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Abstract

Hypothesis: There exists a generalized solution for the spontaneous spreading dynamics of
droplets taking into account the influence of interfacial tension and gravity.

Experiments: This work presents a generalized scaling theory for the problem of spontaneous
dynamic spreading of Newtonian fluids on a flat substrate using experimental analysis and nu-
merical simulations. More specifically, we first validate and modify a dynamic contact angle
model to accurately describe the dependency of contact angle on the contact line velocity, which
is generalized by the capillary number. The dynamic contact model is implemented into a two-
phase moving mesh computational fluid dynamics (CFD) model, which is validated using exper-
imental results.

Findings: We show that the spreading process is governed by three important parameters: the
Bo number, viscous timescale Tyiscous, and static advancing contact angle, 6,. More specifically,
there exists a master spreading curve for a specific Bo and 6, by scaling the spreading time with
the Tyiscous. Moreover, we developed a correlation for prediction of the equilibrium shape of the
droplets as a function of both Bo and 6,. The results of this study can be used in a wide range of
applications to predict both dynamic and equilibrium shape of droplets, such as in droplet-based
additive manufacturing.

Keywords: Droplet spreading dynamics, dynamic contact angle, equilibrium droplet shape,
CFD

1. Introduction

The spreading of a liquid droplet on a solid substrate is an important process for a range of
industrial applications such as ink-jet printing technologies, fabrication of optical lenses, and
additive manufacturing [1, 2, 3, 4]. One of the main challenges in these applications remains the
precise control of droplet spreading dynamics and the final droplet shape [5].

Spreading of a Newtonian droplet on a substrate is a complicated phenomena that can depend
on several forces, whose magnitudes depend on different time and length scales. For example,
let’s consider the spreading of a droplet whereby inertial impact of the droplet is ignored. The
radius of the three phase contact line is referred to as the basal radius, R(#), and moves outward
from initial contact point R(z = 0) = 0. When a drop contacts a surface, the amount of spread-
ing is determined by the free energy, which is a function of the surface/interfacial tensions and
gravity. The rate of spreading is determined by both fluid inertia and viscous dissipation [6].
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Spreading stops when equilibrium is established at the contact line, i.e,, when the droplet con-
tact angle balances the Young-Lapalce equation. In the absence of gravity, the Young-Laplace
equation reduces to the Young equation [7]:
_9s6¢=0sL
cosB, = 1)
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where 6; is the static advancing contact angle, and Osq, Osi, and Oy are the surface tension
between solid and gas phase, the surface tension between solid and liquid, and the interfacial
tension between liquid and gas, respectively. For the special case of complete wetting (i.e.
6, = 0), a precursor film is formed and the droplet spreads such that a film covers the entire
substrate [8].

The influence of gravity on R(?) is determined by the ratio of pfo}g‘zces (i.e. gravitational and
2

capillary forces), which is known as the Bond number (Bo = —%). For droplets with low
Bo number, i.e. Bo << 1, the effect of gravity on the spreading process can be neglected and
capillary force drives the spreading, a.k.a the capillary spreading regime. In this regime, the
droplet takes the shape of a spherical-cap during the spreading process [9]. For Bo >> 1, the
gravitational force drives the spreading and flattens out the free surface of the droplet, which
is referred to as the gravitational spreading regime [9]. The rate of spreading is determined
by the ratio of resistive forces (i.e. viscous and inertia forces). A dimensionless group that
quantifies the relative magnitude of inertial forces and viscous forces is the Ohnesorge number,
i.e. (Oh= Jﬁ}. The Oh number can be understood as the ratio of the viscous velocity
to the inertial velocity [6]. One might expect that the rate of spreading of droplets with large
Oh number are controlled by the droplet viscosity, whereby spreading at low Oh is controlled
by inertia. In other words, one might expect different spreading behaviors for different Oh.
However, the effect of Oh on spreading dynamics has not been systematically investigated.

There are two main spreading regimes before steady state, namely an initial fast, inertia-
controlled stage [10, 6, 11] followed by a final slow, viscous-controlled stage [12, 13, 14, 8].
Several reports in the literature show that the initial spreading stage has a power-law dependence
on time, namely R(z) o< 12 [6,11, 15, 10]. However, Bird et. al. reported that for non-zero 6,
the power law is lower than one half, and depends on the magnitude of 6; [16]. de Ruijter et al.
[17] derived an asymptotic solution for the early-time dynamics at high values of 6,, and showed
that R(?) oc ¢. Furthermore, the power-law has been argued to also depend on the magnitude of
the viscosity, such that at higher viscosity the spreading does not follow a simple power-law
[10]. The duration of inertia-controlled spreading is proportional to the propagation of a
capillary wave through the droplet interface [18, 19, 16], which is on the grder of milliseconds
for droplets whose diameter is smaller than the capillary length scale, / = o (or alternatively

when Bo << 1) [6]. The transition between the initial and final spreading (a.k.a crossover
timescale) is argued to be independent of the surface morphology and chemistry of the solid
substrate [20, 16]. Thus, the transition between spreading regimes is predominately controlled
by the diameter of the droplet. However, it has been reported that the crossover timescale does
depend weakly on the fluids properties [6].

