00 local time) shows the remnants of a nocturnal inversion,
422 with θ increasing from 15 to 18 C from the surface to 1.5 km AGL, which is then capped by an
423 approximately 4 C inversion layer, with θ increasing steadily above (Fig. 9a). The corresponding
424 cross-barrier wind speeds u vary between 10 and 20 m s⁻¹ throughout the lower 6 km of the
425 atmosphere (Fig. 9b). A radiosonde released at 24:00 UTC on this day (16:00 local time), which
426 is during the dust outbreak (Fig. 8a), shows 5 C warming at the surface relative to the 15:00 UTC
427 sounding but little change in the 1-1.5 km layer. If we define the top of the convective boundary
428 layer as the height at which θ equals the surface temperature, which is reasonable given that the
429 layer is dry, the depth of the convective boundary layer during the dust outbreak is 1.5 km, which
430 is consistent with the depth of the dust layer during this event (Fig. 8b).

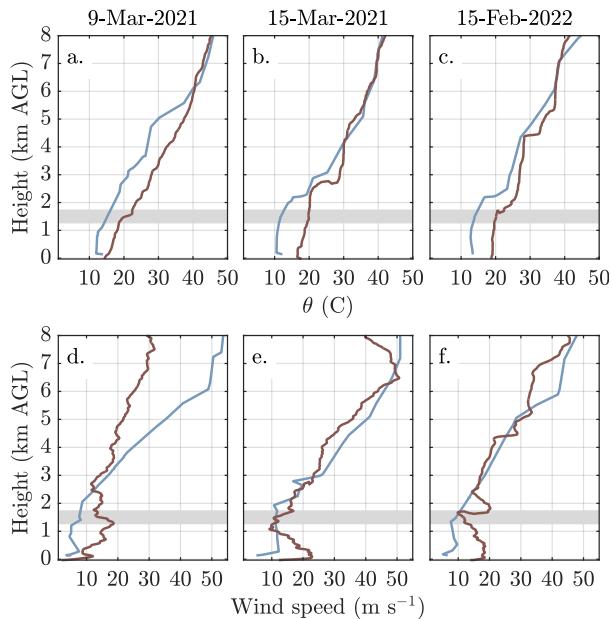
431 During the March 9 dust outbreak the profile of u can be characterized as consisting of a low-level
432 jet having peak wind speeds of 20 m s⁻¹ from just above the surface to a height of 1 km AGL, and
433 a wind speed minimum of 5 m s⁻¹ at the height of the inversion at 1.5 km AGL (Fig. 9b). The
434 height of the wind speed minimum and 4 C inversion are also located at a minima in the balloon's
435 ascent rate, which is in contrast to the more constant ascent rate prior to the dust outbreak (Fig. 9c).
436 Inversions apparent in the profile of θ at heights of 1.5, 3.5, and 4.9 km AGL are coincident with
437 minima in ascent rate and thus the magnitudes of these inversions are affected by the reductions in

438 the radiosonde's vertical velocity. Minima in the ascent rate also indicate the presence of waves,
 439 similar to cases examined in Strauss et al. (2016). The presence of waves is also apparent in
 440 measurements from other soundings made during these events (Figs. S6, S12).

441 Radiosondes launched immediately prior to and during the dust outbreak on March 15, 2021
 442 show some similar characteristics to those from the March 9 case. The vertical profile of θ prior to
 443 the dust outbreak at 21:15 UTC (14:15 local time, Fig. 8c) suggests a well-mixed boundary layer
 444 extending from the surface to approximately 2 km AGL (Fig. 9d) with u near 10 m s^{-1} throughout
 445 this depth (Fig. 9e). In contrast, the sounding made during dust outbreak (23:20 UTC, 16:20 local
 446 time) is accompanied by cooling of approximately 3 C in the lower 500 m of the atmosphere (Fig.
 447 9d) and a pronounced low level jet characterized by peak wind speeds of 23 m s^{-1} at heights of
 448 100-300 m AGL and a wind speed minimum of 5 m s^{-1} at 1.25 km AGL. The radiosonde ascent

446 **FIG. 9.** Sounding measurements from radiosondes launched from the field site on March 9 2021 (9a–c), March
 447 15 2021 (9d–f), and February 15 2022 (9g–i). Plotted are radiosonde profiles of potential temperature θ (9a,d,g),
 448 zonal wind speed u (9b,e,h), and balloon ascent rate (9c,f,i). Times of the radiosonde launches (UTC hours) are
 449 indicated in the legends in 9a,d,g.

449 rates implies wave activity in the atmosphere, with a minimum in ascent rate at 2.8 km AGL (Fig.
450 9f) that is located at the height of a nearly 10 C inversion (Fig. 9d). We again note that this apparent
451 inversion is heavily influenced by the nearly horizontal motion of the balloon at this height.

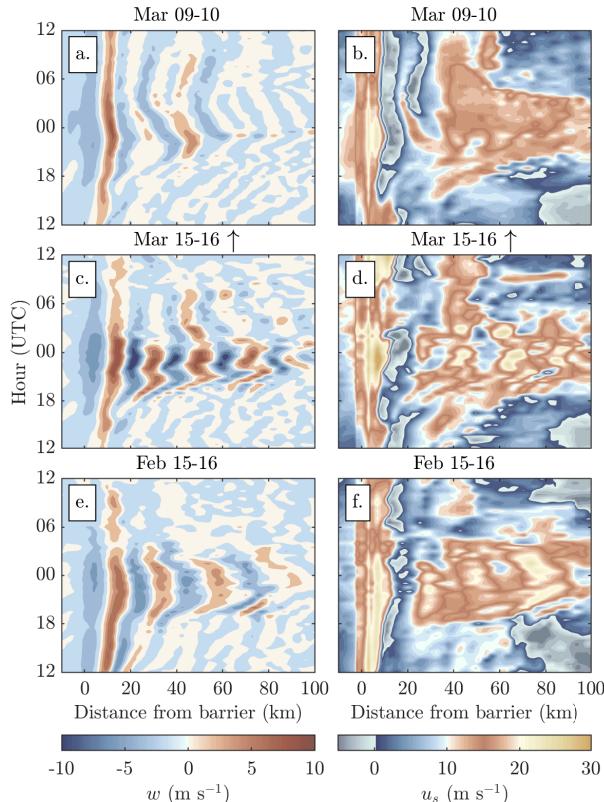

452 The low-level cooling accompanying the onset of high wind speeds helps explain the observed
453 shallow depth of the dust layer on March 15, relative to the March 9 case (Fig. 8d). These features
454 of the March 15 dust outbreak are similar to those for a dust outbreak that occurred on February
455 22, 2021, which was generated by spillover precipitation and evaporative cooling over the desert
456 to the west of the research site (Evan et al. 2022c). Here we noted no spillover precipitation for the
457 March 15 case and thus any density-current like features are due to cold post-frontal downslope
458 flow (Karyampudi et al. 1995; Koch et al. 1991).

459 For the February 15, 2022 case no radiosondes were launched prior to the dust outbreak, although
460 the radiosondes measurements shown in Figs. 9g–l do correspond to periods of differing heights
461 of the dust plume (Fig. 8e). Profiles of potential temperature made at 21:00 UTC (13:00 local
462 time) and 23:40 UTC (15:40 local time) show an inversion just below 2 km AGL (Fig. 9g). For the
463 earlier time we estimate a convective boundary layer depth of 1.6 km, which is consistent with the
464 depth of the dust layer averaged from 20:00-23:00 UTC (Fig. 8f). For the 23:40 sounding there is
465 relative cooling of approximately 1.5 C in the lower 1.8 km of the atmosphere, and 2.0 C at the
466 surface. This change in the θ profile suggests that the depth of the convective boundary layer is
467 reduced to 1 km AGL, consistent with the depth of the dust layer averaged from 23:00-03:00 UTC
468 (Fig. 8f).

469 Similar to the March 9 and 15 cases, zonal wind speeds from radiosondes launched during the
470 dust outbreak on February 15 show low level jets, with speed maxima of 18 m s^{-1} located at heights
471 of 400-500 m AGL, and wind speed minima of 8 m s^{-1} at 1.5-1.75 km AGL (Fig. 9j). For these
472 cases we also find minima in radiosonde ascent rates that are coincident with inversions present
473 in the θ profiles, including at 1.9, 3.9, and 5.4 km AGL for the 21:00 UTC sounding (13:00 local
474 time), and 1.7, 4.5, and 5.3 km AGL at 23:40 UTC (15:40 local time, Fig. 9k), again reflecting the
475 presence of waves in the overlying atmosphere.

