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Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision vari-
ables, objectives, and/or constraint functions. In this article, we focus on a speci!c type of SOP called spatial
partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization
methods do not scale with the size of the problem, especially within practicable time limits. This motivated
us to develop population-based metaheuristics for solving such SOPs. However, the search operators em-
ployed by these population-based methods are mostly designed for real-parameter continuous optimization
problems. For adapting these methods to SOPs, we apply domain knowledge in designing spatially aware
search operators for e"ciently searching through the discrete search space while preserving the spatial con-
straints. To this end, we put forward a simple yet e#ective algorithm called swarm-based spatial memetic
algorithm (SPATIAL) and test it on the school (re)districting problem. Detailed experimental investigations
are performed on real-world datasets to evaluate the performance of SPATIAL. Besides, ablation studies are
performed to understand the role of the individual components of SPATIAL. Additionally, we discuss how
SPATIAL is helpful in the real-life planning process and its applicability to di#erent scenarios and motivate
future research directions.
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1 INTRODUCTION
Spatial optimization has been an active research area, especially in disciplines such as economics,
engineering, environmental studies, geography, operational research, and regional science. Church
[18] noted that “spatial optimization involves identifying how land use and other activities should
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be arranged and organized spatially to optimize e"ciency or some other quality measure.” It in-
cludes many districting, layout, location, and network problems that involve design, operations,
and planning [15]. Solving a spatial optimization problem (SOP) is equivalent to searching for
an optimal assignment of a set of discrete spatial units representing some geographic areas such
that some well-de!ned objectives and/or constraints are satis!ed. Alternatively, we can also de!ne
this as the use of mathematical or computational techniques for !nding solutions to geographic
decision problems subjected to design constraints [58]. The optimization variables in a SOP relate
to the decision being made with the objective function quantifying the quality of the decision.
The constraints impose a set of necessary design considerations that needs to be satis!ed. The
functions and constraints usually encode spatial properties/topological relationships, including
adjacency, contiguity (connectivity), similarity (distance), shape (compactness), and so on [88].

Broadly, SOPs are usually classi!ed as either a selection or a partitioning problem [94]. Spa-
tial selection problems identify a subgroup of spatial units. Additional spatial constraints need to
be satis!ed for certain problems, while others only impose continuations on the selected spatial
units. Spatial partitioning problems, however, seek to group the spatial units into a number of
districts or territories. For instance, consider the districting problem [47], where the objective is
to partition a geographic area into groups of contiguous districts (regions) such that each district
is balanced with respect to some activity measure, like residing population. Due to the discrete
nature of spatial units, SOPs su#er from combinatorial explosion, i.e., the phenomenon where the
computing time cost to !nd the optimal solution of a NP-hard problem increases exponentially
with the problem size [32, 63]. Thus, exact optimization techniques like Integer Programming
(IP) or mixed-integer Linear Programming (MILP) cannot solve the problem optimally un-
der practical time constraints [36]. This is why researchers often resort to using approximation
methods like heuristics and metaheuristics, since these methods can !nd good, but not necessarily
optimal, solutions to the problem in a reasonable time. Thus, computational e"ciency is the key
to designing these methods for solving SOPs [95].

Heuristic methods are mainly designed for solving a particular problem. For instance, let us
consider the p-Median Problem (pMP) in location sciences, where the aim is to !nd facilities or
services on p nodes of a network such that the distance from each node to its nearest facility or
service node is minimized [37]. Teitz and Bart [87] proposed a heuristic called the vertex-exchange
algorithm to solve this problem. This heuristic starts with a randomly selected subset of p nodes
from the network and keeps $ipping these nodes with unselected ones until such exchange can
no longer improve the quality of the solution. In contrast to heuristics, metaheuristics refer to a
general problem-solving framework that is composed of a set of high-level problem-independent
instructions or strategies for developing heuristic optimization algorithms [85]. Some well-known
examples of metaheuristics include evolutionary algorithms [43], simulated annealing [52], tabu
search [34], variable neighborhood search [40], and so on. Oftentimes, these methods are inspired
by some natural processes, and they can be adapted to solve di#erent kinds of problems. Hence,
metaheuristics have become a popular choice amongst practitioners and researchers for solving
medium to large instances of combinatorial optimization problems [12], especially in location sci-
ences [66].

Motivated by this, we devise a simple, easy-to-use population-based metaheuristic inspired by
the emerging !eld of Swarm Intelligence.1 In particular, our approach builds on top of the Arti!cial

1Swarm Intelligence is de!ned as the study and design of computational optimization techniques based on the collective
intelligence emerging from a large population of search agents with simple behavioral patterns for communication and
interaction. These methods instantiate search moves the closely mimic the complex social behavior of animals such as ant
colonies, beehives, bird $ocks, and so on [20].
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Bee Colony algorithm that is based on the foraging behavior of the swarm of bees [1]. It maintains
multiple trial solutions to the SOP under consideration and combines a local search technique with
a spatially aware recombination operator resulting in what is commonly known as a memetic algo-
rithm [68]. Hence the name swarm-based spatial memetic algorithm (SPATIAL). The search
move of the algorithm is modi!ed to explore the discrete search space while preserving the spa-
tial relationships/constraints. preliminary version of this work appeared in Reference [9]. In this
article, we present further additions based on theoretical and experimental investigations of our
framework. The summary of the extensions and contributions are elucidated below.
• An overview of background details is provided in Section 2, especially in context of spa-

tial partitioning problems like districting in Section 2.1. We then show in Section 2.2 spatial
partitioning problems are accompanied by an underlying graph structure that enables the
problem to be solved as a graph partitioning problem. Section 2.3 brie$y reviews graph-
partitioning techniques that motivate our algorithmic approach and the role of domain
knowledge in algorithm design.
• Section 3 de!nes the optimization problem corresponding to a generalized spatial partition-

ing by leveraging the notions from graph partitioning. We also show how the given formu-
lation can be adapted to problems like school districting in Section 3.1 and provide some
pointers on how to adapt other types of spatial partitioning problems using the given frame-
work.
• A detailed outline of the SPATIAL method is proposed in Section 4. In particular, we focus

on the two improvement steps: local search and spatially aware recombination. Additionally,
the relationship between locals search and the sampling of partitions based on the theory of
Markov Chain is discussed. This is followed by an in-depth discussion on how the recombi-
nation operation e"ciently searches for solutions in the discrete search space.
• We used the dataset for the school year 2020–2021 here as compared to 2019–2020 used

in the previous work [9]. At the onset of the pandemic in 2020, many parents unenrolled
their children from public schools in these two districts thereby creating a serious imbalance
between the student population and the school capacity. This presented more challenging
problem instances to work with.
• We included more sophisticated baseline methods and performed an exhaustive comparison

in Section 5. Additional discussions on how solution initialization a#ects performance and
how the algorithms can be made more e"cient using alternative measures. We also include
a case study showcasing the applicability of SPATIAL in real-life planning.

2 BACKGROUND
This section provides a basic outline of the background details necessary for understanding this
research. First, an introduction to spatial partitioning problems are provided in Section 2.1. This
is followed by Section 2.2 highlighting how graphs can encode relationships between the spatial
units in most of the spatial problems. In fact, the graph-based representation can be used to pose
spatial partitioning as a graph partitioning problem. A brief review of di#erent graph partitioning
approaches is provided in Section 2.3.

2.1 Spatial Partitioning Problems
The !eld of spatial optimization is !rmly rooted in the classical works on graph theory, where
mathematical formalism and theories about spatial arrangement and movement were made. In
spite of its historic origin, the term spatial optimization !rst appeared in the literature during the
late 1960s and the early 1970s, when a series of articles made use of the term within the context
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of regional science [2, 61, 62]. Interestingly, this research domain has followed the developments
in Computer Science, which is rich in works on graphs and other discrete data structures.

The term “spatial optimization” was initially used by Ghosh and Craig [30] to describe a set
of location-allocation problems, namely the warehouse-location problem [60], the p-median prob-
lem [74], and the location set-covering problems [89]. Similarly, researchers in resource manage-
ment use the term spatial optimization to refer to optimization models for allocating various land-
use areas within a forest [41, 42]. In fact, spatial optimization problems appear in di#erent dis-
ciplines in di#erent context−location sciences [38, 55, 99], regionalization [24, 54], spatial data
mining [39, 64], territory design [46, 79, 100], and so on. Most of these developments have a
commonality−optimizing an objective function subjected to a number of constraints (spatial or
aspatial) that de!ne the feasibility of solutions. These include a large number of simplistic varia-
tions of well-known problems, including the location set covering,p-median, simple plant location
problems, and so on. Such normative location problems have garnered a lot of interest in spatial
optimization, especially from the research community and the industry. In fact, SOPs are too broad
to be addressed all at one time and is outside the scope of this work. In this article, we focus on
a spatial partitioning problem called territory design problem, often popularly known as districting
or zone design in location sciences [55]. Note that the term redistricting is also used to refer to
these problems. However, redistricting actually means rearrangement of existing territories. For
the sake of clarity, we shall use the term “districting” to refer to these problems.

2.1.1 Districting Problems. Districting is a sub-!eld of discrete optimization involving some
form of partitioning decision. In a typical districting problem, a set of smaller geographic areas,
called basic units or spatial units, are group together into larger geographic areas, called districts
or territories, such that they meet a series of planning criteria and requirements as speci!ed from
the application or context [77]. Districting problems arise in di#erent real-life application domains,
ranging from political districting over the design of districts for police patrols, schools, social fa-
cilities, waste collection, or winter services, to sales and service territory design [47].

Based on the application domain, each category of districting problem is unique from the per-
spective of modeling, criteria, or constraints. Nonetheless, several common criteria, including bal-
ance, compactness, and unique assignment, can be generally applied to most districting problems.
“Balance” means that a total amount of resources need to be fairly allocated among the districts. The
term resources implies a particular attribute or multiple attributes of each spatial unit. Examples
include the number of customers, product demand, population size, workload, and so on. “Com-
pactness” aims to obtain districts composed of basic units with geographical proximity, which can
be optimized by minimizing a dispersion function that measures how tightly the area of a district
is packed within its perimeter. Unique assignment indicates that each spatial unit must be assigned
to only one district, and this requirement assures a complete partitioning of all the spatial units.
Additionally, territory “contiguity” needs to be considered while designing the districts/territories.

