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ABSTRACT

Aluminium and magnesium matrix composites are attractive lightweight materials with
strength surpassing that of the corresponding matrix metals. Recent years have seen
extensive research aimed at finding ways to control the structure of metal matrix
composites and obtaining materials with new sets of properties. This review aims to show
that field-assisted sintering is a promising approach for the powder metallurgy processing
of aluminium and magnesium matrix composites. The review focuses on the achievements
in the compositional and microstructural design and properties of aluminium and
magnesium matrix composites obtained by spark plasma sintering, microwave sintering and
induction sintering. Issues related to the process scale-up in the field-assisted sintering
technologies are also addressed.
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Introduction

The weight of structural elements is an important fac-
tor for automotive, aerospace, marine and medical
applications. In recent years, extensive research has
been conducted to develop materials capable of pro-
viding the desired strength while keeping the weight
of a structure as low as possible. The innovative car
concepts have adopted the multi-material design
idea, the essence of which is to use the ‘best’ material
available for each function [1].

Aluminium and magnesium matrix composites are
attractive lightweight materials with strength surpass-
ing that of the corresponding matrix metals. The com-
posites can be based not only on aluminium or
magnesium matrices but also on Al- and Mg-based
alloys. Along with light weight and high strength,
the attractive properties of aluminium alloys are
high corrosion resistance, good ductility, thermal
and electrical conductivity, good machinability and a
variety of possible finishes. German [2] marks light
metals (titanium, aluminium and magnesium) as one
of the future prospects of sintering science and

technology. The powder metallurgy approach is
selected to make materials with refined microstruc-
tures compared with those produced by ingot metal-
lurgy. The market for sintered aluminium parts has
included business machines (with the greatest variety
of products), automotive components, aerospace com-
ponents, power tools, appliances and structural parts.
Sintered aluminium-based materials are used for the
fabrication of gears, levers, components for office
equipment, medical equipment and casings of small
electrical motors.

For composites, higher microstructure versatility is
a feature of the powder metallurgy processing as com-
pared with casting or infiltration methods. Tailored
microstructures often lead to improved mechanical
performance and corrosion resistance. In order to be
used as structural materials, aluminium alloys should
possess strength above 500 MPa at room temperature
and tensile elongation of 5% (high-strength alloys) [3].
Sintered aluminium alloy parts can be made competi-
tive with Al-based cast products, Al-based extruded
materials and other sintered metallic materials.
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Magnesium and its alloys possess attractive proper-
ties such as low density, good damping performance,
biocompatibility, recyclability and large hydrogen sto-
rage capacity, which give them prospects in aerospace,
transportation, biomedical and energy sectors [4]. The
difficulties that need to be overcome include low
strength, insufficient plasticity and low corrosion
resistance of magnesium alloys. The application of
magnesium alloys is limited by lower ductility and
lower mechanical strength as compared with alu-
minium alloys. Generally, aluminium alloys are less
expensive than magnesium alloys [5].

Recent reviews covering certain areas of field-
assisted sintering of metal matrix composites (MMCs)
indicate a growing interest in the possibilities of scien-
tific and technological upgrades of the conventional
processing of these materials [6-10]. The present
review aims to highlight the features of field-assisted
sintering of lightweight MMCs - composites with Al/
Al alloy and Mg/Mg alloy matrices — and mainly covers
the literature published in the past decade. The review
discusses the principles of the microstructure design,
the structure formation and mechanical and functional
properties of the Al/Al alloy and Mg/Mg alloy matrix
composites obtained by field-assisted techniques -
spark plasma, microwave and induction sintering

Physical principles of spark plasma,
microwave and induction sintering and
their application to aluminium and
magnesium

Spark plasma sintering

Spark plasma sintering (SPS) is a modern sintering
technique, in which the sample/tooling assembly is
heated by a pulsed direct current [11-19]. The main
feature of SPS is the simultaneous application of elec-
tric current and uniaxial pressure to the sample
(Figure 1). The die and the punches are usually
made of graphite, so the electric current passes
through the punches and the die and also through
the sample in the case of sintering of conductive
materials. A historical overview of the development
of the field-assisted sintering methods, including
SPS, can be found in the monograph [18]. In the
SPS, the electric current is applied in the form of
pulses, usually 3 ms long. In many laboratory facilities,
the pulse sequence is such that 12 pulses are followed
by an ‘off’ period having a duration of two pulses. The
voltage in the SPS facilities does not usually exceed
10 V.

Apart from Joule heating, electric-current effects
discussed in the context of SPS are electromigration
[20], electroplasticity [21] and plasma formation
[11]. The electric field effect on mass transport can
be taken into account by applying the electromigration
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Figure 1. Schematic representation of the tooling/specimen
assembly utilized in the SPS processing: (1) graphite die, (2)
graphite punches, (3) sample, and (4, 5) graphite spacers.

theory [22]. The flux J; of the diffusing species can be
expressed as

i =

e [RTBh (63
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where D, is the diffusivity of the ith species, C; is the
concentration of the species, F is Faraday’s constant,
z* is the effective charge on the diffusing species, E
is the field strength, R is the gas constant and T is
the absolute temperature. Effective charge z* is a par-
ameter, with which the strength of the electromigra-
tion effect is measured. It can be expressed as a sum
of z,4, a contribution from the electron wind and
z.5, an electrostatic component:

Z' = Zyat Za (2)

In some investigations, the possibility of plasma for-
mation was considered as a mechanism for fast densifi-
cation of metals and metal-containing mixtures [23,24].
It should be noted that Hulbert et al. [25] found no evi-
dence of the plasma state of matter in the normal SPS
runs. However, at voltages higher than those usually
used in the SPS furnaces, evaporation of metals and
transition of the gaseous phase into an ionized gas is
possible, as demonstrated by Saunders et al. [26].

With sintering acceleration observed in the SPS pro-
cesses relative to conventional sintering and hot press-
ing, the role of overheating of the inter-particle contacts
is of great importance. This question has been studied
theoretically and experimentally [27-29]. Kuz'mov
et al. [28] showed that the contact temperature may
be substantially higher than the average macroscopic
temperature of the compact such that melting of the
metal can take place in the vicinity of the contact.

An important question for the SPS processing of
metallic powders is the possibility of removal/disruption



of oxide films present on the surface of the particles. For
oxides that are easily reduced by carbon under con-
ditions of SPS, direct contact with graphite foil or tool-
ing was shown to be critical for surface cleaning and
reduction of the oxygen content in the sintered material
[30]. For oxides, such as Al,Os;, which cannot be
reduced by carbon at temperatures used for sintering
of the metal (Al), a loss of integrity of the oxide film
can occur, the concentration of the oxide in the material
remaining unchanged. An interesting work was
reported by Li et al. [31], who found that the heating
rate in the SPS influences the concentration of the
oxides in the sintered material. An AlgNiY,:Co,la; 5
glassy alloy in the form of powder was subjected to SPS
using two different heating rates (5°C min~"' and 40°C
min~"). The concentration of oxygen in the material
was significantly reduced after SPS conducted at the
higher heating rate. Efficient densification of the powder
at the higher heating rate was attributed to the removal
of the oxide films under the conditions of passing elec-
tric current. The evidence of more efficient densification
at 40°C min~' is shown in the corresponding micro-
graphs of the sintered compacts (Figure 2). Xu et al.
[32] indicated that a more significant volume expansion
of the metal relative to that of the oxide upon heating
caused the disruption of Al,O; films facilitating the for-
mation of metallurgical bonds between the Al particles.
Melting of aluminium can also contribute to the inter-
particle bonding quality. The above-described examples
show that surface cleaning may play a significant role in
the formation of bulk metals during SPS; however, it
cannot be regarded as a phenomenon always present
in the SPS processing of metallic powders. The possi-
bility of surface cleaning and the underlying physical/
chemical mechanisms of the oxide film removal depend
on many factors including the chemical nature of the
oxide, the thickness of the film and the crystal structure
of the film and its mechanical properties.

