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Abstract

Mineral dust aerosols impact Earth’s energy budget through interactions with radiation, clouds,
atmospheric chemistry, the cryosphere and biogeochemistry. In this review, we summarize these
interactions and assess the resulting impacts of dust, and of changes in dust, on global climate
and climate change. We find that the total effect of these interactions on Earth’s global energy
budget—the dust effective radiative effect—is -0.2 + 0.5 Wm (90% confidence interval).
Compared to pre-industrial times, global dust mass loading is 56 + 29% higher in the modern
climate, leading to changes in the Earth’s energy budget. Indeed, this increase in dust has
produced a global mean effective radiative forcing of -0.07 & 0.18 Wm. Current climate models
and climate assessments do not represent the historical increase in dust and thus omit the
resulting radiative forcing, biasing climate change projections and assessments of climate
sensitivity. Climate model simulations of future changes in dust diverge widely and are very
uncertain. Further work is thus needed to constrain the radiative effects of dust on climate and to
improve the representation of dust in climate models.

Key points

1. The direct radiative effect due to dust interactions with radiation is -0.15 + 0.35 Wm
and accounts for a large fraction of the dust effective radiative effect and its uncertainty.

2. Dust interactions with clouds, atmospheric chemistry, the cryosphere, and
biogeochemistry also contribute considerably to the uncertainty in the dust effective
radiative effect, in part because of a lack of observational constraints, which are urgently
needed.

3. Dust mass loading generated by all major source regions has increased since pre-
industrial times, namely by 47 (4-98) % for North African dust, by 76 &+ 39 % for Asian
dust, and by 27 (-17 to 95) % for Southern Hemisphere dust.

4. Tt is more likely that dust net cools than that it net warms global climate.

The historical increase in dust has likely somewhat counteracted greenhouse warming.
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6. Careful simulations with coupled climate models that reproduce the historical dust
increase are needed to better constrain dust radiative forcing.
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Introduction

Mineral dust aerosols are small rock-derived particles with diameter D <~100 um that are
suspended in the atmosphere 2. Most dust is produced by the ballistic impacts of wind-driven
sand grains on sparsely vegetated and dry soils®, which ejects and fragments aggregates of soil
particles!*. Owing to these mechanical impacts, dust is a relatively coarse aerosol, with most of
its mass contained in the coarse (D > 2.5 um) and super coarse (D > 10 um) modes’.

Dust is produced in copious amounts in the world’s deserts, loading the atmosphere with ~26
million tonnes of dust, which accounts for a large majority of the atmosphere’s aerosol burden by
mass®’. The Sahara Desert and the Sahel contribute ~50% of global dust emissions (~2100
Tg/yr) and mass loading (~13 Tg), the Asian deserts ~40% (~2000 Tg/yr and ~10 Tg), and the
North American and Southern Hemisphere deserts and high latitude regions another ~10% (~500
Tg/yr and ~3 Tg) (Fig. 1)3°. Although much of the dust is deposited close to source regions, a
substantial fraction is transported for thousands of kilometres. For example, plumes of African
dust regularly travel across the tropical North Atlantic, reaching the southwestern United States
and the Amazon Basin'®.

The abundance and long-range transport of dust cause it to impact climate through various
mechanisms. During transport, dust scatters and absorbs solar shortwave (SW) and terrestrial
longwave (LW) radiation®!!, modifies cloud properties through seeding cloud droplets and ice
crystals!®!13, mixes with other aerosols'4, and serves as a sink for radiatively important
atmospheric trace gases'*!7. Upon deposition, dust darkens snow and ice packs'®!®, and
stimulates ecosystem productivity and CO, drawdown through the delivery of iron and
phosphorus?’. Because some of these mechanisms cool whereas others warm®!42!, it is unclear
whether dust exerts a net cooling or a net warming effect on global climate. Because
measurements of dust deposition suggest that dust has increased since the pre-industrial era
this uncertainty in the sign and magnitude of dust radiative effects means it is unknown whether
dust changes have enhanced or opposed anthropogenic warming.

22,23
9

In this review, we examine the impacts of dust, and of changes in dust, on global climate and
climate change. We first summarize the various mechanisms through which dust impacts Earth’s
radiation budget, and assess the radiative effect produced by each mechanism. We then constrain
the increase in dust loading since pre-industrial times and assess the radiative perturbation
produced by this historical increase in dust. We also discuss the radiative perturbation due to
possible future changes in dust and end with recommendations for future research priorities.

Mechanisms by which dust impacts climate

Dust can perturb Earth’s energy balance via various mechanisms. In each case, a radiative effect
arises, defined as the imbalance between incoming net solar radiation and outgoing infrared
radiation at the top-of-atmosphere (TOA) resulting from an atmospheric constituent (in this case,
dust)?**. These effects can be either instantaneous, such as scattering and absorbing SW and LW
radiation, or an adjustment, such as altering cloud cover?®.

We calculate the radiative effect due to mechanism i in the modern climate, r; (Wm2), as the
change in Earth’s energy balance, Af; (Wm), produced per change in global dust mass loading
from modern levels, AL; (Tg), multiplied by the global modern dust loading, L (Tg). That is,
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— Afj
1 = A_LiL' (1)
The sum of all radiative effects then equals the effective radiative effect of dust, R (Wm™),
which includes both instantaneous radiative effects and adjustments®>?7,

R=2%m. (2)

Egs. (1) and (2) define the dust effective radiative effect in such a way that it can be used to
obtain the radiative perturbation, AF, due to a change in dust loading, AL,, from its value in the
modern climate,

— pAlm
AF = REm, 3)

We then define the effective radiative forcing of dust due to the change AL, _,,, in dust mass
loading from pre-industrial to modern times as

ALy m
AFyom = R=E22 (4)

Our use here of the term radiative forcing deviates slightly from previous work?>?” in which it
denotes radiative perturbations that are entirely from anthropogenic forcing agents. However,
because dust is a natural aerosol affected by climate changes and human land use changes, a
radiative perturbation due to a historical change in dust can be partially due to both human land
use changes (a forcing) and natural and anthropogenic climate changes (a feedback). Because
these two contributions are difficult to disentangle, we refer to the entire radiative perturbation
due to the historical change in dust as the dust effective radiative forcing.

Radiative effects from dust arise through interactions with radiation, atmospheric chemistry,
clouds, the cryosphere, and biogeochemistry (Fig. 2). Each of these mechanisms are now
discussed.

Interactions with radiation

Perhaps the best understood mechanism by which dust impacts climate is through the dust direct
radiative effect (DRE), the perturbation of Earth’s energy balance by scattering and absorption of
radiation (Fig. 2a). Since dust spans a wide range of sizes, from ~0.1 — 100 um?°, it interacts
with both SW (centered around 550 nm wavelength) and LW (centered around 10 pm
wavelength) radiation®%3!.

The sign and magnitude of the dust DRE depend on the balance between these interactions. For
instance, scattering of SW radiation cools the climate while absorption of SW radiation warms,
with an overall net cooling®*2. In contrast, scattering and absorption of LW radiation both warm
the climate since both decrease the transparency of the atmosphere to terrestrial LW radiation™.
Thus, the balance between cooling from SW scattering, and warming from SW absorption and
LW scattering and absorption, dictate the dust DRE.