Interestingly, there is no single approach to model the aforementioned criteria. Therefore, ex-
isting works have studied various methods to represent these requirements. During the 1960s to
1980s, the majority of research has focused on sales territory design [100] and political districting
problems [76]. Since the early 1990s, a lot of studies on other applications, such as distribution ter-
ritory design, service-related districting, and, more recently, districting in health care [98], have
emerged. Scant attention has been paid to the problem of school districting till now.

School districting. In countries like the U.S., school districts play a vital role in the operation of the
public school systems. A school district is an administrative unit for overseeing the jurisdiction of
public schools and represent a large geographical region that is coterminous with the boundary of
a county, city, or a subdivision. The spatial con!guration of a school district is composed of smaller
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Fig. 1. ArcGIS visualization of the school district of Loudoun county, VA, USA. The smaller polygons (with
blue-colored border) represent the SPAs, while the larger polygons (with brown-colored border) represent
the SAZs of elementary schools. The dark blue dots represent the locations of all the public schools.

spatial units called planning zones or student planning areas (SPAs). These SPAs are grouped to
form a larger geographically contiguous area, called the school attendance zone (SAZ), which
de!nes the boundary of a school. The schools at every grade-level (elementary, middle, and high)
have a well-de!ned boundary often arranged in a hierarchical manner. In a school district, the rule
of thumb is that students attend the school assigned to their residing SPA. Figure 1 illustrates a map
of a school district along the school locations, school boundaries, and constituent SPAs. Note that in
districting problems, a large geographical area, like a county, is partitioned in multiple “districts” or
territories. However, in school districting, the term “school district” refers to the entire geographic
area, like county or city. To avoid this confusion, one can imagine a school district being composed
of contiguous districts or territories, each of which represent a school boundary.

School districting is the process by which the boundaries of public schools (within a school dis-
trict) are adjusted/redrawn in response to projected growth/decline of student enrollment, change
in school capacities, opening/closure of a school, and so on. This is an annual/biannual event
that involves the school boundary planners, board members, parents, and other stakeholders and
takes up a signi!cant amount of time in reaching a consensus about the !nal districting plan to
implement. Multiple factors (geographic, economic, social) are considered in deciding the school
boundaries, thereby making school districting a technically and socially challenging to solve. The
complexity of the process piqued the curiosity of the research community, especially in Operations
Research.

Sutcli#e et al. [86] summarized the work in this direction until the early 1980s. Since then, not
many works have been reported in this direction [27, 56, 81]. Among the few, Schoep$e and Church
[81] introduced the term Generic School Districting Problem, which refers to a class of school bound-
ary problems involving allocation of students to schools while minimizing a cost/distance function,
subject to a set of balancing/activity constraints. Most of the approaches to school redistricting usu-
ally solves a continuous Linear Programming (LP) or a derived transportation problem to get an
optimal or a near-optimal solution (which requires split-resolution) [6, 57]. However, the compu-
tational bottleneck does not allow these methods to scale. Caro et al. [16] proposed an IP approach
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Fig. 2. A large geographical area composed of smaller spatial units can be represented by a planar connected
graph. The color coding represents an instance of spatial partitioning, where the each color correspond a
territory/zone obtained by partitioning the graph into connected subgraphs.

to the school districting problem by minimizing the total distance travelled by the students. Their
model was inspired by the sales territory alignment model in Reference [100] and was perhaps
the !rst approach to account for all the problem-speci!c constraints, including connectivity. Their
model was applied to only 2 (of 22) clusters that the school district of the City of Philadelphia is
divided into.

2.2 Graph-based Representation in Spatial Optimization
A geographical area composed of smaller-sized spatial units can be represented as nodes of a graph
G = (V,E), whereV = {v1,v2, . . . ,vN } is the set of nodes representing the N smaller-sized spa-
tial units and E is the set of edges connecting adjacent nodes. G is commonly called the contiguity
graph or the dual graph. It is a planar connected graph with the nodes encoding the spatial entities
and the edges capturing the spatial adjacency relationship between the entities. An edge connects
two nodes if their corresponding spatial units share a common boundary (more than a single point).
Figure 2 illustrates a toy example depicting the graph-based encoding of a geographical area.

A node v may also be represented by its index, i.e., v ∈ {1, 2, . . . ,N }. These nodes may have
features, i.e., F(G) = {F1, F2, . . . , FN }, where Fv is the set of features corresponding to node v .
Let Fv be represented by a tuple (Lv ,Av ), where Lv = [(x1,y1), (x2,y2), . . . , (xt ,yt ), (x1,y1)] is
the list of geographic coordinates (latitude-longitude) that de!ne the boundary polygon of the
vth spatial unit and Av is the vector of feature values. Usually, a similarity matrix W(G) =
(W uv )u=1, ...,N v=1, ...,N captures the relationship between any pair of nodes. Popular choices for
the similarity metric include the distance function or the binary adjacency matrix. Similarity can
also be de!ned for edges connecting adjacent nodes.

Solving a SOP involves the search for a feasible solution G′ = (V ′,E ′), such that the spatial
con!gurations ofV ′ ⊆ V and E ′ ⊆ E satisfy prede!ned problem criteria/constraints while mini-
mizing certain objective(s). In spatial partitioning problems like districting, we seek a K-partition
of the graph G, i.e., E ′ ⊂ E andV ′ = V such that the nodes inV ′ are grouped into K connected
subgraphs. Figure 2 shows an instance where a geographic area, encoded by a graph containing
N = 33 nodes, is partitioned intoK = 4 territories, each of which is represented by a connected sub-
graph. Thus, the spatial partitioning problem is equivalent to the graph partitioning problem
(GPP) [14] described next.

Given a positive integer K ∈ N>1 and an undirected graph G = (V,E) with non-negative
edge weights, ω : E → R>0, the solution to a GPP seeks a partition Π of G with blocks of nodes
Π = (V 1, . . . ,V K ) such that V 1 ∪ . . . ∪ V K = V and V i ∩ V j = ϕ ∀i, j ∈ {1, 2, . . . ,K }, i ! j.
Alternatively, the output of a GPP can be represented by a plan on G described by an assignment
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function ξ : V → {1, 2, . . . ,K }, where ξ (v ) = i implies that nodev is assigned to block i . A nodev
is a neighbor of node u if there is an edge (u,v ) ∈ E. If a node v ∈ V i has a neighborw ∈ V j , i ! j,
then v is called boundary node. Correspondingly, an edge that connects two boundary nodes is
called cut edge and Ei j = {(u,v ) ∈ E : u ∈ V i ,v ∈ V j } is the set of cut edges between two
blocks, namelyV i andV j . An extra balance constraint may exist and enforces that all blocks have
roughly equal weights, i.e., it requires that∀i ∈ {1, . . . ,K } : |V i | ≤ (1+τ ) |V |/K for some threshold
parameter τ ∈ R≥0. Sometimes we also use weighted nodes with node weights. Weight functions
on nodes and edges are extended to sets of such objects by summing their weights. Note that a
clustering is also a partition of the nodes. However, K is usually not given in advance, and the
balance constraint is removed. Note that a partition is also a clustering of a graph. In both cases,
the goal is to minimize a particular objective called the dispersion function. This is also identical to
the connected K-partition problem, which partitions a graph into K connected sub-graphs where
K ≥ 3, is a well-known NP-hard problem [25].

2.3 Approaches
In computer science, graphs constitute a preferred abstraction when modeling an application prob-
lem. Even if the application involves a di#erent problem, partitioning a graph into smaller subgraph
is often an important fundamental operation that helps to reduce problem complexity. Next, we
brie$y survey the di#erent class of GP techniques broadly, an important end-application relevant
to the spatial partitioning problems, and discuss the role of domain knowledge in designing spatial
search techniques.

(1) Global algorithms seeks a partition by directly working on the entire graph. Well-known
global methods include exact algorithms [4, 13, 21, 28, 48, 59, 82] that rely on the branch-
and-bound techniques [53], spectral partitioning techniques based on eigendecomposition
of the Laplacian matrix, graph growing approach based primarily on breadth-!rst search,
!ow-based methods that make use of the max-$ow min-cut theorem, and, last, the geometric
partitioning techniques that utilize the coordinates of graph nodes in space [31, 84, 92]. The
global algorithms are more suited to smaller graphs owing to high computation time, espe-
cially the exact methods. Also, these methods are mostly con!ned to bipartitioning but can
be generalized to k-partitioning when k is small.

(2) Iterative heuristics start with an initial solution and tries to improve it through a variety of
search operations. Local search is the most widely used approach that updates a given solu-
tion by selecting a new one from the neighborhood. Di#erent ways of de!ning the neigh-
borhood and the selection strategy gives rise to a variety of techniques. Initial methods like
the KL/FM method [29, 50] was more suited for graph bisection. Later, k-way extensions
to this method were proposed [49, 71]. Most existing local search algorithms swaps nodes
between adjacent blocks of the partition trying to minimize a dispersion function. This re-
sults in highly restrictive scope of possible improvement. For instance, the METIS approach
cannot create balanced and contiguous partitions [97].

(3) Multi-level approaches perform graph partitioning by varying the granularity of the
graphs [80, 90, 91]. It consists of the three main phases: coarsening, initial partitioning, and
uncoarsening. Coarsening helps to reduce the problem size by iteratively approximating
the original input graph with fewer degrees of freedom. This translates to substituting the
parallel edges in the input graph with a single edge in the coarsened graph. Coarsening is
terminated when the original graph is su"ciently small enough to be initially partitioned
using some (possibly expensive) exact methods discussed earlier. Uncoarsening happens in
two steps. First, the partition in the coarse-level graph is translated back to a !ne-level graph.
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Then, iterative improvement methods (discussed earlier) are usually applied to improve the
partition. While multi-level approaches are successful for partitioning large graphs, it be-
comes challenging to tune this methods for graphs with !xed centers and highly varying
degree of balance between the partitions.