476 We again utilize radiosondes made from the NKX sounding station located near the coast (Figs. 1,
477 3) in order to understand the factors that give rise to these downslope windstorms via examination of
478 radiosondes released at 24:00 UTC from this location and the nearest in time radiosondes released

484 from the field site near the Salton Sea (Fig. 10). According to Mayr and Armi (2010) lee-side flow
 485 will plunge to the floor of the basin if the potential temperature of the air flowing over the ridge is
 486 cooler than that of the down-barrier surface. The heights of the ridgeline upwind of the field site
 487 are in the range of 1.25 to 1.75 km AMSL (gray shaded band in Fig. 10), and the upwind (NKK)
 488 potential temperatures at these heights (Figs. 10a–c, light-blue) are all lower than the downwind
 489 values of θ below 1.25 km (Figs. 10a–c, rust). Vertical profiles of wind speed from the NKK
 490 soundings suggest upwind orographic flow blocking, as evidenced by wind speeds below 1.25 km
 491 in the range of 5–12 m s^{−1} that are in contrast to the high wind speeds downwind of the barrier
 492 (Figs. 10d–f). Above the heights of the ridge the upwind and downwind wind speed profiles are
 493 similar, with the exception of the jet at 1.75–2.5 km in the February 15 downwind profile (Fig. 10f),
 494 which is due to the influence of wave activity on the radiosonde ascent rate. These differences in
 495 the soundings upwind and downwind of the barrier are consistent with isentropic drawdown of the

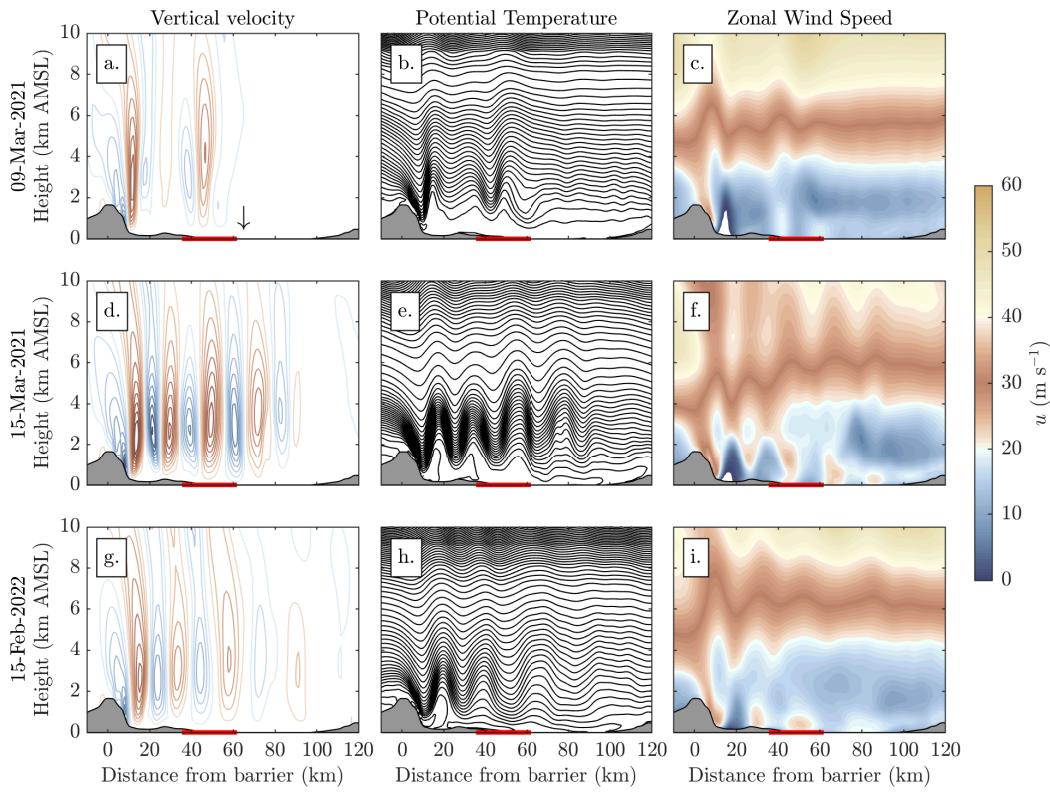


476 FIG. 10. Radiosonde profiles of θ (top row) and wind speed (bottom row) from San Diego, CA (NKK), which
 477 is upwind of the barrier (light-blue) and from the field site that is located near the Salton Sea (rust). The heights
 478 of the mountain ridge represented by the gray shaded band in each panel. Profiles are shown for the 24:00 UTC
 479 soundings from San Diego and the radiosondes launched closest to this time near the Salton Sea (i.e., the later
 480 sounding times in Fig. 9) for March 9 (10a,d) and March 15, 2021 (10b,e), and February 15, 2022 (9c,f).

496 cross-barrier flow at or above the height of the ridgeline and a lee-side downslope windstorm
 497 Durran (1990).

498 *d. Numerical Simulations with WRF*

503 In order to provide broader context to the in-situ measurements we also examine output from
 504 numerical simulations using WRF, focusing on model output along the 33.25°N latitude transect
 505 for the innermost model domain (Fig. 2). The WRF simulations reproduced several aspects of
 506 the surface and upper air measurements, including strong westerly surface wind speeds during the
 507 dust events (Fig. S1). However, at least at the field site, the simulated timing of the onset and
 508 termination of high wind speeds did not line up with observations, and for several cases waves in


499 Fig. 11. Hovmöller diagrams of 3-4 km height averaged vertical velocity w (11a,c,e) and surface zonal wind
 500 speed u_s (11b,d,f) along the 33.25°N latitude transect during the March 9 2021 (11a–b), March 15 2021 (11c–d),
 501 and February 15 2022 (11e–f) dust outbreaks. The upward pointing arrows in 11a,b indicate the location of the
 502 field site. Reference orography along this transect can be found in Fig. 12.

509 the model appeared to be out of phase with wave activity implied by changes in the radiosonde
510 ascent rate (Figs. S2–S13). As such, WRF output is used to understand the general behaviour of
511 the downslope flow and trapped waves in the Salton Basin, rather than to explain the timing of
512 specific aspects of these events.

513 Hovmöller diagrams of vertical velocity w averaged over the 3–4 km layer during 24-hour time
514 periods starting at 12:00 UTC on March 9 (Fig. 11a) and March 15, 2021 (Fig. 11c), and February
515 15, 2022 (Fig. 11e) indicate the presence of trapped lee waves during the periods of observed high
516 winds and dust (Fig. 7). For all three cases and during the entire 24-hour time period downslope
517 flow is simulated along the lee side slopes of the upwind barrier (the barrier ridge is located at the
518 0 km point on the horizontal axis and flow downwind of the barrier is located at positive horizontal
519 distances, a transect of the orography is found in Fig. 12), and then vertical ascent at 10 km distance
520 from the barrier. This type of plunging flow and downwind jump has been the focus of research on
521 high wind events and dust storms in the Owen’s valley (e.g., Grubišić et al. 2008). Indeed, similarly
522 constructed Hovmöller diagrams of u at the lowest model level indicate the strongest surface winds
523 ($u > 20 \text{ m s}^{-1}$) along the lee-side slopes for all three cases (Figs. 11b,d,f). However, distinct from
524 the narrow Owen’s valley, in the Salton Basin the terrain of the first 35 km downwind of the barrier
525 is vegetated and generally non-emissive, and as such the high winds associated with the flow at the
526 base of the barrier do not produce dust here.