For SW radiation, the balance between scattering and absorption is influenced by dust particle
size. Because absorption increases more strongly with particle size than scattering®*°, the single-
scattering albedo (SSA; the ratio of scattered radiation to total extinguished radiation) decreases
with particle size. Indeed, submicron dust has an SSA close to 1, whereas supermicron dust
absorbs a substantial fraction of extinguished radiation, exhibiting SSAs of ~0.95 at D =2 um,
~0.80 at D = 10 um, and even lower for super coarse dust*%-3.
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However, the exact SSA of dust aerosols depends on their complex refractive index, determined
by particle mineralogy>!. Absorption increases approximately linearly with iron oxide content,
which is primarily provided by hematite and goethite®’. Dust optical properties can also be
affected by mixing with other aerosols, especially black carbon?®®. Observations suggest that this
possible mixing has limited impact on the optical properties of most African dust***°, but could
substantially affect those of East Asian dust?!.

Although dust particle size and mineralogy determine the balance between SW scattering and
absorption, the efficiency with which both processes perturb the TOA radiative flux depends on
the albedo of the underlying surface. Indeed, the cooling effect of SW scattering is enhanced if
the dust is situated above dark (low albedo) surfaces like the ocean and forests that would
otherwise absorb most of the radiation*?. Conversely, the warming effect of SW absorption is
enhanced if the dust is situated above clouds or above high albedo land surfaces like snow, ice,
and deserts that would otherwise scatter most of the radiation back to space®>*.

Dust microphysical properties and mineralogy also influence the extinction of LW radiation. For
example, because of its longer wavelengths, LW radiation is extinguished primarily by coarse
dust’®334, The sensitivity of LW extinction to mineralogy is less important than for SW
interactions owing to the smaller variability in LW optical properties between minerals, and
because LW scattering and absorption both warm the planet®!#3:46,

The efficiency with which dust extinction of LW radiation perturbs the TOA radiative flux also
depends on the atmosphere’s transparency to LW radiation and the elevation of the dust layer.
Indeed, the TOA flux is only substantially impacted if the atmosphere is at least somewhat
transparent to LW radiation, as is the case in the absence of clouds in the ~8 — 13 um
‘atmospheric window” wavelength range®*#’. Furthermore, because LW emission depends on
temperature, the LW warming depends on the temperature difference between the dust layer and
the source of the LW radiation - usually the surface or clouds below the dust layer. In addition,
the atmosphere’s transparency to LW radiation decreases with the concentration of water vapor
and thus increases with height. As such, dust warming by LW extinction increases approximately
linearly with the height of the dust layer334247:48,

Although the processes by which dust interacts with SW and LW radiation are relatively well
understood, the resulting radiative effects are poorly constrained. For dust interactions with SW
radiation, central estimates of SW DRE are -0.40 Wm™ (-0.10 to -0.70 Wm>, 90% confidence
interval)®3249-33 (Fig. 3); these estimates are determined using less absorbing optical properties
and a coarser dust size distribution, consistent with experimental constraints*6-2%-37:40:54-56 The
wide range reflects substantial uncertainties in the dust size distribution® and dust optical
properties*. For dust interactions with LW radiation, best estimates of LW DRE are +0.25 Wm
with a range of +0.10 to +0.40 Wm (Fig. 3) ¢324649-52; these estimates use realistic optical
properties*® and size distributions that are consistent with satellite constraints on the LW direct
radiative effect*®>’. The range reflects uncertainties in dust LW optical properties*®, the height of
dust plumes>®*, the dust size distribution and the contribution of super coarse dust*®**-4, and the
effect of LW scattering by dust, which is neglected in climate models*>3* and is sometimes
accounted for using a simple correction factor®3246-52,

As a result of the uncertainties and opposing SW and LW DRE , it is unclear whether the dust
DRE exerts a net cooling or warming effect. Combining the SW and LW DRE yields a net dust
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DRE of -0.15 + 0.35 Wm, consistent with other calculations %32464%-51 (Fig. 3). As such, the
dust DRE could either slightly warm or substantially cool the planet, or it could have little net
impact. We assign medium confidence to this assessment because of the large body of research
and availability of satellite-based constraints.

Interactions with atmospheric chemistry

Dust affects atmospheric chemistry through numerous interactions with atmospheric trace gases
and aerosols. Although freshly emitted mineral dust is considered insoluble, it is reactive towards
trace acidic gases derived from anthropogenic pollutants and sea salt!”%°, Mineral dust particles
collected throughout the world are notably associated with nitrate®!-53. Nitric acid interacts with
the non-volatile mineral cations of dust, forming salts to maintain the charge balance in the
aerosol phase®. The uptake of such acidic vapors is very rapid due to their ability to react with
carbonates and other minerals through simple acid-base chemistry®. Over continents, such
interactions of mineral cations with anthropogenic sulfuric acid causes the accumulation of
substantial amounts of sulfate on dust surfaces®. In contrast, over oceans, mineral cations are
commonly associated with chloride derived from sea salt®’.

Mineral dust also provides surfaces for the adsorption of inorganic (notably SO2, NO, and O3)
and organic trace gases'’, affecting the optical properties, hygroscopicity and atmospheric
residence time of both dust and anthropogenic aerosols. Therefore, dust particles provide a
substantial sink for the direct removal of important atmospheric constituents like O3, affecting
the oxidative capacity of the atmosphere and the ozone radiative forcing®®®. Dust particles also
provide reaction sites for the oxidation of SO to sulfuric acid’® and the formation of nitrous acid
through heterogeneous reactions of NO,’!. However, such heterogeneous formation of salts
occurs at a much slower pace than through the direct uptake of acidic vapours since acid
anhydrides (for example SO») do not initially contain any acidic protons®®. Additionally, the high
pH values found on the alkaline mineral particles can promote the formation of ammonium
nitrate on their surface’>’3.

All these interactions of dust with atmospheric gases can transform the surface and even the bulk
chemical composition of dust particles’*’>. This chemical processing of dust is highly dependent
on both the gas phase composition and on the dust chemical composition®*’6, which depends on
the mineralogy of the source soil”’.

The chemical ageing of dust due to these various reactions creates a soluble coating that
increases the dust particle’s hydrophilicity, which in turn affects the residence time of dust and
its interactions with clouds. For example, the interaction of a calcite-containing dust particle with
nitric acid converts the insoluble calcium carbonate to the highly hygroscopic calcium nitrate’®.
The increased hygroscopicity of the chemically aged dust increases its water adsorption
efficiency, making it grow more rapidly under humid conditions, thus causing it to form cloud
droplets and extinguish radiation more efficiently. On the contrary, the increased water uptake by
the large, aged dust particles can also deplete in-cloud supersaturation, thereby reducing the
number of smaller anthropogenic particles that are activated and grow into cloud droplets'?.
Furthermore, chemical ageing of mineral dust can also reduce its ice nucleating ability®’.