(4) Metaheuristics have been increasingly applied to the GP domain recently [51]. There is a
twofold advantage of using metaheuristics. First, these frameworks are de!ned in a gen-
eral sense and hence can be modi!ed to suit the needs of real-life optimization problems in
terms of practical constraints like solution quality and execution time. Second, metaheuris-
tics do not put any restriction on the optimization problem formulation (like constraints/
objective functions to be expressed as a linear function of the decision variables). Our fo-
cus is on population-based metaheuristics like Evolutionary Algorithms (EAs), which are
derivative-free global optimization methods inspired by the process of natural evolution [26].
An EA starts by initializing a population of trial solutions to the optimization problem, then
it tries to improve the solutions via search operations, like recombination and selection, until
a termination criteria is reached. In our work, we augment EAs with local search techniques
for solving SOP.

Capacity-Constrained Network-Voronoi Diagram. Problems like districting, especially school dis-
tricting, can be treated as a Capacity Constrained Network-Voronoi Diagram (CCNVD):
“Given a graph and a set of service center nodes, a CCNVD partitions the graph into a set of contigu-
ous service areas that meet service center capacities and minimize the sum of the shortest distances
from graph nodes to allotted service centers” [96, 97]. For the school districting problem, the ser-
vice centers represent the spatial units containing schools inside them. The Pressure Equalizer
(PE) algorithm and its variants were proposed by Yang et al. [96, 97] to address CCNVD. How-
ever, some important di#erences do exist. In the PE approach, the objective was to minimize the
sum of the shortest distances from graph nodes to their allotted service centers. Additionally, the
following assumptions were made: All service centers have the same capacity, each non-service-
center node has unit demand and all the service centers together could serve the demand of all
the non-service-center nodes at any point of time. These simplistic assumptions may not apply
for problems like districting. For instance, in school districting, the capacity of the schools and the
student population corresponding to the graph nodes can vary considerably. Also, compactness
is preferred to distance-based measures due to arbitrary shapes of spatial units forming a school
district [11].

2.3.1 Hybrid Metaheuristics. Recently, researchers try to assimilate ideas from di#erent classes
of metaheuristics into a “hybrid” framework. One such framework, called memetic algorithm [67],
combines the local search technique with the recombination operator of EAs to balance
exploration-exploitation. Thus, memetic algorithms bene!t from the synergy between iterative
improvement (exploitation) of the local search and the recombination operation (exploration) of
the population-based methods. We take a step in this direction by integrating a randomized local
search within a swarm-intelligent algorithm that mimics the foraging behavior of honeybees [1].
However, adapting EAs to SOPs is non-trivial due to the following: First, EAs are designed to
solve continuous-valued real-parameter global optimization problems. As such, they employ lin-
ear search moves for exploring the decision space by perturbing the incumbent solutions. This
strategy is hardly suitable for discovering promising solutions in the discrete decision space of
SOPs. Second, the presence of spatial constraints (topological properties), like contiguity, make
SOPs highly constrained in nature and harder to !nd feasible solutions. In fact, the infeasible
solutions signi!cantly outnumber the feasible solutions with an increase in problem size. This of-
ten results in expending tremendous computational e#ort in !nding a feasible solution, especially
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when the search operators are not spatially cognizant. Last, EAs tend to reinitialize the solutions
when they stagnate or violate constraints. In SOPs, such a move is detrimental to preserving the
goodness of solutions and lead to loss of valuable information.

2.3.2 Domain Knowledge for Spatial Search. In view of the above challenges, it is increasingly
impracticable for vanilla EAs to solve SOPs [44]. This is mostly because the linear search moves
are not suited to the discrete nature of problems we encounter. Besides, the traditional constraint
handling techniques used in conjunction with EAs are of little help [65]. Hence, we use domain
knowledge to guide the search process. Domain knowledge refers to any auxiliary information
that may enable a metaheuristic to e"ciently search for feasible solutions. It includes both model-
speci"c and problem-speci"c instructions. Next, we discuss how model-speci!c domain knowledge
is helpful in conducting spatially aware search within an EA framework.

The !rst step in solving SOPs is to instantiate initial feasible solution(s) and then improve the
solution(s) locally by $ipping spatial units between the adjacent (neighboring) territories [69, 70].
There are two types of possible moves: (a) move one unit from its present (donor) territory to a
neighboring (recipient) territory and (b) swap/ exchange units between two neighboring territories.
The new solution produced by these moves are kept only if it is feasible and leads to an improve-
ment in the objective function. Additionally, the local nature of the moves restricts the exploration
of the decision space beyond the immediate neighborhood of the incumbent solution. However,
these moves may also result in breaking the spatial contiguity of the territories involved in the
move, thereby leading to an infeasible solution. Path relinking can be helpful in such scenarios for
repairing the solutions if they enter the infeasible search space [35]. When infeasible solutions are
made feasible again via repair operation, these solution(s) undergo strategic oscillations between
the feasible and infeasible decision space and may !nd better intermediate solutions [33].

3 SPATIAL PARTITIONING AS AN OPTIMIZATION PROBLEM
The optimization formulation corresponding to spatial partitioning problems can be written as

(P0)
minimize
X ∈ X J

(
X
)
=

N∑

u=1

N∑

v=1
Xuv · Duv , (1a)

s. t.
N∑

u=1
Xuv = 1, ∀v = 1, 2, . . . ,N , (1b)

N∑

u=1
Xuu = K , (1c)

(1 − τ ) µ · Xuu ≤
N∑

v=1
Xuv · Av , ∀u = 1, 2, . . . ,N , (1d)

N∑

v=1
Xuv · Av ≤ (1 + τ ) µ · Xuu , ∀u = 1, 2, . . . ,N , (1e)
∑

v ∈⋃l∈SN l \S
Xuv −

∑

v ∈S
Xuv ≥ 1 − |S |,∀u = 1, 2, . . . ,N , S ⊂ {1, 2, . . . ,N }\(Nu ∪ {u}) (1f)

Xuv ∈
{
0, 1

}
, ∀u = 1, 2, . . . ,N , ∀v = 1, 2, . . . ,N , (1g)
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where u andv are the indices corresponding to the nodes of graph G; X ∈ {0, 1}N×N is a binary as-
signment matrix, whereXuu = 1 implies that nodeu is center node of a given subgraph; D ∈ RN×N

is the distance (or dissimilarity) matrix, whereDuv is a distance2 between nodesu andv ; A ∈ RN×1
+

is the activity matrix, where Av is an activity measure with respect to nodev . (P0) is a constrained
optimization problem with binary decision variables encoded by X. Solving (P0) exactly will output
an optimal partitioning plan encoded by the solution X∗ that minimizes the objective function (1a),
i.e., J (X∗) ≤ J (X), ∀X ∈ X, subjected to a set of constraints (1b)–(1f). X is the set of all possible
partitioning plans, i.e., the assignment of N spatial units to K territories as show in Figure 2. As
spatial partitioning is analogous to graph partitioning, we shall interchangeably use the following
groups of terms: spatial units/nodes and territories/subgraphs.

Constraint (1b) enforces that each node is assigned uniquely to a subgraph. Constraint (1c) en-
sures that the number of center nodes is K implying that are exactly K subgraphs, since each
subgraph has an unique center node. Constraints (1d)–(1e) restricts the total activity measure in
a given subgraph to lie within a range of the mean activity measure µ (which is computed as
µ = 1

K
∑N

v=1 Av ) as measured by the tolerance parameter τ . Usually the value of τ is kept in the
range [0.01, 0.1] depending on the application. These constraints are designed to ensure that a
given subgraph has zero activity if it does not contain any center node, i.e., Xuu = 0. Last, the
contiguity constraint (1f) that ensures that each subgraph is connected, where Nu refers to all
the nodes adjacent to a given node u. The connectivity constraint ensures that each territory is
geographically contiguous, i.e., we can travel between any two points within a territory without
crossing over to another adjacent territory. However, connectivity is expressed by an exponen-
tial number of comparisons, i.e., O (KN 2N ) [23], thereby making it impracticable to exactly solve
moderate to large instances of this problem within a reasonable amount of time.

Remarks. Equation (1) can be solved by exact methods, like LP, IP, and MILP [7]. However, in
trying to do so we made some interesting observations. First, these methods minimize a linear
objective function based on dispersion, as in the p-median problem or the p-center problem [79].
These linear measures of dispersion cannot account for optimizing the non-linear compactness
metric. Second, the exponentially big connectivity constraints may not guarantee territorial conti-
guity. Last, it may be di"cult to !nd feasible solutions when the bound constraints (1d) and (1e)
are tightened by setting the value of τ to be su"ciently low.

Computational complexity. Though the problem (P0) with exponential number of connectivity
constraints, if we are given a p partition G′ = (V ′,E ′) of a graph G = (V,E), then we can
check whether each subgraph of G′ is connected or not in polynomial time by using breadth-
!rst-search algorithms. The feasibility of a solution to the problem can be veri!ed in polynomial
time, i.e., P0 is NP. Next, let us consider a particular instance where G is a planar connected
graph. If we take high values of tolerance parameter τ , then we can ensure that the balancing
constraints (1d) and (1e) are always satis!ed. Then it becomes a pMP, which is a well-known
NP-hard problem [37]. Since pMP is reducible to P0 in polynomial time, we can say that P0
is NP-hard. Interested readers may refer to [25] for an in-depth analysis of the computational
complexity.

3.1 School Districting
The school districting problem follows a spatial partitioning structure where the spatial units (or
SPAs) are the nodes of a graph and the school boundaries (or SAZs) are the balanced, connected
subgraphs. Hence, we reformulate (1) to de!ne the school districting problem. We do make some

2Normally, the Euclidean distance between the centroids of two spatial units is considered.
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adjustments in the optimization model based on the above-mentioned remarks and problem-
speci!c domain knowledge. We shall visit them in turn.

