
CloudBruno: A Low-Overhead Online Workload Prediction

Framework for Cloud Computing

Vinodh Kumaran Jayakumar∗, Shivani Arbat†, In Kee Kim†, and Wei Wang∗

∗The University of Texas at San Antonio, Computer Science, rvn028@my.utsa.edu, wei.wang@utsa.edu
†University of Georgia, Computer Science, {sga64681, inkee.kim}@uga.edu

Abstract—Accurate prediction of future incoming workloads to
cloud applications, such as future user request count, is critical
to proactive auto-scaling, and in general, critical to the cost-
effectiveness of cloud deployments. However, designing a generic
predictive framework that can accurately predict for any types of
workloads is difficult, especially when the workload is dynamic
and can change to a pattern that has not been observed in
the training data sets. However, existing workload prediction
solutions typically rely on complex machine learning models,
which require comprehensive training data, making it difficult
for them to handle dynamic workloads. Moreover, the training
of existing workload prediction solutions are also expensive in
terms of both time and computing resources.

This paper presents a generic and low-cost online workload
prediction framework, called CloudBruno, which combines the
more accurate LSTM models with less expensive but fast SVM
models to achieve high accuracy and low training overhead.
When compared to existing predictors, CloudBruno had at least
8.8% lower error than existing deep learning-based predictors
for a highly-dynamic workload that does not have comprehensive
training data (i.e., has changes unknown to training data).
For workloads with comprehensive training data, CloudBruno’s
error was at most 2.5% higher than optimized deep learning-
based predictors. More importantly, CloudBruno can effectively
execute on a free cloud CPU, allowing it to be used as an online
workload predictor without additional cost.

Index Terms—Cloud Workload Prediction, Long Short-Term
Memory, Support Vector Machine, Online Prediction Frame-
work, Auto-Scaling

I. INTRODUCTION

Auto-scaling is the key technology used to realize the full

potential of cloud computing’s cost-effectiveness [1]–[3]. With

auto-scaling, a cloud deployment can dynamically increase

or reduce its resource allocations to handle the increased or

reduced workload with both satisfying performance and low

cloud usage costs. Therefore, proactive auto-scaling is usually

a more desirable solution, as it can scale the virtual machine

(VM) or container allocation before the workload change

actually happens, avoiding the performance degradation that

may be experienced in reactive auto-scaling [3], [4].

A key requirement for proactive auto-scaling is the ability

to predict the future incoming workloads, such as the number

of jobs or the number of user requests that will arrive in

the next hour [5]. The accuracy of this prediction, in turn,

determines the effectiveness of proactive auto-scaling. That is,

the inaccurate prediction may lead to resource over- or under-

provisioning, which either incurs unnecessary cloud usage

costs or causes performance degradation [6].

0 100 200 300 400 500

3 · 10
6

5 · 10
6

7 · 10
6

Intervals

R
eq

u
es

ts

(a) Wikipedia: user request count every 30 min.

0 200 400 600 800 1,000 1,200
0

1 · 10
6

2 · 10
6

3 · 10
6

Intervals

Jo
b

s

(b) Google Cluster: job count every 30 min.

Fig. 1. Traces of two workloads with different patterns.

However, creating accurate workload predictors (or predic-

tive models) for cloud computing is challenging. The main

difficulties lie in the large variety of cloud workloads and

the various workload changes within a workload. Fig. 1

shows the workload traces for Wikipedia [7] and Google’s

cluster [8]. The two workloads shown in Fig. 1 are drastically

different – although the Wikipedia workload is seasonal and

more stable, the Google cluster workload is more random

and has a sharp increase (e.g., traffic spike) in jobs numbers

in the middle of the trace. To handle these two difficulties,

existing cloud workload prediction approaches typically rely

on complex neural networks (NN), such as Long Short-Term

Memory (LSTM) [9]–[12] and Transformer [13]–[15], to build

and optimize predictive models for each workload to handle

various workload changes. However, the use of complex NN

models has three limitations,

1) The first limitation is the requirement of comprehensive

training data sets. Due to the nature of NNs, training

accurate NN models requires a comprehensive workload

history that contains most of the potential workload

patterns/changes as training data. That is, the potential

workload changes after deployment should be (mostly)

known at the training time. This requirement, however, is

difficult to meet in practice. To address this limitation,

1

prediction models usually need to be retrained online

(i.e., after deployments) once workload changes are

observed [6].

2) The second limitation is the long training time. Complex

NN models and large training data sets imply a long

training time. Moreover, to achieve high accuracy for

various types of workloads, existing predictive frame-

works also require extensive model optimization (e.g.,

hyperparameter tuning) to find the best model for a

workload, which further prolongs the training time.

This extended training time makes existing frameworks

impractical for online retraining. This is especially true

for frequently-changing workloads, where a model may

become obsolete before it finishes retraining if another

workload change happens during this retraining.

3) The last limitation is the expensive hardware required

to train complex NN models. Modern complex NN

models typically require powerful CPUs, or even GPUs,

to train. However, powerful CPUs and GPUs can be

expensive to rent in the cloud. Hence, online retraining

with expensive cloud CPUs/GPUs will increase cloud

deployment costs.

