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Abstract 

Hypothesis: There exists a generalized solution for the spontaneous spreading dynamics of 
droplets taking into account the influence of interfacial tension and gravity. 
Experiments: This work presents a generalized scaling theory for the problem of spontaneous 
dynamic spreading of Newtonian fluids on a flat substrate using experimental analysis and nu- 
merical simulations. More specifically, we first validate and modify a dynamic contact angle 
model to accurately describe the dependency of contact angle on the contact line velocity, which 
is generalized by the capillary number. The dynamic contact model is implemented into a two- 
phase moving mesh computational fluid dynamics (CFD) model, which is validated using exper- 
imental results. 
Findings: We show that the spreading process is governed by three important parameters: the 
Bo number, viscous timescale τviscous, and static advancing contact angle, θs. More specifically, 
there exists a master spreading curve for a specific Bo and θs by scaling the spreading time with 
the τviscous. Moreover, we developed a correlation for prediction of the equilibrium shape of the 
droplets as a function of both Bo and θs. The results of this study can be used in a wide range of 
applications to predict both dynamic and equilibrium shape of droplets, such as in droplet-based 
additive manufacturing. 

Keywords: Droplet spreading dynamics, dynamic contact angle, equilibrium droplet shape, 
CFD 

 

 
1. Introduction 

 
The spreading of a liquid droplet on a solid substrate is an important process for a range of 

industrial applications such as ink-jet printing technologies, fabrication of optical lenses, and 
additive manufacturing [1, 2, 3, 4]. One of the main challenges in these applications remains the 
precise control of droplet spreading dynamics and the final droplet shape [5]. 

 
Spreading of a Newtonian droplet on a substrate is a complicated phenomena that can depend 

on several forces, whose magnitudes depend on different time and length scales. For example, 
let’s consider the spreading of a droplet whereby inertial impact of the droplet is ignored. The 
radius of the three phase contact line is referred to as the basal radius, R(t), and moves outward 
from initial contact point R(t = 0) = 0. When a drop contacts a surface, the amount of spread- 
ing is determined by the free energy, which is a function of the surface/interfacial tensions and 
gravity. The rate of spreading is determined by both fluid inertia and viscous dissipation [6]. 
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Spreading stops when equilibrium is established at the contact line, i.e., when the droplet con- 
tact angle balances the Young-Lapalce equation. In the absence of gravity, the Young-Laplace 
equation reduces to the Young equation [7]: 

cosθs = σSG − σSL
 

σLG 

 
(1) 

where θs is the static advancing contact angle, and σSG, σSL, and σLG are the surface tension 
between solid and gas phase, the surface tension between solid and liquid, and the interfacial 
tension between liquid and gas, respectively. For the special case of complete wetting (i.e. 
θs = 0), a precursor film is formed and the droplet spreads such that a film covers the entire 
substrate [8]. 

The influence of gravity on R(t) is determined by the ratio of forces (i.e. gravitational and 
ρgR2 

capillary forces), which is known as the Bond number (Bo = σ 
0 ). For droplets with low 

Bo number, i.e. Bo << 1, the effect of gravity on the spreading process can be neglected and 
capillary force drives the spreading, a.k.a the capillary spreading regime. In this regime, the 
droplet takes the shape of a spherical-cap during the spreading process [9]. For Bo >> 1, the 
gravitational force drives the spreading and flattens out the free surface of the droplet, which 
is referred to as the gravitational spreading regime [9]. The rate of spreading is determined 
by the ratio of resistive forces (i.e. viscous and inertia forces). A dimensionless group that 
quantifies the relative magnitude of inertial forces and viscous forces is the Ohnesorge number, 
i.e. (Oh = √ρσ R0 

). The Oh number can be understood as the ratio of the viscous velocity 
to the inertial velocity [6]. One might expect that the rate of spreading of droplets with large 
Oh number are controlled by the droplet viscosity, whereby spreading at low Oh is controlled 
by inertia. In other words, one might expect different spreading behaviors for different Oh. 
However, the effect of Oh on spreading dynamics has not been systematically investigated. 

 
There are two main spreading regimes before steady state, namely an initial fast, inertia- 

controlled stage [10, 6, 11] followed by a final slow, viscous-controlled stage [12, 13, 14, 8]. 
Several reports in the literature show that the initial spreading stage has a power-law dependence 
on time, namely R(t) ∝ t1/2 [6, 11, 15, 10]. However, Bird et. al. reported that for non-zero θs, 
the power law is lower than one half, and depends on the magnitude of θs [16]. de Ruijter et al. 
[17] derived an asymptotic solution for the early-time dynamics at high values of θs, and showed 
that R(t) ∝ t. Furthermore, the power-law has been argued to also depend on the magnitude of 
the viscosity, such that at higher viscosity the spreading does not follow a simple power-law 
[10]. The duration of inertia-controlled spreading is proportional to the propagation of a 
capillary wave through the droplet interface [18, 19, 16], which is on the order of milliseconds 
for droplets whose diameter is smaller than the capillary length scale, l =  σ  (or alternatively 
when Bo << 1) [6]. The transition between the initial and final spreading (a.k.a crossover 
timescale) is argued to be independent of the surface morphology and chemistry of the solid 
substrate [20, 16]. Thus, the transition between spreading regimes is predominately controlled 
by the diameter of the droplet. However, it has been reported that the crossover timescale does 
depend weakly on the fluids properties [6]. 