Let a graph G = (V,E) represent a school district with N SPAs and K schools. The number K
varies with the school level L := Elementary School (ES), Middle School (MS), or High School
(HS), since we solve the problem at each level independently. Each node (SPA) can be represented
asAv = (ESpv ,MSpv , HSpv , EScv ,MScv , HScv ), v ∈ {1, 2, . . . ,N },where Lpv is the student population
residing in SPA i corresponding to the school level L (ES, MS, HS), and Lcv is the program capacity
of the schools contained in the same SPA. We assume that all the schools in a school district follow
a consistent grade structure with respect to the school levels. For majority of the SPAs that do not
enclose any school inside them, we have EScv = 0, MScv = 0, and HScv = 0. We consider a set of
center nodesV = {v |Xvv = 1},V ⊂ V corresponding to the SPAs containing schools inside them.
Alternatively, we may writeV = {v1,v2, . . . ,vK }, where vi is the node containing the ith school.

While drawing school boundaries, the following must be considered. First, each school has a dif-
ferent capacity to accommodate students. This is equivalent to the bound constraints (1d) and (1e),
except that mean activity measure µ is replaced by the corresponding school’s capacity Lcv . Second,
Euclidean distance between the centroid of the spatial units in (1a) may not be a good representa-
tive of the commute time due to the widely varying shapes of these units. Compactness measures
that take into account the geometric shape can be a better alternative. These two considerations
are linearly weighed using the weight factor λ, 0 ≤ λ ≤ 1, in formulating the optimization problem,

minimize
X ∈ XJ s

(
X
)
= λ
∑K

i=1

######1 −
∑N

u=1 Xuv i
· Lpu

∑N
u=1 Xuv i

· Lcu

######︸$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$︸
target balance (aspatial)

+ (1 − λ)
∑K

i=1

#######
1 −

4π · Area
(⋃ N

u=1{u |Xuv i
= 1}
)

[
Peri
(⋃ N

u=1{u |Xuv i
= 1}
)]2

#######︸$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$︸
target compactness (spatial)

.

(2)

Several remarks are in order. (1) The target balance measures the discrepancy between the
schools’ capacity and their attending student population. It attains the ideal value of 0 when every
school’s attending student population (numerator) is equal to its program capacity (denominator).
Note that target balance consolidates the bound constraints (1d) and (1e) into an objective or a soft
constraint. This helps to deal with solutions that cannot satisfy both these constraints in (1) by
penalizing them heavily. (2) The target compactness measures how far is a school’s boundary from
a perfectly compact shape (like a circle). We use the non-linear Polsby–Popper score [73], which is
the ratio of the area of a zone to the area of a circle whose circumference is equal to the perimeter
of the zone. The more compact the school boundaries become, the closer the value of target com-
pactness gets to 0. (3) Most of the school (re)districting happen to balance the student populations
between existing schools. Hence, target balance is given more weightage than target compactness.
In our setting, we always ensure that λ/1−λ ≥ 2. (4) Pre!xing the center nodesV helps to satisfy the
hard constraint (1c) and automatically reduce the size of the optimization problem. Due to this ad-
vantage, we prefer to use problem-speci!c domain knowledge to perform pre!xing. In the absence
of any such information, clustering algorithms like K-medoids [72] can be used to determine a set
of initial center nodes. (5) The remaining hard constraints, i.e., mutually exclusive assignment of
nodes (1b) and subgraph connectivity (1f), can be satis!ed when initializing a feasible solution X
and then perturbing it locally. (6) In solving Equation (2), the minimizer seeks aK-partition of a ge-
ographical area such that the territories are well-balanced, compactly-shaped and geographically
contiguous. Overall, this approach generalizes to other spatial partitioning problems, like com-
mercial territory design [78] and political redistricting [93], that involve optimization of similar
dispersion metric and subjected to constraints like balance, contiguity, and compactness.
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Fig. 3. Outline of the SPATIAL approach for solving the school redistricting problem.

Fig. 4. The seeding phase (a) followed by the guided-growth phase (b) results in a new solution. Seeding
identifies the spatial unit corresponding to the center nodes. The guided-growth phase helps to grow the
territories by assigning the free spatial units (marked in light grey) based on the adjacency relation.

4 THE SPATIAL ALGORITHM
In this section, we describe our SPATIAL method for solving spatial partitioning problems.
SPATIAL starts by initializing a population of randomly generated trial solutions as detailed in
Section 4.1. These solutions are iteratively improved till a termination criterion is met. The im-
provement takes place in two phases, local improvement and spatially aware recombination, as
detailed in Sections 4.2 and 4.3, respectively. The outline of our approach illustrated in Figure 3.

4.1 Initialization of Trial Solutions
Given a graph G = (V,E), the initialization module instantiates a set of Np trial solutions,
X = {X(1),X(2), . . . ,X(N p ) }, where the ith solution, X(i ) , represents a particular partitioning of
G. Note that we are overloading the notation on X The feasibility of these solutions are ensured
by the seeding phase followed by the guided growth phase as shown in Figure 4. The pseudocode
of initialization is provided in Algorithm 1.

Seeding. This step helps to identify the seed units (pre!x the center nodes) by leveraging
problem-speci!c domain knowledge and assign each such unit (center node) to an unique territory
ACM Transactions on Spatial Algorithms and Systems, Vol. 9, No. 1, Article 5. Publication date: January 2023.
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ALGORITHM 1: Initialization
Input : Contiguity graph G, Population size Np, School level L.
Output :X : Population of trial solutions
begin

Determine the center nodesV for school level L and set K ← |V |
X ← {} ! Empty population
for i = {1, 2, . . . ,Np} do
V : Get the set of nodes in G
Seeding phase !
Set an initial assignment, i.e., X(i ) ∈ 0N×N

for v ∈ V do
X (i )

vv ← 1 ! Assignment
V ← V\{v}

Guided-growth phase !
do

Randomly pick a center node v, v ∈ V
Determine the subgraph V containing v , i.e., V = {u |u ∈ V, X (i )

uv = 1}
Find unassigned nodes adjacent to V , i.e., N (V ) = {u |u ∈ V, ∑v ∈V X (i )

uv = 0}
while |N (V ) | > 0 do

u: Randomly select a node from N (V )

X (i )
uv ← 1 ! Assignment
N (V ) ← N (V )\{v},V ← V\{v}

while |V | > 0
X ← X⋃{X(i ) }

return X

(subgraph). In the context of school districting, seeding identi!es each of the K school-containing
SPAs as center nodes as shown in Figure 4(a). This leads to creation of K partial subgraphs with
just a single node in it, thereby ensuring that constraint (1c) is satis!ed. The assignment of these
center nodes remain !xed throughout the partitioning process.

Guided growth. In the next step, the adjacency relationship between the spatial units are lever-
aged to grow the seed units into complete territories. This generates K connected subgraphs rep-
resenting a K partition of G. Figure 4(b) shows the guided growth phase, where a territory is
randomly picked and grown by adding an adjacent (unassigned) spatial unit to it. The process is
repeated until all the spatial units have been assigned to a territory, thereby satisfying constraints
(1b) and (1f).

Note that during the growth phase, the adjacent spatial units are added in a random manner to
grow the territories without consideration for the quality of the trial solutions generated. Hence,
it is more than likely that the trial solutions will have low solution quality. To improve these
solutions, we perform two steps of re!nement discussed next.

4.2 Local Improvement
The local improvement searches the immediate neighborhood of an incumbent solution for im-
proving the solution quality. Given the ith solution, X(i ) , we randomly pick a pair of subgraphs
V z and Vw (w, z ∈ {1, 2, . . . ,K }, w ! z) such that they are adjacent, i.e., |Ez,w | > 0. Then we
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Fig. 5. The local improvement helps to search for neighboring solutions that can be reached by flipping the
membership of a boundary node. The Flip proposal involves changing the assignment of a boundary node
followed by acceptance/rejection of the new solution.

ALGORITHM 2: Local improvement
Input : Population of solutions X, Contiguity graph G
Output : Updated solution
begin

for i = {1, 2, . . . ,Np} do
X̃(i ) ← X(i ) , f lipped ← False
while not !ipped do

Randomly pick two adjacent subgraphs V z and Vw , i.e., |Ezw | > 0
Find boundary nodes in Vw : N (V z ) = {v |(u,v ) ∈ Ezw ,u ∈ V z }
while |N (V z ) | > 0 && not moved do

v : From N (z) pick a random node v
Move node v from zone Vw to V z , i.e., X̃ (i )

zv ← 1, X̃ (i )
zw ← 0

if Vw and V z are contiguous then
if J (X̃(i ) ) < J (X(i ) ) | | rand (0, 1) ≤ pr then

X(i ) ← X̃(i ) , f lipped ← True ! Fitness-based replacement
else

X̃ (i )
zv ← 0, X̃ (i )

zw ← 1 ! Revert back the assignment

N (V z ) ← N (V z )\{v}

may move a boundary node fromV z toVw or vice versa. This !ipping of nodes between adjacent
subgraphs result in a new solution X̃(i ) . If this newly produced solution is of better quality, i.e.,
J (X̃(i ) ) < J (X(i ) ), then X̃(i ) replaces X(i ) in the population. Note that the connectivity of sub-
graphs V z and/or Vw may be broken during $ipping, thereby making X̃(i ) infeasible. To prevent
such infeasibility, we only allow a move if it does not break the contiguity of the involved sub-
graphs. The local improvement operation is illustrated in Figure 5 and the pseudocode is provided
in Algorithm 2. Since the local improvement of a solution is independent of other solutions, it can
leverage the parallel architecture of the computing platform.

The random selection of subgraphs, i.e., V z and Vw , for performing node swaps may lead to
redundancy. To prevent this, one may sequentially pick a subgraph, say,V z , from a randomized list
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Fig. 6. Theoretically, if the flip proposal is carried out su!icient number of times, then one may approximate
the stationary distribution of transitions of the state space, where each state correspond to a districting plan.

of subgraphs and determine adjacent subgraphs, say, Vw , for $ipping the node. This is continued
until a node $ip is made. A $ip is made when we !nd a better neighboring solution or we accept
an inferior solution, i.e., J (X̃(i ) ) > J (X(i ) ), with a very small probability pr . While the former
approach is greedy and prone to getting stuck at local optima, latter one helps in randomization
of the search move and is applied in metaheuristics like Simulated Annealing (SA) [52].

