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Recent advances in electron microscopy, including small convergent electron beams (nm to 
Angstrom in diameters) and ultra-fast detectors capable of acquiring 1,000-100,000 fps have given 
rise to a broad class of experiments under the moniker “4-D STEM”. In these experiments a small 
probe is rastered over a sample and a nano diffraction pattern I (kx, ky) is measured at each real 
space position (x, y) in the material. Local structure in the material is probed at (x, y) with each 
nano diffraction pattern containing important information about the structure. 
 
Techniques for analysis of this 4-D data are almost always automated due to the size and 
complexity of the datasets. Tens to hundreds of GB datasets are commonplace and ultrafast 
detectors routinely acquire TB sized datasets.  Methods for automated analysis include image 
filtering-based techniques such as symmetry STEM [2,3], angular correlations [1], and 
fluctuation microscopy [4]. Other methods identify specific diffraction features using peak 
finding methods for extraction of diffraction vectors at each (x, y) [5,6].  These methods can 
provide detailed analysis but are sensitive to the number of electrons and may miss many less 
intense diffraction features. 
 
We have developed a general methodology for finding a set of “important” diffraction features in 
a high dimensional data like 4D STEM datasets.  This method is well-suited to data sets with low 
signal measured from complex samples.  We define important features as features with 
significant extent in both (kx, ky) and (x, y).  The size can be adjusted, but the minimum size 
should be the diameter of the beam in real space and the convergence angle in reciprocal space. 
This requirement increases robustness against noise and reduces the chances of mis-identifying 
features from dynamic/inelastic scattering or other sources. 
 

The method is a generalization of the Laplacian of Gaussian approach [7] with specific 
parameters for 4-D STEM dataset. It can be described as follows for a 4-D dataset: (1) Apply a  
4-D  Gaussian  filter  to  the data with a kernel : (𝜎𝜎𝒓𝒓,𝜎𝜎𝒌𝒌) = (𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝒓𝒓) ∗ √2, 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝒌𝒌) ∗ √2) where 
rbeam(r/k) is the radius of the beam in (x, y) and the convergence angle in (kx, ky) respectively and 
(𝜎𝜎𝒓𝒓,𝜎𝜎𝒌𝒌) is sigma for the gaussian kernel in (x, y) and (kx, ky) respectively; (2) Calculate the 
Laplacian of the filtered data; (3) Identify local minima in the data from (2) as important 
features; (4) Refine and combine features from (3). The Gaussian filter acts like a bandpass filter, 
reducing contributions from features in the dataset which are less than the size of the beam and 
the convergence angle and therefore unphysical. It also smooths the data, reducing noise. The 
Laplacian is the second derivate in n dimensions, so peaks in the original data are local minima 
in the Laplacian. These local minima represent the set of “important” 4-D vectors in the data. 
Further processing determines their spatial extent in (x, y) and clusters them in (x, y) to create 
diffraction patterns arising from the same spatial object. The set of important 4-D vectors 
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captures the information content in the original data at dramatically reduced data size. The 
method has been implemented in the pyxem package [8] and operates using out of memory 
operations using multiple cores.  

Figure 1 shows analysis of a 4D STEM dataset acquired from a polycrystalline Al thin film on a 
carbon support with multiple overlapping grains. Figure 1a is the annular dark field STEM 
image. Figure 1b is a false colored image recreated from only the crystals identified from the 
important diffraction features. Overlapping grains in different orientations are readily 
distinguished. Figure 1c shows diffraction patterns recreated from two grains close to [011] and 
[111] zone axes. Automated analysis of similar reconstructed patterns could be used for 
orientation imaging on background-free, denoised data.  

Figure 2 shows similar analysis applied to a PdCuSi metallic glass. Speckle patterns from 
metallic glasses contain many “unimportant” speckles arising from random overlaps of atoms 
through the thickness of the sample, combined with dynamical and inelastic scattering. Figure 2a 
is a virtual darkfield image recreated from only the important diffraction features. This image 
emphasizes regions of the glass with strong structural order. Figure 2b-e show example 
reconstructed diffraction patterns with strong but partially complete 2-,4-,6- and 10-fold 
symmetries.  
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Figure 1: Analysis of 4D STEM data from a polycrystalline thin film. (a) annular darkfield image 
(b) all the nanocrystals identified, including overlapping crystals and crystals with weak 
diffraction that are not visible in (a). (c) and (d) reconstructed diffraction patterns from crystals 
close to [011] and [111] zone axes, respectively.  



 

Figure 2: Analysis of 4D STEM data from a PdCuSi metallic glass thin film. (a) virtual darkfield 
image created from only the important diffraction features. High symmetry clusters are colored 
blue for 2-fold symmetry, orange for 4-fold, red for 6-fold, and green for 10-fold. (b) – (e) 
example reconstructed diffraction patterns with at least partial versions of each symmetry.  
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