These heterogeneous and multiphase reactions affect the atmospheric loading of both dust and
non-dust aerosols. Nitrate formation associated with the mineral cations removes nitric acid from
the gas phase, decreasing the formation of ammonium nitrate aerosols. Similarly, sulfate
formation on dust decreases SO, abundance and thus the formation of sulfate aerosols. As such,
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dust can reduce the concentration of anthropogenic CCN both by adsorption of precursor gases
and through coagulation with anthropogenic aerosols. Furthermore, the hygroscopic growth of
aged dust can increase its scavenging and deposition rate, reducing its atmospheric residence
time and loading'>*!. However, modelling results suggest that these effects can enhance the total
accumulation mode dust burden through a reduced loss by coagulation with coarse dust
particles'.

The physicochemical interactions of mineral dust with atmospheric composition can thus affect
the direct and indirect radiative forcing of both dust and non-dust aerosols (Fig. 2b). These
effects can be both negative or positive, depending on the region and the prevailing impacts of
dust on the atmospheric aerosol loading and composition!>!. A net cooling effect of -0.05 Wm
has been calculated for the effect of dust on the total acrosol DRE!, driven mostly by an
enhanced burden of the accumulation mode dust aerosols and decreased absorption of SW
radiation due to the modified aerosol composition of mineral dust. However, observations of dust
during transport across the Atlantic and Mediterranean oceans indicate that the size distribution
of dust with diameters less than 5 pm remains remarkably constant and that optical properties do
not change appreciably®4%3, Moreover, a critical effect of heterogeneous chemistry on dust
surfaces is to reduce the atmospheric loading of anthropogenic aerosols, thereby decreasing their
direct radiative cooling, resulting in a net warming of +0.12 to +0.20 Wm 168283 Qverall, the
impact of dust interactions with atmospheric chemistry on the aerosol DRE is highly uncertain.
The resulting radiative effect is assessed at 0.10 + 0.15 Wm™ to encompass the possibility of the
slight cooling of -0.05 Wm™ ' as a lower bound and the larger warming found by others!®8283 ag
an upper bound. We assign very low confidence to this assessment.

Interactions with clouds

Dust particles influence clouds via multiple interactions, including changing the thermodynamic
environment by absorbing SW and LW radiation and serving as cloud condensation nuclei
(CCN) and ice-nucleating particles (INPs). Radiative perturbations produced by dust effects on
warm clouds, mixed-phase clouds, cirrus (ice) clouds, and by semi-direct effects are discussed
next.

Dust indirect effects on warm clouds
There are three main pathways through which dust particles can affect warm clouds: first,

by increasing the concentration of CCN, as laboratory studies have shown that various types of
(unprocessed) mineral dusts possess a modest ability to act as CCN3*+85, which is further
enhanced by atmospheric processing (ageing) of dust®S; , second, by reducing the concentration
of non-dust CCN through coagulation and adsorption of precursor gasses; and third by acting as
giant CCN, which can form cloud droplets at relatively low supersaturation and thus deplete
water vapor to such an extent that overall cloud droplet formation is suppressed. The second and
third pathways are both thought to reduce cloud droplet number concentrations (CDNC), and

thus reduce cloud albedo and shorten cloud lifetimes.

Although some modelling results found that the pathways that decrease CDNC dominate (Fig.
2¢, lower branch), amounting to a decrease of as much as -11% in the global mean CDNC",
most other modelling has found that dust slightly increases the global mean CDNC abundance.
These latter results thus suggest that the effect of dust acting as CCN dominates (Fig. 2c, upper
branch), albeit with large differences in the magnitude of the dust-induced CDNC
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contribution?! 738 As a CDNC increase is expected to increase cloud albedo and extend cloud
lifetime through well-established mechanisms?3, a dust-induced increase in CDNC would have a
net cooling effect (Fig. 2¢, upper branch). For example, global simulations with the CAMS5
model?! resulted in a ~1% increase in CDNC for a 3-fold increase in dust emissions, and this
CDNC increase in turn produced a negative forcing of -0.01 Wm. Such an effect is indeed
supported by estimates based on satellite observations®’.

Although past work thus reached contradictory conclusions regarding the net global effects of
dust on warm clouds, there is broad agreement that the sign and magnitude of the dust
contribution to CDNC is highly heterogeneous in both space and time!*?!. Given the relatively
sparse research and disagreement on the sign of the global mean CDNC contribution from dust,
we assess the corresponding perturbation to Earth’s TOA radiation budget through changes to
liquid clouds to likely be negative but close to zero, with an uncertainty range of -0.10 to +0.10
Wm2. This assessment is based on scaling the estimates of CCN/CDNC changes!32!:8788 with
the forcing estimate per change in CCN/CDNCcited above?!, and has low confidence.

Dust indirect effects on mixed-phase clouds

Although the ability of dust to act as CCN is somewhat ambiguous, their ice-nucleating ability is
undisputed®®’!. A wide variety of dust particles have been investigated in the laboratory and
found to be efficient INPs both in the immersion mode (freezing cloud droplets from within) and
in the deposition mode (nucleating ice through vapor depositing onto them, possibly triggered by
freezing of condensed water in particle pores®?). The former is the ice formation mechanism
thought to be of greatest relevance for mixed-phase clouds (MPCs). These are clouds with
temperatures between approximately -38°C and 0°C that can consist of either supercooled liquid
droplets, ice crystals, or a mixture. MPCs are generally optically thick and efficiently reflect
incoming SW radiation (a cooling effect). Their optical thickness also allows them to absorb
virtually all outgoing LW radiation, reducing the amount of LW radiation emitted to space (a
warming effect). The former (SW) effect has been found to dominate in the global mean®®. In an
INP-limited (“pristine”) environment, MPCs will be optically thick and usually have liquid cloud
tops®*, with only small amounts of ice residing in the cloud interior or below cloud base as ice
crystals rapidly grow and sediment out (Fig. 2d, left schematic). In a dust-enriched environment,
MPCs will be partly or completely glaciated, depending on the dust abundance and INP
efficiency. This cloud glaciation results in an overall reduction of cloud albedo and thus a
positive (warming) radiative effect (Fig. 2d, right schematic). An increase in dust loading, and
thus INPs, therefore likely produce a warming effect on climate by reducing the cooling effect of
MPCs (Fig. 2d).

Modelling results on the effects of dust on MPCs generally agree qualitatively, but differ
quantitatively. Global simulations with the E3SM model®® found that dust effects on mixed-
phase clouds perturb the TOA radiation budget by +0.05 to +0.26 Wm. This perturbation arises
from a reduction in cloud liquid water and a corresponding increase in cloud ice (Fig. 2d). For
comparison, global simulations with the CAMS model estimated that going from a very pristine
state with only 10% of current dust emissions to present-day dust emissions induced a
perturbation of only 0.01 to 0.10 Wm through dust-INP effects on mixed-phase clouds, again
by shifting cloud phase in favor of more ice?'. However, as the atmospheric dust loading change
in the latter study is smaller than in the former, these estimates are broadly consistent with each
other. These modelling results are further supported by satellite observations that found that dust-
enriched environments tend to have MPCs with a larger proportion of ice than their counterparts
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in largely dust-free environments®®®7. Thus, a perturbation to the TOA radiation budget of
approximately 0.10 Wm due to dust effects on MPCs is supported, but with a relatively large
assessed uncertainty range of 0 to 0.20 Wm2 and low confidence, owing to the limited body of
research.