Markov Chains and Local Search. The local search mechanism here can be thought as instanti-
ating the Flip-based walk, i.e., generating a new solution or districting plan by changing the as-
signment of a single node as shown in Figure 5. Instantiating a series of $ips to generate a sample
of districting plans is akin to performing a random walk on the states of graph partitions and is
encoded by a Flip-based Markov Chain [19]. Relatedly, Markov chain Monte Carlo (MCMC) is
an e#ective technique for sampling owing to strong underlying theory, in the form of mixing the-
orems and convergence properties [22]. In context of redistricting, let us imagine each districting
plan representing a state and a random walk is being performed on this state space. As the walker
traverses from one state to another, we collect each state. On terminating the walk, this collection
constitutes the representative sample of the plans. Performing the Flip-based walk involves chang-
ing the assignment of individual geographic units along district borders. In the standard MCMC
paradigm, altering this basic step adjusts the stationary distribution. Figure 6 gives a rough ap-
proximation of the idea.

The main purpose of these sampling-based techniques is to compare the a given districting
plan in context of a representative sample, i.e., a set of valid alternative plans. Closely following
this is the need to relate the sampling distribution to the criteria set forth by domain experts.
This may be a tough ask, since any redistricting e#ort can be accompanied by a varying set of
criteria, some of which are di"culty to quantify objectively. Our objective here is di#erent. We
use a customized sampling distribution to generate an ensemble of plans and save the best-quality
plan, as determined by an objective function.

4.3 Spatially Aware Recombination
During local improvement, the individual solutions are improved independently without any ex-
change of information between them. Interestingly, it is possible to determine a better intermediate
solution by combining features from two solutions. Population-based methods enable mixing of
solutions through the recombination operation [26]. This results in better exploration of the search
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Fig. 7. Illustrating the individual steps involved in the spatially aware recombination operator.

space. However, the vanilla recombination operation is not suitable for spatially constrained prob-
lems. Hence, we develop the spatially aware recombination operation.

The recombination operation is motivated by the exchange of genetic material between di#er-
ent organisms, which leads to production of o#spring. In this process, two (parent) solutions, say,
X(i ) and X(j ) , are selected such that X(i ) is picked randomly while solution X(j ) is selected proba-
bilistically based on the !tness value. The !tness function is de!ned to allow solutions with lower
functional value have higher !tness as this is a minimization problem. For maximization, the !t-
ness can be set equal to the objective functional value. We expect that X(j ) is !tter than X(i ) and
thus X(i ) can learn from X(j ) . The steps of recombination operation are provided in Algorithm 3.

ALGORITHM 3: Spatially Aware recombination
Input :X : Population of solutions, G : Contiguity graph
Output : Updated solution
begin

Find the !tness values:H (i ) = 1
1+ |J (X(i ) ) | | ∀i = 1, 2, . . . , |X|

for i = {1, 2, . . . , |X|} do
X̃(i ) ← X(i ) , X̃(j ) : Probabilistically selected jth solution based on the !tness value
Randomly pick a subgraph V such that 0 < |V (i ) ∩V (j ) | < min( |V (i ) |, |V (j ) |)
Find the set of incoming nodes IV = {v |v ∈ V (j ) \V (i ) and ∃u ∈ V (i ) s.t. (u,v ) ∈ E} and
outgoing nodes OV = {u |u ∈ V (i ) \V (j ) and ∃v ∈ V (j ) s.t. (u,v ) ∈ E}
Randomly pick an incoming node v ∈ IV and an outgoing node u ∈ OV
Simultaneously insert node v into V (i ) and remove node u from zone V (i ) ; also update the
assignments in X̃(i )

If V (i ) has rendered non-contiguous by the swap operation, repair X̃(i )

for i = {1, 2, . . . , |X|} do
if F (X̃(i ) ≤ F (X(i ) ) then

X(i ) ← X̃(i ) ! Fitness-based update

Suppose a subgraph V is present in both solutions i and j, marked as V (i ) and V (j ) , such that
they have a common node. Every subgraph should satisfy this condition, since the center nodes
remain unchanged. The subgraphV (i ) is modi!ed by simultaneously inserting a nodev (present in
V (j ) but not in V (i )) and deleting a node u (present in V (i ) but not in V (j )). This swapping of node
steers solution X(i ) toward the !tter solution X(j ) as illustrated in Figure 7. In doing so, we expect
to !nd intermediate solutions that may have better !tness than the incumbent solution X(i ) .

Interestingly, the swapping of the nodes may break the connectivity of the involved subgraphs.
To reduce the chances of such undesirable scenarios, we perform the swap operation using
boundary nodes. Nevertheless, a repair operation still needs to be applied in case the connectivity
of the subgraphs are broken. To repair a solution, we use the breadth-!rst search traversal
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Fig. 8. During the recombination, the swapping of spatial units (a) may result in an infeasible solution (b),
which needs to be repaired (c) to make the solution feasible (d). As a result of these moves, the solution
oscillates between feasible and infeasible search space as demonstrated above. For illustration purposes, we
have depicted this oscillation through a continuous search space. We notice that the recombination plus
repair operation may result in a solution that di!ers from the incumbent solution by multiple hops. As a
result, it may approach (locally) optimal solutions.

for enumerating the connected components in the disconnected subgraph, say, V . Then, each
connected component is analyzed for the presence of the center node. If center node is absent,
then all the nodes in this component is reassigned to the neighboring subgraphs. When no
prior information about the center nodes is available, we may retain the largest-sized connected
component ofV and reassign the other components. The repaired solution X̃(i ) might be few steps
away from the incumbent solution X(i ) in discrete space and thus helps in controlled exploration
of the search space. The advantage of repair operation is shown in Figure 8. Note that we have
used a depiction of continuous search space in Figure 8 though this is a discrete optimization
problem. This was done to simply show the movement of a solution through the repair process.

The solutions newly generated from the recombination operation needs to be updated in the
population synchronously based on their !tness values. The solution update is important to keep
the !tter solutions in the population so as to make the search progress. With careful implementa-
tion, this step can be parallelized in modern computer systems by using multiprocessing.

5 EXPERIMENTATION
In this section, we conduct experiments with the proposed SPATIAL method and some well-known
metaheuristics on the school districting problem. The dataset description is provided in Section 5.1
followed by the performance metrics in Section 5.2. Details about setting the objective function and
the baseline methods are provided in Sections 5.3 and 5.4, respectively. The comparative evaluation
of the baseline methods is performed in Section 5.5 followed by studies on the e#ect of solution
initialization in Section 5.6 and computational analysis in Section 5.7. Next, Section 5.8 focuses on
a series of ablation tests for investigating the individual components of SPATIAL. Last, Section 5.9
studies how SPATIAL can aid planners in real-life planning.
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Table 1. Summary Statistics of the School Districts for the
School Year 2020–2021

District #SPAs (N ) #Schools (K )
Elementary Middle High

X 453 57 16 16
Y 1313 138 26 24

5.1 Dataset
The study was performed on two school districts (counties) located in the mid-Atlantic region of
the U.S. These school districts have seen recent population growth in certain areas, thereby making
the problem challenging for the SOPs tested here. The following GIS data attributes of both the
districts were used for experimentation.
• SPAs: The location coordinates of the spatial units along with aggregated student count at

di#erent school levels (Elementary, Middle and High).
• Schools: The location of the school building, school level, and its program capacity.

In comparison to the dataset used in Reference [9], the only di#erence is that here we used
the data for the school year 2020–2021. We resorted to using the new dataset, since many parents
unenrolled their children from the public schools at the onset of the COVID-19 pandemic resulting
in more population imbalance. This would present more challenging problem scenarios for the
redistricting algorithms. Table 1 presents the summary statistics of this new dataset.

We performed a few additional pre-processing steps. Speci!cally, we modeled the SPAs as nodes
in a graph and generated the adjacency relationship between the nodes. Also, we determined the
center nodes, i.e., the nodes corresponding to the spatial units containing schools inside them, by
performing point-in-polygon test using the PySal library [75].

5.2 Evaluation Metrics
The solution to the school redistricting problem generated by an algorithm is actually a plan or
a zoning con!guration of the school boundaries. For evaluating the plan, we utilized two perfor-
mance metrics that can be interpreted as percentage scores, since they lie in the range [0, 100].
• Balance measures the average balance between a school’s program capacity and the number

of students residing within its boundary. It is calculated as

bal (X) = 100 ×
######1 −

1
K

K∑

i=1

######1 −
∑N

u=1 Xuv i
· Lpu

∑N
u=1 Xuv i

· Lcu

######
###### . (3)

We penalized both under-enrolled and overburdened schools equally with respect to the ca-
pacity of schools. This is an important metric for school planners, since most of the boundary
changes occur to achieve a better balance in schools.
• Compactness measures how tightly a school’s boundary is packed on an average with

respect to its perimeter. A scaled Polsby–Popper score [73] is used to measure compactness
as

com (X) =
100
K

K∑

i=1

#######
4π · Area

(⋃ N
u=1{u |Xuv i

= 1}
)

[
Peri
(⋃ N

u=1{u |Xuv i
= 1}
)]2

#######
. (4)

Compact school boundaries often translate to proximal schools that students can walk to
and thereby lower the transportation cost incurred by the school district.
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5.3 Se!ing the Objective Function
The two objectives—balance and compactness—are con$icting in nature [11]. Hence an optimizer is
needed to tradeo# between the objectives while solving the problem. We ensured that the condition
λ/1−λ ≥ 2 held for both the districts while de!ning the objective function in Equation (2), i.e., we
set the weighing parameter λ in Equation (2) to 0.7 and 0.8 for districts X and Y , respectively. This
could ensure that the importance of population balance is at least twice3 as that of compactness.
The value of λ was higher for district Y, since it had higher population imbalance in the schools to
begin with. For each school district, we independently solved three instances of the redistricting
problem: ES, MS, and HS. We observed varying characteristics of the problem in each instance.