527 A distance-height transect of model output vertical velocity w (Figs. 12a,d,g) and dry isentropes
528 (Figs. 12b,e,h), averaged over two-hour time periods during which the waves are approximately
529 stationary, indicate the existence of trapped waves in all three cases. The weakest wave activity is
530 seen in the WRF output for March 9, where the magnitude of the vertical wind speeds drop below 1
531 m s^{-1} at a distance of approximately 60 km from the mountain ridge (Fig. 12a). The March 15 case
532 exhibits the strongest wave activity, with waves of quasi-regular wavelength 20 km and vertical
533 velocity magnitudes as large as 5 m s^{-1} at a barrier distance of 85 km (Fig. 12d). The February 15
534 case also shows strong wave activity throughout the model domain, but of smaller magnitude and
535 longer wavelength than that for March 15 (Figs. 12g). For all three cases the waves are evanescent
536 above approximately 6 km height (Fig. 12b,e,h), due to changes in static stability and vertical wind
537 shear in the flow upstream of the orography (Fig. 10).

547 Relevant to understanding the influence of trapped waves on dust emission and transport is their
 548 effect on surface wind speed u_s . Firstly, from the Hovmöller diagrams in Fig. 11 the strongest
 549 wind speeds are in-general found along the leeside slopes, with weak and even reversed flow just
 550 downwind of the barrier base, indicative of flow separation and a rotor circulation (Doyle and
 551 Durran 2002). Further downwind of the barrier the strongest surface wind speeds ($u_s > 20 \text{ m s}^{-1}$)
 552 are associated with the presence of trapped waves. For example, in the February 15 case plunging

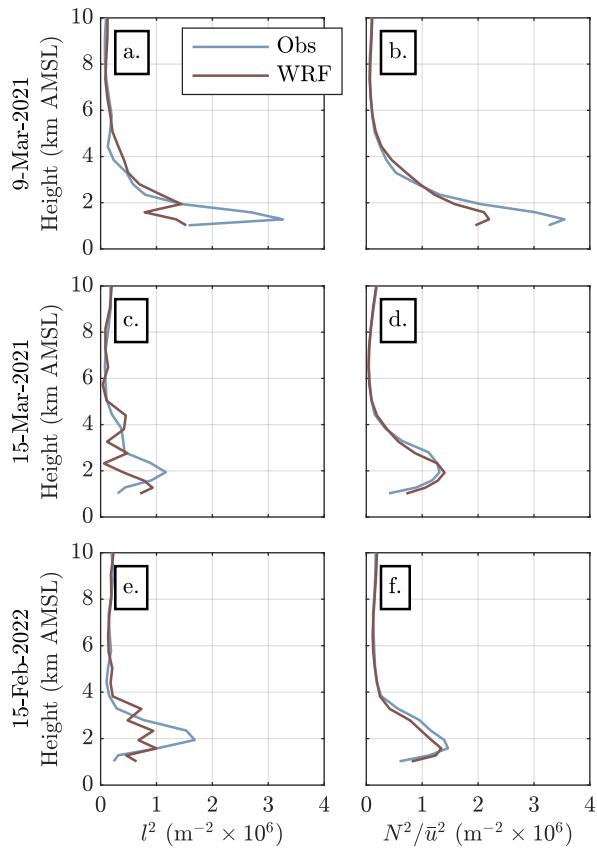
538 FIG. 12. WRF output along the 33.25°N latitude transect averaged over simulation times 21:00-23:00 UTC on
 539 March 9, 2021 (12a–c), 22:00–24:00 UTC on March 15, 2021 (12d–f), and 22:00–24:00 UTC on February 15,
 540 2022 (12g–i). Horizontal distance is given in km from the peak of the upwind orography. Plotted in 12a,d,g are
 541 vertical wind speeds w in contour intervals of 1 m s^{-1} , with warm colors representing positive w and cool colors
 542 representing negative w , and where the 0 m s^{-1} isotach is not plotted. Plotted in 12b,e,h are lines of constant θ
 543 in 1 C intervals. Shown in 12c,f,i is u , where the white shaded region at the downwind base of the orography
 544 indicates reversed flow ($u < 0$). The downward pointing arrow in 12a represents the location of the field site.
 545 The red horizontal line in all figure panels represents the approximate locations of dust emission that are upwind
 546 of the field site.

553 flow along the lee-side slopes (0-10 km) produce horizontal surface wind speeds near 30 m s^{-1}
 554 from 12:00–00:00 UTC (Fig. 11f). Prior to the development of trapped waves at approximately
 555 18:00 UTC (Fig. 11e) surface wind speeds at barrier distances greater than 20 km are below 10 m
 556 s^{-1} . As lee waves develop surface wind speeds greater than 25 m s^{-1} are found as far as 90 km
 557 from the barrier. In general and for these cases, since dust emission primarily occurs at barrier
 558 distances greater than 35 km, significant dust uplift in the basin would only occur after lee wave
 559 onset.

560 The effect of wave activity on surface wind speed u_s is apparent in the cross-sections of zonal
 561 wind speed (Fig. 12c,f,i). Perturbations in u_s are out of phase with horizontal gradients in w
 562 and are in phase with θ , which is due to surface pressure minima under the regions of strongest
 563 upward vertical velocity, and surface pressure maxima located under the strongest downdrafts
 564 (Nappo 2013). For all three cases the strongest surface wind speeds are all found under the wave
 565 troughs. Although the speed of the plunging flow along the lee side slopes is very similar for all
 566 three cases, surface wind speeds further downwind of the barrier (distances greater than 20 km)
 567 are the weakest in the March 9 case, in which the trapped waves are less pronounced and dissipate
 568 at barrier distances greater than 50 km, and are the strongest downwind during the March 15 case,
 569 in which the waves are still coherent at barrier distances greater than 80 km.

570 4. Discussion

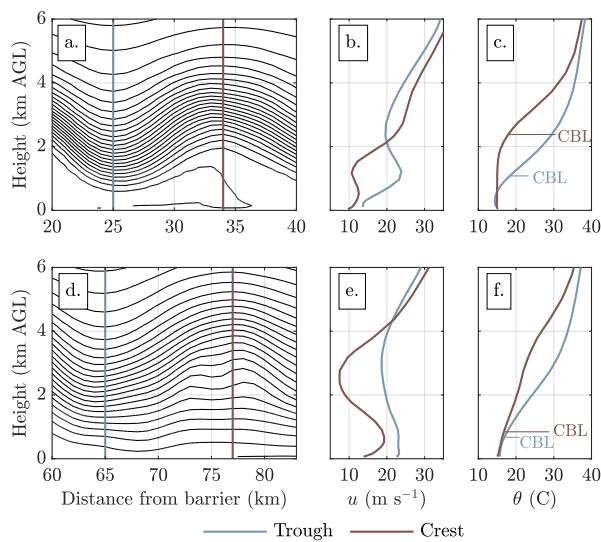
571 Orographically forced waves can become trapped in a layer near the surface if the static stability
 572 or curvature of the wind shear change with height such that waves cannot propagate upward and
 573 are thus evanescent with height. Wave trapping can be predicted by vertical changes in the Scorer
 574 parameter l^2 upwind of the barrier, which is defined as (Scorer 1949)


$$575 \quad l(z)^2 = \frac{N^2}{\bar{u}^2} - \frac{1}{\bar{u}} \frac{d^2 \bar{u}}{dz^2} \quad (1)$$

576 where \bar{u} indicates the cross-barrier wind speed and N the Brunt-Vaisala frequency, both of which
 577 are resolved in z . For example, if we consider the atmosphere to consist of uniform lower and
 upper layers, orographically forced gravity waves become trapped in the lower level for

$$578 \quad l_L^2 > k^2 > l_U^2$$

578 where k is the horizontal wavenumber of the trapped waves and l_L^2 and l_U^2 are Scorer parameters
 579 of the lower and upper layers, respectively. For the idealized case of constant wind speed with
 580 height in the upwind atmosphere these conditions are satisfied if N^2 of the upper layer is less than
 581 that of the lower layer, meaning that the buoyancy restoring force in the upper layer N_U^2 is too weak
 582 to support gravity waves for which $k^2 > N_U^2/\bar{u}^2$. Thus wave energy remains trapped in the lower
 583 layer.