Unlike the initial stage, the final spreading stage is argued to depend on the fluid properties,
effect of gravity, and the solid substrate properties, i.e. the thermodynamic wetting equilibrium
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(65 [21, 22, 8, 13]. Historically, the viscous spreading stage follows a power-law scaling with
time. For pure capillary driven spreading (i.e. Bo << 1), the final spreading stage for a viscous
drop with complete wetting of the substrate is expected to follow Tanner’s law, i.e. R(z) %1
[23], while for gravitational spreading, i.e. Bo >> 1, R(z) ~1/8 [24, 25]. For intermediate Bo,
there is a transition from capillary spreading to gravitational spreading when the basal radius
reaches the capillary length. In this regime, Cazabat and Stuart [14] experimentally showed that
the late stage of spreading can be described by a sequence of power laws. Although Tanner’s
and other power-law models have significant historical relevance, the models only offer scaling
laws and do not accurately depict the basal radius or height of the droplet as a function of
time. Furthermore, data reported over the past two decades show that not all fluid and surface
pairs follow Tanner’s law even though their Bo is small, such as in the case of partial wetting
conditions [26, 27, 28, 29, 30].

The spreading dynamics have been shown in the literature to be significantly slowed for
non-zero static advancing contact angles, a.k.a partial wetting conditions, which is typical of
most fluid-solid systems [10, 11, 16]. de Ruijter et al. [17] reported R(¢) -1 followed by an
exponential relaxation, R(f) = Res-exp( #/T), until the equilibrium is achieved, where R., and
T are final basal radius and a characteristic time scale, respectively. Such exponential relaxation
behaviour after Tanner’s power-law regime has also been reported by [29, 31]. It has been
shown that the duration of each regime, i.e. Tanner’s power-law and consequent exponential
relaxation, is quite sensitive to the 6;. The transition from power-law to exponential relaxation
is argued to occur when the dynamic contact angle reaches nearly two times 6; [29]. Wang et
al. [32] proposed an empirical exponential-power law correlation to cover the evolution of basal
radius for partially wetting fluids as R(t) = R.,[1 — exp(—th’”)], where a and m are fitting
parameters. However, using such equations to predict the spreading dynamics is limited as they
contain fitting parameters with no physical meaning and require the value of equilibrium basal
radius, R.;. Moreover, most of the studies on the spreading of partially wetting systems ignore
the effect of gravity and only consider the capillary spreading regime, which precludes their use
in practical applications with reasonable Bo. These facts highlight the importance of developing
a generalized approach for predicting spreading dynamics for a wide range of Bo numbers.
Ideally one would like to develop an analytical model to describe the dynamics of spreading,
however, there is still questions regarding the appropriate boundary conditions that satisfy the
physics. Furthermore, the lack of appropriate boundary conditions prevents the implementation
of numerical techniques.

The physics of Newtonian drop spreading has been thoroughly investigated with theoret-
ical approaches based on a total energy balance [33, 34, 35, 36], classical hydrodynamics
[13, 37, 38], and molecular kinetic theory [39, 40]. Analytical modeling of spreading dynamics
are quite complex, especially when considering gravitational effects. Thus analytical models
in the literature either neglect the effect of gravity or over simplify the solution by assuming
a shape of the droplet [41]. For example, Reznik and Yarin [42] studied the spreading of an
axisymmetric droplet under the dominant action of gravity at large Bo numbers,i.e. 2 < Bo < 15,
through a semi-analytical approach. Their approach required several simplifications, such as: (i)
assuming a 2d-wedge model at the contactline, (ii) neglecting the effect of the contactline’s
curvature on the flow, (iii) assuming a small Ca number approximation, (iv) and assuming
creeping flow inside the droplet, which is not necessarily valid for high Bo numbers or low
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viscosity fluids. Overall, analytical solutions are limited in their ability to generalize spreading
dynamics of Newtonian fluids either in their limits of relevant parameters, such as Bo and Ca, or
in their many assumptions. We argue that numerical simulations offer the most general approach
to develop generalized spreading dynamics for all Bo and Ca [41]. However, to develop a
comprehensive numerical solution to the spreading problem of a Newtonian fluid, the governing
physical boundary conditions need to be fully resolved and validated, especially at the triple
contact line [43, 44, 45].

The literature has suggested that the spreading dynamics can be accurately predicted by
introducing two boundary conditions: (1) the slip velocity (or shear stress) required at the
contact line to relax the stress singularity, and (2) the description of the dynamic contact angle
during spreading [46]. The literature overwhelmingly agrees that the slip velocity at the contact
line is necessary to remove the stress singularity, and has little to no affect on the far-field flow
domain [47]. In other words, the slip velocity does not affect the overall shape of the fluid
domain and in some regard can be selected arbitrarily. On the other hand, many studies have
proposed models for dynamic contact angle, all of which significantly affect the shape of the
droplet (i.e. far-field effect) [46]. Many studies have shown there is a generalized dependence
of the dynamic contact angle on the contact line velocity and derived an expression for the
dynamic contact angle as a function of capillary number, Ca, defined as Ca = and B,,i.e.
6p = Bp(Ca, 6s). [48]. The exemplary theoretical models of Hoffman-Voinov-Tanner[49] and
Cox[38] are worth mentioning. Empirical correlations developed by Jiang et. al [50], Bracke et
al. [51] and more recently Kistler [52] have shown a good agreement with experimental dynamic
contact angle data of certain fluids at a given range of Ca number. However, it has been shown
that in some cases, especially high Ca numbers, these models fail to capture experimental trends
[53]. There is an important need for the generalization of dynamic contact angle dynamics for
the development of an accurate numerical spreading model.