Microwave sintering

Microwave sintering uses the energy of a microwave
electromagnetic field, which is converted into thermal
advantage of

energy [33-37]. An important
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microwave heating is volumetric energy absorption
in many materials. Since the power generated by the
microwave source can be fully converted into thermal
energy to heat the sample (without the need to heat
the furnace elements), microwave sintering offers
much higher heating rates in comparison with
conventional processes. While bulk metals are opaque
to microwaves, metals in powder form are good
microwave absorbers [36,37]. The susceptor material
can be used when the powder to be sintered poorly
absorbs the microwave radiation. In composite
systems, one of the components can play the role of
a susceptor.

In a microwave sintering set-up (Figure 3), the sus-
ceptor material (silicon carbide, SiC) is rapidly heated
and provides heat to the specimen. The pre-com-
pacted specimen also absorbs heat. In this manner,
hybrid microwave heating occurs ensuring more
uniform heating of the specimen and eliminating the
disadvantages of conventional heating or heating by
microwaves only [38,39]. Due to rapid heating and
short cycles, microwave sintering of metal-based com-
pacts can be carried out in air without causing deterio-
ration of the mechanical properties of the sintered
materials.

Induction sintering

Induction sintering is based on the use of eddy cur-
rents induced in an electrically conductive material
[40,41]. The penetration depth of the eddy currents
h is determined as

1

N

where f is the frequency, w is the material magnetic
permeability and o is the material electrical conduc-
tivity. Induction sintering units are smaller and easier
to maintain than conventional sintering furnaces. A
conductive container or a die is usually used as a sus-
ceptor and is directly heated by the eddy currents
(Figure 4). In this case, the powder is heated through
radiation and thermal conduction. Alternatively, eddy
currents can be induced directly in the pre-

h =

3)

Figure 2. Microstructure of compacts obtained from an AlggNisY45C0;La, 5 glassy powder by SPS at 248.5°C at different heating
rates: (a) 5°C min~" and (b) 40°C min™". Reprinted from [31], Copyright (2013), with permission from Elsevier.
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Figure 3. Schematic representation of a microwave sintering
set-up: (1) microwave fumace, (2) crucible, (3) specimen, (4)
support, and (5) microwave susceptor (SiC powder).

consolidated compacts to be sintered. Both schemes of
induction sintering ensure fast heating, reduced sin-
tering times and high energy efficiency.

Field-assisted sintering: advantages over
conventional sintering

The advantages of the field-assisted sintering methods
over conventional sintering span high heating rates,
densification within shorter times and lower energy
consumption. For composites, a much wider range
of reinforcements is possible, as, by conventional sin-
tering, it may be rather difficult to preserve certain
reinforcing phases in the material. The availability of
powder consolidation methods capable of preserving
the inner structure of the composite particles in
terms of phase composition and phase distribution
significantly widens the range of achievable properties
of the composites. Normally, in the SPS, induction and
microwave sintering processes, the major fraction of
the material remains in the solid state. Only in the
high-temperature regions developing locally, melting
of the material can occur. Therefore, the initial micro-
structure of the powder particles is of importance, as it
can, to a great extent, be inherited by the sintered
material.
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Figure 4. Schematic representation of the susceptor (die)/
specimen assembly in induction sintering: (1) die, (2) punches,
(3) sample, and (4) induction coil.

Field-assisted sintering of unreinforced
aluminium and magnesium: mechanisms and
resulting materials

Investigations of field-assisted sintering of Al and Mg
powders shed light on the mass transport mechanisms
that operate during the processing of Al- and Mg-
based composite mixtures. In this section, the sinter-
ing behaviour of Al and Mg powders is discussed.
The only reinforcing element in the sintered metals
is the oxide phase originating from the native oxide
film unavoidable in the commercial and laboratory-
produced powders and powder mixtures.

Olevsky & Froyen developed a constitutive model
for SPS that takes into account different transport
mechanisms [20]. In that model, the contributions of
surface tension, external load and electromigration
to shrinkage were jointly analysed. It was found that
the electromigration-related material flux can be a sig-
nificant component of electric current-accelerated
diffusion. The model allowed constructing maps of
sintering mechanisms operating during SPS. Such a
map for an aluminium powder is shown in Figure 5.
The map indicates three porosity/grain size domains;
in each domain, the applied load, surface tension or
electromigration dominates as a driving factor of
material transport. The power-law creep induced by
an external stress dominates at high porosities. At
low porosities, the electromigration can become the
dominant mechanism. For small particle sizes and
low porosity, the surface tension was found to be the
main driving factor for densification. For very small
porosities in the electromigration-dominating zone,
the elimination of voids may require externally
applied loads. The results of modelling agreed
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Figure 5. Densification map for aluminium, UA=417Vm™", T
=673 K, o, =283 MPa. 7y is the effective external stress in x-
direction. Reprinted from [20], Copyright (2006), with per-
mission from Elsevier.



satisfactorily with the experimental data on the shrink-
age kinetics of aluminium.

According to Xie et al. [42], there are two types of
interfaces in aluminium obtained by SPS of a com-
mercially available powder: metal/metal and metal/
oxide/metal. The authors of that work saw the
main cause of the destruction of the oxide films pre-
sent on the surface of the powder in the plastic defor-
mation of the particles of the metal; the deformation
was more significant at a higher temperature. In the
bulk material obtained by SPS (600°C, 1 h) of a ball-
milled Al powder having 38 nm crystallites, a bimo-
dal grain size distribution was observed [43]. An
electron backscatter diffraction orientation image
map of the sintered aluminium is shown in Figure 6.
The authors attributed the presence of large grains to
the formation of high-temperature regions in the
sample during SPS. Virtually all grain boundaries
in the sintered material were of high angle (with mis-
orientations >15°).

During SPS, the response of the inter-particle con-
tacts, Joule heating and plastic deformation may play
significant roles varying with the particle size. Cheng
et al. [44] found that smaller magnesium particles
showed a less significant shape change and a smaller
degree of plastic deformation than larger particles.
This was explained by the hindering effect of grain
boundaries. Thermal softening, localized melting and
filling of the pores by the melt were considered as
mechanisms contributing to densification.
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When a Mg powder was sintered under a pressure
of 60 MPa at 525°C-585°C, compacts with relative
densities greater than 99% were obtained [23]. Along
with grain boundaries, the initial particle boundaries
could be observed (Figure 7). It was suggested that
the latter were due to oxides still present along the par-
ticle boundaries. The boundaries became less visible in
samples sintered at higher temperatures. The oxide
films remaining in the compacts influenced the frac-
ture behaviour of the material: facets corresponding
to the initial Mg powder particles were observed on
the fracture surface of the compacts sintered at 525°C.

For aluminium and magnesium, microwave sinter-
ing can lead to 82-85% reduction in sintering time and
energy savings of 96% compared with conventional
sintering [38]. In order to demonstrate the result of
the hybrid microwave process in terms of achieving
uniform heating, hardness of aluminium and mag-
nesium sintered cylindrical specimens was measured
along their radius [38]. The hardness of the hybrid
microwave sintered compacts did not change along
the radius of the specimen, while the compacts
obtained by conventional sintering were softer in the
centre.

The possibility of sintering aluminium powders by
induction heating was shown in ref. [45]: a mechani-
cally milled aluminium powder was sintered using
high-frequency induction heating. The powder was
cold-compacted before sintering. The induction sin-
tering process lasted only 3 min and, for

Figure 6. Euler contrast orientation image map of bulk aluminium obtained by SPS (600°C, 1 h) of the ball-milled powder, stearic
acid added as a process control agent. Black lines represent misorientations >15°. C represents the compression direction, and R1
and R2 are two orthogonal directions arbitrarily defined in the compression plane. Reprinted from [43], Copyright (2013), with

permission from Elsevier.
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Figure 7. Microstructure of magnesium obtained by SPS,
60 MPa, 5 min: (a) 525°C and (b) 585°C. Reprinted from [23],
Copyright (2011), with permission from Elsevier.

simplification, was conducted in air. No new phases
were detected in the sintered material, which showed
that induction sintering of aluminium is possible in
air without any significant oxidation-related effects.

In the processing of composites, the above-men-
tioned mass transport mechanisms are supplemented
by those related to the direct interaction of the reinfor-
cing elements with the electric current/electromag-
netic radiation and chemical interactions at the
matrix/reinforcement interfaces, as discussed in the
following sections.