Dust indirect effects on cirrus clouds

The dominant role of dust particles in cirrus cloud formation worldwide is supported by in situ
measurements, satellite observations, and numerical modelling®®°. Cirrus clouds are pure ice
clouds residing in the upper troposphere at temperatures below approximately -38°C. These
clouds have a net warming effect on climate by reducing emission of LW radiation to space more
effectively than they reflect SW radiation'®. Cirrus clouds can form by two different
mechanisms: homogeneous freezing, in which small solution droplets freeze spontaneously, and
heterogeneous freezing, in which ice crystals form on INPs®!. The latter mechanism requires
only modest supersaturation but can only occur when sufficient INPs are present and typically
results in low concentrations of large ice crystals. The former mechanism requires much higher
supersaturation but does not rely on the presence of INPs and typically results in high
concentrations of small ice crystals'?. The transition from homogeneous to heterogeneous
freezing has been estimated to occur for INP concentrations between 10 and 100 L-!.1%!

The impact of dust on cirrus clouds is thus highly dependent on whether non-dust INPs are
present (Fig. 2e). In conditions that favor heterogeneous freezing (high INP concentration),
additional dust INPs would add ice crystals and reduce their size, while in conditions that favor
homogeneous freezing (low INP concentration), additional dust could reduce the number of ice
crystals and increase their size by shifting nucleation from occurring homogeneously to
occurring heterogeneously. The former scenario would make cirrus clouds optically thicker and
extend their lifetimes, while the latter scenario would do the opposite.

The perturbation of the TOA radiation budget would naturally be opposite in the two scenarios,
and at present it is unclear which one dominates globally. Thus, although global modelling
results of dust impacts on cirrus clouds have in the past produced net radiative perturbations of
opposite sign!?, this difference does not signify a complete lack of process understanding, but
rather indicates different assessments of which cirrus formation mechanism dominates in the
absence of dust.

Research that incorporated up-to-date laboratory results of ice nucleation on dust
particles?>102:103 generally find an optical thinning of cirrus clouds due to dust (Fig. 2e, top
schematic). This thinning yields large opposing perturbations to both LW and SW radiation at
the TOA, but the LW effect tends to dominate, producing a net negative (cooling)
perturbation®!1%* . The corresponding overall radiative effect was estimated at -0.4 Wm using
global simulations with the CAM5 model!%, whereas simulations for a more moderate dust
change (going from 10% to 100% of present emissions) with a modified version of the same
model?! found a range from -0.32 to +0.05 Wm2. We therefore assess the perturbation of the
TOA radiation budget due to dust effects on cirrus clouds to -0.20 Wm2, with a 90% confidence
interval of -0.40 to +0.10 Wm. This range encompasses the strongest reported cooling effects!%4
as a lower bound and the possibility of a slight warming as an upper bound. We assign low
confidence to this assessment due to the limited body of research.

Dust semi-direct effects on clouds
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Absorption of radiation by mineral dust can modify the temperature profile!%, which can change

atmospheric stability, the moisture profile, and secondary circulations, all of which can alter
cloud distributions!®®-19%_ These processes, known as aerosol semi-direct effects (SDEs)!%-!10,
were broadly described in the IPCC’s Sixth Assessment Report as atmospheric adjustments to
instantaneous aerosol direct radiative effects without considering effects due to changes in
surface temperature?>-28, Because dust accounts for about a third of shortwave absorption by all
aerosols, the contribution of dust to SDEe is crucial to accurately quantifying the overall dust
effective radiative forcing!!!-!12,

The magnitude of the dust SDE, and whether it results in a positive (warming) or a negative
(cooling) radiative effect, depends primarily on two factors: the relative position of the dust and
cloud layers within the atmospheric column and the amount of radiation absorbed by the dust
layer!®-197 Tn turn, radiation absorption by dust depends on dust loading and microphysical
properties, including dust mineralogical composition, shape, and size distribution#>434>113,

Understanding of the pathways through which dust semi-directly impacts different cloud regimes
follows that of SDEs produced by other absorbing aerosols, like black carbon!®®!!4, For low-
altitude clouds, the pathways for dust SDEs can be categorized into cases where the dust layer is
above, within or near, and below the cloud layer (Fig. 2f). When dust is located above boundary-
layer clouds, local heating by the above-cloud dust can stabilize the boundary layer by
strengthening its capping inversion, causing an increased build-up of moisture in the boundary
layer. This increased moisture increases the cloud cover, which results in a negative SDE (left
schematic of Fig. 2£)!°7:!15_ Conversely, when dust is located within or near boundary-layer
clouds, the local heating could result in reduction of relative humidity, which could evaporate the
cloud and result in a positive SDE (middle schematic of Fig. 2f)!°-!1¢, Finally, when dust is
located below boundary-layer clouds, the local heating may enhance convergence and available
moisture, increasing cloud cover and resulting in a negative SDE (right schematic of Fig.
26117118,

Radiation absorption by dust can also generate SDEs for mid and high-altitude clouds. These
SDEs involve the compensation between the warming effect produced by dust absorption, which
tends to decrease cloud cover, and an increase in moisture convergence, which tends to increase
cloud cover!'%. Although the effect of the enhanced moisture convergence can overwhelm the
warming effect, resulting in increased globally averaged high-altitude cloud cover during the
summer, the overall annual-mean dust SDE is to decrease the high cloud cover!96:11%:120,

This understanding of dust SDEs assumes that dust, like other absorbing aerosols such as black
carbon, warms the atmospheric layer in which they are present!'?!. This assumption is based on
evidence that dust radiative warming due to SW absorption dominates over dust radiative
cooling due to LW emission!?>!2*, However, past research likely underestimated the amount of
coarse dust, which emits LW radiation more strongly than fine dust*->°. Because accounting for
the observed abundance coarse dust particles could produce substantial LW radiative cooling of
the atmosphere®>3¢:124_ the understanding of the different pathways through which dust can semi-
directly impact clouds remains incomplete.

Because of the uncertainties in the various pathways by which dust absorption semi-directly
influences cloud cover (Fig. 2f), a global observational estimate of dust SDE is not currently
available. Instead, observationally based assessments have focused on dust-dominated
regions!?7:116:125 For example, satellite observations show that annual dust SDE is negative (-1.2
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+ 1.4 Wm2) over the North Atlantic Ocean!?’. Since estimates of dust SDE show strong spatial
variability and because dust SDE is driven by different dominant mechanisms for different cloud
regimes over the ocean than over land!%, scaling such observationally based regional dust SDE
estimates to global values is difficult. In addition, accurate retrievals of dust microphysical
properties, including dust optical properties and size distribution, are lacking from global-scale
satellite and ground-based platforms!!'?, making it difficult to obtain global estimates of dust
SDE.