Although there are numerous papers on a wide variety of drop spreading phenomena, the lit-
erature still lacks a generalized solution for spreading dynamics that takes into account both cap-
illary and gravitational effects for full span of spreading (literature mainly focuses on Bo << 1)
[41]. Furthermore, there is a need for a generalized validated numerical model that can accurately
predict spreading dynamics for a wide range of fluid parameters, contact angles, and stages of
spreading. In this work, we develop a numerical method to solve the free boundary problem of
drop spreading on a substrate in the absence of impact. Our model is founded on the principle
that the dynamic contact angle is explicitly independent of material parameters, and only de-
pends on the Ca and 6,. This model is experimentally validated and the results are generalized
into master curves that take into account the effects of gravity and partial wetting. Thus, these
results determine the validity of the zero Bond number approximation in spreading dynamics.
The master curves require that the spreading time be normalized by the viscous timescale, T,.
Ultimately, the spreading dynamics of Newtonian droplets are shown to only depend on three
parameters: Bo number, 6,, and T,. The master curves readily predict the shape of a droplet at
a certain dimensionless time for a specific Bo and 6;. Moreover, we develop a correlation to
predict the steady state shape of a Newtonian droplet as a function of Bo number and 6..
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Figure 1: Schematic representation of experimental set up, measured dynamic contact angle and basal radius.

2. Materials and methods

2.1. Experimental data

We developed an in-situ device for depositing and monitoring the spreading of gently de-
posited pendant drops onto a microscope glass slide (AmScope™). The experimental setup
consisted of a digital camera (HAYEAR, HY-2307, 2M pixels with pixel size of 1.43x1.43
um) and a microscope zoom lens. Images were acquired at 60 frames/sec and based on the ad-
justed magnification of the lens, an example image calibration was 61 pixels/mm, or 16 ym/pixel.
Therefore, the minimum distance (i.e. smallest details) detectable between objects is 16 microns.
A syringe pump (HARVARD Apparatus, PHD 2000) with minimum flow rate of 0.0001 uL/hr
and accuracy of 0.35% connected to a 25 gauge needle (OD=0.51 mm) with an adjustable height
was used to carefully dispense and deposit the droplet onto the glass slide from a controlled
height (Fig. 1). The microscope slide was washed and rinsed subsequently using Isopropanol
(VWR, CAS No. 67-63-0) and DI water (EMD Millipore Corporation) before each test. Three
Newtonian fluids i.e. Glycerin (Cococare Products, Inc., CAS No.56-81-5), Light corn syrup
(Karo®, CAS N0.8029-43-4), and a photo-curable resin called DA2[54] were used as test fluids.
Note that the test fluids were chosen to span a range of viscosities between 0.1-10 Pa s, which
correspond to a range of Ohnesorge numbers between 0.6 and 15. This range of viscosities allows
for the testing of a generalized theory for droplet spreading on both sides of Oh=1. Recall that
we hypothesize that spreading physics can be normalized to generate a master curve that is not
dependent explicitly on viscosity. Thus any conclusions on experimental validation of a spread-
ing master curve is limited to the experimental viscosity range studied here. However, we do not
expect to observe any differences for lower or higher fluid viscosity outside of the experimental
window. Each experiment was performed at least three times. Image] software (Image].Ink, V.
1.46) and a custom matlab code were used to measure the dynamic contact angle and basal radius
as a function of time during spreading (Fig. 1). We also used the reported drop spreading data
in the literature (i.e. dynamic contact angle and basal radius vs time) of poly(propylene glycol),
PPG [32] and silicone oil [55] along with our measured experimental data to further validates
our models and simulations. Table 1 summarizes the properties and equilibrium wetting data of
each fluid.
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Table 1: Fluid properties and wettability conditions used in experiments and the ones extracted from the literature.

Fluid P (kg/m?) | o (mN/m) | u (Pa.s) | Ro(mm) | 6;(deg.)
Glycerin 1377 63.4 0.74 1.10 20.9 + 0.3
Corn syrup 1503 42.3 4.18 1.10 46.2 + 0.8
DAZ2 resin 1105[54] 35.1 0.49 1.01 19.6 + 1.4
Silicone oil [55] 970 20.9 0.19 0.34 0
poly(propylene glycol)(PPG) [32] 1010 32.3 0.11 0.98 0

2.2. Numerical modeling and simulation

This work involves a comprehensive numerical approach to simulate drop spreading using
COMSOL Multiphysics® v.5.6. Given the drop spreading is a free boundary problem with mov-
ing contact line, we employed a laminar isothermal two-phase moving mesh interface (an Arbi-
trary Lagrangian - Eulerian (ALE) formulation) for all of the simulations. The two phase moving
mesh method is known for its high accuracy and lower computational loads in comparison with
other multiphase modeling methods such as phase field and level set methods. However, this
approach has some intrinsic limitations which cannot handle topographical changes. All of the
simulations were solved using a 2D-axisymmetric framework to reduce computation time. Fu-
ture work could examine the spreading of asymmetrical droplets using a 3D model. Figure S1
shows a schematic of droplet deposited on a substrate and its 2-dimensional view (axisymmetric)
profile with an example mesh grid used in our computational model.

2.2.1. Governing equations
The pressure, p, and velocity field (z7) of the computational domain were determined using the
Navier-Stokes (N-S) and continuity equations given by,
v

o) ?+v’-vv':—v_p+uvzv' pg (2)

Vv=0 3)

where p is the density, u is the dynamic viscosity, and g~ is the gravitational acceleration. The
problem was solved in 2D-axisymmetric coordinates. Note that there are two N-S equations,
one for each fluid phase. The difficulty of the problem lies in solving for the moving liquid-
air boundary, S, whose normal velocity, Vs, is directly related to the bulk fluid velocity field
assuming continuity of velocity,

Vs=n v =n V! @)
Where 1~ denotes the unit normal vector, and the superscripts / and // denote the respective fluid
phase. The motion of S must satisfy the normal stress balance at the interface given by,

n- (T_[—T_H) =o(V -wi —Vo (5)

where T is the total stress, i.e.p/ _T , and the RHS represents the force per unit area due to
surface tension, O . A constant atmospheric pressure was applied at the interface. Although
we initially included the N-S equations for both phases, we found that the contribution from
the air phase was inconsequential. Thus, the surrounding air was assumed to be stagnant at all
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times, except at the interface. In other words, the effect of the fluid flow in the air phase during
spreading was too small to measure. This assumption was validated by performing several larger
scale simulations where the fluid mechanics in the surrounding air was explicitly solved for, see
Fig. S2, and comparing these results with the assumption of a stagnant air phase. The results
clearly show that for the conditions considered, the air phase kinematics could be ignored.