Recent trends in the selection and design of
reinforcements for aluminium and
magnesium matrix composites

In this section, traditional and novel reinforcement
options for aluminium and magnesium matrix com-
posites are presented. All these reinforcements can
be used in composites processed by SPS, induction
and microwave sintering. Traditional reinforcements
in MMCs are ceramic particles, whiskers and fibres
[46]. Sharp corners of the reinforcing elements limit
the ductility of these composites [47]. There is a possi-
bility that local overheating can lead to rounding of
the sharp corners of the particles of the hard phases

during a field-assisted sintering process. The structure
formation of ceramic particle-reinforced aluminium
matrix composites obtained by field-assisted sintering
is the subject of recent publications [48-58]. Poor
wettability between the metal matrix and the ceramic
reinforcement leads to the formation of difficult-to-
eliminate porosity at the interfaces. The porosity can
also concentrate within the agglomerates or clusters
of the reinforcing particles. Sweet et al. [54] produced
aluminium matrix composites reinforced with par-
ticles of SiC, AIN or Si;N, by SPS. They found that
full densification of composites containing fine cer-
amic particles was problematic due to the presence
of ceramic clusters. The extent, to which aluminium
could be forced into those (cluster) regions, deter-
mined the residual porosity of the composite. The
clusters were, therefore, the principal source of
residual porosity of the sintered composites. After sin-
tering at low temperatures, pores were present
between the ceramic particles in a cluster, as alu-
minium did not penetrate the cluster. As the sintering
temperature was increased, partial or full penetration
of the metal into the clusters was observed.

As seen from examples of ref. [54], ceramic par-
ticles in a metal matrix, if clustered, do not sinter
with each other under consolidation conditions
selected based on the properties of the metal matrix.
Those clusters, therefore, comprise a disproportionate
part of the total porosity of the composite. In order to
fully eliminate the porosity, it is desirable to design
composites in such a manner that the particles of the
matrix material and those of the reinforcement sinter
within the same temperature range. The idea behind
the use of metals or metallic alloys as reinforcements
is based on the introduction of a harder and stronger
metal into matrices of softer metals. In the case of
reactive metals, intermetallic layers can form between
the particle of the harder metal and the matrix [59,60].
The reinforcement will thus be represented by par-
ticles with a core-shell structure.

A rapidly developing trend in the area of MMCs
with Al/Al alloy and Mg/Mg alloy matrices is to use
metallic glass as a reinforcement. Above their glass
transition temperatures, metallic glasses enter a tech-
nologically attractive Newtonian flow in the super-
cooled liquid region AT, between the glass transition
temperature T, and the crystallization temperature
T,. The advantage of metallic glass is its softness and
deformability within the supercooled liquid region
AT, and its very high strength at ambient tempera-
tures [61]. Similar to oxide glasses, in the supercooled
liquid region AT, above T, the viscosity of metallic
glasses drops drastically and they become liquid-like.
Owing to their excellent mechanical properties at
room temperature, metallic glasses present a highly
promising alternative to ceramic reinforcements,
being particularly suitable for strengthening low-



melting temperature metal matrices, such as Al and
Mg and their alloys. The composite materials should
be designed in such a way that the chosen sintering
temperature of the composite powders is within the
supercooled liquid region AT, of the glass while
being close to the solidus temperature of the matrix
alloy. Figure 8 illustrates this approach and schemati-
cally shows a drop in the yield stress in metallic glasses
and Mg alloys (as possible matrix materials) with the
temperature [62]. After compaction to full density
and cooling to below T, and further down to room
temperature, the glassy particles become the hard
reinforcement phase. Consolidation of the metallic
glass-matrix metal (alloy) powder mixtures at temp-
eratures below T, is also possible, if high pressures
are used and a temperature-related viscosity drop of
the metallic glass is not necessary for eliminating the
porosity.

The limitations imposed by the need to preserve a
metastable phase may, in some cases, prevent high-
quality sintering of the composite as a whole. As an
alternative to metallic glasses, high-entropy alloys
[63] are suggested for metal reinforcing purposes.
These alloys are thermally stable and possess enhanced
mechanical properties relative to conventional alloys.
Owing to inherent high hardness and strength [64],
quasicrystalline alloys can also be used as reinforcing
phases to strengthen softer metallic matrices.

Extensive research has been carried out to find the
possibilities of incorporating carbon nanotubes
(CNTs) and graphene into Al and Mg matrices [65-
68]. The use of hybrid reinforcements (two or more
reinforcing phases in the same composite) is justified
when each reinforcing phase plays a specific role
[69-71]. Kwon et al. [69] obtained aluminium matrix

Metallic glass

Yield stress

Mg alloy

Tg
Temperature

Figure 8. Schematic illustration of the change in the yield
stress of a metallic glass and a Mg alloy with increasing temp-
erature. T, is the glass transition temperature of the metallic
glass. Reprinted from [62], Copyright (2009), with permission
from Elsevier.
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composites reinforced with CNT's and nano-sized SiC
particles. The presence of SiC facilitated mixing of alu-
minium and CNTSs during ball milling, so the particles
of SiC could be considered as a mixing agent. At the
same time, CNTs acted as a lubricant during milling.
In the sintered material, particles of SiC reduced the
contact area between the Al matrix and CNTs and
amount of Al,C; formed at the interface.

Features of the in-situ synthesis of
reinforcements during field-assisted
sintering

Synthesizing new phases and consolidating the pow-
der within the same field-assisted process offers,
along with a technological advantage of reducing the
number of processing stages, a possibility of influen-
cing the chemical reactivity of the materials under a
specific action of the electric field. Historically
designed for solid-state sintering, SPS has emerged
into a method of solid-state synthesis under applied
electric current and mechanical pressure [72]. SPS
dies can be used as chemical reactors for conducting
the syntheses of single-phase materials and compo-
sites. As, in real SPS processes, the heated and com-
pressed sample is, in most cases, a mixture of
powders, an increase in the chemical reactivity
under the intrinsic action of electric current is not
always easy to quantify. In the reaction mixtures, the
contact conditions between the particles of the reac-
tants influence the current density and the tempera-
ture in the vicinity of the inter-particle contacts.

During reactive SPS, the Kirkendall effect can cause
the formation of pores. Zhang et al. [59] studied the
formation mechanism of tungsten aluminides in
80 at.% Al-20 at.% W mixtures subjected to SPS. The
aluminium matrix composites were obtained through
solid-state diffusion. The particle size of the metallic
powders in the initial mixture was found to influence
the phase formation and the microstructure of the
solid-state sintered material. The reinforcements con-
sisted of W particles surrounded by Al,W and Al,,W,
when micrometer-sized particles were used for the
synthesis. The material was not well densified owing
to the occurrence of the Kirkendall effect.

The sintering time was found to be critical for
obtaining materials with improved mechanical
strength by reactive SPS. Rodriguez et al. [73] pro-
duced aluminium matrix composites by adding
small amounts of zirconium to aluminium (0.5, 1
and 1.5 wt.%) and sintering the mixtures by SPS. In
order to introduce zirconium into aluminium, a col-
loidal process based on the use of a zirconium alkoxide
was applied. After 3 min of holding the alloy at 625°C
during SPS, no intermetallic particles were observed in
the microstructure; however, after 1 h, ZrAl, platelets
nucleated and grew, becoming visible in the
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microstructure as inclusions in the Al matrix. Zirco-
nium additions significantly decreased the mechanical
strength of the composites relative to pure aluminium
when the sintering time was only 3 min. The Zr-con-
taining alloys sintered for 1 h showed higher stiffness
and yield strength than the unreinforced aluminium
sintered under the same conditions.

In the past decades, microwave energy has been
widely used for the synthesis of materials [33], includ-
ing the synthesis in the combustion mode [34]. The
advantage of the energy transfer by means of micro-
waves over conventional heating is the direct inter-
action of the electromagnetic waves with the
reactants and intensification of the reaction processes.
In both processes, heating up to the ignition tempera-
tures is possible without a susceptor. When micro-
waves are used for the ignition, the target
temperature is first reached in the centre of the sample
and the combustion front propagates from the centre
through the entire volume. After the reaction is com-
plete, the process can continue to sinter the syn-
thesized material into a bulk sample. Induction
heating can also be used for the synthesis and ignition
of self-propagating high-temperature reactions in
powder mixtures [74].