In the absence of global observational estimates, climate models simulations have reported a net
positive global annual mean dust SDE!%¢, These estimates vary by over an order of magnitude,
between 0.01 and 0.16 Wm2, and depend on the climate model used?!-12!27, These positive SDE
estimates are consistent with an overall decrease in cloud cover in these simulations. Although
model estimates of dust SDE and cloud changes are thus relatively consistent with each other,
they could be biased because of unaccounted for uncertainties in dust absorption properties, the
vertical distributions of dust and clouds, an underestimate of LW radiative cooling by coarse
dust, and the parameterization of cloud processes %!, Therefore, based on the above model
simulations, the dust SDE is estimated at 0.07 £ 0.07 Wm2, but with low confidence due to these
possible biases and limited research.

Interactions with the cryosphere

Dust interactions with the cryosphere impact climate by altering cryospheric conditions via dust
direct and indirect radiative effects (Figs. 2a-f) and by darkening snow and ice surfaces after
deposition (Fig. 2g), which leads to a positive surface radiative effect ( Fig. 2g). This dust-
induced snow albedo effect accelerates snow and glacier melting!®!2%12% which triggers a strong,
positive surface albedo feedback on the climate system!3?. The dust-induced snow albedo effect
is influenced by many factors, including dust concentration in snow!3!:132 dust optical properties
as determined by its size distribution and chemical composition'3*!33, dust-snow mixing
state!3*13% snow grain size and shape!**, snowpack properties!*¢!%7_ and illumination
conditions!3%138,

Observations indicate strong heterogeneity in dust concentrations in snow/ice. Along with
different snowpack and atmospheric conditions, this variability in dust concentrations leads to
large variations in the dust-induced snow albedo reduction and the associated surface radiative
effects. For instance, the springtime dust-induced snow albedo effect is estimated to be less than
0.5 Wm for the Arctic'3*1%°, up to 5 Wm for remote mid-latitude snowpacks (such as the
Tibetan Plateau)'**!4!, and about 10-50 Wm over polluted mid-latitude snowpacks (such as the
U. S. Rocky Mountains)!'®!28, In some extremely polluted mid-latitude mountains, the local
instantaneous snow albedo effect can be as high as 100-300 Wm™ 42143 The dust-induced snow
albedo effect is typically larger in aged snow than in fresh snow!'®, because of the stronger light
penetration and hence larger light absorption by dust in aged snow. Most research has focused on
a few cryospheric hotspots in the Northern Hemisphere (the Rocky Mountains, Tibetan Plateau,
European Alps, and the Arctic) during spring, when the dust-induced snow albedo effect is more
prominent and often reaches its annual maximum.

There are only limited estimates of the global annual mean dust-induced snow albedo effect,
with a central estimate of +0.013 Wm2 and a 90% confidence interval of 0.007-0.03 Wm~
19,131,144 Although the snow albedo radiative effect is smaller than most other dust radiative
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effects, it can still be more substantial regionally, particularly over polluted mid-latitude
snowpacks!®.

Estimates of the dust-induced snow albedo effect are still associated with large uncertainties due
to complicated and poorly constrained dust-snowpack-radiation interactions. Variations in the
poorly constrained dust-snow mixing state, snow grain shape, dust size distribution and dust
chemical composition can cause up to a factor of two uncertainty in the dust-induced snow
albedo effect!**13°, Moreover, the limited knowledge of dust evolution within the snowpack - for
instance due to dust scavenging by melting water and dust enrichment at the snowpack surface -
also adds to the uncertainty of the estimated snow albedo effect. Owing to the potential
nonlinearity in dust-snow-radiation interactions and dust wet deposition, the dust-induced snow
albedo effect may not increase linearly with dust concentration in the atmosphere or snowpack.
Considering these uncertainties and the limited research, we assign low confidence to our
estimate of the dust-induced snow albedo effect.

Interactions with biogeochemistry

Dust can influence ocean and land biogeochemistry, both directly through the addition of
nutrients and pollutants to ecosystems, as well as indirectly through modifying precipitation,
temperature, and radiation?. Atmospheric deposition of dust onto oceans provides iron, a
limiting nutrient in high nutrient low chlorophyll (HNLC) regions!#146_ In addition, nitrogen
fixing organisms in the ocean have higher iron requirements, thereby linking iron deposition to
the oceanic nitrogen cycle'#”-148, Although initial research suggested that atmospheric deposition
was the dominant source of new iron'4>!%°| other ocean sources also have a substantial role in the
iron cycle!>%-152, Qverall, atmospheric inputs of iron to the ocean modulate ecosystem
productivity and carbon sequestration on the timescale of decades!46:133,

, The soluble fraction of the iron is the most important for dust particles sinking through the
ocean mixed layer. The deposition of soluble iron has increased since pre-industrial times, both
because of the historical increase of dust over this time period and because of an increase in iron
solubilization during transport due to increased anthropogenic pollution?>!54155, Additionally,
some other important sources of soluble iron have also increased, including from wildfires and
anthropogenic combustion!>®!57, The resulting alleviation of iron limitation has increased
ecosystem productivity, which in turn has reduced the atmospheric concentration of carbon
dioxide and its radiative forcing (Fig. 2h).

Several ocean biogeochemical models include iron and its coupling to the nitrogen cycle and can
therefore estimate the reduction of CO; concentrations due to the alleviation of iron
limitation!>®15°, These models suggest that the increased deposition of soluble iron over the 20th
century resulted in the uptake of ~4 ppm of CO», producing a radiative perturbation of -0.07 +
0.07 Wm 20160 Because approximately half of this increase in soluble iron was estimated to be
due to a simulated ~40% increase in dust over the 20th century, these results imply a radiative
effect due to dust-biogeochemistry interactions of -0.12 + 0.12 Wm2 (Eq. 1). Confidence in this
assessment is very low, as it is based on only one study. Note that the radiative effect due to
dust-biogeochemistry interactions differ from that due to other interactions in that its effect
increases over time. Consequently, the radiative perturbation that it produces depends on the
timescale.

Dust also contains phosphorus, a limiting nutrient in some tropical forests and grasslands!®!-162,

as well as in some ocean ecosystems'#%193, For example, phosphorus from long-range transported
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North African dust may help maintain the productivity of the Amazon rainforest!®*. However,
because inputs from atmospheric deposition of desert dust are thought to be important in the
Amazon on millennial time scales'®® any contribution of changes in this phosphorus input
probably produces a negligible contribution to dust radiative forcing since pre-industrial times.
Dust also serves as a ballast, enhancing the downward transfer of organic material within the
ocean, but there is not yet a quantitative estimate of the impacts in terms of productivity or
carbon uptake feedback from this process!’!"!. In addition, desert dust could include elements
that can be toxic to ocean or land ecosystems, such as Cu, although current estimates suggest that
this effect is not important to Earth’s radiation budget'”2.

The dust effective radiative effect

To determine the climatic impact of past and future changes in atmospheric dust, it is critical to
assess the dust effective radiative effect R (Eq. 2), which equals the sum of the various radiative
effects generated by dust (Fig. 3). Many of these radiative effects oppose one another, resulting
in a median estimate of R = -0.2 Wm™, with a wide 90% confidence interval of -0.7 to +0.3 Wm"
2, (Note that we neglected some rapid adjustments in assessing R, such as responses by water
vapor and the lapse rate to dust direct radiative effects, but these adjustments are likely small'7.)
As such, the net effect of dust on Earth’s global radiation budget could be negligible, a
substantial net cooling, or a small net warming.