2.2.2. Initial conditions

The numerical scheme requires an initial shape of the interface at # = 0. A logical choice
is a pendant drop shape which intersects with the substrate at a single point. However, this
proved a poor initial condition as the single contact point was the cause of significant convergence
issues[1]. Instead, we used an initial non-zero contact between the bead and substrate at 1 = 0,
see Fig. S1. This initial interface condition resembles the start of the spreading process, as
a certain amount of contact between the bead and printing bead is inevitable at the onset of
spreading. To minimize the effect of this initial condition on spreading dynamics, we simulated
the spreading process using different initial contact lengths and shifted the spreading results in
time to compensate the initial contact, and showed that for relatively small contact lengths, i.e.
30% of drop diameter, the spreading dynamics were independent of the initial contact length (see
Fig. S3) regarding the initial pendant drop shape, we also did two simulations one with an initial
pendant drop shape and the other with a spherical shape having the same volume as pendant
drop. We showed that the assumption of initial spherical shape instead of pendant drop shape is
quite acceptable for droplet spreading process as immediately after detachment of droplet it turns
into a spherical shape (Fig. S4). Initially, all phases are assumed to be at rest with#" = 0 and a
Laplace pressure across the interface given by (Ap = 26,/Ro). This condition resembles gentle
deposition of a droplet on the printing bed.

2.2.3. Dynamic contact angle and relaxation of stress singularity

At the triple contact line (i.e. intercept of the interface, substrate, and surrounding air), the
contact angle of fluid serves as a boundary condition to correctly model the motion of S [56].
It is well-known that the contact line needs to be modeled considering a dynamic contact angle
instead of a static advancing contact angle in order to capture correct spreading physics [56, 53].
The typical relationship is the dependence of 6 on the contact line velocity. Thus, several
experiments were performed for Glycerin, Corn syrup and DA2 resin measured in this study,
and also propylene glycol (PPG) [32] and silicone oil [55] found in the literature (Table 1) to
determine the dependence of contact angle on contact line velocity. The results are shown in Fig.
2a. Several researchers have argued a universal scaling exists for dynamic contact angle. For
example, Jiang et al. [50] argued that a universal scaling behavior results when the dimensionless
contact angle is plotted versus Capillary number. One empirical model used to describe this
universal behaviour was developed by Jiang et al. [50], and is given by:

cos(B;) — cos(Bp)
cos@)+1 - tanh(4Ca®) (6)

where 4 and B are fitting parameters.

Figure 2b shows the experimentally measured values of normalized dynamic contact angle as
a function of the Ca number. The Chosen fluids and operational conditions cover a wide range of

viscosities from 0.1Pa.s to 5 Pa - s and a wide range of Ca from 106 to 0. 1. It can be concluded
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Figure 2: a) Dynamic contact angle data versus the contact line velocity for Glycerin, Corn syrup, and DA2 resin
measured in this study as well as the extracted experimental data of PPG and silicone oil reported in [32] and [55],
respectively, b) normalized dynamic contact angle data versus Ca number.

that normalizing the values of dynamic contact angle with the static advancing contact angle
(%?—D) and plotting them against Ca number generates a master curve for all fluids as a
function of Ca. Jiang et al. [50] reported the best fit universal scaling parameters for Eq. 6 as
A =4.96 and B = 0.702. However, as depicted in Fig. 2b, the parameters reported by Jiang
etal. significantly under predicts the values of the dynamic contact angle for a wide range of
Ca numbers, especially mid to high Ca. Therefore, we determined the best fit coefficients to be
A =17.32, keeping B = 0.702 , which captures the spreading behavior of all the experimental data
presented in Fig. 2 to significantly more accuracy. Thus, Eq. 6 with4 = 7.32 and B = 0.702 is
used for all spreading simulations. Note that the ability to fit all experimental data with a single
empirical model that does not depend explicitly on fluid parameters is fundamental in developing
generalized spreading trends. This model has been previously shown to work for a limited range
of fluids, whereas here we show that it works for a wide range of fluid parameters. Furthermore,
this empirical model allows for the simulation of droplet spreading of near perfect wetting cases,
i.e. Silicone oil and PPG on glass substrate. Typically, the perfect wetting case introduces the
added complexity of a precursor film, which one might argue would deviate from the universal
dynamic contact angle model. However, for PPG and silicone oil, which are reported to have
near zero steady advancing contact angles [55, 32], there appears to be no deviation.

In order to remove the stress singularities at the contact line, as shown in Fig. S1, the liquid-
solid interface was modeled using a Navier-slip condition with no-penetration, i.e. (& #°war = 0),

which exerts a shear stress, 77 on the fluid-substrate contact proportional to the fluid velocity
such that,

@

where 8 is the slip length and is typically equal to a fraction of the interface mesh element size,

Ax™[1,57]. In this work we considered § = 1/5Ax7, however, it should be noted that the spreading

behaviour is quite insensitive to the values of 3. Figure S5 shows that for a range of 8 = Ax™ to
8
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1/10Ax, the spreading behaviour does not change significantly.