This work aims to build a cloud workload prediction

framework with the following characteristics: 1) generic, the

framework can generate predictors for various workloads with

comparable accuracy than optimized NN models with compre-

hensive training data; 2) dynamic, the framework can retrain its

models online after deployments to adapt to workload changes

that are unknown before deployment; 3) low-overhead, the re-

training can be done in a short amount of time to accommodate

frequent workload changes; 4) low-cost, the retraining should

execute effectively with cheaper cloud resources.

This paper presents the design of CloudBruno
1, a generic

online workload prediction framework. CloudBruno combines

two prediction models with different characteristics, LSTM

and Support Vector Machine (SVM) [16]. LSTM models have

higher accuracy for cloud workload prediction than SVM

models. However, LSTM is also more expensive and slow to

train. By combining the predictions of LSTM and SVM, and

by properly selecting their retraining frequencies, CloudBruno

can achieve high accuracy, low overhead, and low cost.

More specifically, in CloudBruno, both LSTM and SVM

models are periodically retrained to adapt to workload

changes. However, they are retrained at different frequencies

– the faster SVM model is retrained more frequently, whereas

the LSTM model is retrained less frequently. Moreover, a third

tournament predictor is trained to predict whether the SVM

model or LSTM model will be more accurate based on their

past accuracy, and the predicted more-accurate model will then

be used to make predictions for the future workload. This third

classifier is retrained at the same frequency of the SVM model.

By combining SVM and LSTM, CloudBruno can enjoy the

high accuracy of LSTM for workloads during their (relatively)

1We use this name from Bruno (Madrigal), a character in the Disney movie
“Encanto”. He has the ability to foresee the future.

stable phases but can also quickly adapt to workload changes

through the use of SVM.

The retraining process of CloudBruno includes hyperpa-

rameter optimization (search), which allows CloudBruno to

be generic (i.e., predicting various types of workloads with

high accuracy). The hyperparameter search space and search

iterations are also selected in a way to balance the accuracy

and retraining time/cost.

We first evaluated CloudBruno with 14 workload configura-

tions from five different (representative) application models in

clouds. The evaluation results show that CloudBruno had an

average error of 20.5%, which was only 2.5% higher than ex-

isting more complex workload prediction frameworks trained

with extensive and comprehensive data sets. Furthermore,

when applied to a highly-dynamic workload, CloudBruno had

at least 8.8% less error than other NN frameworks and 5% less

error than another online prediction framework. When applied

in Google Compute Engine, CloudBruno managed proactive

auto-scaling reduced average job turnaround time by up to

7% than complex NN frameworks, showing that CloudBruno’s

better accuracy can translate into real performance benefits.

CloudBruno could also quickly retrain its models even using

a free cloud CPU. On average, CloudBruno could retrain an

SVM model every 3.4 seconds and an LSTM model every

23.5 minutes, which was at least 4.0× faster than existing NN

frameworks. This fast retraining on a free cloud CPU allows

CloudBruno to be applied with limited or even no additional

monetary cost.

The contributions of this paper include:

1) The design of CloudBruno, a generic online work-

load prediction framework that combines automatically

optimized LSTM and SVM models to provide high

accuracy, low overhead, and low cost predictions for a

variety of workloads with dynamic changes.

2) A thorough evaluation of CloudBruno with 15 work-

load configurations to demonstrate that CloudBruno can

indeed provide high accurate predictions for various

workloads with low training cost.

3) A case study to demonstrate that the highly-accurate

predictions from CloudBruno can further improve the

performance of auto-scaling on real public clouds.

The rest of this paper is organized as follows: Section II

formally formulates the workload prediction problem and

presents our motivation. Section III presents the detailed

design of CloudBruno. Section IV evaluates the accuracy and

training time of CloudBruno. Section V presents a case study

of auto-scaling with CloudBruno. Section VI discusses the

related work. and Section VII concludes the paper.

II. PROBLEM DEFINITION AND MOTIVATION

A. Problem Definition

In this work, we define the workload to a cloud application

as the number of incoming jobs or user requests within an

interval. For example, for a website deployed to the cloud,

if the number of user requests that access this website every

2

TABLE I
TRAINING TIME AND PROCESSORS USED FOR TRAINING BY PRIOR NN
STUDIES. THE LSTM AND BILSTM TIMES WERE REPORTED BY THEIR

ORIGINAL PAPERS. WGAN-GP TIMES WERE MEASURED BY US.

Prior work
Type of
Model

Reported
Training Time

Training
Processor

LoadDynamics [10]
(2020)

LSTM about 3 hours
16-core Intel
Xeon 8153

Bi et. al [17]
(2021)

BiLSTM 70 to 100 mins Unknown

Arbat et. al [13]
(2022)

WGAN-gp
Transformer

1 to 5 hours GTX 2080 Ti

second is 30, then its workload is 30 requests/sec. As a second

example, for a high-performance computing (HPC) cluster

deployed to the cloud, if the number of jobs arriving at the

cluster is 50 per hour, then its workload is 50 jobs/hr. For

simplicity, we refer to the number of jobs/requests during an

interval as request rate.