Development of the interfaces between the
matrix and the reinforcement in the
processes of rapid sintering

Using methods of rapid sintering, it is possible to
obtain matrix/reinforcement interfaces formed by
interdiffusion across distances of only a few nan-
ometers. A ‘non-equilibrium’ interface was obtained
in aluminium matrix composites reinforced with
CNTs [75]. The ‘non-equilibrium’ term was used to
describe an interface that formed prior to crystalliza-
tion of the carbide, Al,C;, layer. The layer containing
Al and C was formed between the matrix and CNT
due to the interdiffusion of the elements. The for-
mation of amorphous interfacial layers was possible
owing to rapid cooling after SPS (at a rate of 500°C
min~"). The carbon contained in this layer originated
from an amorphous carbon coating on the surface of
CNTs formed during the powder processing before
sintering. The formation of the ‘non-equilibrium’
interface allowed improving the tensile properties of
the composites.

In order to enable load transfer from an Al matrix
to multi-walled CNTs (MWCNTs), certain amounts
of Al,C; should be allowed to form [76]. The following
aspects of the formation of Al,C; at the interface were
highlighted: (1) ALC; may bridge the outmost and
inner walls of the MWCNT preventing peeling of
the outmost wall from the inner walls; (2) nano-
sized Al,C; enhances the interfacial shear resistance
between the MWCNTs and the Al matrix, preventing

the pullout of MWCNTSs from the matrix. As the con-
centration of Al4C; is critical, it is important to pre-
cisely control the conditions of heat treatment of the
composites. In ref. [76], an induction furnace was
used to controllably heat-treat composites sintered
by SPS.

The features of the interfaces developing in Zrgs
CuygNiyAly, metallic glass-Al 7075 composite
obtained by SPS were studied by Wang et al. [77].
The composite consists of a face-centred cubic (fcc)
Al matrix, an amorphous alloy reinforcement and pre-
cipitates in the matrix. The selected-area electron
diffraction (SAED) pattern of the area corresponding
to Figure 9(a) indicates the presence of an amorphous
phase and nanocrystalline fcc-Al (Figure 9(c)). SAED
patterns taken from area 1 (metallic glass reinforce-
ment), area 2 (fcc-Al) and the MgZn, precipitate of
Figure 9(a) are shown in Figure 9(d-f), respectively.
The precipitate was confirmed to be the n-MgZn,
phase (Figure 9(f)). The interface between the metallic
glass and the fcc-Al matrix was observed using high-
resolution  transmission electron  microscopy
(HRTEM), as shown in Figure 9(b). A thin layer
(thickness of 2-3 nm) was formed at the interface as
a result of short to medium range atomic diffusion.
This thin interdiffusion layer provided good bonding
between the matrix and the reinforcing phase enabling
efficient load transfer from the matrix to the reinforce-
ments upon mechanical loading. The limited diffusion
between the two phases favoured interfacial bonding
and was due to the fast consolidation of the powders
at a moderate temperature (SPS at 300°C/600 MPa/
10 min).

Microstructure formation of aluminium and
magnesium matrix composites obtained by
field-assisted sintering

Aluminium and magnesium matrix composites
obtained by SPS

In this section, examples of the microstructure evol-
ution of aluminium and magnesium matrix compo-
sites during SPS are presented and discussed for
systems of different compositions. The evidence of
local overheating during SPS is also analysed.

An interesting microstructure development was
observed during SPS of an Al powder ultrasonically
mixed with BN nanoparticles [78]. As seen in Figure
10(a), the agglomerates of BN nanoparticles are
located in the spaces between the Al particles after
SPS at 600°C for 5 min. When the holding time was
increased to 60 min, the BN nanoparticle regions
were intermixed with aluminium (Figure 10(b)).
Intermixing was attributed to local melting of alu-
minium at the inter-particle contacts during SPS.
The real temperature of the sample was also found
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Figure 9. TEM/SAED microstructure of ZrgsCu,gNizAl,o metallic glass-Al 7075 composite obtained by SPS: (a) bright-field TEM
image, (b) HRTEM image of the interface between the metallic glass and the fcc-Al matrix, (c) SAED of the area corresponding
to (a), (d) SAED of area 1 indicating an amorphous structure, (e) SAED of area 2 indicating fcc-Al structure, and (f) SAED of the
precipitate phase indicating the n-MgZn, structure. Reprinted from [77], Copyright (2016), the article is available under a Creative
Commons Attribution 4.0 International License, http://creativecommons.org/licenses/by/4.0/.

to be slightly higher than the measured temperature,
as, when aluminium was sintered at a temperature of
620°C measured in the graphite die, molten alu-
minium was found to squeeze out of the die.

Guan et al. [79] emphasized the importance of con-
trolling the interfacial interactions between the alu-
minium matrix and the metallic glass reinforcement.
By using SPS and hot rolling conducted at a tempera-
ture below the crystallization temperature of the met-
allic glass, it was possible to preserve the cores of the
reinforcing particles amorphous with only outer layers
crystallized and reacted with aluminium to form FeAls
(Figure 11).

During SPS at 550°C, a diffusion layer was formed
between CoCrFeMnNi high-entropy alloy particles
and the Al 2024 alloy matrix [80]. The layer was ser-
rated on the aluminium alloy side. The authors
suggested that this layer formed under conditions of
high local temperatures developed during SPS. The
hardness of the composite material was found to be
higher than that of the aluminium matrix and higher
than predicted by the rule of mixtures due to the

presence of the interdiffusion layer and a gradient
interface microstructure beneficial for reducing the
stress concentration at the interface. Liu et al. [81]
showed that, in composites sintered from a mixture
of Al and AlCoCrFeNi high-entropy alloy powders,
the thickness of the interfacial layer increases with
the sintering temperature. This layer has an increased
concentration of aluminium relative to the high-
entropy alloy and presents an Al-based solid solution
containing Co, Cr, Fe and Ni. The grains of the tran-
sition layer were found to be in the sub-micrometer
range, while those of the Al matrix and the high-
entropy alloy were 20 and 4 um, respectively. Finer
grains of the diffusion layer were explained by the for-
mation of melt upon the passage of current followed
by rapid solidification. The authors considered this
layer to be favourable for the transition from the iso-
stress to the iso-strain deformation mode of the com-
posite. When the interfacial layer reached a certain
thickness (after sintering at 580°C), the hardness of
the composite was close to the upper bound calculated
from the Voigt model.
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Figure 10. Microstructure of Al-4.5 wt-%BN nanoparticle composites obtained by SPS at 600°C: (a) holding time 5 min and (b)
holding time 60 min (back-scattered electron images). Reprinted from [78], Copyright (2015), with permission from Elsevier.

A high-entropy Al, ¢CoCrFeNi alloy was used to
modify the properties of an amorphous AlgCuyes.
Tig 5 matrix [82]. The starting high-entropy alloy pos-
sessed a single-phase body-centred cubic (bcc)
structure. The composite sintered by SPS at 550°C
consisted of the bcc phase, fcc phase, AlCu, AlCu,Ti
and an amorphous phase (the sintering temperature
was higher than T of the initially amorphous matrix
alloy powder). The formation of the fcc phase in the
composite was attributed to localized high tempera-
tures during sintering, as the consolidation tempera-
ture was below the bcc to fcc + bec transition of the
high-entropy alloy. An interdiffusion layer formed
between the reinforcing particles and the matrix.
The elemental composition of this layer showed that
its formation cannot be attributed to (slow) solid/
solid interdiffusion or rapid crystallization of the
amorphous matrix. It was, therefore, concluded that
this layer formed as a result of enhanced diffusion
under the effect of localized high temperatures. The
authors proposed a model to calculate the temperature
increase AT due to the passage of electric current in
different regions of the composite structure. It was
concluded that the amorphous layer contacting the
high-entropy particle was heated more significantly
than the particle itself. The sintered composite

3
Al

1 pm

irregular
prominences

Figure 11. Microstructure of the composite obtained by SPS
of 40 vol.-% Fe¢yCry sMogCy3B;-Al mixture followed by hot roll-
ing (a) and the structure of the interface (b). Reprinted from
[79], Copyright (2019), with permission from Elsevier.

material had a very complex microstructure and
exhibited high compressive strength (~3 GPa).