2.2.4. Model validation and spatial convergence

Model spatial convergence was determined by a systematic study of the effect of mesh element
size on the time evolution of the basal radius, R(z). We used the parameters for DA2 resin as re-
ported in Table 1 and varying number of mesh points. Note that we intentionally refined the mesh
near the triple point contact by scaling the mesh points down by a factor of 0.2. Furthermore,
an automatic remeshing constraint was applied to rebuild the entire domain when the quality of
mesh falls below 0.1. Figure S6 shows grid independent test results, see Supplementary Infor-
mation. Below the mesh size of Ro/40, refining the mesh points does not improve the solution
considerably. Therefore, we used the mesh size criteria of Ro/40 for all of the simulations to
make sure the results are independent of the mesh size. To validate our numerical model, we
compare model results with the experimental spreading behavior of (i) Glycerin, (ii) Corn syrup,
(iii) DA2 resin, all on microscope glass slides,(iv) a non-volatile silicone drop on a soda-lime
glass substrate, and (v) the spreading of a poly(propylene glycol), PPG solution on microscopic
glass slide all reported in Table 1. These five data sets were chosen to cover a wide range of
viscosity.

Both PPG solution and silicone oil were simulated considering 6, = 0 in Eq. 6, i.e. a complete
wetting condition at long times [32, 55]. Glycerin, Corn Syrup, and DA2 were simulated using
the static advancing contact angles measured in this study and reported in Table 1. Figure 3 shows
the model prediction along with corresponding experimental data of basal radius as a function of
time for all fluids. The model predictions are in excellent agreement with experimental results
with maximum relative error of less than 5% for all fluids. Furthermore, the numerical model
shows that at longer times silicone oil and PPG solution both spread with a power-law of R(?) ~
0104 and R(z) ~ 10092, respectively. Note that both power-laws are very close to the power-law
expected from Tanner’s law (i.e. R(?) ~ 1) for a complete wetting system, 6, = 0.

3. Results and discussion

Spontaneous spreading of a drop after touching the substrate is driven by gravitational, F, and
surface tension, F., forces and resisted by viscous, Fi and inertia, F; forces. The driving and
resistive forces for an initially spherical droplet are summarized in Table 2. It is convenient to
discuss the importance of these driving forces on droplet spreading in terms of key dimensionless
parameters including Bo, Oh, and Ca numbers.

The Bond number, Bo, which is the ratio of F, to F, represents the relative effect of gravity
on the shape of droplet. The effect of gravity on spreading dynamics can be generally ignored
provided that the Bo is sufficiently small, i.e. Bo << 1 [58]. The Ohnesorge number, Oh,
commonly used to parameterize inkjet printing [59], but can generally be used to think of the
tendency of a droplet/jet to stay together, i.e. not forming satellite droplets, resisting against
spreading, etc. Oh number is the ratio of viscous forces to surface stress forces defined as the
ratio of F, to the square root of F; and F.. For Oh > 1, i.e. high viscosity and small radii, the
spreading slows down and drops tend to retain a spherical cap-like shape during spreading.
Finally, the capillary number, Ca, discussed in the equations for dynamic contact angle is a
balance of Fy; to F., which characterizes the magnitude of viscous flow to restoring surface
tension forces. Considering the triple line, viscous and capillary forces are the main governing
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Figure 3: Validation of numerical model: comparison between simulation and experimental results of Glycerin, Corn
syrup, DA2 resin, silicone oil [55] and PPG [32] for variation of basal radius over time.

Table 2: A summary of the driving forces governing droplet spreading [6]
Driving/Resistive forces
Capillary Force F.~0ORo
Gravitational Force | F, ~ pg}%dR
Viscous Force Fu ~URo0 g

dR

Inertial Force Fi~ pRé d

forces specially at the late stage of drop spreading. That is the reason Ca number can scale the
dynamic contact angle data (see Fig. 2).

Our numerical simulations and models will only consider spreading dynamics in a regime

where Bo < 1 and Oh > 1, such that gravitational effect matters, and the viscous resistance
dominates the spreading process. As one of the primary applications of our interest is the bead-
based additive manufacturing, it is conservative to argue that bead-based additive manufacturing
is best operated in these bounds, i.e. Bo < 1 and Oh > 1. Note that operating bead-based
printing outside of these bounds would result in a much more difficult to control bead/droplet
dynamics, and therefore more difficult to optimize printing parameters. Therefore our numerical
simulations and models will only consider spreading dynamics in these bounds.
Spreading is by definition a dynamic process and therefore it is useful to consider the different
timescales that govern the spreading dynamics. If one were to observe a drop spreading on a
substrate for Bo << 1 (no gravitational effect), one would initially observe a very fast spreading
regime,a.k.a inertial regime, followed by a much slower viscous spreading regime [10, 6, 11,
12, 20]. These two regimes are said to be dominated by a capillary timescale, T, and a viscous
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timescale, T, respectively. For example, we can define a viscous timescale by supposing that
viscous forces are on the order of capillary forces, i.e. Fu ~ F, which solving for 7, gives,

Tu= 8)

Furthermore, we can define a capillary timescale, 7. by supposing that inertial forces are on the
order of capillary forces, i.e. F; ~ F,, which solving for 7. gives,

OR

Tu 9)
- "o Oh

—
o W

It has been shown that the characteristic time scale of duration of the inertial regime is T,
0h-0-257¢ [6], which is in the order of milliseconds for small droplets with Bo < 1 and Oh >
1 bounds. It is safe to say that the inertial resistive forces against spreading can be ignored
for droplet with those bounds compared to the whole time course of the spreading. Moreover,
for the common bead-based processes with Bo < 1 and Oh > 1, gravitational effects cannot be
completely ignored. Therefore, the overall spreading timescale, T,, can be approximated by the
balance of viscous resistive force and driving forces, i.e. F; ~ F.. + Fg, given in Table 2 as follow:

I, = MRo  _ _Tu (10)

O+pgRy 1+Bo

The validated spreading numerical simulation will be used to evaluate the dynamic spreading of
spherical droplets as a function of a range of experimental parameters. The above mentioned
timescales, Egs. 9-10, will be used to scale the physics of the spreading process and relate such
dynamics to droplet spreading parameters. The goal is generalizing the results to develop master
curves and spreading models that capture the shape of spherical drops in terms of basal radius and
height as a function of time. These models and results are expected to be useful in predicting the
spreading of deposited droplets for a wide range of processes, especially the bead-based additive
manufacturing.