 
Unlike the initial stage, the final spreading stage is argued to depend on the fluid properties, 

effect of gravity, and the solid substrate properties, i.e. the thermodynamic wetting equilibrium 
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(θs [21, 22, 8, 13]. Historically, the viscous spreading stage follows a power-law scaling with 
time. For pure capillary driven spreading (i.e. Bo << 1), the final spreading stage for a viscous 
drop with complete wetting of the substrate is expected to follow Tanner’s law, i.e. R(t) t0.1 
[23], while for gravitational spreading, i.e. Bo >> 1, R(t)  t1/8 [24, 25]. For intermediate Bo, 
there is a transition from capillary spreading to gravitational spreading when the basal radius 
reaches the capillary length. In this regime, Cazabat and Stuart [14] experimentally showed that 
the late stage of spreading can be described by a sequence of power laws. Although Tanner’s 
and other power-law models have significant historical relevance, the models only offer scaling 
laws and do not accurately depict the basal radius or height of the droplet as a function of 
time. Furthermore, data reported over the past two decades show that not all fluid and surface 
pairs follow Tanner’s law even though their Bo is small, such as in the case of partial wetting 
conditions [26, 27, 28, 29, 30]. 

 
The spreading dynamics have been shown in the literature to be significantly slowed for 

non-zero static advancing contact angles, a.k.a partial wetting conditions, which is typical of 
most fluid-solid systems [10, 11, 16]. de Ruijter et al. [17] reported R(t) t0.1 followed by an 
exponential relaxation, R(t) = Req exp( t/τ), until the equilibrium is achieved, where Req and 
τ are final basal radius and a characteristic time scale, respectively. Such exponential relaxation 
behaviour after Tanner’s power-law regime has also been reported by [29, 31]. It has been 
shown that the duration of each regime, i.e. Tanner’s power-law and consequent exponential 
relaxation, is quite sensitive to the θs. The transition from power-law to exponential relaxation 
is argued to occur when the dynamic contact angle reaches nearly two times θs [29]. Wang et 
al. [32] proposed an empirical exponential-power law correlation to cover the evolution of basal 
radius for partially wetting fluids as R(t) = Req[1 − exp(−  a tm)], where a and m are fitting 
parameters. However, using such equations to predict the spreading dynamics is limited as they 
contain fitting parameters with no physical meaning and require the value of equilibrium basal 
radius, Req. Moreover, most of the studies on the spreading of partially wetting systems ignore 
the effect of gravity and only consider the capillary spreading regime, which precludes their use 
in practical applications with reasonable Bo. These facts highlight the importance of developing 
a generalized approach for predicting spreading dynamics for a wide range of Bo numbers. 
Ideally one would like to develop an analytical model to describe the dynamics of spreading, 
however, there is still questions regarding the appropriate boundary conditions that satisfy the 
physics. Furthermore, the lack of appropriate boundary conditions prevents the implementation 
of numerical techniques. 

 
The physics of Newtonian drop spreading has been thoroughly investigated with theoret- 

ical approaches based on a total energy balance [33, 34, 35, 36], classical hydrodynamics 
[13, 37, 38], and molecular kinetic theory [39, 40]. Analytical modeling of spreading dynamics 
are quite complex, especially when considering gravitational effects. Thus analytical models 
in the literature either neglect the effect of gravity or over simplify the solution by assuming 
a shape of the droplet [41]. For example, Reznik and Yarin [42] studied the spreading of an 
axisymmetric droplet under the dominant action of gravity at large Bo numbers,i.e. 2 < Bo < 15, 
through a semi-analytical approach. Their approach required several simplifications, such as: (i) 
assuming a 2d-wedge model at the contact line, (ii) neglecting the effect of the contact line’s 
curvature on the flow, (iii) assuming a small Ca number approximation, (iv) and assuming 
creeping flow inside the droplet, which is not necessarily valid for high Bo numbers or low 
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viscosity fluids. Overall, analytical solutions are limited in their ability to generalize spreading 
dynamics of Newtonian fluids either in their limits of relevant parameters, such as Bo and Ca, or 
in their many assumptions. We argue that numerical simulations offer the most general approach 
to develop generalized spreading dynamics for all Bo and Ca [41]. However, to develop a 
comprehensive numerical solution to the spreading problem of a Newtonian fluid, the governing 
physical boundary conditions need to be fully resolved and validated, especially at the triple 
contact line [43, 44, 45]. 

 
 

The literature has suggested that the spreading dynamics can be accurately predicted by 
introducing two boundary conditions: (1) the slip velocity (or shear stress) required at the 
contact line to relax the stress singularity, and (2) the description of the dynamic contact angle 
during spreading [46]. The literature overwhelmingly agrees that the slip velocity at the contact 
line is necessary to remove the stress singularity, and has little to no affect on the far-field flow 
domain [47]. In other words, the slip velocity does not affect the overall shape of the fluid 
domain and in some regard can be selected arbitrarily. On the other hand, many studies have 
proposed models for dynamic contact angle, all of which significantly affect the shape of the 
droplet (i.e. far-field effect) [46]. Many studies have shown there is a generalized dependence 
of the dynamic contact angle on the contact line velocity and derived an expression for the 
dynamic contact angle as a function of capillary number, Ca, defined as Ca = µu and θs,i.e. 
θD = θD(Ca, θs). [48]. The exemplary theoretical models of Hoffman-Voinov-Tanner[49] and 
Cox[38] are worth mentioning. Empirical correlations developed by Jiang et. al [50], Bracke et 
al. [51] and more recently Kistler [52] have shown a good agreement with experimental dynamic 
contact angle data of certain fluids at a given range of Ca number. However, it has been shown 
that in some cases, especially high Ca numbers, these models fail to capture experimental trends 
[53]. There is an important need for the generalization of dynamic contact angle dynamics for 
the development of an accurate numerical spreading model. 

 
 

Although there are numerous papers on a wide variety of drop spreading phenomena, the lit- 
erature still lacks a generalized solution for spreading dynamics that takes into account both cap- 
illary and gravitational effects for full span of spreading (literature mainly focuses on Bo << 1) 
[41]. Furthermore, there is a need for a generalized validated numerical model that can accurately 
predict spreading dynamics for a wide range of fluid parameters, contact angles, and stages of 
spreading. In this work, we develop a numerical method to solve the free boundary problem of 
drop spreading on a substrate in the absence of impact. Our model is founded on the principle 
that the dynamic contact angle is explicitly independent of material parameters, and only de- 
pends on the Ca and θs. This model is experimentally validated and the results are generalized 
into master curves that take into account the effects of gravity and partial wetting. Thus, these 
results determine the validity of the zero Bond number approximation in spreading dynamics. 
The master curves require that the spreading time be normalized by the viscous timescale, τv. 
Ultimately, the spreading dynamics of Newtonian droplets are shown to only depend on three 
parameters: Bo number, θs, and τv. The master curves readily predict the shape of a droplet at 
a certain dimensionless time for a specific Bo and θs. Moreover, we develop a correlation to 
predict the steady state shape of a Newtonian droplet as a function of Bo number and θs. 