589 Plots of l^2 for the 24:00 UTC soundings made upwind of the barrier at the NKX site (see location
 590 in Fig. 1) show a reduction in l^2 with height for all three cases (Fig. 13). For March 9, l^2 peaks low

584 FIG. 13. Changes in the Scorer parameter with height. Plotted in the left-hand column panels is the Scorer
 585 parameter l^2 (Eq. 1) calculated from the 24:00 UTC soundings made from the NKX station (blue) and output
 586 from the WRF simulations (rust), for the dates indicated at left. Plotted in the right-hand columns is the l^2
 587 stability term (first term on the right-hand-side of Eq. 1), for the same data. Only values above 1 km are shown
 588 due to the blocked flow below this height (e.g., Fig. 10).

591 in the atmosphere, at a height of 1.3 km (Fig. 13a) and reaches a minimum at 4 km. For the other
 592 two cases l^2 peaks slightly higher in the atmosphere at 2 km, and reaches a minimum at 5.8 km
 593 (Fig. 13c) and 4.5 km (Fig. 13e). Profiles of the first term on the right-hand-side of Eq. 1 suggest
 594 that variations in l^2 are primarily driven by reductions in static stability above 2 km (Fig. 13b, d, f),
 595 since in all three cases \bar{u} increases nearly monotonically with height above the barrier (Fig. 10d–f).

596 In the model the reductions in l^2 with height are not as large as in the observations (Fig. 13a,c,e).
 597 This difference is due to discrepancies between the observed and simulated shear profiles as there
 598 is generally good agreement in the l^2 stability terms. We note that for the March 9 case the modeled
 599 stability term does not drop off as strongly with height as does that from observations (Fig. 13b),
 600 and thus it is plausible that the model is under predicting trapped wave activity for the three cases
 601 considered here.

602 Fig. 14. Changes in model zonal wind speed u and potential temperature θ with height for different wave
 603 phases and proximity to the surface. Plotted in 14a and 14d are contours of isentropic surfaces at 1 C intervals
 604 from the WRF output shown in Fig 12e (March 15, 2021 case) at barrier distances of 20-40 km (14a) and 60-83
 605 km (14f), where the vertical blue and rust colored lines in 14a,d indicate the locations of the wave troughs and
 606 ridges used to generate the profiles in the other figure panels. In 14b,e are profiles of cross-barrier wind speed
 607 u corresponding to the wave troughs (blue) and ridges (rust). Descriptions of the plots in 14c,f are the same
 608 as for 14b,e except that θ is plotted, and where the horizontal lines indicate the model-calculated height of the
 609 convective boundary layer (CBL).

610 Based on the measurements and model output presented here we suggest several characteristics
611 of dust storms generated by trapped waves. The first is the presence of a low-level jet (Fig. 10d–f),
612 which is relevant in terms of dust production, advection, and dispersion due to the strong wind
613 speeds characterizing the jet, and the potential for enhanced turbulence production in the shear
614 zones above and below the jet nose. Pressure perturbations associated with wave phase generate
615 positive and negative horizontal wind speed perturbations under the wave troughs and crests,
616 respectively (Durran 1986), resulting in vertical profiles of horizontal wind speeds u that resemble
617 a low level jet at the base of the wave trough or at the surface under a wave crest. The effect of
618 wave phase on vertical profiles of wind speed can be readily seen in the output from the WRF
619 simulations for the March 15 case (Fig. 12d–f), averaged from 22:00–24:00 UTC. Focusing on
620 one cycle of the simulated wave over barrier distances of 20-40 km (Fig. 14a), the simulated zonal
621 (i.e., cross-barrier) wind speed u is stronger under the wave crest than under the trough, from the
622 surface up to a height of 2 km AGL (Fig. 14b), which is the height where the isentropes above the
623 trough start to spread vertically. Under the wave trough u increases by 10 m s^{-1} from the surface to
624 the base of the wave at 1 km AGL. Under the crest there is a local maximum in u at approximately
625 500 m AGL above which u decreases by 2 m s^{-1} to the local minimum at 1.3 km AGL. As such,
626 the low-level jet under the wave trough is more pronounced than that for the crest and has a nose
627 located at the base of the wave, while that under the crest is weaker with a nose located close to
628 the surface.

629 For the same WRF simulation but at barrier distances of 60-83 km (Fig. 14d), possibly more
630 representative of the environment over the field site, the simulated wave is evanescent to the surface.
631 Here u is greater under the wave trough than the crest up to a height of 4 km AGL (Fig. 14e), which
632 for the trough is the height above which the isentropic surfaces start to spread vertically. While
633 there is no obviously discernible low-level jet under the wave trough, under the crest there is a
634 greater than 10 m s^{-1} reduction in u from the local maximum at 500 m up to the minimum at 2.5
635 km AGL, above which the isentropes become more tightly packed, signifying the wave base. The
636 similarity between the low-level jet under the wave crest in Fig. 14e and the wind speed profiles
637 in the soundings made during the dust outbreaks (Fig. 9b,e,h) raise the possibility that the site is
638 often located under wave crests during trapped wave events.

639 We suggest that another characteristic of dust storms generated by trapped lee waves is the
640 variable convective boundary layer and thus dust layer depths, which are dependant upon the phase
641 and proximity to the surface of the overlying wave. Returning to the WRF output from the March
642 15 case and barrier distances of 20-40 km (Fig. 14a), under the wave trough isentropes are displaced
643 downwards towards the surface, resulting in a modeled boundary layer height of 1 km AGL (Fig.
644 14c). In contrast, under the wave crest isentropic surfaces are displaced upwards such that θ is little
645 changed from the surface up to nearly 2 km AGL, with a corresponding boundary layer height of
646 2.4 km AGL. When considering distances of 60-83 km from the barrier (Fig. 14d) there is little
647 difference in the vertical distribution of θ under the wave trough and crest in the lower 1 km of the
648 atmosphere due to the proximity of the wave to the surface, with each exhibiting similar boundary
649 layer heights of 0.7 and 0.8 km AGL, respectively (Fig. 14f), which are more shallow than those
650 for the previous case. The relatively shallow simulated boundary layers in Fig. 14f may explain
651 why for the three cases considered here the observed dust layer depths are shallow (Fig. 8), and the
652 surface PM₁₀ concentrations are high (Fig. 6).

653 We further consider the effect of wave phase on dust layer depth via simulations with WRF-
654 Chem. A transect of dust concentration from WRF-Chem for the March 15 case at 23:30 UTC and
655 for the first 70 km downwind of the barrier indicates that the depth of the dust layer closely follows
656 the curvature of the isentropic surfaces that define trapped wave base (Fig. 15a). Furthermore,
657 the highest dust concentrations are found under the wave crests, where the simulated zonal and
658 cross-barrier wind speeds are near zero or negative (Fig. 12f) and the boundary layer turbulent
659 kinetic energy is large (not shown), implying that the areas under the wave crests are regions of
660 strong vertical diffusion and weak down-barrier transport of dust, explaining why the isopleths of
661 high dust concentrations (e.g., $> 0.2 \text{ mg m}^{-3}$) increase with barrier distance.

662 A map of the horizontal structure of dust mass path, which is the vertically integrated concentra-
663 tion, also for 23:30 UTC on this date (Fig. 15b) shows coherent northwest-southeast oriented wave
664 fronts of high and low dust mass path that closely follow the orientation of the upwind topography.
665 As such, in addition to depth of the dust layer, trapped waves have a strong effect on the horizontal
666 distribution of dust concentration. A map of the corresponding surface dust emission flux (Fig.
667 15c) does not clearly show any resemblance to the structure of the waves, owing to the dominant
668 influence of surface characteristics on dust emission, suggesting that the spatial structures of dust

concentration and mass path are largely the result of advection and diffusion rather than the spatial pattern of emission. We also note that under the wave crests the cross-barrier wind speeds are weak but the along-barrier wind speeds are northerly (not shown), raising the possibility of meridional dust advection there.