A comparison of results of SPS of Al-FegsCr;oNbs
B,y powder mixtures with those of SPS of a pre-com-
pacted pellet of the same composition (compaction
pressure 400 MPa) suggested that local heating at the
interface caused by interfacial resistance is an impor-
tant factor influencing the reaction advancement at
the interface and the formation of intermetallics [83].

In an investigation of the formation of aluminium
matrix composites reinforced with carbon fibres
during SPS, Lalet et al. [84] found that the pulse par-
ameters (the number of ON and OFF periods)
influenced the interfacial reactions. With the ON/
OFF pulsing ratio set at 24:1, a microstructure similar
to that of composites obtained by hot pressing was
observed. Under 12:2, 6:4 and 3:3 pulsing patterns,
the oxide layer present on aluminium fractured and
Al,C; formed at the Al/carbon fibre interface. The
direct contact between aluminium and the fibre was
explained by the infiltration of molten aluminium
through the disrupted AL, O3 layer. When the pulsing
pattern was such that the ON time was short, a high
current had to be applied: at 4:6 pulsing pattern, mol-
ten aluminium leaked out of the die, although the
temperature measured by the thermocouple (in direct
contact with the sample) at that moment was only
500°C. Therefore, the application of a high current
led to significant overheating and caused melting of
aluminium. The observed crystallization of the
initially amorphous Al,Oj; layer was also put forward
as the evidence of high local temperatures.

Aluminium and magnesium matrix composites
obtained by microwave sintering

In composites sintered by microwaves, the presence of
a component absorbing microwaves plays an impor-
tant role in the microstructure formation. The influ-
ence of susceptor contained in the composite
mixture is discussed below using examples elaborated
in refs. [67,85-87]. Silicon carbide SiC is often used as



a reinforcement in MMCs sintered by microwaves.
Thakur et al. [85] used two-directional (hybrid)
microwave sintering to fabricate Al/Ti metastable
composites and Al/(Ti+SiC) composites. SiC particles
contained in the powder mixtures contributed to the
heating process of the compact by acting as a micro-
wave absorbent. CN'Ts added to a Mg alloy played a
dual role of mechanical reinforcement and microwave
susceptor [67]. It was found that the interaction
between an Al matrix and WC reinforcing particles
occurred at lower sample temperatures in microwave
sintered composites than in conventionally sintered
composites [86]. Microwave heating caused a higher
temperature at the interface of Al and WC particles
than the macroscopic sample temperature due to the
superior absorption of microwaves by the WC par-
ticles. The formation of interfaces in Al/(Ti,W)C com-
posites prepared by microwave sintering was studied
by Zheng et al. [87]. Microwave sintering at 580°C,
which is close to the solidus temperature of Al 6061
alloy, led to the formation of compacts with altered
shape because of bubbling and melt squeezing out of
the compact. The evidence of local melting of the
matrix material was also found in the microstructure
of the sample sintered at a lower temperature (560°
C): the corners of the (Ti,W)C particles in the sintered
material were not as acute as in the raw powder. It was
suggested that the presence of a liquid phase between
Al and (Ti,W)C was caused by a higher absorbing abil-
ity of (Ti, W)C in comparison with the Al alloy and an
additional heat transfer to the alloy matrix surround-
ing the ceramic particles. The ability of the (Ti,W)C
particles to absorb the microwave energy could be
enhanced by their geometrical characteristics - a
small size and the presence of sharp surface features.

Treatment of powders by microwaves can also be
used for realizing the combustion synthesis of
MMCs. In-situ AL, O;- and Al;Zr-reinforced alu-
minium matrix composites were obtained by the
SiC-assisted combustion synthesis [88]. The reaction
mixture was composed of Al and ZrO, powders. Alu-
minium was taken in excess to form both the matrix
and the reinforcing phases. The synthesis of the com-
posite occurred via the following reaction:

13Al + 3ZrO, = 2A1,05 + 3Al3Zr

The heating profiles of Al+ZrO, powder mixtures
in a SiC susceptor-assisted microwave combustion
synthesis process are shown in Figure 12. The reaction
mixture with stoichiometry to fully convert alu-
minium into the ceramic phases (mixture C) shows
a very fast temperature rise corresponding to the com-
bustion reaction. In mixtures A and B, due to excess
aluminium, the temperatures developed during the
synthesis were lower. The microstructure of the com-
posites was found to be finer than that of the
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Figure 12. Heating profiles of Al + ZrO, powder mixtures in a
SiC susceptor-assisted microwave combustion synthesis pro-
cess, the compositions of the mixtures correspond to the for-
mation of 30 vol.-% (A), 50 vol% (B), and 100 vol.-% (C) of
Al,0; + AlsZr reinforcing phases. Reprinted from [88], Copy-
right (2015), with permission from Elsevier.

composite prepared by annealing of the cold-pressed
pellets in a vacuum furnace at 1100°C for 10 min
(Figure 13). In the microstructure of the composites,
the dark background is the Al matrix, rectangular
grey particles are the AlsZr reinforcement, fine par-
ticles prepresent the AL O3 phase.

Aluminium and magnesium matrix composites

obtained by induction sintering

As induction sintering is not used as widely as SPS for
the production of composites, the available structural

Al

Al,Zr

Al

Al,Zr

Figure 13. Microstructure of Al-Al,0s-AlsZr composites
obtained by microwave combustion synthesis (a) and syn-
thesis via vacuum furnace annealing (b). Dark back ground -
Al matrix, rectangular grey particles — Al;Zr, fine particles —
Al,0;. Reprinted from [88], Copyright (2015), with permission
from Elsevier.
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and mechanical property data are rather limited.
Induction heating has been successfully used for pro-
ducing metallic glass-reinforced composites with Mg
and Al alloy matrices [62, 89-91]. Al alloy 520.0
strengthened by Cus,Zrs;4Ti;, metallic glass particles
was obtained in ref. [89]. The composite was sintered
by induction heating in a steel die under a pressure of
50 MPa at the maximum temperature of 720 K (which
is within the supercooled liquid region of the Cus,.
Zr3sTi)o metallic glass) with a holding time at this
temperature of 2 min. Although the pressure during
sintering was not very high and the holding time
was very short, the composite was fully dense. The
material featured a uniform distribution of the glassy
reinforcement particles in the matrix.

Comparative investigations: the influence of
the sintering method on the phase
composition and microstructure of the
composites

The heating method of the powder mixtures was
shown to influence the phase composition of the sin-
tered material. The Al-VC mixtures were sintered by
conventional and microwave sintering; the maximum
temperature was the same in those experiments (600°
C) [92]. In the microwave sintering experiment, the
sample was not soaked at the maximum temperature.
Under conventional sintering conditions, the mixture
was held for 1h at the maximum temperature. VAl;
intermetallic formed only in the microwave sintered
material and was a result of the interaction between
VC and Al No reaction between the phases was
observed in the conventionally sintered material.
The authors explained enhanced reactivity of VC
towards Al under microwave treatment by high local
temperatures developing due to microwave absorption
by the vanadium carbide particles. Under conven-
tional sintering, no physical basis was present for
increasing the temperature in the vicinity of VC par-
ticles. In ref. [93], Al alloy matrix composites contain-
ing hybrid reinforcements were developed by
microwave and conventional sintering. The microwave
process was proved to be more efficient for achieving
densification (at the same measured temperature) lead-
ing to increased hardness and bending strength despite
a 1-h soaking in conventional sintering and the absence
of any soaking in the microwave process. Higher den-
sities demonstrated by the microwave sintered samples
in comparison with conventionally sintered samples
were explained by the volumetric nature of heating in
the microwave sintering method. The SiC and TiC par-
ticles acted as good absorbers of microwave energy.
Joseph et al. [94] compared the mechanical behav-
iour of Al matrix composites containing w-Al-Cu-Fe
particles consolidated from a mixture of metallic alu-
minium and i-Al-Cu-Fe (icosahedral quasicrystalline

phase) by hot isostatic pressing and SPS. In compo-
sites produced by both methods, copper diffused
into the Al matrix leading to the formation of semi-
coherent precipitates of 8’-Al,Cu in the case of SPS
and incoherent 0-AlL,Cu in the case of hot isostatic
pressing. The difference in the structural character-
istics of the precipitates was due to a much shorter
holding time in the case of SPS. Composites syn-
thesized by the SPS showed a higher proof stress
Op.29 than those obtained by hot isostatic pressing
when measured at temperatures below 473 K. An
important message of that research is the possibility
of the formation of new reinforcing phases of con-
trolled crystalline structure upon the interaction of
the matrix metal with the introduced additives.