5 
 

× 

· 

 
 
 
 

 
 

Figure 1: Schematic representation of experimental set up, measured dynamic contact angle and basal radius. 
 
 

2. Materials and methods 

 
2.1. Experimental data 

 
We developed an in-situ device for depositing and monitoring the spreading of gently de- 

posited pendant drops onto a microscope glass slide (AmScopeTM). The experimental setup 
consisted of a digital camera (HAYEAR, HY-2307, 2M pixels with pixel size of 1.43 1.43 
µm) and a microscope zoom lens. Images were acquired at 60 frames/sec and based on the ad- 
justed magnification of the lens, an example image calibration was 61 pixels/mm, or 16 µm/pixel. 
Therefore, the minimum distance (i.e. smallest details) detectable between objects is 16 microns. 
A syringe pump (HARVARD Apparatus, PHD 2000) with minimum flow rate of 0.0001 µL/hr 
and accuracy of 0.35% connected to a 25 gauge needle (OD=0.51 mm) with an adjustable height 
was used to carefully dispense and deposit the droplet onto the glass slide from a controlled 
height (Fig. 1). The microscope slide was washed and rinsed subsequently using Isopropanol 
(VWR, CAS No. 67-63-0) and DI water (EMD Millipore Corporation) before each test. Three 
Newtonian fluids i.e. Glycerin (Cococare Products, Inc., CAS No.56-81-5), Light corn syrup 
(Karo®, CAS No.8029-43-4), and a photo-curable resin called DA2[54] were used as test fluids. 
Note that the test fluids were chosen to span a range of viscosities between 0.1-10 Pa s, which 
correspond to a range of Ohnesorge numbers between 0.6 and 15. This range of viscosities allows 
for the testing of a generalized theory for droplet spreading on both sides of Oh=1. Recall that 
we hypothesize that spreading physics can be normalized to generate a master curve that is not 
dependent explicitly on viscosity. Thus any conclusions on experimental validation of a spread- 
ing master curve is limited to the experimental viscosity range studied here. However, we do not 
expect to observe any differences for lower or higher fluid viscosity outside of the experimental 
window. Each experiment was performed at least three times. ImageJ software (ImageJ.Ink, V. 
1.46) and a custom matlab code were used to measure the dynamic contact angle and basal radius 
as a function of time during spreading (Fig. 1). We also used the reported drop spreading data 
in the literature (i.e. dynamic contact angle and basal radius vs time) of poly(propylene glycol), 
PPG [32] and silicone oil [55] along with our measured experimental data to further validates 
our models and simulations. Table 1 summarizes the properties and equilibrium wetting data of 
each fluid. 
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Table 1: Fluid properties and wettability conditions used in experiments and the ones extracted from the literature. 
 
 
 
 
 
 
 
 

2.2. Numerical modeling and simulation 
This work involves a comprehensive numerical approach to simulate drop spreading using 

COMSOL Multiphysics® v.5.6. Given the drop spreading is a free boundary problem with mov- 
ing contact line, we employed a laminar isothermal two-phase moving mesh interface (an Arbi- 
trary Lagrangian – Eulerian (ALE) formulation) for all of the simulations. The two phase moving 
mesh method is known for its high accuracy and lower computational loads in comparison with 
other multiphase modeling methods such as phase field and level set methods. However, this 
approach has some intrinsic limitations which cannot handle topographical changes. All of the 
simulations were solved using a 2D-axisymmetric framework to reduce computation time. Fu- 
ture work could examine the spreading of asymmetrical droplets using a 3D model. Figure S1 
shows a schematic of droplet deposited on a substrate and its 2-dimensional view (axisymmetric) 
profile with an example mesh grid used in our computational model. 

 
2.2.1. Governing equations 

The pressure, p, and velocity field (u¯) of the computational domain were determined using the 
Navier-Stokes (N-S) and continuity equations given by, 

ρ
 

∂ v¯ + v¯ · ∇̄ v¯
 
= −∇̄  p + µ∇2v  ̄ + ρg¯ 

 
(2) 

 
∇ · v̄  = 0 (3) 

where ρ is the density, µ is the dynamic viscosity, and g¯ is the gravitational acceleration. The 
problem was solved in 2D-axisymmetric coordinates. Note that there are two N-S equations, 
one for each fluid phase. The difficulty of the problem lies in solving for the moving liquid- 
air boundary, S, whose normal velocity, VS, is directly related to the bulk fluid velocity field 
assuming continuity of velocity, 

VS = n̄  · v̄ I = n̄  · v̄ II (4) 
Where n¯ denotes the unit normal vector, and the superscripts I and II denote the respective fluid 
phase. The motion of S must satisfy the normal stress balance at the interface given by, 

n̄  · (T̄  I − T̄  II ) = σ (∇̄ · n̄ )n̄  − ∇̄ σ (5) 

where T¯ is the total stress, i.e. pI¯ τ¯, and the RHS represents the force per unit area due to 
surface tension, σ . A constant atmospheric pressure was applied at the interface. Although 
we initially included the N-S equations for both phases, we found that the contribution from 
the air phase was inconsequential. Thus, the surrounding air was assumed to be stagnant at all 

Fluid ρ (kg/m3) σ (mN/m) µ (Pa.s) 
Glycerin 1377 63.4 0.74 
Corn syrup 1503 42.3 4.18 
DA2 resin 1105[54] 35.1 0.49 
Silicone oil [55] 970 20.9 0.19 
poly(propylene glycol)(PPG) [32] 1010 32.3 0.11 

R0 (mm) 
1.10 
1.10 
1.01 
0.34 
0.98 

θs (deg.) 
20.9 ± 0.3 
46.2 ± 0.8 
19.6 ± 1.4 

0 
0 
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times, except at the interface. In other words, the effect of the fluid flow in the air phase during 
spreading was too small to measure. This assumption was validated by performing several larger 
scale simulations where the fluid mechanics in the surrounding air was explicitly solved for, see 
Fig. S2, and comparing these results with the assumption of a stagnant air phase. The results 
clearly show that for the conditions considered, the air phase kinematics could be ignored. 