The ES instance of the problem is more challenging than the others due to di#erent factors.
First, a school district that has seen recent population growth is most likely due to an in$ux of
young children, which often leads to burgeoning demand for new ESs. Oftentimes, the new ESs
are situated at arbitrary locations without su"cient separation between them. This goes against
the clustering assumption of well-separated cluster centers. Second, the ESs exhibit a wide varia-
tion in their program capacity, with the newly built ones having higher capacity than their older
counterparts, thereby making it di"cult to balance the student population with the schools’ capac-
ity. In attempting to satisfy the schools’ capacities, the optimization algorithm may !ll in concave
segments in the school boundaries with regular-shaped spatial units having a high density of stu-
dent population. The MS and HS, being well separated and showing fewer deviations of capacity,
are comparatively easier to solve. Interestingly, the ES boundaries are more compact than their
MS and HS counterparts. In comparison to ES SAZs, a greater proportion of boundaries of MS
and HS share borders with the school district’s boundary, which is usually zigzagged by naturally
occurring geographies (highly irregular geometries). These additional considerations, besides the
spatial constraints, make school redistricting a challenging SOP to solve.

5.4 Baseline Methods
The following baseline methods are used for comparative study:
• Local search-based techniques: We set the parametric con!guration for each of these

baselines based on the literature [11].
– Stochastic Hill Climbing (SHC) [45]: A variation of the basic Hill Climbing that searches

the immediate neighborhood of a feasible solution in a random manner. If an equally good
or a better solution is found, then it replaces and the search continues till a local optimum
is obtained.

– SA [52]: A stochastic version of the Hill Climbing that is based on the process of tempering
of metals. It allows for worsening moves to take place if no better solutions are found and
can escape local optima.

– Tabu Search (TS) [34]: An algorithm uses a restrictive (tabu) list to forbid revisiting re-
cently explored solutions so that the new neighboring solutions can be explored.

• Sampling-based techniques: We include three sampling-based optimization techniques
developed based on the link between MCMC and redistricting stated earlier in Section 4.2.
– Balanced, Always Accept (BAA)
– Balanced and Compact, Always Accept (BCAA)
– Accept Improving Objective (AIO)
For more details about these techniques, refer to Chapter 5 in [8].

3Balancing a school’s attending population w.r.t. its program capacity is the driving forces behind school redistricting. This
is consistent with the actual practices of school planners, who give more importance to balance over compactness.
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Table 2. Performance of Peer Algorithms on the Problem of School Boundary Formation
in Both the Districts

District X

Models Elementary School Middle School High School
Balance Compactness Balance Compactness Balance Compactness

Existing 83.5020 ± 0.0000 32.5344 ± 0.0000 89.7379 ± 0.0000 26.7671 ± 0.0000 87.0786 ± 0.0000 27.3452 ± 0.0000
SA 87.7697 ± 0.8280 38.1032 ± 1.6977 92.3789 ± 0.5726 32.3574 ± 3.6421 96.4240 ± 1.9741 26.9094 ± 2.7749
TS 87.3788 ± 0.7079 36.4537 ± 1.5931 92.5729 ± 0.2888 33.0756 ± 2.1707 95.9435 ± 1.8527 28.3494 ± 2.1524

SHC 86.6755 ± 0.8642 36.5780 ± 1.7189 92.5583 ± 0.1806 32.3115 ± 2.3647 95.6461 ± 1.9090 27.9708 ± 2.1571
BAA 71.7328 ± 2.3193 30.5329 ± 1.5741 89.4501 ± 1.1493 18.6148 ± 1.6085 90.3080 ± 1.8968 16.8370 ± 1.7453

BCAA 71.0820 ± 2.4890 30.7455 ± 1.3047 90.1128 ± 1.5444 18.6181 ± 1.7215 90.9247 ± 1.6280 17.0758 ± 2.0001
AIO 86.6930 ± 1.0247 37.4850 ± 1.5981 92.4021 ± 0.4920 33.4105 ± 2.3518 95.7360 ± 1.7613 30.5854 ± 2.3411

SPATIAL 87.9353 ± 0.6175 38.8988 ± 1.4759 92.5926 ± 0.1191 37.5398 ± 1.6283 97.7948 ± 0.4602 31.5193 ± 1.8568
District Y

Models Elementary School Middle School High School
Balance Compactness Balance Compactness Balance Compactness

Existing 82.3835 ± 0.0000 35.9234 ± 0.0000 84.2310 ± 0.0000 27.7096 ± 0.0000 86.9541 ± 0.0000 26.8006 ± 0.0000
SA 94.6386 ± 1.0634 30.0782 ± 1.4172 91.3987 ± 1.1006 22.9419 ± 2.4456 93.1795 ± 1.5845 24.2182 ± 2.8013
TS 93.3600 ± 0.7183 29.7212 ± 0.6997 92.1146 ± 0.4123 25.5295 ± 2.8529 93.6894 ± 1.4057 26.4599 ± 2.7025

SHC 92.9656 ± 0.9595 29.7697 ± 0.9929 91.4258 ± 0.8386 24.5064 ± 2.5644 93.2757 ± 1.4755 24.3142 ± 2.1289
BAA 67.4731 ± 1.9623 27.1551 ± 0.8379 86.0361 ± 1.2005 10.3140 ± 1.1395 84.8948 ± 2.1824 10.1874 ± 0.8616

BCAA 67.3870 ± 2.1147 27.2899 ± 0.7668 86.6818 ± 1.4137 10.6439 ± 1.1396 85.4392 ± 1.7517 10.1476 ± 0.7313
AIO 93.0592 ± 0.8565 30.7064 ± 0.7959 91.9071 ± 0.5007 25.7025 ± 2.6570 93.4927 ± 1.4288 26.1186 ± 2.2065

SPATIAL 94.9097 ± 0.4351 30.2618 ± 0.9105 92.3780 ± 0.1295 27.8174 ± 2.2644 92.6337 ± 0.6078 29.6600 ± 1.5477
The best performing entries are marked in boldface.

• SPATIAL [9]: The population size was set to 10 and 20 for districts X and Y, respectively.
Trial runs were simulated to 1,000 and 2,000 iterations for districts X and Y, respectively.

Note that we considered two more baseline methods−Greedy Randomized Adaptive Search
Procedure (GRASP) [78] and MILP [83]. While GRASP’s performance was inferior to the other
baselines, MILP could not converge to a feasible solution for 4/6 test cases even with a run-
time budget of 24 hours. For codes of SA, TS, SHC, and SPATIAL, go to https://github.com/
subhodipbiswas/SpatialPartitioning and for the sampling-based techniques, check out https://
github.com/subhodipbiswas/SamplingbasedSchoolRedistricting.

5.5 Comparison with Existing Methods
For comparison purposes, we simulated 25 trial runs of each baseline and recorded the !nal so-
lutions. Each solution represented a districting plan of school boundaries, which were evaluated
based on the metrics de!ned in Section 5.2. In Table 2, we reported the mean and standard devia-
tion of these metrics. We also included the existing school boundary con!guration of the school
districts. It is marked as Existing in the table. The results revealed that SPATIAL was able to gen-
erate better-quality solutions in the majority of the test cases. This especially held for district X.
Besides achieving better balance, SPATIAL obtained improved compactness score. The di#erence
is especially marked when you compare the Existing plans with the plans generated by SPATIAL.

For district Y, the performance of SPATIAL was comparable to the baseline in terms of the
balance scores, yet the compactness scores were comparatively better. SPATIAL was the only model
that achieves at par or better compactness than the Existing plan. We observed similar trend
for district X. The baseline methods adopted a greedy approach by continuing to look for better
solutions in the local neighborhood of the incumbent solution. In doing so, the solutions lying just
outside their immediate neighborhood remained elusive to them. However, the spatially aware
recombination technique enabled SPATIAL to !nd intermediate solutions outside the immediate
neighborhood. The repair operation was particularly instrumental in !nding such solutions, some
ACM Transactions on Spatial Algorithms and Systems, Vol. 9, No. 1, Article 5. Publication date: January 2023.
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of which may be better than the solutions presented in the immediate neighborhood. This is in
line with the !ndings reported in Reference [33].

The sampling-based methods, with the exception of AIO, do not result in high-quality plans,
since they are not optimizing on a particular objective. They are designed to operate like random
search methods without a greedy selection procedure. AIO, however, applies greedy selection pro-
cedure and in essence similar to the techniques like SA, TS, and SHC.

5.6 E"ect of Solution Initialization
To inspect if solution initialization has any e#ect on the quality of solutions, we created a variant
of the baseline methods indicated by an asterisk−Algorithm∗ is the newly created variant of Algo-
rithm. If, say, SPATIAL starts with randomly generated initial solutions (as depicted in Section 4.1),
then the initial solutions in SPATIAL∗ will correspond to the existing boundary con!guration of the
school district under consideration. Since the school districts redraw their boundaries frequently
(in response to changing needs), the existing boundary con!guration represents a (locally) good
solution to the problem. This is akin to solving the school redistricting problem where we redraw
the school boundaries instead of designing them from scratch as in school districting. This sub-
tlety is more of a matter of technicality. Interestingly, while performing school redistricting, we
ensured that each school boundary was geographically contiguous to being with. If not, then we
would use the repair operation outlined earlier to reassign some SPAs for creating contiguous
school boundaries.

We ran 25 simulations on each school level of both the districts and tabulated the performance
metrics in Table 3. We observe that on an average the Algorithm∗ variants are better than Algo-
rithm in both the metrics. This is mostly because the existing solution that Algorithm∗ starts
with is of better quality than the randomly generated solutions used by Algorithm. For district
X, there is a clear trend showing that Algorithm∗ is better than Algorithm across all the possible
metrics and problem instances. However, we do see some exceptions in district Y, especially for
MS and HS problem instances. This can be attributed to the Algorithm∗ variants getting stuck in
a local optima. This is highly plausible, since the initial solutions of Algorithm∗ are very similar4

to each other. However, Algorithm may manage to escape the local optima courtesy the widely
varying range of the starting solutions it is initialized with. The number of local optima increases
exponentially with the increase in problem size. Hence, this trend is expected, since district Y is al-
most three times the size of district X. Note that both the variants of SPATIAL were able to achieve
superior results in majority of the cases.