On regional scales and for different seasons, the dust effective radiative effect can differ
substantially from its global and annual mean in Figure 3. This regional and seasonal variability
occurs because the various radiative effects are sensitive to the spatiotemporal variability in dust
concentration, microphysical properties (mineralogy and size distribution), and environmental
conditions (surface albedo and cloud cover). For instance, dust over reflective deserts likely
produces substantial warming because of the high dust concentration, coarse size distribution!?4,
and because reflective surfaces reduce cooling produced by SW scattering and enhance warming
produced by SW absorption®>!"#, Similarly, dust likely produces net warming over snow and ice-
covered regions because the high surface albedo enhances warming produced by dust absorption
of SW radiation and because dust deposition decreases the surface albedo*>!3!. In contrast, dust
over oceans usually produces cooling because dust is finer further from source regions and
because the ocean albedo is only ~0.1 in the visible spectrum!’>. To determine the climate
impacts of dust, it is thus critical not only to constrain the global mean dust effective radiative
effect but also to constrain its spatiotemporal pattern.

Dust radiative forcing

Because dust produces a potentially large effective radiative effect, a change in atmospheric dust
loading since pre-industrial times could have produced a substantial effective radiative forcing.
Dust loading could have changed due to both climate change and widespread human land use
changes (Box 1). Knowledge of the change in dust loading from pre-industrial to modern times
depends largely on dust deposition records that resolve both the modern and the pre-industrial
climate. Many of these deposition records show increases in dust deposition between modern and
pre-industrial times, sometimes by a factor of ~423:16%176.177,

Dust reconstruction
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We reconstructed the evolution of the global dust mass loading since pre-industrial times by
combining 22 dust deposition records?*!6%17¢177 with constraints on the source regions providing
the deposition flux to each deposition core®** (see Supplementary Information). This dust
reconstruction used a bootstrap resampling method to propagate uncertainties in both the
experimental deposition records and the constraints on source region-resolved deposition fluxes
to each deposition site; nonetheless, errors should be interpreted as a lower bound.

The atmospheric loading of dust with a volume-equivalent diameter less than 20 um has
increased from 19 + 6 Tg in the pre-industrial period (defined here as 1841-1860) to 30 + 8 Tg in
the modern climate (1981-2000). As such, global dust mass loading has increased by 56 =29 %
(Fig. 4a). Although substantial, this increase is less than the doubling of dust suggested by
previous research?>?*, A large contributor to this increase has been Asian dust, which has
increased by 76 = 39 % from 8 + 3 Tg in pre-industrial times to 14 =5 Tg in modern times (Fig.
4c). North African dust has increased less, from 9 (6-14) Tg in the pre-industrial period to 14 + 4
Tg in the modern climate, representing a 47 (4-98) % increase. Both African and Asian dust
mass loading peaked in the 1980s and then decreased substantially, consistent with changes
observed from long-term dust concentration measurements, visibility records, and satellite
observations!’®184 Dust has likely also increased in the Southern Hemisphere, from 1.2 (0.6-2.2)
Tgto 1.5 (0.8-2.4) Tg, representing a 27 (-17 to 95) % increase (Fig. 4d). Satellite observations
suggest that global dust mass loading has been relatively stable since the year 2000, the end point

of the analysis, with some notable regional trends, such as in Central and East Asia'®.

This large historical increase in dust mass loading is inadequately accounted for in current
climate models and climate assessments. In fact, twelve climate models with prognostic dust
cycles in the Coupled Model Intercomparison Project phase 6 (CMIP6) model ensemble!86-187
show little change in dust mass loading since pre-industrial times (Fig. 5). This failure of models
to reproduce the historical dust increase could be due to several reasons (Box 1). If the dust
increase has been largely driven by natural and anthropogenic climate changes, then the model
failure could be either due to an inaccurate representation of these changes in models or because
modelled dust emissions are not sufficiently sensitive to changes in climate. This latter
possibility is suggested by the common use in climate models of empirical dust source functions
to parameterize the spatial distribution of dust emissions!®%!%°, Because dust source functions are
static, they mask physical links between changeable surface properties and dust emissions. As
such, their use can cause models to underestimate the sensitivity of dust emissions to changes in
climate!®. Conversely, if the dust increase has been largely driven by human land use changes
(Box 1), as suggested by research indicating that approximately a quarter of current dust
emissions originate from regions heavily impacted by human land use!®! (Box 1), then the model
failure to reproduce the dust increase could be caused by an underestimation of land use and land
cover changes in drylands and the resulting increases in dust emissions.

Radiative forcing due to dust increase

The historical increase in dust loading could have produced a substantial radiative forcing.
Combining R =-0.2 + 0.5 Wm with the 56 + 29% historical dust loading increase yields a dust
effective radiative forcing from 1841 to 2000 of AF,,, =-0.07 £ 0.18 Wm2 . Dust radiative
forcing could thus either have substantially contributed to, or slightly opposed, the total aerosol
effective radiative forcing of -1.1 (-1.7 to -0.4) Wm for the period of 1750 to 2019%.
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Note that the calculations of R and AFK,_,, are subject to important limitations. First, these
calculations assume that radiative effects increase linearly with aerosol loading®!*? (Egs. 3 and
4). However, the increase of radiative effects with aerosol loading is usually less-than-linear,
especially for interactions with clouds and biogeochemistry?*2!-26, Moreover, the radiative effects
of dust vary in space, such that AF,_,,, depends on the spatial pattern of dust increases, which the
simple calculation here does not account for. For instance, Asian dust likely has an outsize
impact on Northern Hemisphere cirrus clouds®® and high latitude dust emissions are likely
important in controlling the glaciation of mixed-phase clouds!®*!** but are not explicitly included
in the dust reconstruction. Careful simulations with coupled climate models that reproduce the
historical dust increase are thus needed to better constrain dust radiative forcing.

Because current climate models do not reproduce the historical dust increase, these models omit
the potentially important radiative forcing due to increased dust interactions with radiation,
clouds, atmospheric chemistry and the cryosphere. (Note that changes in CO; and other
greenhouse gases due to dust interactions with biogeochemistry are inherently included in
climate model runs forced by observed greenhouse gas concentrations.) Dust radiative forcing
was thus not accounted for in constraints on the total aerosol effective radiative forcing in the
IPCC Sixth Assessment Report®®. Because constraints on climate sensitivity depend strongly on
the aerosol radiative forcing since pre-industrial times!*>, the failure by models and climate
assessments to account for the historical increase in dust could thus have biased constraints on
climate sensitivity and projections of future climate changes'*.