 
2.2.2. Initial conditions 

The numerical scheme requires an initial shape of the interface at t = 0. A logical choice 
is a pendant drop shape which intersects with the substrate at a single point. However, this 
proved a poor initial condition as the single contact point was the cause of significant convergence 
issues[1]. Instead, we used an initial non-zero contact between the bead and substrate at t = 0, 
see Fig. S1. This initial interface condition resembles the start of the spreading process, as 
a certain amount of contact between the bead and printing bead is inevitable at the onset of 
spreading. To minimize the effect of this initial condition on spreading dynamics, we simulated 
the spreading process using different initial contact lengths and shifted the spreading results in 
time to compensate the initial contact, and showed that for relatively small contact lengths, i.e. 
30% of drop diameter, the spreading dynamics were independent of the initial contact length (see 
Fig. S3) regarding the initial pendant drop shape, we also did two simulations one with an initial 
pendant drop shape and the other with a spherical shape having the same volume as pendant 
drop. We showed that the assumption of initial spherical shape instead of pendant drop shape is 
quite acceptable for droplet spreading process as immediately after detachment of droplet it turns 
into a spherical shape (Fig. S4). Initially, all phases are assumed to be at rest with u¯ = 0 and a 
Laplace pressure across the interface given by (∆p = 2σ/R0). This condition resembles gentle 
deposition of a droplet on the printing bed. 

 
2.2.3. Dynamic contact angle and relaxation of stress singularity 

At the triple contact line (i.e. intercept of the interface, substrate, and surrounding air), the 
contact angle of fluid serves as a boundary condition to correctly model the motion of S [56]. 
It is well-known that the contact line needs to be modeled considering a dynamic contact angle 
instead of a static advancing contact angle in order to capture correct spreading physics [56, 53]. 
The typical relationship is the dependence of θD on the contact line velocity. Thus, several 
experiments were performed for Glycerin, Corn syrup and DA2 resin measured in this study, 
and also propylene glycol (PPG) [32] and silicone oil [55] found in the literature (Table 1) to 
determine the dependence of contact angle on contact line velocity. The results are shown in Fig. 
2a. Several researchers have argued a universal scaling exists for dynamic contact angle. For 
example, Jiang et al. [50] argued that a universal scaling behavior results when the dimensionless 
contact angle is plotted versus Capillary number. One empirical model used to describe this 
universal behaviour was developed by Jiang et al. [50], and is given by: 

cos(θs) − cos(θD) = tanh(ACaB) (6) 
cos(θs) + 1 

where A and B are fitting parameters. 
 

Figure 2b shows the experimentally measured values of normalized dynamic contact angle as 
a function of the Ca number. The Chosen fluids and operational conditions cover a wide range of 
viscosities from 0.1Pa.s to 5 Pa·s and a wide range of Ca from 10−6 to 0.1. It can be concluded 
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Figure 2: a) Dynamic contact angle data versus the contact line velocity for Glycerin, Corn syrup, and DA2 resin 
measured in this study as well as the extracted experimental data of PPG and silicone oil reported in [32] and [55], 
respectively, b) normalized dynamic contact angle data versus Ca number. 

 
 

that normalizing the values of dynamic contact angle with the static advancing contact angle 
( cosθs−cosθD ) and plotting them against Ca number generates a master curve for all fluids as a 
function of Ca. Jiang et al. [50] reported the best fit universal scaling parameters for Eq. 6 as 
A = 4.96 and B = 0.702. However, as depicted in Fig. 2b, the parameters reported by Jiang 
et al. significantly under predicts the values of the dynamic contact angle for a wide range of 
Ca numbers, especially mid to high Ca. Therefore, we determined the best fit coefficients to be 
A = 7.32, keeping B = 0.702 , which captures the spreading behavior of all the experimental data 
presented in Fig. 2 to significantly more accuracy. Thus, Eq. 6 with A = 7.32 and B = 0.702 is 
used for all spreading simulations. Note that the ability to fit all experimental data with a single 
empirical model that does not depend explicitly on fluid parameters is fundamental in developing 
generalized spreading trends. This model has been previously shown to work for a limited range 
of fluids, whereas here we show that it works for a wide range of fluid parameters. Furthermore, 
this empirical model allows for the simulation of droplet spreading of near perfect wetting cases, 
i.e. Silicone oil and PPG on glass substrate. Typically, the perfect wetting case introduces the 
added complexity of a precursor film, which one might argue would deviate from the universal 
dynamic contact angle model. However, for PPG and silicone oil, which are reported to have 
near zero steady advancing contact angles [55, 32], there appears to be no deviation. 

In order to remove the stress singularities at the contact line, as shown in Fig. S1, the liquid- 
solid interface was modeled using a Navier-slip condition with no-penetration, i.e. (u  ̄ n¯wall = 0), 
which exerts a shear stress, τ¯f on the fluid-substrate contact proportional to the fluid velocity 
such that, 

τ f̄ = µ u¯ , (7) 

where β is the slip length and is typically equal to a fraction of the interface mesh element size, 
∆x¯ [1, 57]. In this work we considered β = 1/5∆x¯, however, it should be noted that the spreading 
behaviour is quite insensitive to the values of β . Figure S5 shows that for a range of β = ∆x¯ to 
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1/10∆x¯, the spreading behaviour does not change significantly. 
 