We again note that while these WRF-Chem simulations are useful in terms of elucidating the general characteristics of dust storms generated by trapped waves, they are of limited use in terms

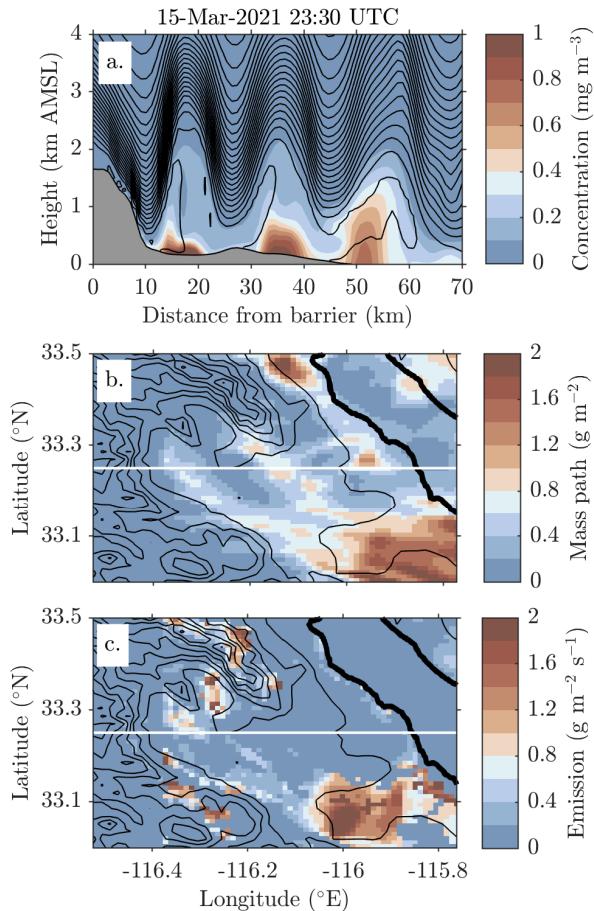


FIG. 15. Dust simulated by WRF-Chem at 23:30 UTC on March 15, 2021. In 15a are isentropic surfaces at 1 C intervals (contours) and dust concentration (mg m^{-3}) along the 33.25°N a zonal transect, in km downwind of the barrier crest. In 15b is the horizontal distribution of dust mass path (g m^{-2}) along the transect in 15a but in zonal units of $^{\circ}\text{E}$. Black contour lines indicate topography intervals of 250 m, the thick black line indicates the Salton Sea shoreline, and the white horizontal line the latitude of the transect in 15a. The description for 15c is the same as for 15b except that average dust emission over the preceding 30 min ($\text{g m}^{-2} \text{ s}^{-1}$) is shown.

681 of understanding the specific distribution of dust in the region during these events. Eyewitness
682 accounts and GOES-R and Roundshot camera animations (M1–M3 in the Supplement) show that
683 during these events dust is mainly emitted from the low-lying desert regions (i.e., barrier distances
684 greater than 40 km in Fig. 15a) whereas the model shows little to no emission in this area (Fig. 15c,
685 -116.2 to -116°E and 33.2 to 33.3°N). Ongoing work suggests that apparent unrealistic distribution
686 of dust emission is at least in part due to erroneous land surface type classification.

687 Lastly, our results imply that a third characteristic of dust storms generated by trapped waves
688 is that wave-forced wind speed perturbations, and thus dust emission, can occur far downwind
689 of the barrier. Output from the WRF simulations indicate that surface wind speed perturbations
690 associated with trapped waves occur as far as 100 km downwind of the barrier (Figs. 11, 12).
691 Radiosondes also indicate the presence of waves downwind of the field site during all three cases
692 (Fig. 9), where plots of balloon height and ascent rate as a function of zonal distance from the field
693 site imply that waves are found at barrier distances greater than 100 km (e.g., Figs S6, S8, S13).

694 Wave-forced wind speed perturbations are also likely to have a large impact on dust emission
695 given the power law relation between emission and surface wind speed (e.g., Kok et al. 2014). For
696 example, we consider two idealized cases of downslope windstorms, in which the surface wind
697 speed of the first is constant with barrier distance $u_1(x) = c_1$, and the surface wind speed of the
698 second is sinusoidal about the same mean $u_2(x) = c_1 + c_2 \cos(x)$, a simplification of wind speed
699 perturbations due to the influence of overlying trapped waves. Evoking the dust uplift potential
700 approximation to the relationship between emission and surface wind speed (Marsham et al. 2011)
701 and assuming wind speeds of sufficient magnitude to loft dust, in either case the total dust emission
702 E over a non-dimensionalized distance 2π is

$$E \propto \int_0^{2\pi} u(x)^3$$

703 so that the total emission for the second case E_2 can be expressed as a function of the first case E_1 ,

$$E_2 = E_1 + 3\pi c_1 c_2^2$$

704 where it is implied that the second term is multiplied by some positive constant of proportionality.
705 Thus, there is a larger net flux of dust into the atmosphere for the second case, and this relative

706 increase in emission is proportional to the product of the mean wind speed c_1 and the square of
707 magnitude of the perturbations c_2 .

708 5. Conclusion

709 Observations of three dust outbreaks that occurred in the northwestern Sonoran Desert indicated
710 that these storms were all associated with the presence of trapped lee waves generated by a north-
711 south oriented mountain range. Reanalysis demonstrated that for each case cross-barrier flow was
712 directed over the region by way of a synoptic scale low pressure trough transitioning through the
713 area (Fig. 3). Surface meteorological measurements showed that during trough passage flow over a
714 field site located near the western shoreline of the Salton Sea (Fig. 1) was westerly with wind speeds
715 and gusts exceeding 10 and 20 m s^{-1} , respectively (Fig. 5). Measurements of PM_{10} (Fig. 6) and
716 animations from a Roundshot camera and GOES-17 (Supplemental Materials M1–M3) indicated
717 the presence of dust across the region, and aerosol optical depth retrievals from a sun photometer
718 and a ceilometer exhibited values greater than 0.3 during the dust outbreaks. Backscatter profiles
719 from the ceilometer suggested that the depths of the dust layers ranged from 700 m to 2 km (Fig.
720 8). Radiosondes released prior to and during the dust events suggested that the high winds were
721 associated with a shallow convective boundary layer, one factor in generating the shallow dust
722 layers, and the presence of a jet in the lower 1.5 km of the atmosphere (Fig. 9). Radiosonde ascent
723 rates implied the presence of trapped waves in the environment downwind of the field site (Figs. 9,
724 S6, S8, S10—13), consistent with numerical simulations conducted with the WRF model showing
725 that each of the dust-producing high wind events were at some point associated with the presence
726 of trapped lee waves (Fig. 11), resulting in positive surface wind speed perturbations far downwind
727 of the wave-generating barrier (Fig. 12).

728 We highlighted several meteorological aspects of the observed and simulated trapped waves that
729 are relevant to understanding the characteristics of the concurrent dust outbreaks. These include
730 the presence of a low level jet whose depth and speed is affected by wave phase and vertical
731 structure, dust layer depths and concentrations that are also dependent upon these factors, and
732 high wind speeds and dust emission more than 100 km downwind the wave source. Output from
733 WRF-Chem provided corroborating evidence that the depth of the dust layer is strongly tied to
734 wave phase, with the model showing the highest dust concentrations under the wave crests. Direct

735 observational evidence to evaluate many aspects of the wave-forced dust storm characteristics (e.g.,
736 the relationship between wave phase and depth of the dust layer) would require measurements of
737 aerosols and meteorology at different wave phases and at concurrent times, something that is not
738 currently possible given the available instrumentation at this single field site.

739 Inversions upwind and near the heights of the ridge of the Peninsular Mountains were noted for
740 the March 15 2021 and February 15 2022 cases (Fig. 10), as well as in the cases examined in Evan
741 et al. (2022c) and Evan (2019). As such, trapped waves are likely a common feature of strong cross
742 barrier flow and dust outbreaks in the region. Observations and modeling from the Owen's valley
743 suggest, however, that the Salton Sea is not unique in this regard (e.g., Grubišić and Billings 2007).
744 More work to evaluate the role of trapped waves on dust emission in other dust-emitting regions
745 is warranted, especially since climate models do not directly simulate nor parameterize trapped
746 waves.