Nevertheless, the advantage of Algorithm* variants like SPATIAL* is in recon!guration of the
existing school boundaries, i.e., it is useful in scenarios like opening of a new school or closure of
an existing school. However, to enable Algorithm* work successfully, it is desired that the existing
plan has a high percentage of connected subgraphs. For instance, some of the existing plans of
district Y did not have geographic contiguity (subgraph connectivity) and hence the disconnected
subgraphs have to be repaired. We noticed that a higher proportion of disconnected subgraphs, on
being repaired, results in arbitrarily shaped districts. For such districts, it may be di"cult to arrive
at a better con!guration due to the local structure that the problem imposes.

5.7 Computational Complexity and Ideas on Scaling Up
To analyze the computational complexity of these methods, we plotted the wall-clock time for
all trial runs in the form of error plots in Figure 9. Runtime analysis reveals that for the smaller

4The only di#erence between the solutions are due to the reassignment of discontinuous SPAs of school boundaries for
the purposes of maintaining the contiguity of the school boundaries.
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Table 3. The E!ect of Solution Initialization on Peer Algorithms

District X

Models Elementary School Middle School High School
Balance Compactness Balance Compactness Balance Compactness

Existing 83.5020 ± 0.0000 32.5344 ± 0.0000 89.7379 ± 0.0000 26.7671 ± 0.0000 87.0786 ± 0.0000 27.3452 ± 0.0000
SA 87.7697 ± 0.8280 38.1032 ± 1.6977 92.3789 ± 0.5726 32.3574 ± 3.6421 96.4240 ± 1.9741 26.9094 ± 2.7749
SA∗ 87.9809 ± 0.5044 40.9826 ± 1.0907 92.5345 ± 0.2965 37.1108 ± 2.1572 97.3246 ± 0.5107 33.0759 ± 1.8799
TS 87.3788 ± 0.7079 36.4537 ± 1.5931 92.5729 ± 0.2888 33.0756 ± 2.1707 95.9435 ± 1.8527 28.3494 ± 2.1524
TS∗ 88.2290 ± 0.3177 40.4481 ± 0.5532 92.7145 ± 0.0019 38.1273 ± 0.1339 97.3869 ± 0.1536 32.7663 ± 0.3416
SHC 86.6755 ± 0.8642 36.5780 ± 1.7189 92.5583 ± 0.1806 32.3115 ± 2.3647 95.6461 ± 1.9090 27.9708 ± 2.1571
SHC∗ 88.0565 ± 0.3398 40.4219 ± 0.6413 92.6503 ± 0.1009 37.9347 ± 1.1750 97.5288 ± 0.6344 33.3857 ± 1.6935
BAA 71.7328 ± 2.3193 30.5329 ± 1.5741 89.4501 ± 1.1493 18.6148 ± 1.6085 90.3080 ± 1.8968 16.8370 ± 1.7453
BAA∗ 83.0738 ± 0.6002 32.4948 ± 1.0189 92.1247 ± 0.3935 28.4179 ± 0.8139 94.5031 ± 0.7808 26.3284 ± 1.3810
BCAA 71.0820 ± 2.4890 30.7455 ± 1.3047 90.1128 ± 1.5444 18.6181 ± 1.7215 90.9247 ± 1.6280 17.0758 ± 2.0001
BCAA∗ 84.1403 ± 0.5138 32.2777 ± 1.0458 92.2637 ± 0.3897 29.6189 ± 1.0030 95.5958 ± 0.8448 26.2145 ± 1.6023

AIO 86.6930 ± 1.0247 37.4850 ± 1.5981 92.4021 ± 0.4920 33.4105 ± 2.3518 95.7360 ± 1.7613 30.5854 ± 2.3411
AIO∗ 87.7953 ± 0.4931 41.0278 ± 0.7990 92.6865 ± 0.0594 37.1659 ± 0.8954 96.6412 ± 1.0957 33.7013 ± 1.7627

SPATIAL 87.9353 ± 0.6175 38.8988 ± 1.4759 92.5926 ± 0.1191 37.5398 ± 1.6283 97.7948 ± 0.4602 31.5193 ± 1.8568
SPATIAL∗ 88.2474 ± 0.3008 41.6610 ± 0.9948 92.6639 ± 0.0642 39.9138 ± 0.7408 98.0286 ± 0.2052 35.2453 ± 1.2159

District Y

Models Elementary School Middle School High School
Balance Compactness Balance Compactness Balance Compactness

Existing 82.3835 ± 0.0000 35.9234 ± 0.0000 84.2310 ± 0.0000 27.7096 ± 0.0000 86.9541 ± 0.0000 26.8006 ± 0.0000
SA 94.6386 ± 1.0634 30.0782 ± 1.4172 91.3987 ± 1.1006 22.9419 ± 2.4456 93.1795 ± 1.5845 24.2182 ± 2.8013
SA* 95.1757 ± 0.5959 33.9204 ± 0.9149 91.4492 ± 0.6952 28.2519 ± 1.6041 92.2339 ± 0.4015 30.4304 ± 1.2035
TS 93.3600 ± 0.7183 29.7212 ± 0.6997 92.1146 ± 0.4123 25.5295 ± 2.8529 93.6894 ± 1.4057 26.4599 ± 2.7025
TS* 93.9882 ± 0.2143 37.4500 ± 0.4358 89.8580 ± 0.6495 31.9823 ± 1.0187 92.0073 ± 0.1227 34.3255 ± 0.7516
SHC 92.9656 ± 0.9595 29.7697 ± 0.9929 91.4258 ± 0.8386 24.5064 ± 2.5644 93.2757 ± 1.4755 24.3142 ± 2.1289
SHC* 94.2043 ± 0.5056 35.3233 ± 0.6058 90.7112 ± 1.3864 29.9091 ± 1.3810 91.9250 ± 0.0950 32.1575 ± 1.0527
BAA 67.4731 ± 1.9623 27.1551 ± 0.8379 86.0361 ± 1.2005 10.3140 ± 1.1395 84.8948 ± 2.1824 10.1874 ± 0.8616
BAA* 80.1400 ± 0.4253 32.3159 ± 0.4638 81.5796 ± 1.0063 22.8711 ± 0.9850 87.7556 ± 0.6411 22.6101 ± 0.7538
BCAA 67.3870 ± 2.1147 27.2899 ± 0.7668 86.6818 ± 1.4137 10.6439 ± 1.1396 85.4392 ± 1.7517 10.1476 ± 0.7313
BCAA* 81.3120 ± 0.3927 32.0952 ± 0.5303 83.1391 ± 0.9270 22.4642 ± 0.7627 88.9047 ± 0.5496 22.2048 ± 0.7405

AIO 93.0592 ± 0.8565 30.7064 ± 0.7959 91.9071 ± 0.5007 25.7025 ± 2.6570 93.4927 ± 1.4288 26.1186 ± 2.2065
AIO* 94.3157 ± 0.5046 35.8568 ± 0.7109 91.3974 ± 0.9010 31.1680 ± 1.5590 91.8972 ± 0.1067 33.0105 ± 1.1274

SPATIAL 94.6537 ± 0.3691 30.1714 ± 0.6381 92.3885 ± 0.1194 28.9142 ± 1.1682 92.6819 ± 0.7202 29.5414 ± 1.3540
SPATIAL* 95.3731 ± 0.3617 36.1492 ± 0.7468 91.7854 ± 0.2029 31.8754 ± 1.3194 91.9185 ± 0.1156 34.6683 ± 0.9838

The best performing entries are marked in boldface.

District X, SPATIAL takes longer time than the local search algorithms SA and SHC. TS is compar-
atively more expensive than any of the local search methods but much quicker than the sampling-
based techniques that simulate 10 million $ips. Interestingly, for the larger District Y, TS takes the
longest time and shows wide variation in the runtime. This high variance can be attributed to a
multitude of factors: strong dependence on initial solution, randomized order of search moves, and
the tendency to get trapped in local optima. We noticed that the methods applying local search do
su#er from these issues. Also, the design of local search and the computation of target compactness
may be reasons for a higher computation time. E"cient algorithm design can lead to overcoming
these bottlenecks. Interestingly, the sampling-based methods are built on top of the GerryChain
library, which is scalable to larger-sized problem instances.

The calculation of the Polsby–Popper compactness measure in techniques like SA, SHC, TS, and
SPATIAL, is a key computational bottleneck and it is imperative to look for faster alternatives. We
posit some ways in which techniques like SPATIALcan be made faster. First, spatial recombination
can be promoted at scale by swapping multiple nodes instead of pairwise swap in use presently.
This will help to promote better exploration of the search space. Second, !nding good initial
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Fig. 9. The wall-clock time of the di!erent methods reported for all the problem instances. The increase in
the problem size causes significant increase in runtime. This can be a"ributed to the combinatorial explosion
in the search space.

solution can help to accelerate the search signi!cantly. For instance, replacing the random assign-
ment of nodes (in the guided-growth phase in Section 5.6) with a distance-based assignment can
lead to more compact territories to being with. Last, for large-sized graphs roughly corresponding
to a grid structure and having high number of nodes per subgraph, the compactness measure can
be closely approximated by the edge cuts.

Figure 10 shows that a partition with compact territories can be obtained by minimizing the
number of edge cuts. The idea of edge cuts is a popular concept in graph partitioning literature
where algorithms like min-cut exist [14]. While this approximation might not produce compact
territories for problems like school redistricting, it might work very well for political districting
problems [3, 5].