2.2.4. Model validation and spatial convergence 
Model spatial convergence was determined by a systematic study of the effect of mesh element 

size on the time evolution of the basal radius, R(t). We used the parameters for DA2 resin as re- 
ported in Table 1 and varying number of mesh points. Note that we intentionally refined the mesh 
near the triple point contact by scaling the mesh points down by a factor of 0.2. Furthermore, 
an automatic remeshing constraint was applied to rebuild the entire domain when the quality of 
mesh falls below 0.1. Figure S6 shows grid independent test results, see Supplementary Infor- 
mation. Below the mesh size of R0/40 , refining the mesh points does not improve the solution 
considerably. Therefore, we used the mesh size criteria of R0/40 for all of the simulations to 
make sure the results are independent of the mesh size. To validate our numerical model, we 
compare model results with the experimental spreading behavior of (i) Glycerin, (ii) Corn syrup, 
(iii) DA2 resin, all on microscope glass slides,(iv) a non-volatile silicone drop on a soda-lime 
glass substrate, and (v) the spreading of a poly(propylene glycol), PPG solution on microscopic 
glass slide all reported in Table 1. These five data sets were chosen to cover a wide range of 
viscosity. 

Both PPG solution and silicone oil were simulated considering θe = 0 in Eq. 6, i.e. a complete 
wetting condition at long times [32, 55]. Glycerin, Corn Syrup, and DA2 were simulated using 
the static advancing contact angles measured in this study and reported in Table 1. Figure 3 shows 
the model prediction along with corresponding experimental data of basal radius as a function of 
time for all fluids. The model predictions are in excellent agreement with experimental results 
with maximum relative error of less than 5% for all fluids. Furthermore, the numerical model 
shows that at longer times silicone oil and PPG solution both spread with a power-law of R(t) ∼ 
t0.104 and R(t) ∼ t0.092, respectively. Note that both power-laws are very close to the power-law 
expected from Tanner’s law (i.e. R(t) ∼ t0.1) for a complete wetting system, θs = 0. 

 
3. Results and discussion 

Spontaneous spreading of a drop after touching the substrate is driven by gravitational, Fg and 
surface tension, Fc, forces and resisted by viscous, Fµ and inertia, Fi forces. The driving and 
resistive forces for an initially spherical droplet are summarized in Table 2. It is convenient to 
discuss the importance of these driving forces on droplet spreading in terms of key dimensionless 
parameters including Bo, Oh, and Ca numbers. 

 
The Bond number, Bo, which is the ratio of Fg to Fs, represents the relative effect of gravity 

on the shape of droplet. The effect of gravity on spreading dynamics can be generally ignored 
provided that the Bo is sufficiently small, i.e. Bo << 1 [58]. The Ohnesorge number, Oh, 
commonly used to parameterize inkjet printing [59], but can generally be used to think of the 
tendency of a droplet/jet to stay together, i.e. not forming satellite droplets, resisting against 
spreading, etc. Oh number is the ratio of viscous forces to surface stress forces defined as the 
ratio of Fµ to the square root of Fi and Fc. For Oh > 1, i.e. high viscosity and small radii, the 
spreading slows down and drops tend to retain a spherical cap-like shape during spreading. 
Finally, the capillary number, Ca, discussed in the equations for dynamic contact angle is a 
balance of Fµ to Fc, which characterizes the magnitude of viscous flow to restoring surface 
tension forces. Considering the triple line, viscous and capillary forces are the main governing 
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Figure 3: Validation of numerical model: comparison between simulation and experimental results of Glycerin, Corn 
syrup, DA2 resin, silicone oil [55] and PPG [32] for variation of basal radius over time. 

 
 

Table 2: A summary of the driving forces governing droplet spreading [6] 
Driving/Resistive forces 

 
 

forces specially at the late stage of drop spreading. That is the reason Ca number can scale the 
dynamic contact angle data (see Fig. 2). 

 
Our numerical simulations and models will only consider spreading dynamics in a regime 

where Bo < 1 and Oh > 1, such that gravitational effect matters, and the viscous resistance 
dominates the spreading process. As one of the primary applications of our interest is the bead- 
based additive manufacturing, it is conservative to argue that bead-based additive manufacturing 
is best operated in these bounds, i.e. Bo < 1 and Oh > 1. Note that operating bead-based 
printing outside of these bounds would result in a much more difficult to control bead/droplet 
dynamics, and therefore more difficult to optimize printing parameters. Therefore our numerical 
simulations and models will only consider spreading dynamics in these bounds. 
Spreading is by definition a dynamic process and therefore it is useful to consider the different 
timescales that govern the spreading dynamics. If one were to observe a drop spreading on a 
substrate for Bo << 1 (no gravitational effect), one would initially observe a very fast spreading 
regime,a.k.a inertial regime, followed by a much slower viscous spreading regime [10, 6, 11, 
12, 20]. These two regimes are said to be dominated by a capillary timescale, τc, and a viscous 

Capillary Force 
Gravitational Force 
Viscous Force 

Inertial Force 

Fc ∼ σ R0
3

 

Fg ∼ ρgR0 

F ∼ µR µ 0 
dR 
dt 

F ∼ ρR i 
2 
0 

     2 
dR 
dt 
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timescale, τµ , respectively. For example, we can define a viscous timescale by supposing that 
viscous forces are on the order of capillary forces, i.e. Fµ ∼ Fc, which solving for τµ gives, 

τµ = µR0  
(8) 

 

Furthermore, we can define a capillary timescale, τc by supposing that inertial forces are on the 
order of capillary forces, i.e. Fi ∼ Fc, which solving for τc gives, 

 
 