3.1. Spreading dynamics in complete wetting condition

This section focuses on the case of 6; = 0, known as complete wetting. Note that complete
wetting means that the basal radius goes to infinity, or the finite size of the container. However,
the spreading process is a weak power-law function and achieving equilibrium is computation-
ally expensive. Therefore, practically speaking, the numerical simulations required a cutoff
time. Similar to other works, we define a final spreading time where the spreading velocity of
the contactline falls below 10—4 [mm/s], i.e.a 100 [nm/s] [60].

The first case that we simulate is that of a fixed Bo and Oh number. Figure 4a shows the
measured basal radius as a function of time considering different fluid properties and varying
initial drop radii such that Oh and Bo are equivalent for all cases, see inset. As discussed above,
we clearly observe two different spreading regimes, i.e. fast inertial driven spreading followed
by slow viscous driven spreading. Interestingly, the basal radius dynamics for all cases appear
to have the same shape, but shifted vertically depending on initial droplet size and slightly
horizontally due to fluid properties. This suggests that complete wetting spreading dynamics
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Figure 4: Time evolution of basal radius: a) for Oh = 2.38 and Bo = 0.05. Insets: scaled radius versus scaled time via
the capillary timescale, Tcapjllary, and viscous timescale,Tyjscous, and b) for fluids with varying Oh and Bo = 0.05.
Inset: scaled basal radius versus scaled time via viscous timescale. All fluid have the same properties as o = 970 kg/m3,

O = 20.9mN/m, and Ro = 0.34 mm with different viscosity. Note that the insets show that all experimental conditions
collapse onto a single master curve.

follow a law of similitude that depends on Bo and Oh.

The law of similitude is exemplified in the inset of Fig. 4a, whereby the normalized basal
radius (a.k.a spreading coefficient) is plotted versus scaled time, scaled by 7. in the left inset
of Fig. 4a and 7y, in the right inset of Fig. 4a. Both Figures show that all dynamics collapse
onto a master curve regardless of the timescale, which generalizes the spreading solution to all
parameters for a given Bo and Oh for © = 0. (Generalized spreading solution for a given Bo and
Oh in terms of the change in the height of the droplet has been shown in Fig. S7) The reason for
both timescales creating a master curve is due to the constant Oh for all simulations. According
to Eq. 9, the capillary and viscous timescales are proportional when the Oh is constant. We
hypothesized earlier that the correct timescale is 7. For constant Bo, 7,, see Eq. 10, is propor-
tional to the viscous timescale (T~ Ty ). Therefore, normalizing the time with 7, or 7, collapses
all the graphs onto a single master curve. These numerical results confirm previously reported
literature results [1, 16, 10], which demonstrate a spreading master curve for a limited range of
fluid properties.

The viscous timescale captures the spreading physics more completely than the capillary
timescale. Although the 7. collapsed the data above, this was due to the constant Oh. In the case
of varying Oh, only 7, is capable of generating a master curve. Figure 4b shows the spreading
dynamics of fluids with increasing values of Oh numbers (for Oh > 1), and constant Bo number.
The counterpart of Fig.4b in terms of change in the height of the droplet has been shown in Fig.
S8. As expected, fluids with higher Oh numbers exhibit slower increase in basal radius due
to the larger energy dissipation at the contact line [10]. The inset in Fig.4b shows that scaling
time with the viscous timescale (#/7,) results in a master curve. As in the case of constant Bo
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above, T, is proportional to Ty, and thus the data can be readily scaled with 7,. Note that the
T. does not collapse the data onto a master curve since 7. is not proportional to 7, for varying Oh.

We showed that as long as the Bo is constant, the spreading dynamics of Newtonian fluids can
be scaled using the viscous timescale (T, ), regardless of Oh. However, unlike Oh, changing Bo
has a unique effect on the shape of basal radius spreading dynamics. For the fluids where the
Bo is not the same, neither 7, nor T, can scale the spreading dynamics. In other words, for each
Bo number, there is a mastercurve. Figure 5 shows the normalized basal radius and normalized
droplet height as a function of the spreading time normalized by the viscous timescale for a range
of Bo. Note that this figure is plotted log-linear and therefore looks different than the log-log plot
of Fig. 4b. For higher Bo numbers, i.e. a stronger effect of gravity on the spreading dynamics,
the basal radius spreads faster compared to lower Bo numbers. For Bo < 0.1, the spreading
evolution is very similar up to R/Ro = 4, signifying that gravity has little effect on spreading
below Bo = 0.1. In other words, the dynamics for Bo = 0.01, the red circles in Fig. 5, predicts the
shape of all droplets for Bo <0.1. However, increasing the Bo number from 0.1 to 1 increases
the basal radius spreading by more than 10% at later stages of spreading. One important takeaway
message is that for 6, = 0°, the zero Bond number assumption predicts droplet spreading very
well for small normalized basal radius (R(t)/Ro < 3), i.e. less than 5% error. In other words, the
effect of gravity is not observed until sufficiently long normalized times. Using the master curves
in Fig. 5, one can predict the spreading factor (R/Ro) at an arbitrary time, i.e., one can predict
the shape of any drop at any time after deposition. For instance, a drop shape of R/Ro=2.5 for
Bo = 0.01, is achieved at #/7, =600. Thus, by calculating T, via the properties of the drop, i.e.,
density, viscosity and initial radius, the time to reach the specified shape is readily calculated.
These results demonstrate that for perfect wetting the only dimensionless number that dictates
the shape of changing basal radius with time is the Bo number. Figure 5 also contains the master
curves corresponding to the change in the height of the droplet during spreading process. Like
the basal radius, given the properties of droplet, i.e. Bo number and 7y, the height of the droplet
can be predicted at a certain time. Using the values of both height and basal radius, the shape of
the droplet can be fully characterized.