Future changes in dust radiative forcing

Future changes in dust radiative forcing are likely to be dominated by changes in atmospheric
dust loading, which in turn will be determined by several factors. One important factor will be
future changes in soil moisture since drier soils are more susceptible to aeolian erosion because
of reduced soil cohesive forces and less vegetation!2. In CMIP5 and CMIP6 models, changes in
precipitation are the main driver of soil moisture changes, yet there is a wide degree of
divergence in model projections of precipitation!®’. Models do consistently show that as the
planet warms the evaporative demand over land increases!”®, which by itself would reduce soil
moisture. However, the effects of reduced soil moisture may be countered by CO: fertilization,
which reduces plant water losses. This could reduce dust emissions by driving an expansion of
vegetation into arid regions'?, although the magnitude of this effect is uncertain®”, Terrestrial
stilling, the observed downward trend in surface wind speeds over land surfaces?’!, could also
affect dust emissions, with models suggesting a future reduction in Northern Hemisphere winds
202 However, changes in atmospheric circulation patterns thought to impact surface wind speeds
over dust producing regions may be more important!'®°. Another consequence of planetary
warming is an increase in precipitation variability?*?, and thus extreme rainfall events?%4,
potentially increasing future sediment supply—and aeolian erosion—via alluvial and fluvial
recharge?®. Finally, future climate and land use changes could drive a decline in biological soil
crusts that reduce dust emissions, which is a mechanism for increasing emissions that is not
accounted for in current models?®®.

Model estimates of future changes in dust are sensitive to methodology?” and span the range of
an increase in dust due to increasing aridity?®® to a decrease due to CO; fertilization driving an
expansion of vegetation into arid regions!**2%. Starting with CMIP5, simulations from some
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models included either prescribed dust emissions or fully interactive dust. However, both
regional¥-219-212 and global?!? analyses of these models found that the dust mean state had
substantial biases, that CMIP5 models did not reproduce historical dust variability, and that
modelled dust emissions were insufficiently sensitive to changes in surface conditions. An
analysis of dust changes over land in RCP 8.5 simulations, for which CO> emissions continue
unabated throughout the 21% century, showed no secular trends in global dust?!3. An analysis of
CMIP6 simulations demonstrated that many of these previously identified model deficiencies
also exist in these newer climate model simulations (Fig. 5) and that the inter-model differences
in dust are also growing relative to earlier CMIP efforts, suggesting that as model complexity
increases so does model divergence in future projections of dust?'.

Given the inability of models to reproduce historical dust changes and the large spread in model
projections of future dust change, it is not surprising that estimates of the change in dust radiative
forcing per degree planetary warming, the so-called dust-climate feedback (units Wm2K ™), is
similarly uncertain. An analysis of the output from 6 CMIP6 models that participated in an
aerosol intercomparison project found that these models differed in the sign of the dust-climate
feedback'®’, with a multimodel mean feedback of 0.0026 + 0.0048 Wm 2K™!. Other research has
speculated that a key driver of the model inconsistencies was the simulation of surface winds'®’,
which in turn may be related to the relatively coarse resolution of a typical climate model?!>.
These results from CMIP6 are consistent with earlier research that estimated a multimodel mean
feedback for CMIP5 models that was not statistically different from zero®!S. However, using a
dust emission scheme that responded more realistically to changes in climate?!” enhanced the
dust climate feedback due to changes in the dust direct radiative effect by an order of magnitude,
yielding a range of -0.04 to +0.02 Wm 2K !. On a regional scale, the dust climate feedback close

to source regions is likely an additional order of magnitude larger?®.

Given the lack of confidence in model projections of future changes in the dust burden, and the
substantial uncertainties in dust direct and indirect radiative effects, there is a low degree of
confidence in the ability of models to predict future changes in the dust radiative forcing.

Summary & Future Perspectives

We assessed the global mean effective radiative effect of dust in the modern climate at R = -0.2
+ 0.5 Wm? (Fig. 3). Despite the considerable uncertainty in the sign and magnitude of R, which
arises from the numerous uncertain and sometimes opposing mechanisms through which dust
impacts climate, it is more likely that dust cools than that it warms global climate. We further
found that global dust loading in the modern climate is 56 + 29% higher than it was in pre-
industrial times (Fig. 4), which has exerted a global mean effective radiative forcing of AF,_,,, =
-0.07 £ 0.18 Wm2. The historical increase in dust has thus likely somewhat counteracted
greenhouse warming.

Current climate models fail to capture the historical increase in dust loading (Fig. 5) and thus
inadequately account for dust radiative forcing, which could have caused biases in assessments
of climate sensitivity and projections of future climate changes!*>!°®, Substantial additional
research is thus needed both to better constrain R and AF,_,,, and to enable climate models to

reproduce the historical increase in dust.
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The dust direct radiative effect (DRE) contributes most to the uncertainty in R and AF,_,,, (Fig.

3). Future research should focus on reducing its uncertainty by better constraining dust optical
properties through in situ and remote sensing observations. For instance, the information on soil
mineralogy to be provided by NASA’s 2022 Earth Surface Mineral Dust Source Investigation
(EMIT) mission could help constrain dust optical properties®'8. Additionally, models likely
greatly underestimate the atmospheric concentration of super coarse dust**->>6124 which warms
by absorbing SW and LW radiation. This should be addressed by obtaining more measurements
of emitted and transported dust that extend to the difficult-to-measure super coarse dust size
range?®-*65435 and by developing improved parameterizations of super coarse dust emission?2°
and deposition and implementing those in climate models.

Another priority for future research should be better constraining the radiative effects of dust due
to interactions with clouds, anthropogenic aerosols, and biogeochemistry, which together
contribute the remaining uncertainty in R (Fig. 3). Because of a dearth of observational
constraints, our assessment of these radiative effects was mostly based on modelling studies.
However, models struggle to correctly account for interactions of dust with clouds and
anthropogenic aerosols, in part because of the mismatch in scales between the small scales at
which the relevant processes occur and the large scales of climate model grid boxes$21%221 Ag
such, there is an urgent need for comprehensive in situ and satellite observations to constrain
these interactions!>!?. For instance, more satellite and in situ observations of cirrus interactions
with dust and other INPs*®° could elucidate the relative importance of homogeneous and
heterogeneous nucleation of ice crystals, which determines the sign of the radiative effect of dust
interactions with cirrus (Fig. 2¢)!'?. Furthermore, dust radiative effects due to interactions with
clouds could be better constrained with future model simulations at a sufficiently high
(kilometre-scale??!) resolution to resolve the critical sub-grid scale turbulence and cloud
processes that currently must be parameterized in models®!'’. Finally, constraining radiative
effects due to dust interactions with biogeochemistry requires an improved characterization of
dust composition and how this evolves during transport, as well as accurate knowledge of which
land and ocean regions are nutrient limited!>3.