τ 

 
ρR3 τµ   (9) 

c = 
σ 

0 = 
Oh 

It has been shown that the characteristic time scale of duration of the inertial regime is τ 
Oh−0.25τc [6], which is in the order of milliseconds for small droplets with Bo < 1 and Oh > 
1 bounds. It is safe to say that the inertial resistive forces against spreading can be ignored 
for droplet with those bounds compared to the whole time course of the spreading. Moreover, 
for the common bead-based processes with Bo < 1 and Oh > 1, gravitational effects cannot be 
completely ignored. Therefore, the overall spreading timescale, τs, can be approximated by the 
balance of viscous resistive force and driving forces, i.e. Fµ ∼ Fc + Fg, given in Table 2 as follow: 

τs =   µR0  =  τµ   
(10) 

σ + ρgR2 1 + Bo 

The validated spreading numerical simulation will be used to evaluate the dynamic spreading of 
spherical droplets as a function of a range of experimental parameters. The above mentioned 
timescales, Eqs. 9-10, will be used to scale the physics of the spreading process and relate such 
dynamics to droplet spreading parameters. The goal is generalizing the results to develop master 
curves and spreading models that capture the shape of spherical drops in terms of basal radius and 
height as a function of time. These models and results are expected to be useful in predicting the 
spreading of deposited droplets for a wide range of processes, especially the bead-based additive 
manufacturing. 

 
3.1. Spreading dynamics in complete wetting condition 

This section focuses on the case of θs = 0, known as complete wetting. Note that complete 
wetting means that the basal radius goes to infinity, or the finite size of the container. However, 
the spreading process is a weak power-law function and achieving equilibrium is computation- 
ally expensive. Therefore, practically speaking, the numerical simulations required a cutoff 
time. Similar to other works, we define a final spreading time where the spreading velocity of 
the contact line falls below 10−4 [mm/s], i.e. a 100 [nm/s] [60]. 

The first case that we simulate is that of a fixed Bo and Oh number. Figure 4a shows the 
measured basal radius as a function of time considering different fluid properties and varying 
initial drop radii such that Oh and Bo are equivalent for all cases, see inset. As discussed above, 
we clearly observe two different spreading regimes, i.e. fast inertial driven spreading followed 
by slow viscous driven spreading. Interestingly, the basal radius dynamics for all cases appear 
to have the same shape, but shifted vertically depending on initial droplet size and slightly 
horizontally due to fluid properties. This suggests that complete wetting spreading dynamics 

≈ 
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Figure 4: Time evolution of basal radius: a) for Oh = 2.38 and Bo = 0.05. Insets: scaled radius versus scaled time via 
the capillary timescale, τcapillary, and viscous timescale,τviscous, and b) for fluids with varying Oh and Bo = 0.05. 
Inset: scaled basal radius versus scaled time via viscous timescale. All fluid have the same properties as ρ = 970 kg/m3, 
σ = 20.9 mN/m, and R0 = 0.34 mm with different viscosity. Note that the insets show that all experimental conditions 
collapse onto a single master curve. 

 
 

follow a law of similitude that depends on Bo and Oh. 
 

The law of similitude is exemplified in the inset of Fig. 4a, whereby the normalized basal 
radius (a.k.a spreading coefficient) is plotted versus scaled time, scaled by τc in the left inset 
of Fig. 4a and τµ in the right inset of Fig. 4a. Both Figures show that all dynamics collapse 
onto a master curve regardless of the timescale, which generalizes the spreading solution to all 
parameters for a given Bo and Oh for θ = 0. (Generalized spreading solution for a given Bo and 
Oh in terms of the change in the height of the droplet has been shown in Fig. S7) The reason for 
both timescales creating a master curve is due to the constant Oh for all simulations. According 
to Eq. 9, the capillary and viscous timescales are proportional when the Oh is constant. We 
hypothesized earlier that the correct timescale is τs. For constant Bo, τs, see Eq. 10, is propor- 
tional to the viscous timescale (τs τµ ). Therefore, normalizing the time with τµ or τs collapses 
all the graphs onto a single master curve. These numerical results confirm previously reported 
literature results [1, 16, 10], which demonstrate a spreading master curve for a limited range of 
fluid properties. 

 
The viscous timescale captures the spreading physics more completely than the capillary 

timescale. Although the τc collapsed the data above, this was due to the constant Oh. In the case 
of varying Oh, only τµ is capable of generating a master curve. Figure 4b shows the spreading 
dynamics of fluids with increasing values of Oh numbers (for Oh > 1), and constant Bo number. 
The counterpart of Fig.4b in terms of change in the height of the droplet has been shown in Fig. 
S8. As expected, fluids with higher Oh numbers exhibit slower increase in basal radius due 
to the larger energy dissipation at the contact line [10]. The inset in Fig.4b shows that scaling 
time with the viscous timescale (t/τµ ) results in a master curve. As in the case of constant Bo 
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above, τs is proportional to τµ , and thus the data can be readily scaled with τs. Note that the 
τc does not collapse the data onto a master curve since τc is not proportional to τµ for varying Oh. 

 
We showed that as long as the Bo is constant, the spreading dynamics of Newtonian fluids can 

be scaled using the viscous timescale (τµ ), regardless of Oh. However, unlike Oh, changing Bo 
has a unique effect on the shape of basal radius spreading dynamics. For the fluids where the 
Bo is not the same, neither τs nor τµ can scale the spreading dynamics. In other words, for each 
Bo number, there is a mastercurve. Figure 5 shows the normalized basal radius and normalized 
droplet height as a function of the spreading time normalized by the viscous timescale for a range 
of Bo. Note that this figure is plotted log-linear and therefore looks different than the log-log plot 
of Fig. 4b. For higher Bo numbers, i.e. a stronger effect of gravity on the spreading dynamics, 
the basal radius spreads faster compared to lower Bo numbers. For Bo < 0.1, the spreading 
evolution is very similar up to R/R0 = 4, signifying that gravity has little effect on spreading 
below Bo = 0.1. In other words, the dynamics for Bo = 0.01, the red circles in Fig. 5, predicts the 
shape of all droplets for Bo  0.1. However, increasing the Bo number from 0.1 to  1 increases 
the basal radius spreading by more than 10% at later stages of spreading. One important takeaway 
message is that for θs = 0◦, the zero Bond number assumption predicts droplet spreading very 
well for small normalized basal radius (R(t)/R0 < 3), i.e. less than 5% error. In other words, the 
effect of gravity is not observed until sufficiently long normalized times. Using the master curves 
in Fig. 5, one can predict the spreading factor (R/R0) at an arbitrary time, i.e., one can predict 
the shape of any drop at any time after deposition. For instance, a drop shape of R/R0=2.5 for 
Bo = 0.01, is achieved at t/τµ =600. Thus, by calculating τµ via the properties of the drop, i.e., 
density, viscosity and initial radius, the time to reach the specified shape is readily calculated. 
These results demonstrate that for perfect wetting the only dimensionless number that dictates 
the shape of changing basal radius with time is the Bo number. Figure 5 also contains the master 
curves corresponding to the change in the height of the droplet during spreading process. Like 
the basal radius, given the properties of droplet, i.e. Bo number and τµ , the height of the droplet 
can be predicted at a certain time. Using the values of both height and basal radius, the shape of 
the droplet can be fully characterized. 