3.2. Spreading dynamics in partial wetting condition

When the static advancing contact angle is non-zero, a.k.a partial wetting, the spreading con-
tinues until Young’s equation is satisfied. In other words, the dynamic contact angle decreases
until the static advancing contact angle is achieved. Therefore, there are two parameters that
dictate basal radius spreading dynamics: Bo number and 6,. Numerical simulations with varying
both Bo and 6, were performed and analyzed using the same scaling analysis as the perfect
wetting condition discussed above. Figure 6a shows a series of scaled basal radius master curves
for different Bo numbers and different 6;. Figure 6b shows master curves for the scaled height
of the droplets. Figure 6a shows that increasing Bo acts to increase the rate of spreading for
all values of 6, although the effect is more noticeable at smaller 6, i.e. higher Bo increases
basal radius by ~5% and > 10% for 6, = 45 and 10, respectively, at long normalized times,
t/Tuiscous > 10% Thus, the zero Bond number assumption is relatively good for all basal radii
for large 6,. The effect of increasing 6; is to reduce the effect of Bo and achieve a constant
basal radius. As expected, for a given Bo all spreading curves are identical at short time, i.e.
/Tviscous<20, regardless of 6.
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Figure 5: Complete wetting Newtonian droplet master curve: scaled basal radius and scaled height versus scaled time
viaviscous timescale for fluids with different Bo numbers.

Figure 6 is quite useful in predicting the spreading of droplets in a wide range of applications,
where inertial impact on the surface can be ignored. For example, given the value of Bo number
and 6,, which are intrinsic properties of the system, the shape of the drop can be predicted at
any given time via the value of Tyicous. This information is particularly useful in bead-based
additive manufacturing as printing parameters, such as layer width and height can be adjusted to
accommodate the true shape of the bead. This will certainly improve the dimensional accuracy
of printed parts in droplet/bead-based additive manufacturing processes, and reduce the need for
wasteful edisonian approaches to print quality.

3.2.1. Final shape prediction

There have been a few theoretical attempts to develop a theory for the equilibrium shape of a
droplet deposited on a substrate [61, 62]. The numerical data and scaling arguments presented
here provide a platform, in which to test these theories and possibly generalize the spreading
theories. For example, de Gennes et al. [61] developed a theoretical relation for the final height
of heavy droplets, i.e. Bo > 1 after deposition. Using the balance between hydrostatic pres-
sure inside a pancake-like droplet with the surface forces, the final height can be estimated as
Hy= 2Isin(6/2), where [ is the capillary length of droplet. However, this relation is limited to
the droplets with high Bo numbers (Bo > 1, pancake-like shape). Yonemoto and Kunugi [62]
modified de Gennes’s theory using the work-energy balance and incorporated work-energy in
the vertical direction at the contact line during the change in the droplet height. Yonemoto and
Kunugi [62] derived a theoretical relation between the final height and final basal radius of a
droplet at a given volume. Yonemoto and Kunugi’s theory can be rearranged in terms of Bo
number and 6, for comparison to this work, and is given by:

2
2Bo Hr R Ry Hy
o (1 — cosBy) Ié !

sin6; (1
3 R R
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Figure 6: Partial wetting Newtonian droplet master curves: a) scaled basal radius and b) scaled height of the droplet
versus scaled time via viscous timescale for fluids with different Bo numbers and 6,.

where Ry and Hyare the final spreading radius and height, respectively. One interesting
observation is that the theory only depends on the value of Bo and 6, which is in line with our
master curves in Fig. 6. Note that this equation is not particularly useful, since there are two
unknowns, height and radius, and therefore no unique solution. However, this equation should
be able to solve for Hygiven Ry, and vice-versa. Therefore, development of a correlation to
independently predict the final basal radius of the droplet and coupling with Eq. 11 seems quite
useful in characterization of the final shape of the droplet. The numerical simulations are useful
in developing a correlation between scaled basal radius, Bo and 6,. We calculated the final shape
of a droplet for Bo numbers between 0.01 and 1, and 6, between 0° and 90¢. Figure 7 illustrates
the variation of scaled final basal radius (R;/Ro) with both Bo number and 6,. As discussed in

the dynamic data, increasing the Bo number increases the steady state value of R;/Ro; while
increasing 6, arrests the droplet shape at lower Ry/Ro values. Moreover, by increasing 6;, the
dependency of R;/Ro on the Bo number decreases.

We observe from Fig. 7 that R;/Ro varies with 6, as a power-law, whose power depends on
the value of Bo. We propose the following empirical model:

= & ¢ (12)
RO - ﬁ _Yes

where g, B, vy, and 6 are model parameters to be fitted to the data. Note that y and & are
expected to be functions of Bo. Furthermore, the model must capture two important limits;

first, at complete wetting condition (6, = 0), R;/Ro — 0. Second, at 6, = 90° and at very low
Bo numbers (where the droplet resembles spherical cap), R;/Ro i2. Using the Generalized

Reduced Gradient (GRG) nonlinear fitting algorithm [63], the best-fit model parameters are given
in Table 3. The coefficient of determination, typically denoted R?, is used to quantify the variation
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of the best-fit model to the data. In our case, Rz = 0.99, which shows excellent agreement
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R/R,

Figure 7: Final shape of deposited droplet in terms of scaled final basal radius (R;/Ro) vs Bo number and 6,.