Mechanical properties of aluminium and
magnesium matrix composites obtained by
field-assisted sintering

Tables 1-4 summarize the mechanical properties (in
compression and tension) of Al-based alloys, Mg-
based alloys, Al/Al alloy matrix composites and Mg/
Mg alloy matrix composites obtained by SPS, micro-
wave and induction sintering extracted from the
recent literature. Some alloys and composites obtained
with the use of field-assisted sintering possess attrac-
tive combinations of strength and ductility and can
compete with classical cast and wrought materials.
For MMCs obtained by field-assisted sintering, due
to the use of high heating rates, grain growth can be
controlled such that both the matrix and the reinfor-
cing particles can retain their fine sizes. The following
strengthening mechanisms should be considered in
MMCs obtained by field-assisted sintering: dispersion
strengthening, grain boundary strengthening, dislo-
cation strengthening, solution strengthening and
load transfer. Knowing the relative contribution of
each mechanism can be useful for the property tailor-
ing of the composites in the required direction.
Grain refinement is a very effective route to improve
the strength according to Hall-Petch equation [95]:

gy =09+ k2, (4)

where oy is the yield stress of the material with grain
size d, oy is the yield stress of the material with coarse
grains and k is a chemistry- and microstructure-depen-
dent constant.
The contribution of Orowan strengthening Aop,
can be calculated as follows [96]:
Gb
Aoy, = T (5)
where ¢ is a constant equal to 2, G is the shear mod-
ulus of the matrix, b is the Burgers vector of the matrix
and L is the inter-particle distance.
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Table 1. Sintering conditions and mechanical properties in compression of aluminium matrix composites and aluminium alloys
obtained by field-assisted sintering.

Yield strength/

Strain 0.2% proof Ultimate Deformation
Composition Sintering conditions rate, s~ stress, MPa strength, MPa at fracture, % Reference
Al-Zn-Mg SPS, 500°C, 10 min, 80 MPa 1072 610 736 - [97]
Al 2024 SPS, 500°C, 10 min, 50 MPa 37-107 256 - - [105]
Al 2024+2 wt % TiN SPS, 500°C, 10 min, 50 MPa 37-107 730 831 10 [105]
Al+ w-ACu-Fe + 8'-Al;Cu SPS, 550°C, 2 min, 100 MPa 14.107 500 - 4 [94]
Al 6082 + w-Al-Cu-Fe + AlL,Cu + i SPS, 550°C, 5 min, 50 MPa 18.1073 519 639 24 [106]
Al-Cu-Fe + Al;sFe,
Al (air atomized, ball-milled with SPS, 600°C, 1 h, 49 MPa - 440 - - o7
stearic acid)
Al (air atomized) SPS, 600°C, 1 h, 49 MPa - 173 - - [1o71
Al+5 vol% AlCoCrFeNi high- SPS, 580°C, 10 min, 6 MPa 1073 137 - 50 [81]
entropy alloy
Al 7075 + 15 vol.-% Cold compaction; SPS, 300° 5.107% 366 471 25 77
ZrgsCuqgNizAly o C, 10 min, 600 MPa
Al + 40 vol-% AlesCuqssTigs SPS, 500°C, 400 MPa 107 1100 1710 43 [108]
Al +5 at% Fe SPS, 480°C, 5 min, 107 992 1045 30 [109]
~100 MPa or greater
Al 7075+15vol.-% Cold compaction; SPS, 5.107 950 1002 4 [110]
TisgZr; sCusgfe, sSn,Si; 300°, 10 min, 600 MPa
Al+21vol -2%6(TiAls+ALLOs) Accumulative roll bonding, - - 630 20 1111
SPS. 550°C, 102 MPa, 5
min; 700°C, 4 MPa, 5 min
Al425 vol -%6NigoNb o Microwave sintering, 550° 83-.10™ 155 375 =50 1121
C; hot extrusion, 350°C
Al Microwave sintering, 550° 83-10™* 80 245 =50 1121
C; hot extrusion, 350°C
Al 6061 + 30 wt.% Ti(w,Q) Microwave sintering, 560° 36107 236 474 335 871
C, 45 min
Al 6061 + 10 wt% Ti(W,Q) Microwave sintering, 560° 36 1074 118 346 39.6 871
C, 45 min
Al 6061 Microwave sintering, 560° 36107 99 - - 871
C, 45 min
Al Microwave sintering, 550° 83-107* - 308 9.5 [113]
C; annealing 400°C, 1 h;
hot extrusion, 350°C
15 vol-% (Al-Li-Cu) + Al Microwave sintering, 550° 83-10™" - 453 6.4 [113]
C; annealing 400°C, 1 k;
hot extrusion, 350°C
Al 6061 +15 vol.-% [(Fe,,;Co,, Induction sintering, 555°C, 107 570 600 13 [o0]
2)75B205islegNb, 2 min, 70 MPa
Al 520.0 + 15 vol. % CussZrssTiig Induction sintering, 447°C, 102 580 840 14 [89]
2 min, 50 MPa
Al 2024 + 15 wt% Induction sintering, 550°C, 1072 403 660 12 [91]

Fe 73Nb5&2p1 oCﬁB,; metallic
glass

30 min, 400 MPa

Solution strengthening can be significant in
materials processed by field-assisted sintering, unless
conditions of sintering are intentionally selected
such that the time and temperature favour decompo-
sition of solid solutions and the formation of precipi-
tates [97], metastable or stable (purposeful aging of
alloys during the field-assisted sintering/treatment).

Dislocation strengthening of the matrix is deter-
mined by the Taylor formula [95]:

o=0y+ aGbpm, (6)

where o is the flow stress, G is the shear modulus, b is
the Burgers vector, p is the dislocation density and « is
a material-dependent constant between 0.5 and 1 [96].
In MMCs containing ceramic reinforcements, dislo-
cations can originate from the coefficient of thermal
expansion (CTE) mismatch. In addition, in the case
of fast consolidation of powders at relatively low tem-
peraures, the matrix metals can retain dislocations

accumulated during the powder processing stage (for
example, during mechanical milling).

Similarly to MMCs obtained by conventional
methods, composites fabricated by field-assisted sintering
can be strengthened by load transfer. As composites pro-
duced by sintering are mostly discontinuously reinforced
composites, a model elaborated by Nardone and Prewo
[98] can be applied. In their work, it was shown that
the shear lag theory can be used to describe the strength
of discontinuous SiC-reinforced aluminium matrix com-
posites provided that the theory is modified to take into
account the tensile transfer of load from the matrix to
the discontinuous reinforcement. According to the
model, the yield strength of a composite reinforced
with whiskers or particles can be calculated as follows:

Oy = Oy E Viis+2)+ Vm:| @)

where g, is the yield strength of the composite, 7, is
the yield strength of the unreinforced matrix, s is the
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Table 2. Sintering conditions and mechanical properties in tension of aluminium matrix composites and aluminium alloys

obtained by field-assisted sintering.