 
3.2. Spreading dynamics in partial wetting condition 

When the static advancing contact angle is non-zero, a.k.a partial wetting, the spreading con- 
tinues until Young’s equation is satisfied. In other words, the dynamic contact angle decreases 
until the static advancing contact angle is achieved. Therefore, there are two parameters that 
dictate basal radius spreading dynamics: Bo number and θs. Numerical simulations with varying 
both Bo and θs were performed and analyzed using the same scaling analysis as the perfect 
wetting condition discussed above. Figure 6a shows a series of scaled basal radius master curves 
for different Bo numbers and different θs. Figure 6b shows master curves for the scaled height 
of the droplets. Figure 6a shows that increasing Bo acts to increase the rate of spreading for 
all values of θs, although the effect is more noticeable at smaller θs, i.e. higher Bo increases 
basal radius by  5% and > 10% for θs = 45 and 10, respectively, at long normalized times, 
t/τviscous > 104. Thus, the zero Bond number assumption is relatively good for all basal radii 
for large θs. The effect of increasing θs is to reduce the effect of Bo and achieve a constant 
basal radius. As expected, for a given Bo all spreading curves are identical at short time, i.e. 
t/τviscous<20, regardless of θs. 
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Figure 5: Complete wetting Newtonian droplet master curve: scaled basal radius and scaled height versus scaled time 
via viscous timescale for fluids with different Bo numbers. 

 

Figure 6 is quite useful in predicting the spreading of droplets in a wide range of applications, 
where inertial impact on the surface can be ignored. For example, given the value of Bo number 
and θs, which are intrinsic properties of the system, the shape of the drop can be predicted at 
any given time via the value of τviscous. This information is particularly useful in bead-based 
additive manufacturing as printing parameters, such as layer width and height can be adjusted to 
accommodate the true shape of the bead. This will certainly improve the dimensional accuracy 
of printed parts in droplet/bead-based additive manufacturing processes, and reduce the need for 
wasteful edisonian approaches to print quality. 

3.2.1. Final shape prediction 
There have been a few theoretical attempts to develop a theory for the equilibrium shape of a 

droplet deposited on a substrate [61, 62]. The numerical data and scaling arguments presented 
here provide a platform, in which to test these theories and possibly generalize the spreading 
theories. For example, de Gennes et al. [61] developed a theoretical relation for the final height 
of heavy droplets, i.e. Bo > 1 after deposition. Using the balance between hydrostatic pres- 
sure inside a pancake-like droplet with the surface forces, the final height can be estimated as 
Hf = 2lsin(θs/2), where l is the capillary length of droplet. However, this relation is limited to 
the droplets with high Bo numbers (Bo > 1, pancake-like shape). Yonemoto and Kunugi [62] 
modified de Gennes’s theory using the work-energy balance and incorporated work-energy in 
the vertical direction at the contact line during the change in the droplet height. Yonemoto and 
Kunugi [62] derived a theoretical relation between the final height and final basal radius of a 
droplet at a given volume. Yonemoto and Kunugi’s theory can be rearranged in terms of Bo 
number and θs, for comparison to this work, and is given by: 
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15 
 

f 
    

√3 

 
 
 
 

 
 

Figure 6: Partial wetting Newtonian droplet master curves: a) scaled basal radius and b) scaled height of the droplet 
versus scaled time via viscous timescale for fluids with different Bo numbers and θs. 

 

where Rf and Hf are the final spreading radius and height, respectively. One interesting 
observation is that the theory only depends on the value of Bo and θs, which is in line with our 
master curves in Fig. 6. Note that this equation is not particularly useful, since there are two 
unknowns, height and radius, and therefore no unique solution. However, this equation should 
be able to solve for Hf given Rf , and vice-versa. Therefore, development of a correlation to 
independently predict the final basal radius of the droplet and coupling with Eq. 11 seems quite 
useful in characterization of the final shape of the droplet. The numerical simulations are useful 
in developing a correlation between scaled basal radius, Bo and θs. We calculated the final shape 
of a droplet for Bo numbers between 0.01 and 1, and θs between 0◦ and 90◦. Figure 7 illustrates 
the variation of scaled final basal radius (Rf /R0) with both Bo number and θs. As discussed in 
the dynamic data, increasing the Bo number increases the steady state value of Rf /R0; while 
increasing θs, arrests the droplet shape at lower Rf /R0 values. Moreover, by increasing θs, the 
dependency of Rf /R0 on the Bo number decreases. 