Table 3: Best fit model parameters for Eq. 12 determined using the Generalized Reduced Gradient nonlinear fitting
algorithm.

Parameter | Best-fit value

a 242
B 0.44
y(Bo) 0.31+0.10Bo
6(Bo) 0.17B0-0.15

between the predicted value and experimental data. We compared the best-fit parameters for
Eg. 12 and the numerically determined scaled final basal radii as a function of static advancing
contact angle for Bo = 0.01 and Bo = 1. The model and simulated data are in excellent agreement

for the two extreme values of Bo, see Supplementary Information, Fig. S9.

To further validate our empirical model, we compared the model with previously reported ex-
perimental data for pure ethanol and a binary mixture of ethanol and water[62]. Table 4 shows the
experimentally measured values of fluid properties, volume and final basal radius [62]. We plot-
ted the experimental data based on final basal radius vs Bo number for each case and compared
it with the prediction of Eq.12. As seen in Fig. 8, the predicted final basal radii by the empirical
model with the best-fit parameters in Table 3 are in excellent agreement with experimental data
of [62].

Coupling our developed correlation (Eq. 12) with the Eq. 11, the final height of the droplets
can be predicted at different Bo and 6,. Figure 9 shows the scaled droplet height (;/Ro) as a
function of R;/Ro for two values of Bo and varying 6;. The lines reflect the estimation from
Egs. 11 and 12. As it can be seen, the empirical model prediction for height of the droplet
is in excellent agreement with the numerical simulation results for Bo = 0.01, and is in good
agreement for Bo = 1. For the latter, the equations slightly under predict the droplet height.
Overall, it can be concluded that the empirical correlation of Eq. 12 coupled with Eq. 11 give
predictions of both final basal radius and final height for a range of Bo and 6, within 10% or
better.
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Table 4: Experimental data of fluid properties, volume, and final shape in terms of basal radius for pure ethanol and
binary mixtures of water/ethanol reported in [62]

Fluid o WJ/m?) | p(kg/m?) | Os(deg.) | V(UL) | Bo | Rf(mm) | Model Rf (mm)

Pure Ethanol 0.0211 789.2 35 5 0.41 2.251 2.178
10 0.65 2.723 2.779
20 1.03 3.637 3.582

Water/Ethanol| 0.0312 911.4 76 5 0.32 1.539 1.564
10 0.51 1.944 2.009
20 0.81 2.521 2.605

a

RE 1.47%

RE 2.06%

(4

RE 3.22%
RE 3.35%

RE 1.65%

Final basal radius, R; [mm]
N

o] Pure Ethanol - Exp.
== Pure Ethanol - Model

O Water/Ethanol - Exp.
s \Water/Ethanol - Model

0 T T T T
0.2 0.4 0.6 0.8 1.0

Bo number

Figure 8: Comparison of empirical model prediction with the experimental data of pure ethanol and water/ethanol binary
mixture reported in [62]. Numbers indicate the relative error.
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4. Conclusion

This work presents a generalized scaling theory for the problem of spontaneous dynamic
spreading of Newtonian fluids on a flat substrate using advanced numerical tools. While the prob-
lem has been discussed in the literature over many decades [42, 6, 64, 65], this work presents the
first generalized description of droplet spreading and scaling approach taking into account the in-
fluence of gravity and both complete and partial wetting conditions. We developed and validated
our model using experimental data and a generalized dynamic contact angle model for the triple
point contact line boundary condition. One important aspect of this work is the use of a dynamic
contact angle model as a boundary condition that has been experimentally demonstrated to be
independent of fluid parameters.

The experimentally validated numerical model was used to predict the dynamic spreading of
complete wetting and partial wetting conditions for a range of Bo numbers. We demonstrated
that the Bo, Tyiscous, O5 are the three important parameters that control the spreading. For a
specific Bo and 6,, The spreading dynamic curves, i.e. evolution of basal radius, collapse onto a
single master curve by scaling the spreading time with T,cous. The only limitation of the model
is that it considers no impact of the droplet on the substrate, and therefore the dynamic spreading
phenomena is only applicable to specific spreading scenarios.

For partial wetting systems, the model is used to predict final droplet shape as a function of
Bo and 6,. An empirical model is presented that captures the scaled radius as a function of both
parameters. The best-fit parameters are coupled with a theoretical model to predict drop height.
The coupled equations are validated using numerical and experimental data. These equations
offer a simple predictive tool to steady state spreading shape as a function of Bo and 6; within
10% error. This study presents the first predictive model for both dynamic and equilibrium shape
of a droplet on a solid substrate taking into account the static advancing contact angle. As a
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practical application, these predictive models (dynamic master curves and the empirical model)
can be incorporated into the bead-based additive manufacturing [1, 56, 66] through printing pa-
rameterization software to take spreading into account and accurately determine the optimum
droplet diameter, spacing, and final layer height. The position of adjacent droplets and the re-
traction height of the nozzle can be automatically adjusted based on the spreading of printed
beads. Moreover, such empirical models for prediction of the final shape of a droplet are in
high demand in other industries such as droplet fabrication of optical micro lenses [4, 67]. The
author’s are working to extend this model to non-Newtonian spreading droplets and cylindrical
filaments for application to DIW and filament extrusion additive manufacturing methods.
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