Yield
strength/ Ultimate
Strain 0.2% proof strength, Deformation
Composition Sintering conditions rate, s~ stress, MPa MPa at fracture, %  Reference
Al+1 vol % CNT SPS, 630°C, 30 min, 30 MPa; hot 5.1074 279 306 12 [75]
extrusion, 500°C
Al + A4Cs/graphene SPS, 610°C, 20 min, 50 MPa; hot 167-107° 149 178 19 [114]
(from 0.42 wt.%graphene oxide + Al) extrusion
Al-4Cu + 1 wt.%. reduced graphene SPS, 500°C, 10 min, 50 MPa; 35-107% 139 320 10 [115]
oxide
AlH+4.5wt.%BN SPS, 600°C, 60 min, 50 MPa - 250 386 5 [116]
(AIN and AIB; formed in-situ during
ball milling and SPS)
Al (ball-milled) SPS, 600°C, 60 min, 50 MPa - 160 167 - [116]
Al+1wt%BN nanosheets SPS, 600°C, 60 min, 50 MPa - - 152 6.5 [117]
Al+4wt%Sc SPS, 550°C, 2 min, 50 MPa+ T6 - 197 226 1 [118]
treatment
AH-0.75vol -%CNT SPS, 630°C, 30 min, 30 MPa; hot 21-1073 200 220 21 [119]
rolling, 550°C
Al 2024 SPS, 500°C, 10 min, 50 MPa; 5.1074 530 583 16.2 [3]
thermo-mechanical treatment
Al 6061 + 30 vol.-% SisNg SPS, 570 C, 15 min, 50 MPa; heat - 400 499 15 [120]
treatment (solution treatment,
aging)
Al425 vol -%6NigoNb o Microwave sintering, 550°C; hot 83.107* 102 120 9.5 [112]

extrusion, 350°C

aspect ratio of the reinforcement, s = L,/d, (L, is the
length and d, is the diameter of the reinforcement), V,
and V,, is the volume fraction of the reinforcement
and the matrix, respectively. This equation predicts a
strengthening effect for reinforcement with an aspect
ratio s = 1.

Interestingly, during SPS of particle-reinforced
agglomerates obtained by mechanical milling, micro-
structures analogous to trimodal composites (as
described in ref. [99]) can be obtained. The concept
of trimodal architectures is based on combining
three components: nano/ultrafine matrix grains,
coarse matrix grains and ceramic reinforcements.
Such a combination gives opportunities for flexible
engineering of the composites’ microstructures and
mechanical properties. The role of coarse grains is to
improve the ductility of otherwise brittle materials.
Yang et al. [99] obtained the trimodal composites by
adding coarse-grained unreinforced matrix particles

to the cryomilled B,C-Al alloy mixture and subjecting

the powder to hot isostatic pressing followed by hot
extrusion. A possibility of local temperature differ-
ences leading to the formation of bimodal microstruc-
tures in metallic materials processed by SPS was
considered in refs. [43,100,101]. If a ceramic par-
ticle-reinforced powder material is subjected to SPS
under such conditions that high-temperature regions
develop locally, melting of a fraction of the matrix
can take place, leading to a certain redistribution of
the phases and the formation of particle-depleted
areas of the matrix. Those particle-depleted areas
could play a role similar to that played by the coarse
matrix grains in trimodal composites.

The bimodal grain structures were found to exhibit
deformation and fracture behaviour similar to ductile
phase-toughened brittle materials [102]. The ductile
coarse grains in the ultrafine-grained matrix impede
the propagation of microcracks, which leads to
enhanced ductility and toughness. Bimodal-structure
alloys can be obtained by field-assisted sintering

Table 3. Sintering conditions and mechanical properties in compression of magnesium matrix composites and magnesium alloys

obtained by field-assisted sintering.

Strain rate, Yield strength/0.2% Ultimate Deformation at
Composition Sintering conditions 5 proof stress, MPa strength, MPa fracture, % Reference
AZ91 SPS, 360°C, 1 h 11-1077 185 341 15.2 [121]
A9 SPS, 360°C, 2 h; 200°C, 2h 1.1 1073 217 374 139 [121]
Mg + 1Al +0.15CNT SPS, 560°C, 5 min; hot 1073 118 321 179 [122]
extrusion, 400°C
Mg-Gd-Zn-Zr (GZ100 K) SPS, 400°C, 10 min, 50 MPa 1073 210 386 20 [123]
Mg + 2vol.-9%65SiC SPS, 450°C, 5 min, 50 MPa 107 - 247 9 [124]
AZ80 SPS, 350°C, 3 min, 100 MPa  2.5-107* 442 546 432 [101]
Mg AZ31 SPS, 400°C, 5 min, 80 MPa 2.5 - 107 400 500 36 [125]
Mg SPS, 400°C, 5 min, 80 MPa  25-107* 400 500 36 [126]
Mg + Mg-Zn alloy SPS, 400°C, 5 min, 80 MPa  2.5-107* 408 506 66 [126]
AZ91 + Induction sintering, 440°C, - 325 542 1 621
ij;lechﬁ_gNiu_ﬁAl'm 2 mln, 50 MPa
AZ61 + 3 vol % CNT Microwave sintering, 500° - 117 218 10.2 671

C, 8 min
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Table 4. Sintering conditions and mechanical properties in tension of magnesium matrix composites and magnesium alloys

obtained by field-assisted sintering.

Strain rate, Yield strength/0.2% Ultimate Deformation at
Composition Sintering conditions g proof stress, MPa strength, MPa fracture, % Reference
Mg SPS, 585°C, 5 min, 60 MPa 281072 - 120 - [23]
Mg + 10wt.9%SiC SPS, 585°C, 5 min, 60 MPa 2.8-1073 - 140 - [23]
Mg+ 1Al + SPS, 560°C, 5 min; hot extrusion, 1073 157 2n 8.8 221
0.15CNT 400°C
Mg + 3wt.%Ti ball-  SPS, 600°C, 30 min, 30 MPa; hot 5.107* 184 224 14.9 1271
milled extrusion, 400°C
Mg Microwave sintering, 640°C, 1.6-107* 116 168 6.1 [128]
25 min; hot extrusion, 350°C
Mg + 2wt.%Y 203 Microwave sintering, 640°C; hot 17107 157 244 9.1 [129]

extrusion, 350°C

methods. In the case of SPS, the bimodal structure can
be obtained either by consolidating a mixture of pow-
ders with different particle sizes [103] or ‘in-situ’ by
employing the effect of local overheating.

A common problem of materials produced by pow-
der sintering, including field-assisted sintering, is
residual porosity, which can vary from fractions of a
percent to several percent, unless rendered intentionally
high for specific applications. Therefore, the influence
of porosity on strength should be taken into account.
According to Balshin [104], the tensile strength of a
porous metal-ceramic material can be expressed as

(TP = (Togn, (8)

where oy, is the strength of a material with residual por-
osity, 0 is the relative density, oy is the strength of the
zero-porosity material and m is a constant.

Functional properties of selected aluminium
and magnesium matrix composites
obtained by field-assisted sintering

Thermal and electrical conductivity of
aluminium matrix composites

Al-diamond composites are of interest from the view-
point of developing materials with high thermal con-
ductivity [130,131]. Tan et al. [132] addressed the
issue of the nature of the aluminium-diamond inter-
face and distinguished between diffusion-bonded and
reaction-bonded interfaces. The diffusion-bonded
interface was thought to be preferable for achieving a
low thermal resistance. A low thermal conductivity of
some composites produced by SPS was explained by
the temperature gradients within the sample. Diamond
particles located in the high-temperature regions were
more likely to develop the reaction-type interfaces
(with the formation of Al,Cj; as the reaction product).

Aluminium matrix composites containing silicon
particles are attractive packaging materials for micro-
electronic applications, as their CTE can be reduced
relative to pure aluminium, their thermal conductivity
remaining high. By SPS at 510°C, nearly fully dense
Si—Al composites were obtained [133]. A composite
containing 45 vol.-% Si showed a good combination

of properties: an average CTE of 12.7 10° K" and a
thermal conductivity of 113 W m™" K™'. The obtained
value of CTE was lower than that of the counterpart
materials. The benefit of SPS was in keeping the grains
of silicon small during consolidation. A high surface
area of silicon particles allowed restraining expansion
of the Al phase lowering the CTE of the composite.
It is a serious challenge to fabricate high-strength
Al matrix composites without sacrificing their electri-
cal conductivity. It was shown that Al matrix compo-
sites can retain a high electrical conductivity (at the
level of unreinforced aluminium) and become stron-
ger than pure aluminium when few-layer graphene
joined to the Al matrix by Al,C; nanorods acts as a
reinforcement [114]. The electrical conductivity of
the composite having a yield strength of 149 MPa
and an ultimate tensile strength of 178 MPa was
59.8% of the International Annealed Copper Standard
(%IACS). The synthesized material was, therefore, rec-
ommended as a high-performance conductor.