 
We observe from Fig. 7 that Rf /R0 varies with θs as a power-law, whose power depends on 

the value of Bo. We propose the following empirical model: 
 

R  

R0 
= α 

  θs  δ 
β − γθs 

 
(12) 

where α, β , γ, and δ are model parameters to be fitted to the data. Note that γ and δ are 
expected to be functions of Bo. Furthermore, the model must capture two important limits; 
first, at complete wetting condition (θs = 0), Rf /R0 → ∞. Second, at θs = 90◦ and at very low 
Bo numbers (where the droplet resembles spherical cap), Rf /R0 = 2. Using the Generalized 
Reduced Gradient (GRG) nonlinear fitting algorithm [63], the best-fit model parameters are given 
in Table 3. The coefficient of determination, typically denoted R2, is used to quantify the variation 



16 
 

of the best-fit model to the data. In our case, R2 = 0.99, which shows excellent agreement 
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Figure 7: Final shape of deposited droplet in terms of scaled final basal radius (Rf /R0) vs Bo number and θs. 
 
 

Table 3: Best fit model parameters for Eq. 12 determined using the Generalized Reduced Gradient nonlinear fitting 
algorithm. 

 
 
 

between the predicted value and experimental data. We compared the best-fit parameters for 
Eq. 12 and the numerically determined scaled final basal radii as a function of static advancing 
contact angle for Bo = 0.01 and Bo = 1. The model and simulated data are in excellent agreement 
for the two extreme values of Bo, see Supplementary Information, Fig. S9. 

To further validate our empirical model, we compared the model with previously reported ex- 
perimental data for pure ethanol and a binary mixture of ethanol and water[62]. Table 4 shows the 
experimentally measured values of fluid properties, volume and final basal radius [62]. We plot- 
ted the experimental data based on final basal radius vs Bo number for each case and compared 
it with the prediction of Eq.12. As seen in Fig. 8, the predicted final basal radii by the empirical 
model with the best-fit parameters in Table 3 are in excellent agreement with experimental data 
of [62]. 

Coupling our developed correlation (Eq. 12) with the Eq. 11, the final height of the droplets 
can be predicted at different Bo and θs. Figure 9 shows the scaled droplet height (Hf /R0) as a 
function of Rf /R0 for two values of Bo and varying θs. The lines reflect the estimation from 
Eqs. 11 and 12. As it can be seen, the empirical model prediction for height of the droplet 
is in excellent agreement with the numerical simulation results for Bo = 0.01, and is in good 
agreement for Bo = 1. For the latter, the equations slightly under predict the droplet height. 
Overall, it can be concluded that the empirical correlation of Eq. 12 coupled with Eq. 11 give 
predictions of both final basal radius and final height for a range of Bo and θs within 10% or 
better. 

Parameter Best-fit value 
α 2.42 
β 0.44 
γ(Bo) 0.31+0.10Bo 
δ (Bo) 0.17Bo-0.15 



18 
 

 
 
 
 
 
 
 
 

Table 4: Experimental data of fluid properties, volume, and final shape in terms of basal radius for pure ethanol and 
binary mixtures of water/ethanol reported in [62] 

Fluid σ (J/m2) ρ (kg/m3) θs (deg.) V (µL) Bo Rf (mm) Model Rf (mm) 
Pure Ethanol 0.0211 789.2 35 5 0.41 2.251 2.178 

    10 0.65 2.723 2.779 
    20 1.03 3.637 3.582 

Water/Ethanol 0.0312 911.4 76 5 0.32 1.539 1.564 
    10 0.51 1.944 2.009 
    20 0.81 2.521 2.605 

 
 
 
 
 
 
 
 
 

 
Figure 8: Comparison of empirical model prediction with the experimental data of pure ethanol and water/ethanol binary 
mixture reported in [62]. Numbers indicate the relative error. 
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Figure 9: Scaled steady state height of the droplet versus scaled steady state basal radius at different Bo numbers and θs. 
Comparison of Eqs. 11 and 12) (lines) with numerical simulation results (symbols). 

 
 

4. Conclusion 
 

This work presents a generalized scaling theory for the problem of spontaneous dynamic 
spreading of Newtonian fluids on a flat substrate using advanced numerical tools. While the prob- 
lem has been discussed in the literature over many decades [42, 6, 64, 65], this work presents the 
first generalized description of droplet spreading and scaling approach taking into account the in- 
fluence of gravity and both complete and partial wetting conditions. We developed and validated 
our model using experimental data and a generalized dynamic contact angle model for the triple 
point contact line boundary condition. One important aspect of this work is the use of a dynamic 
contact angle model as a boundary condition that has been experimentally demonstrated to be 
independent of fluid parameters. 

The experimentally validated numerical model was used to predict the dynamic spreading of 
complete wetting and partial wetting conditions for a range of Bo numbers. We demonstrated 
that the Bo, τviscous, θs are the three important parameters that control the spreading. For a 
specific Bo and θs, The spreading dynamic curves, i.e. evolution of basal radius, collapse onto a 
single master curve by scaling the spreading time with τviscous. The only limitation of the model 
is that it considers no impact of the droplet on the substrate, and therefore the dynamic spreading 
phenomena is only applicable to specific spreading scenarios. 

For partial wetting systems, the model is used to predict final droplet shape as a function of 
Bo and θs. An empirical model is presented that captures the scaled radius as a function of both 
parameters. The best-fit parameters are coupled with a theoretical model to predict drop height. 
The coupled equations are validated using numerical and experimental data. These equations 
offer a simple predictive tool to steady state spreading shape as a function of Bo and θs within 
10% error. This study presents the first predictive model for both dynamic and equilibrium shape 
of a droplet on a solid substrate taking into account the static advancing contact angle. As a 
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practical application, these predictive models (dynamic master curves and the empirical model) 
can be incorporated into the bead-based additive manufacturing [1, 56, 66] through printing pa- 
rameterization software to take spreading into account and accurately determine the optimum 
droplet diameter, spacing, and final layer height. The position of adjacent droplets and the re- 
traction height of the nozzle can be automatically adjusted based on the spreading of printed 
beads. Moreover, such empirical models for prediction of the final shape of a droplet are in 
high demand in other industries such as droplet fabrication of optical micro lenses [4, 67]. The 
author’s are working to extend this model to non-Newtonian spreading droplets and cylindrical 
filaments for application to DIW and filament extrusion additive manufacturing methods. 
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