747 The Salton Sea is rapidly drying, and thus the area of exposed playa and potential for increasing
748 dust emission is growing. The Salton Sea sits immediately downwind of the field site, and as
749 such trapped waves have the ability to generate high wind speeds and dust over the growing
750 playa surfaces. It is not clear how the drying of the sea and the resultant changes in the surface
751 temperature and sensible and latent heat fluxes will feedback onto wave activity. It is possible that
752 a warming surface will heat the overlying atmosphere resulting in a reduction of wave amplitude
753 (Jiang et al. 2006), although this effect could also increase the strength of the surface winds by
754 allowing isentropes at the barrier level to more frequently reach the downwind surface. It is also
755 unknown how drying of the sea may affect the depth of the dust layer; while increased surface
756 heating implies a deeper convective boundary layer, the interaction of surface warming with wave
757 activity may increase the near surface stability. It is also plausible that radiative heating by the
758 dust will in-turn feedback onto the wave characteristics. Given the rapid environmental change
759 occurring in this region and the health impacts of exposure to dust on the community (Frie et al.
760 2017, 2019; Jones and Fleck 2020; Biddle et al. 2022), more work to elucidate the impacts of the
761 drying Salton Sea on the region's meteorology and air quality is warranted.

762 *Acknowledgments.* Funding for this work was provided by NSF Award AGS-1833173. We thank
763 Trinity Robinson and Tyler Barbero for their assistance on this project, and three anonymous
764 reviewers for their comments on a previous version of this manuscript.

765 *Data availability statement.* Salton Sea AERONET data is available via `aeronet.gsfc.nasa.gov/`, surface synoptic station data is at `mesowest.utah.edu/`, GOES-17 satellite data is at `www.avl.class.noaa.gov`, NEXRAD data is at `mesonet.agron.iastate.edu`, surface PM₁₀ measurements are from `www.arb.ca.gov/aqmis2/aqdselect.php`, NARR output is available from `psl.noaa.gov`, and GFS analysis is available from `www.nco.ncep.noaa.gov/pmb/products/gfs/`. The soundings, surface meteorological data, and CL51 backscatter and extinction profiles used in this manuscript are permanently archived at <https://doi.org/10.6075/J0BV7GTC> (Evan et al. 2022b).

773 References

774 Biddle, T., R. Chakraborty, Q. Li, M. Maltz, J. Gerrard, D. Lo, and Coauthors, 2022: The drying
775 salton sea and asthma: A perspective on a “natural” disaster. *California Agriculture*, **76** (1),
776 27–36, <https://doi.org/10.3733/ca.2022a0003>.

777 Biddle, T. A., and Coauthors, 2021: Salton sea aerosol exposure in mice induces a pulmonary
778 response distinct from allergic inflammation. *Science of The Total Environment*, 148450,
779 <https://doi.org/10.1016/j.scitotenv.2021.148450>.

780 Buck, B. J., J. King, and V. Etyemezian, 2011: Effects of salt mineralogy on dust emissions, salton
781 sea, california. *Soil Science Society of America Journal*, **75** (5), 1971–1985, <https://doi.org/10.2136/sssaj2011.0049>.

783 Burr, A. C., and Coauthors, 2021: Lung inflammatory response to environmental dust exposure in
784 mice suggests a link to regional respiratory disease risk. *Journal of Inflammation Research*, **14**,
785 4035, <https://doi.org/10.2147/JIR.S320096>.

786 Chen, and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with
787 the penn state–ncar mm5 modeling system. part i: Model implementation and sensitiv-
788 ity. *Monthly Weather Review*, **129** (4), 569–585, [https://doi.org/10.1175/1520-0493\(2001\)129<0569:CAALSH>2.0.CO;2](https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2).

790 Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. *Journal of the*
791 *Meteorological Society of Japan*, **80** (1), 99–118, <https://doi.org/10.2151/jmsj.80.99>.

792 Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson, 2000: Atmospheric sulfur
793 cycle simulated in the global model gocart: Model description and global properties. *Journal*
794 *of Geophysical Research: Atmospheres*, **105** (D20), 24 671–24 687, <https://doi.org/10.1029/2000JD900385>.

796 Choobari, O. A., P. Zawar-Reza, and A. Sturman, 2014: The global distribution of mineral
797 dust and its impacts on the climate system: A review. *Atmospheric Research*, **138**, 152–165,
798 <https://doi.org/10.1016/j.atmosres.2013.11.007>.

799 De Wekker, S. F., and S. D. Mayor, 2009: Observations of atmospheric structure and dy-
800 namics in the owens valley of california with a ground-based, eye-safe, scanning aerosol
801 lidar. *Journal of applied meteorology and climatology*, **48** (7), 1483–1499, <https://doi.org/10.1175/2009JAMC2034.1>.

803 Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. *Journal of*
804 *the Atmospheric Sciences*, **59** (2), 186–201, [https://doi.org/10.1175/1520-0469\(2002\)059<0186:TDOMWI>2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2).

806 Durran, D. R., 1986: Another look at downslope windstorms. part i: The development of analogs
807 to supercritical flow in an infinitely deep, continuously stratified fluid. *Journal of Atmospheric*
808 *Sciences*, **43** (21), 2527–2543, [https://doi.org/10.1175/1520-0469\(1986\)043<2527:ALADWP>2.0.CO;2](https://doi.org/10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2).

810 Durran, D. R., 1990: Mountain waves and downslope winds. *Atmospheric processes over complex*
811 *terrain*, Springer, 59–81, https://doi.org/10.1007/978-1-935704-25-6_4.

812 Durran, D. R., 2003: Lee waves and mountain waves. *Encyclopedia of atmospheric sciences*, **1161**,
813 1169.

814 Evan, A., B. Walkowiak, and R. Frouin, 2022a: On the misclassification of dust as cloud at an
815 aeronet site in the sonoran desert. *Journal of Atmospheric and Oceanic Technology*, **39** (2),
816 181–191, <https://doi.org/10.1175/JTECH-D-21-0114.1>.

817 Evan, A. T., 2019: Downslope winds and dust storms in the salton basin. *Monthly Weather Review*,
818 **147 (7)**, 2387–2402, <https://doi.org/10.1175/MWR-D-18-0357.1>.

819 Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of african
820 dust. *Nature*, **531 (7595)**, 493–495, <https://doi.org/10.1038/nature17149>.

821 Evan, A. T., R. Frouin, A. Kuwano, T. W. Barbero, T. Robinson, and S. R. Wynn, 2022b: Data
822 from: The characteristics of dust storms generated by trapped waves in the lee of mountains.
823 <https://doi.org/10.6075/J0BV7GTC>.

824 Evan, A. T., W. Porter, R. Clemesha, A. Kuwano, and R. Frouin, 2022c: Measurements of a dusty
825 density current in the western sonoran desert. *Journal of Geophysical Research: Atmospheres*,
826 e2021JD035830, <https://doi.org/10.1029/2021JD035830>.

827 Fast, J. D., W. I. Gustafson Jr, R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell,
828 and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing
829 in the vicinity of houston using a fully coupled meteorology-chemistry-aerosol model. *Journal*
830 *of Geophysical Research: Atmospheres*, **111 (D21)**, <https://doi.org/10.1029/2005JD006721>.

831 Fernald, F. G., 1984: Analysis of atmospheric lidar observations: some comments. *Applied Optics*,
832 **23 (5)**, 652–653, <https://doi.org/10.1364/AO.23.000652>.

833 Field, J. P., and Coauthors, 2010: The ecology of dust. *Frontiers in Ecology and the Environment*,
834 **8 (8)**, 423–430, <https://doi.org/10.1890/090050>.

835 Frie, A. L., J. H. Dingle, S. C. Ying, and R. Bahreini, 2017: The effect of a receding saline lake (the
836 salton sea) on airborne particulate matter composition. *Environmental Science & Technology*,
837 **51 (15)**, 8283–8292, <https://doi.org/10.1021/acs.est.7b01773>.

838 Frie, A. L., and Coauthors, 2019: Dust sources in the salton sea basin: a clear case of an
839 anthropogenically impacted dust budget. *Environmental Science & Technology*, **53 (16)**, 9378–
840 9388, <https://doi.org/10.1021/acs.est.9b02137>.

841 Giles, D. M., and Coauthors, 2019: Advancements in the aerosol robotic network (aeronet) version
842 3 database—automated near-real-time quality control algorithm with improved cloud screen-
843 ing for sun photometer aerosol optical depth (aod) measurements. *Atmospheric Measurement*
844 *Techniques*, **12 (1)**, 169–209, <https://doi.org/10.5194/amt-12-169-2019>.

845 Giles, J., 2005: Climate science: The dustiest place on earth. *Nature*, **434** (7035), 816–820,
846 <https://doi.org/10.1038/434816a>.