We also recommend that the community conducts multi-model experiments to obtain more
robust estimates of the various dust radiative effects and of R and AF,_,,. These experiments

should also investigate the uncertainty in radiative effects that result from model differences in
dust optical properties, size distribution, model resolution, meteorology, the spatiotemporal
distribution of dust emission fluxes, and parameterizations for dust deposition and dust
interactions with clouds, radiation, atmospheric chemistry, the cryosphere, biogeochemistry, and
other aerosols. Such multi-model experiments could be done in the context of the Aerosol Model
Intercomparison project (AeroCom), which has previously performed multi-model experiments
for anthropogenic aerosols?>-%2,

Future research should also prioritize addressing the failure of models to reproduce the historical
increase in dust (Fig. 5). Doing so requires an improved understanding of the factors driving
changes in the atmospheric dust loading since pre-industrial times, including the relative roles of
changes in land use, wind speed, soil properties, sediment supply, and vegetation cover!80-223,
Additionally, new observations and modelling are needed to clarify the meteorological processes
that generate the high wind speeds that produce dust, such as cold pool outflows from moist
convection?!>224225 and to improve the representation of those processes in climate models.
Finally, more physically based dust emission schemes need to be developed and implemented
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into climate models. These schemes should explicitly account for dust emissions from high
latitudes, which have an outsize effect on climate through interactions with clouds!®*!%4,
Furthermore, dust emission schemes should avoid using empirical dust source functions as these
do not respond to changes in climate; instead, emission schemes should use process
understanding to account for the dependence of the spatiotemporal pattern and mineralogical
composition of dust emissions on wind, soil properties, sediment supply, and vegetation
coverage!?%-226.227 A challenge will be to achieve this without making these schemes too
sensitive to parameters such as soil moisture that non-linearly increase dust emissions'~ and that
have considerable variability in climate models'®’. These fundamental improvements in dust
emission schemes are also needed for meaningful predictions of future changes in dust and for
more accurate predictions of dust impacts on regional climate.
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1426  world’s main dust source regions and deposition fluxes (orange arrows) to regions where dust can impact
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1430  0.05; red shading), arid regions (0.05 < AI < 0.20; orange shading), semi-arid regions (0.20 < AI < 0.50;
1431  light brown shading), and dry sub-humid regions (0.50 < AI < 0.65; green shading)**®. Most dust is

1432 emitted from drylands in North Africa and Asia, which are collectively known as the “dust belt”*’.
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Figure 2. Mechanisms through which dust impacts climate. a | dust direct interactions with shortwave
(SW) and longwave (LW) radiation. b | dust interactions with atmospheric chemistry and the induced
perturbations to the radiative fluxes at the top-of-atmosphere exerting a warming (left) or cooling (right)
effect on global climate. The brown core represents the freshly emitted insoluble dust particle and the
surrounding blue area represents the acquired soluble coating through interactions with atmospheric
chemistry. ¢ | dust indirect effects on warm clouds occur by dust increasing cloud albedo through adding
to CCN and increasing CDNC (upper branch) and by dust decreasing cloud albedo by reducing non-dust
CCN through enhanced particle coagulation and adsorption of precursor gases and by dust giant CCN
reducing in-cloud supersaturation (lower branch). d | dust indirect effects on mixed-phase clouds (MPCs),
illustrated by MPC formation in pristine (left) and dust-enriched (right) environments. e | dust indirect
effects on cirrus clouds, separated by the dominant ice crystal formation mechanism in the absence of
dust. f | dust semi-direct effects on low clouds due to local heating generated by dust absorption,
separated by location of dust relative to clouds. g | radiative effects of dust deposited on snow and ice,
illustrated by snow reflectivity without (left) and with (right) dust deposited onto the snowpack. h | effect
of dust on CO- concentrations due to interactions with ocean biogeochemistry. Yellow arrows represent
SW radiation and red arrows represent LW radiation.
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that is due to the increase in dust since pre-industrial times is the effective radiative forcing AF,_,,, (Eq.
4). Error bars denote the 90% confidence range. The column on the right denotes the level of scientific
understanding (LOSU), or confidence in the assessment of each radiative effect, following past practice®’.
The global mean dust effective radiative effect and radiative forcing of dust are uncertain in sign and
magnitude, but are more likely to cool than to warm the climate.
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Figure 4. Atmospheric dust mass loading changes since pre-industrial times. a
Reconstructed globally integrated dust mass loading. b| as in a, but for loading contributed by
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for loading contributed by dust from the Southern Hemisphere. The solid line denotes the
median dust loading estimate, the shading the 90% confidence range, and the dotted line the
average pre-industrial (1841-1860) dust loading. Dust loadings were obtained by combining 22
records of dust deposition with constraints on the spatially resolved dust deposition fluxes
produced by the world’s main dust source regions®**; see Supplement for details. Dust has
increased in all three regions, translating to a 56 + 29 % rise in global dust mass loading in
modern times (1981-2000) compared to pre-industrial.
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1470 Figure 5. Climate model representations of historical changes in dust loading. Changes
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Box 1. Drivers of the historical increase in dust loading. The large historical increase in
dust observed in deposition records and the reconstruction of dust mass loading (Fig. 4) can be
either due to human land use changes or due to natural and anthropogenic changes in
climate®*°,

The observational record shows that dust is highly sensitive to climate. Indeed, dust records in
some regions show a variation of a factor of ~2-4 due to climate variability over the 20th
century! 78180183 and dust has increased by a factor of ~2-4 in transitions between interglacial
and glacial periods®*!?*2, As such, changes in aridity, vegetation cover, and wind speed due to
natural climate variability could have driven (part of) the long-term increase in dust loading, as
has been suggested for North Africal’®180233 Tn addition, anthropogenic changes to climate
and atmospheric composition could also have affected dust loading, both by increasing aridity
and by higher CO2 concentrations fertilizing plants at desert margins®**, with the net effect on

desert extent and dust emissions still unclear?3>.

Human land use changes could also have increased dust emissions. The Industrial Revolution
and the rise of industrialized agriculture have resulted in a dramatic increase in the area of land
used by humans: the fraction of the ice-free land area used for agriculture has quadrupled from
~9% in 1850 to ~35% in 2000736, This large-scale conversion of wildlands to agricultural land
has included many semi-arid and arid regions (Fig. 1), for which human land use changes can
result in dramatic increases in dust emission?*”-2%°. Additionally, anthropogenic changes in
water management that result in the drying of inland bodies of water might also have
substantially increased dust emissions, such as has occurred for Owen’s Lake in California in
the early 20th century?*® and more recently for the Aral Sea in Central Asia?*!->42,

Modelling has been unable to determine whether the historical increase in dust, which models
have been unable to reproduce?? (Fig. 5), has been primarily driven by climate or land use
changes. Indeed, past research has diverged on the fraction of the global dust burden in the
current climate emitted from anthropogenically disturbed sources, with results ranging from as
little as 0% to as much as 50%!9%-207-230.243-245 " Simjlarly, modelling results on effects of
changes in climate and CO> concentrations on dust loading also differ, with results varying
between a decrease of -20% and an increase of +60% in dust loading!?%-23%-235,

Although large uncertainties thus remain in how climate and land use changes have
contributed to the historical increase in dust loading (Fig. 4), two observational findings
suggest that anthropogenic land use change has been a key driver of the long-term increase in
dust loading (Fig. 4). First, the timing of increases in dust deposition in various deposition
records appears to coincide with the rise of industrialized agriculture in source regions?. And
second, satellite observations suggest that ~25% of modern dust emissions originate from
regions heavily impacted by human land use!®!. This finding implies that human land use
changes have increased dust mass loading by ~33% since pre-industrial times, which accounts
for the majority of the 56 + 29% increase in dust mass loading since pre-industrial times (Fig.
4). Moreover, satellite observations indicate that the fraction of dust emitted from
anthropogenically disturbed surfaces is substantially higher for Asian than for North African
source regions, which is qualitatively consistent with the finding of a larger historical increase
of Asian than of North African dust (Figs. 4b-d). Nonetheless, substantial additional work is
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needed to determine the exact causes of the historical increase in dust for each of the world’s
main dust source regions.