As shown in Figure 10, to get compact boundaries we need to minimize the number of edge cuts
or retain the maximum number of existing edges while partitioning graphs. As such, the number
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Fig. 10. The dual graph of a 10 × 10 grid contains 180 edges (marked in grey). The red markers indicate
the edges removed to generate the corresponding partitions. Only 20 of these edges will be removed by a
partition that divides the grid into four compact territories (le#). However, a plan with arbitrary-shaped
territories (right) could remove up to 54 edges.

of edges retained can be a proxy to the compactness metric used here. Simulations on the school
redistricting problem have revealed 5–10× speedup in the algorithms using local search. However,
it comes at an added cost. The compactness of the boundaries su#er, this may lead to unnecessarily
elongated school boundaries and consequently increased commute time for students or higher
transportation costs for the school administration. However, for designing school boundaries in
city blocks, most of which are organized in square blocks, the notion of edge cuts can be useful.
Hence, the usage of the edge cuts for the school districting problem should be adopted with caution.

5.8 Ablation Study
5.8.1 How E!ective Are the Search Operators? To understand the e#ectiveness of the search

operators (local search and spatially aware recombination), we simulated 25 sample runs of
SPATIAL on district X with three possible con!gurations by selectively activating the operators.
They are as follows:
• Only the local search operator is activated.
• Only the recombination operator is activated.
• Both the operators are activated.

The results of each con!guration are depicted in Figure 11 as point estimates of evaluation met-
rics and their corresponding error plots. For fair comparison, we seeded the random numbers to
ensure that the starting solutions are similar for the di#erent con!gurations. Thus, any di#erence
in the performance of these con!gurations can solely be attributed to the search operators. The
local search operator helps in bringing about improvement in balance scores, whereas the recom-
bination operator is responsible for high compactness scores. As mentioned earlier, recombination
is less greedy than local improvement and is able to !nd (better) intermediate solutions beyond
the immediate neighborhood of the incumbent solution. Interestingly, when both the operators
are active, we noticed that the combined e#ect of the operators resulted in overall improvement
in the quality of solutions. While local improvement resulted in exploitation of the decision space,
recombination caused controlled exploration of the search space. Both are important for designing
practicable school boundaries.

5.8.2 What E!ect Does Population Size Have on Performance? SPATIAL employs a population
of trial solutions for solving SOPs. To study the e#ect of population size Np on the performance of
the algorithm, 15 runs of SPATIAL are simulated on the three test cases of district X for di#erent
values of population size, Np ∈ {10, 20, 30, 40, 50}. We observed increasing the population size
does not always translate to improvement in performance. This is a classic case of exploration–
exploitation tradeo# prevalent in optimization algorithms. A higher population size contributes
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Fig. 11. The performance metrics obtained by the di!erent combinations of search operators in SPATIAL.
We observed that the combined e!ect of both the operators resulted in be"er-quality solutions.

to diversi!cation (exploration), since more solutions can be distributed over the decision space.
To enhance intensi!cation (exploitation), the number of iterations need to increase in proportion
to the increase in population size. This would result in longer execution time. We came across an-
other related observation: Population-based metaheuristics without recombination operation may
not bene!t from a large population size, especially when the objective function is multi-modal
and the functional landscape has attraction basins with a local minimum. This happened since the
solutions present in this attraction basins would quickly eliminate other promising solutions (that
could have led to a better optima) due to !tness-based replacement of the solutions. The objective
function in Equation (2) presents similar challenges as it is multi-modal in nature. The recombi-
nation operation (along with the repair operation) helps to balance such basins of attraction and
preserve the solution diversity. Our observation is in line with recent !ndings by Chen et al. [17].
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Table 4. Comparing the Existing Plans with the Automated Plans of District X

Elementary School Middle School High School
SPATIAL∗ Existing SPATIAL∗ Existing SPATIAL∗ Existing

Compactness score 42.19 32.53 41.15 26.77 36.07 27.35
Mean distance traveled (in miles) 0.75 0.75 1.24 1.28 1.63 1.52
Max distance traveled (in miles) 9.84 11.75 15.51 17.14 15.84 14.19
Balance score 88.60 83.50 92.78 89.74 98.27 87.08
Number of balanced schools 42/57 31/57 15/17 14/17 16/16 14/16
(in %) 73.68 54.39 88.24 82.35 100.00 87.50
Number of under-enrolled schools 0/57 1/57 0/17 0/17 0/16 0/16
(in %) 0.00 1.75 0.00 0.00 0.00 0.00
Number of overcrowded schools 15/57 25/57 2/17 3/17 0/16 2/16
(in %) 26.32 43.86 11.76 17.65 0.00 12.50
Students displaced 8253/37521 − 2376/20059 − 3269/26728 −
(in %) 22.00 − 11.85 − 12.23 −

5.9 Using SPATIAL in Real-life Planning
In Section 5.6, we show how algorithms like SPATIAL∗ can be used in redesigning the school
boundaries to arrive at an alternative districting plan. Here, we analyze the practical implications of
using SPATIAL∗ in redistricting the school boundaries of both the districts. The evaluation entails
including additional metrics beyond the ones de!ned in Section 5.2.
• Distance-based metrics: As an alternative to compactness, we do include some distance-

based measures to get an idea of the distance traveled by students to reach schools.
– Mean distance traveled: This is the average distance a student travels to reach their respec-

tive schools. For computing this metric, we weighted the distance between the centroid of
the SPA and the assigned school location with the student population in the SPA.

– Maximum distance traveled: This is the maximum distance between the centroid of a SPA
and its assigned school.

• Balance-based metrics: In addition to balance metric, we included three more metrics to
highlight what proportion of schools are balanced, overcrowded, or under-enrolled.
– Number of balanced schools: The number of schools in which the attending student pop-

ulation is between 80 and 120% of the school’s program capacity.
– Number of under-enrolled schools: The number of schools in which the attending student

population is below 80% of the school’s program capacity.
– Number of overcrowded schools: The number of schools in which the attending student

population is above 120% of the school’s program capacity.
• Ethical metrics: Displacing students should be minimized, since these students lose social

ties to their cohorts. Thus, assessing a plan in terms of the social impact it may have on
students is equally important. We show how many students may get displaced if a given
plan is implemented.

For both the districts, we compare the best automated plan generated by SPATIAL∗ against the ex-
isting plan and tabulate the results in Tables 4 and 5. The results in Table 4 reveal that the automated
plans of District X have higher compactness values than the existing plan. However, that does not
always translate to less distance traveled. In fact, the mean distance traveled by students increases
in the automated plan is roughly same as in the existing plan. Interestingly, the automated plans
were able to balance a greater proportion of schools thereby relieving the overcrowding/under-
enrollment in the present schools. However, the improved balance comes at a cost. The last row
reveals that if the automated plan is to be implemented, then 22%, 11.85%, and 12.23% of the
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Table 5. Comparing the Existing Plans with the Automated Plans of District Y

Elementary School Middle School High School
SPATIAL∗ Existing SPATIAL∗ Existing SPATIAL∗ Existing

Compactness score 36.75 35.92 34.28 27.71 36.44 26.80
Mean distance traveled (in miles) 0.71 0.68 1.68 1.77 1.87 1.88
Max distance traveled (in miles) 5.05 4.13 11.75 12.26 13.51 14.02
Balance score 95.81 82.38 92.09 84.23 91.90 86.95
Number of balanced schools 132/138 91/138 22/26 17/26 21/24 18/24
(in %) 95.65 65.94 84.62 65.38 87.50 75.00
Number of under-enrolled schools 2/138 17/138 0/26 1/26 3/24 6/24
(in %) 1.45 12.32 0.00 3.85 12.50 25.00
Number of overcrowded schools 4/138 30/138 4/26 8/26 0/24 0/24
(in %) 2.90 21.74 15.38 30.77 0.00 0.00
Students displaced 21891/100278 − 6306/28647 − 10749/59593 −
(in %) 21.83 − 22.01 − 18.04 −

students in the elementary, middle, and high schools, respectively, will be displaced with respect
to the existing plan. We noticed similar tendencies in Table 5 for District Y. The only di#erence
being the percentage of students displaced. District Y has a high imbalance to begin with and the
school administration deal with this issue by making use of modular classrooms for accommodat-
ing the extra students. However, these modular classrooms are expensive and incurs additional
operational cost in the schools. The automated plan ended up changing the assignment of 15–20%
of the SPAs to achieve a better balance thereby resulting in high value of students displaced.

This massive reshu%ing of students is generally not encouraged and may only be done once in
a span of 4 to 5 years. Usually, in such scenarios, the !nal say about which criteria to prioritize
lies with the school planners. In doing so, they may consider other factors, including presence of
geographic or humanmade barriers, access to walk zones, socioeconomic diversity, the number of
students displaced, and so on. In fact, in an ill-de!ned spatial problem like school districting, any
automated plan cannot avoid modi!cation. The common practice is to use arrive at the !nal plan
by modifying a base plan or an automated plan based on subjective judgement.

6 CONCLUSION AND FUTURE WORK
This article proposes a metaheuristic-based approach for solving spatial optimization problems
like school districting. We highlight the (computational) di"culty of using exact methods for
solving such problems and motivate the need for sophisticated heuristics. To this end, the
SPATIAL approach makes use of spatially cognizant search operators for seeking improved so-
lutions by searching through the discrete search space characterized by spatial constraints. We
illustrate two key points here. First, we show how the idea of local search has theoretical under-
pinnings that $ow from the idea of MCMC sampling on graph partitions. This even led us to com-
pare additional sampling-based techniques for designing school boundaries. Second, the spatially
aware recombination along with the repair operation is instrumental in obtaining better-quality
solutions. An in-depth experimental investigation helped ascertain the e"cacy of SPATIAL and re-
lated methods in solving spatial partitioning problems. We also highlight some existing drawbacks
in the framework and provide pointers on ways to improve the framework.

Some possible research directions that can be undertaken in near future are as follows. First,
modifying the recombination operation by incorporating multiple swaps with repair can aid in
further exploration. Even techniques like ejection-chain methods can be helpful in this regard.
Second, developing a multi-objective version of SPATIAL by including multiple decision crite-
ria. This will help to incorporate other ethical considerations, including socioeconomic diversity,
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equal opportunity, past displacements, and so on, into the algorithmic model. Third, integrating an
sampling-based technique like MCMC with a population-based metaheuristic can help augment
the search process by enhancing the diversity of the solutions. Last, we can apply SPATIAL for
solving similar SOPs like political districting. This may require modifying the objective function
and constraint-handling technique.
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