847 Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources
848 and distributions of dust aerosols simulated with the gocart model. *Journal of Geophysical*
849 *Research: Atmospheres*, **106** (D17), 20 255–20 273, <https://doi.org/10.1029/2000JD000053>.

850 Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012: Global-scale attribution
851 of anthropogenic and natural dust sources and their emission rates based on modis deep blue
852 aerosol products. *Reviews of Geophysics*, **50** (3), <https://doi.org/10.1029/2012RG000388>.

853 Gläser, G., P. Knippertz, and B. Heinold, 2012: Orographic effects and evaporative cooling along
854 a subtropical cold front: The case of the spectacular saharan dust outbreak of march 2004.
855 *Monthly Weather Review*, **140** (8), 2520–2533, <https://doi.org/10.1175/MWR-D-11-00315.1>.

856 Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations.
857 *Monthly weather review*, **121** (3), 764–787, [https://doi.org/10.1175/1520-0493\(1993\)121<0764:PEOAUB>2.0.CO;2](https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2).

859 Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection com-
860 bining ensemble and data assimilation techniques. *Geophysical Research Letters*, **29** (14), 38–1,
861 <https://doi.org/10.1029/2002GL015311>.

862 Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder,
863 2005: Fully coupled “online” chemistry within the wrf model. *Atmospheric Environment*,
864 **39** (37), 6957–6975, <https://doi.org/10.1016/j.atmosenv.2005.04.027>.

865 Grubišić, V., and B. J. Billings, 2007: The intense lee-wave rotor event of sierra rotors iop 8. *Journal*
866 *of the atmospheric sciences*, **64** (12), 4178–4201, <https://doi.org/10.1175/2006JAS2008.1>.

867 Grubišić, V., and Coauthors, 2008: The terrain-induced rotor experiment: A field campaign
868 overview including observational highlights. *Bulletin of the American Meteorological Society*,
869 **89** (10), 1513–1534, <https://doi.org/10.1175/2008BAMS2487.1>.

870 Holben, B. N., and Coauthors, 1998: Aeronet—a federated instrument network and data archive for
871 aerosol characterizatio. *Remote Sensing of Environment*, **66** (1), 1–16, [https://doi.org/10.1016/S0034-4257\(98\)00031-5](https://doi.org/10.1016/S0034-4257(98)00031-5).

873 Horel, J., and Coauthors, 2002: Mesowest: Cooperative mesonets in the western united states.
874 *Bulletin of the American Meteorological Society*, **83** (2), 211–225, [https://doi.org/10.1175/1520-0477\(2002\)083<0211:MCMITW>2.3.CO;2](https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2).

876 Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in aerocom phase i. *Atmo-*
877 *spheric Chemistry and Physics*, **11** (15), 7781–7816, <https://doi.org/10.5194/acp-11-7781-2011>.

878 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008:
879 Radiative forcing by long-lived greenhouse gases: Calculations with the aer radiative transfer
880 models. *Journal of Geophysical Research*, **113** (D13), <https://doi.org/10.1029/2008JD009944>.

881 IID, I. I. D., 2016: Salton sea air quality mitigation program. Tech. rep., Tech. Rep., Salton Sea
882 Air Quality Team, 281 pp.

883 Janić, Z. I., 2001: *Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the*
884 *NCEP Meso model*. US Department of Commerce, National Oceanic and Atmospheric Admin-
885 istration

886 Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the con-
887 vection, viscous sublayer, and turbulence closure schemes. *Monthly weather review*, **122** (5),
888 927–945, [https://doi.org/10.1175/1520-0493\(1994\)122<0927:TSMECM>2.0.CO;2](https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2).

889 Jiang, H., J. T. Farrar, R. C. Beardsley, R. Chen, and C. Chen, 2009: Zonal surface wind jets across
890 the red sea due to mountain gap forcing along both sides of the red sea. *Geophysical Research*
891 *Letters*, **36** (19), <https://doi.org/10.1029/2009GL040008>.

892 Jiang, Q., J. D. Doyle, and R. B. Smith, 2006: Interaction between trapped waves and boundary
893 layers. *Journal of the atmospheric sciences*, **63** (2), 617–633, <https://doi.org/10.1175/JAS3640.1>.

894 Jiang, Q., M. Liu, and J. D. Doyle, 2011: Influence of mesoscale dynamics and turbulence on fine
895 dust transport in owens valley. *Journal of Applied Meteorology and Climatology*, **50** (1), 20–38,
896 <https://doi.org/10.1175/2010JAMC2522.1>.

897 Jin, Y., and Coauthors, 2015: Ceilometer calibration for retrieval of aerosol optical properties.
898 *Journal of Quantitative Spectroscopy and Radiative Transfer*, **153**, 49–56, <https://doi.org/10.1016/j.jqsrt.2014.10.009>.

900 Jones, B. A., and J. Fleck, 2020: Shrinking lakes, air pollution, and human health: Evidence
901 from California's Salton Sea. *Science of the Total Environment*, **712**, 136490, <https://doi.org/10.1016/j.scitotenv.2019.136490>.

903 Karyampudi, V. M., S. E. Koch, C. Chen, J. W. Rottman, and M. L. Kaplan, 1995: The influence
904 of the Rocky Mountains on the 13–14 April 1986 severe weather outbreak. part ii: Evolution
905 of a prefrontal bore and its role in triggering a squall line. *Monthly Weather Review*, **123** (5),
906 1423–1446, [https://doi.org/10.1175/1520-0493\(1995\)123<1423:TIOTRM>2.0.CO;2](https://doi.org/10.1175/1520-0493(1995)123<1423:TIOTRM>2.0.CO;2).

907 Kim, K.-M., and Coauthors, 2021: Modeling Asian dust storms using WRF-Chem during the Dragon-
908 Asia field campaign in April 2012. *Journal of Geophysical Research: Atmospheres*, **126** (18),
909 e2021JD034793, <https://doi.org/10.1029/2021JD034793>.

910 Knippertz, P., 2014: Meteorological aspects of dust storms. *Mineral Dust*, P. Knippertz, and
911 J. Stuut, Eds., Springer, 121–147, https://doi.org/10.1007/978-94-017-8978-3_6.

912 Knippertz, P., C. Deutscher, K. Kandler, T. Müller, O. Schulz, and L. Schütz, 2007: Dust mobil-
913 ization due to density currents in the Atlas region: Observations from the Saharan mineral dust
914 experiment 2006 field campaign. *Journal of Geophysical Research*, **112** (D21), <https://doi.org/10.1029/2007JD008774>.

916 Koch, S. E., P. B. Dorian, R. Ferrare, S. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure
917 of an internal bore and dissipating gravity current as revealed by Raman lidar. *Monthly Weather
918 Review*, **119** (4), 857–887, [https://doi.org/10.1175/1520-0493\(1991\)119<0857:SOAIBA>2.0.CO;2](https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2).

920 Kok, J., and Coauthors, 2014: An improved dust emission model—part 1: Model description and
921 comparison against measurements. *Atmospheric Chemistry and Physics*, **14** (23), 13 023–13 041,
922 <https://doi.org/10.5194/acp-14-13023-2014>.

923 Kok, J. F., D. S. Ward, N. M. Mahowald, and A. T. Evan, 2018: Global and regional importance of
924 the direct dust-climate feedback. *Nature Communications*, **9** (1), 1–11, <https://doi.org/10.1038/s41467-017-02620-y>.

926 LeGrand, S. L., C. Polashenski, T. W. Letcher, G. A. Creighton, S. E. Peckham, and J. D. Cetola,
927 2019: The afwa dust emission scheme for the gocart aerosol model in wrf-chem v3. 8.1.
928 *Geoscientific Model Development*, **12** (1), 131–166, <https://doi.org/10.5194/gmd-12-131-2019>.

929 Marcos, C. R., J. L. Gómez-Amo, C. Peris, R. Pedrós, M. P. Utrillas, and J. A. Martínez-Lozano,
930 2018: Analysis of four years of ceilometer-derived aerosol backscatter profiles in a coastal site
931 of the western mediterranean. *Atmospheric Research*, **213**, 331–345, <https://doi.org/10.1016/j.atmosres.2018.06.016>.