Biocompatibility and biodegradability of
magnesium matrix composites

Magnesium-based composites are suitable for biomedi-
cal applications. As microstructural refinement is ben-
eficial for magnesium alloys designed for temporary
implants, SPS is considered as a processing method for
these alloys. Currently, SPS of magnesium matrix com-
posites and Mg-based alloys is studied with the prospects
of developing biodegradable materials [134-140].

Microwave sintering was used for making porous
Mg-based composites as candidate biodegradable
materials [141]. A Si;N, powder or an Al,O3 whisker
additive was introduced into the Mg matrix to modify
its electrochemical performance. As Si;N, absorbs
microwaves, higher local temperatures caused explo-
sive evaporation and formation of larger pores com-
pared with composites containing Al,Os.

Scale-up of the field-assisted sintering
processes

The key problem of the scale-up of the sintering pro-
cesses is to ensure the same temperature in the
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laboratory-size and industrial-size sintered parts. The
temperature distribution in specimens differing in
electrical conductivity has been addressed in ref.
[142] for the SPS process in a die. It was shown that,
for conductive materials, the temperature in the centre
of a disk-shaped specimen is higher than in the rim
areas. The predictive capability of modelling
approaches is of great importance for the industrial
implementation of SPS. The scalability of SPS was ana-
lysed experimentally and theoretically by Olevsky et al.
[143,144]. In those studies, scalability experiments on
the SPS of similarly shaped alumina specimens of the
four different sizes have been conducted. The pro-
cessed specimens have been characterized in terms
of relative density and grain-pore structure. Overall,
SPS showed good scalability potential. At the same
time, it was shown that, due to the demonstrated
possibility of a significant size impact in case of high
heating rates and large specimen sizes, the predictive
capability of reliable modelling approaches is of
great importance for the industrial implementation
of the SPS technique.

In the area of metallic materials, Tokita [145]
reported the commercial use of metallic sputtering tar-
gets 99-100% dense, 5-20 mm thick and 300-350 mm
in diameter obtained by SPS. An advanced SPS
approach enabling the scale-up fabrication of large
size complex shapes and an energy-efficient processing
has been described in ref. [146]. A unique configur-
ation using deformable and electrically insulated inter-
faces has been employed to constrain the electric
current path for a significant reduction of the electric
current required to heat the 40 mm specimen while
imposing a gear shape onto the processed parts. A
comprehensive electrothermal-mechanical simulation
of the SPS process revealed that the high thermal stab-
ility observed for this SPS approach originates from
different factors: the high thermal conductivity of
the metal powder and the thermal confinement of
this metal powder via the lateral thermal contact
resistance and via the upper and lower alumina pow-
der which has a very low thermal conductivity. That
case study demonstrated the high scalability potential
of the SPS technology which can combine the benefits
of advanced material properties (through high press-
ures, high heating rates) and complex shapes. It is
theoretically possible to place any number of complex
shape interfaces in a large-dimension tooling set (like
in a conventional furnace), improving drastically the
productivity and, in turn, the scalability of the SPS
technology. Such an improvement would require per-
fect control of the temperatures and a homogeneous
displacement field of the powder.

Comparative studies of SPS and hot pressing were
reported by Musa et al. [147] for Ti-38 vol-%
AL, O;-11.5 vol.-%TiC composites: only 5 min was
needed to sinter the material by SPS and about 5h

was needed to do the same using HP. In both cases,
relative densities greater than 99.9% were reached.
The times given are a sum of the duration of the heat-
ing stage and the dwell time at the maximum tempera-
ture. The total energies required for the SPS and hot
pressing runs were compared to reveal that the SPS
technology allowed for energy saving of 90-95%.
Notably, the use of graphite felt around the die to
reduce heat losses by radiation was found to lead to
energy savings of 25% under the selected sintering
conditions.

As Kelly & Graeve pointed out [148], high-
throughput SPS systems will have a serious impact
on mass production. It was emphasized that lessons
learnt during the development of the hot pressing
technology can be directly applied to SPS to minimize
the associated risks. An ideal SPS design for manufac-
turing would be a fully automated process, from load-
ing and handling of the die to sintering, cooling and
sample removal from the die. The key difference
between hot pressing and SPS is the method of heat-
ing. When SPS is used instead of hot pressing, the pro-
cessing times are significantly reduced; some processes
require lower temperatures. The reduced times and
temperatures in the SPS processes lead to reduced
energy consumption (and energy cost) per sample.
Since, within a given time, SPS will produce a larger
number of parts than hot pressing, the sintering cost
(which includes the operation of the cooling system,
cosumables and burden costs and is taken to be the
same for SPS and hot pressing in ref. [148]) per sample
will be lower for the SPS technology than for hot
pressing. A higher productivity and a better expand-
ability of SPS relative to hot pressing have also been
highlighted in ref. [149].

The scalability of microwave sintering is often
difficult to achieve [36]. The results obtained by
Manieére et al. [150,151] provide a basis for explain-
ing the inherent instability and non-reproducibility
of the experiments frequently reported in the litera-
ture for microwave sintering. The process instabil-
ities stem from the intrinsic non-homogeneous
electromagnetic fields repartition and their sensitivity
to the presence of dissipative materials, such as alu-
minium and magnesium matrix composites, during
microwave sintering [39,113,128]. The direct micro-
wave heating configuration, for large-scale speci-
mens, results in the formation of a hot spot at the
centre of the sample. The hot spot phenomenon
increases drastically in the beginning of the process
and then stabilizes when the densification occurs
resulting, at the end of the heating cycle, in a signifi-
cant temperature difference across the sample’s
volume. The microwave field penetration and then
the heating become more superficial when the den-
sification happens; this fact explains the temperature
gradients’ stabilization. The sample shape is highly



deformed during the densification due to the hot
spot formation but tends to go back to the cylindrical
shape at the end of the densification. A decrease in
the sample size appears to reduce the thermal gradi-
ents and, at the same time, it resolves the problem of
densification heterogeneities. Sintering of small
samples is, therefore, more stable. The temperature
inhomogeneity can be balanced by the use of suscep-
tors (‘hybrid microwave heating’), which can add an
external heat flux uniformizing the temperature
inside the sample [150,151]. The hybrid heating
configuration succeeds in reducing the temperature
gradients in the sample, allowing a more uniform
and scalable overall densification of the large
samples.

Induction sintering provides fast heating and
cooling, dramatically shortens the sintering time
and ensures high energy efficiency. The scalability
of the induction sintering process can be achieved
if the cross-sections of the coil and the sintered
part are similar with small gaps between them and
if undesirable thermal gradients are avoided by
selecting optimal heating rates and penetration
depths [18].

Summary

The overview of the literature on the processing,
microstructure and properties of Al- and Mg-based
materials produced by field-assisted sintering shows
that composites and alloys with high strength and
high ductility can be obtained by powder metallurgy
through the flexible compositional and microstruc-
tural design and a proper choice of the field-assisted
sintering parameters. Traditional MMC compositions
(MMCs reinforced with ceramic particles) as well as
composites reinforced with particles of alloys (metallic
glass, high-entropy alloys, derivatives of quasicrystals)
are currently of interest. MMCs with metallic glass
reinforcements present a rapidly developing research
direction. The very possibility of consolidating the
metal matrix-metallic glass mixtures while preserving
the amorphous state of the reinforcement depends on
the sintering method. SPS and microwave sintering
have been successfully used for the production of
functional Al- and Mg-based materials (materials
with high thermal and electrical conductivity, biode-
gradable materials). Processes of local character (over-
heating, melting, infiltration, chemical reactions) play
significant roles in the microstructure formation and
property variation of the composites obtained by
SPS and microwave sintering. The scale of locality is
determined by either the initial particle size or the dis-
tance between inclusions in a matrix. The progress in
the microstructural and compositional design of the
composites made over recent years is a solid basis
for the development of commercial products.
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