933 Marsham, J. H., P. Knippertz, N. S. Dixon, D. J. Parker, and G. M. Lister, 2011: The importance of
934 the representation of deep convection for modeled dust-generating winds over west africa during
935 summer. *Geophysical Research Letters*, **38** (16), <https://doi.org/10.1029/2011GL048368>.

936 Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. design of a
937 soil-derived dust emission scheme. *Journal of geophysical research: atmospheres*, **100** (D8),
938 16 415–16 430, <https://doi.org/https://doi.org/10.1029/95JD00690>.

939 Mayr, G. J., and L. Armi, 2010: The influence of downstream diurnal heating on the descent of
940 flow across the sierras. *Journal of Applied Meteorology and Climatology*, **49** (9), 1906–1912,
941 <https://doi.org/10.1175/2010JAMC2516.1>.

942 Mesinger, F., and Coauthors, 2006: North american regional reanalysis. *Bulletin of the American
943 Meteorological Society*, **87** (3), 343–360, <https://doi.org/10.1175/BAMS-87-3-343>.

944 Miller, P., M. Williams, and T. Mote, 2021: Modeled atmospheric optical and thermodynamic
945 responses to an exceptional trans-atlantic dust outbreak. *Journal of Geophysical Research: Atmospheres*,
946 **126** (5), e2020JD032 909, <https://doi.org/https://doi.org/10.1029/2020JD032909>.

947 Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the
948 atmosphere. *Contrib. Geophys. Inst. Acad. Sci. USSR*, **151** (163), e187.

949 Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height
950 and dust concentration with lidar ceilometer. *Boundary-Layer Meteorology*, **124** (1), 117–128,
951 <https://doi.org/10.1007/s10546-006-9103-3>.

952 Nappo, C. J., 2013: *An introduction to atmospheric gravity waves*. Academic press.

953 NCEI, ????: U.s. climate normals. URL [https://www.ncei.noaa.gov/products/land-based-station/
us-climate-normals](https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals).

955 NCEP, 2013: Ncep office note 442: The gfs atmospheric model. Washington DC: sn.

956 Parajuli, S. P., and C. S. Zender, 2017: Connecting geomorphology to dust emission through high-
957 resolution mapping of global land cover and sediment supply. *Aeolian Research*, **27**, 47–65,
958 <https://doi.org/https://doi.org/10.1016/j.aeolia.2017.06.002>.

959 Parajuli, S. P., and C. S. Zender, 2018: Projected changes in dust emissions and regional air quality
960 due to the shrinking salton sea. *Aeolian Research*, **33**, 82–92, <https://doi.org/10.1016/j.aeolia.2018.05.004>.

962 Peckham, S. E., and Coauthors, 1991: Wrf-chem version 3.9.1.1 user's guide. Tech. rep., National
963 Center for Atmospheric Research. URL https://ruc.noaa.gov/wrf/wrf-chem/Users_guide.pdf.

964 Pokharel, A. K., M. L. Kaplan, and S. Fiedler, 2017: Subtropical dust storms and downslope
965 wind events. *Journal of Geophysical Research: Atmospheres*, **122 (19)**, 10–191, <https://doi.org/10.1002/2017JD026942>.

967 Poudel, U., S. Ahmad, and H. Stephen, 2021: Studying the intra-annual variability in surface
968 area and volume of salton sea, california, using remote sensing-based water indices and gis.
969 *World Environmental and Water Resources Congress 2021*, 769–783, <https://doi.org/10.1061/9780784483466.070>.

971 Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental
972 characterization of global sources of atmospheric soil dust identified with the nimbus 7 total
973 ozone mapping spectrometer (toms) absorbing aerosol product. *Reviews of geophysics*, **40 (1)**,
974 2–1–2–31, <https://doi.org/10.1029/2000RG000095>.

975 Pu, B., and P. Ginoux, 2018: How reliable are cmip5 models in simulating dust optical depth?
976 *Atmospheric Chemistry and Physics*, **18 (16)**, 12 491–12 510, <https://doi.org/10.5194/acp-18-12491-2018>.

978 Ralph, F. M., P. J. Neiman, T. L. Keller, D. Levinson, and L. Fedor, 1997: Observations, simulations,
979 and analysis of nonstationary trapped lee waves. *Journal of the atmospheric sciences*, **54 (10)**,
980 1308–1333, [https://doi.org/10.1175/1520-0469\(1997\)054<1308:OSAAON>2.0.CO;2](https://doi.org/10.1175/1520-0469(1997)054<1308:OSAAON>2.0.CO;2).

981 Ryerson, T., and Coauthors, 2013: The 2010 california research at the nexus of air quality and
982 climate change (calnex) field study. *Journal of Geophysical Research: Atmospheres*, **118** (11),
983 5830–5866, <https://doi.org/10.1002/jgrd.50331>.

984 Scorer, R. S., 1949: Theory of waves in the lee of mountains. *Quarterly Journal of the Royal*
985 *Meteorological Society*, **75** (323), 41–56, <https://doi.org/10.1002/qj.49707532308>.

986 Shao, Y., and Coauthors, 2011: Dust cycle: An emerging core theme in earth system science.
987 *Aeolian Research*, **2** (4), 181–204, <https://doi.org/10.1016/j.aeolia.2011.02.001>.

988 Skamarock, W. C., and Coauthors, 2019: A description of the advanced research wrf model version
989 4. *National Center for Atmospheric Research: Boulder, CO, USA*, 145.

990 Smith, R. B., 2019: 100 years of progress on mountain meteorology research. *Meteorological*
991 *Monographs*, **59**, 20–1, <https://doi.org/10.1175/AMSMONOGRAPH-D-18-0022.1>.

992 Stephen, M. F., and D. S. Gorsline, 1975: Sedimentary aspects of the new river delta, salton sea,
993 imperial county, california.

994 Strauss, L., S. Serafin, and V. Grubišić, 2016: Atmospheric rotors and severe turbulence in a
995 long deep valley. *Journal of the Atmospheric Sciences*, **73** (4), 1481–1506, <https://doi.org/10.1175/JAS-D-15-0192.1>.

997 Sweeney, M. R., E. V. McDonald, and V. Etyemezian, 2011: Quantifying dust emissions from
998 desert landforms, eastern mojave desert, usa. *Geomorphology*, **135** (1-2), 21–34, <https://doi.org/10.1016/j.geomorph.2011.07.022>.

1000 Todd, M. C., R. Washington, S. Raghavan, G. Lizcano, and P. Knippertz, 2008: Regional model
1001 simulations of the bodélé low-level jet of northern chad during the bodélé dust experiment (bodex
1002 2005). *Journal of Climate*, **21** (5), 995–1012, <https://doi.org/10.1175/2007JCLI1766.1>.

1003 Wiegner, M., and Coauthors, 2014: What is the benefit of ceilometers for aerosol remote sens-
1004 ing? an answer from earlinet. *Atmospheric Measurement Techniques*, **7** (7), 1979–1997,
1005 <https://doi.org/10.5194/amt-7-1979-2014>.

1006 Yang, S., J. Preißler, M. Wiegner, S. von Löwis, G. N. Petersen, M. M. Parks, and D. C. Finger,
1007 2020: Monitoring dust events using doppler lidar and ceilometer in iceland. *Atmosphere*, **11** (12),
1008 1294, <https://doi.org/10.3390/atmos11121294>.

1009 Yuan, T., S. Chen, J. Huang, X. Zhang, Y. Luo, X. Ma, and G. Zhang, 2019: Sensitivity of
1010 simulating a dust storm over central asia to different dust schemes using the wrf-chem model.
1011 *Atmospheric Environment*, **207**, 16–29, <https://doi.org/https://doi.org/10.1016/j.atmosenv.2019.03.014>.

1012 Zhao, A., C. L. Ryder, and L. J. Wilcox, 2022: How well do the cmip6 models simulate dust
1013 aerosols? *Atmospheric Chemistry and Physics*, **22** (3), 2095–2119, <https://doi.org/10.5194/acp-22-2095-2022>.

1014 Zucca, C., N. Middleton, U. Kang, and H. Liniger, 2021: Shrinking water bodies as hotspots of
1015 sand and dust storms: The role of land degradation and sustainable soil and water management.
1016 *Catena*, **207**, 105 669, <https://doi.org/10.1016/j.catena.2021.105669>.