For a deployed cloud application, there will be a trace of

request rates observed in the intervals during which it executes.

Without loss of generality, let the real request rate at time

interval t be wt, and the predicted request rate at time interval

t be pt. After executing for some time, there will be a trace

of request rates starting from time interval 0 to interval t− 1,

i.e., {w0, w1, . . . , wt−1}. Our prediction problem then can be

determined as,

Workload Prediction Problem Definition

Input: Past request rates: w0, w1, . . . , wt−1

Output: Prediction for request rate at interval t: pt

The core issue of this prediction problem is to determine

the predictive model, M , that takes the past request rates and

produces an estimation pt. Our framework, CloudBruno, is

designed to generate the model M for various workloads at

each new interval. Note that, to ensure high generality over

various cloud applications, the feature used in our prediction

problem is only the past request rates. Moreover, although

the input can contain all past request rates, real models may

only use a fraction of these rates. That is, only n records of

past request rates, {wt−n, wt−n+1, . . . , wt−1}, will be actively

used for prediction. The value of n also needs to be determined

as part of model training and optimization.

B. Motivation

Because of the large variety of workload patterns and

potential workload changes, prior work typically employed

complex NN models. Table I lists several recent workload

prediction methodologies from prior studies with various NN

models, including LSTM [10], Bidirectional (BiLSTM) [18].

and WGAN-gp Transformers [13]. Table I also provides the

longest training time and the processor used for training

for some of these models, which shows that these models

typically require hours to train on powerful CPUs or GPUs.

Such long training times make these models impractical for

real-world cloud applications because online model retraining

should quickly adapt to workload changes. The requirement of

powerful CPUs/GPUs can also increase the deployment cost.

To overcome these limitations, in this work, we explore the

possibility of designing a workload prediction framework that

can retrain its models every few seconds/minutes on the least

expensive cloud CPUs.

III. THE DESIGN OF CloudBruno

This section presents the design of the CloudBruno frame-

work. The main idea of CloudBruno is the tournament pre-

diction of two types of machine learning (ML) models, one

fast and one slow. The fast-training model provides quick

adaptation to (sudden) workload changes, whereas the slow-

training model provides higher accuracy predictions when the

workload is in a (more) stable phase.

A. Machine Learning Background

Machine Learning Models. CloudBruno includes two

types of ML models, the SVM and LSTM models. Cloud-

Bruno employs SVM [16] to quickly adapt to a workload

change. SVM is a statistical learning model that is primarily

used for classification by determining a decision boundary

(hyperplane) within a set of data. SVM is also frequently

adapted to do regression, where the decision boundary is used

to approximate the regression curve. Although SVM is not

designed specifically for time series regression, prior work has

shown that it is very effective for single workloads [6], [19].

However, despite SVM’s reasonable accuracy for cloud

workload prediction, its accuracy is still lower than complex

NN models when training workload can better represent the

workload during deployment. Therefore, to achieve high ac-

curacy for workloads in their stable phases, CloudBruno also

employs LSTM models. LSTM is a type of NN, designed

for sequential data, such as the time series data observed in

cloud workloads. For each inference, a LSTM model not only

produces a prediction but also produces hidden states, which

are passed back to the LSTM model for the next prediction [9].

These hidden states keep track of additional information in a

sequence of data that is useful for interference, such as its

long-term or short-term trends in time series. Note that prior

work has also shown that LSTM is usually more accurate

than SVM, although its training time is considerably longer,

especially when model optimization is required [10].

Hyperparameter Optimization. A key step in model train-

ing is hyperparameter optimization [20], [21], which signifi-

cantly affects a model’s accuracy. For LSTM, the hyperpa-

rameters may include the number of NN layers, the batch

size, the history length (n as discussed in Section II-A),

and the size of the internal cell activation vector (c size).

For SVM, the hyperparameters may include the regularization

value and kernel coefficient. Prior work has shown that proper

hyperparameters are critical to the accuracy and generality of

cloud workload prediction framework. That is, the predictive

model for workload requires its own set of parameters and

tuning [10].

Hyperparameter optimization is essentially a search process

where different sets of hyperparameters are evaluated to find

3

ns intervals passed?
start

No

1. Train & HyperOpt
SVM Model

Yes

Training Data

SVM
model

SVM Training

nl intervals passed?
start

No

2. Train & HyperOpt
LSTM Model

Yes

Training Data

LSTM
model

LSTM Training
3. Train

Tournament
Predictor

Current SVM Model

Current LSTM Model

Predictor Selection

4. Predict

Input request
rates:

wt−n . . . wt−1

pt

Tournament
Predictor

Prediction

Fig. 2. The overall workflow of building a new predictor and making predictions with CloudBruno.

PtWt-1Wt-2Wt-151

training
(size 150)

V
a
lid

a
-

tio
n

P
re

d
ic

t

Fig. 3. The training and validation data sets, as well as the predictions for
the SVM model.

PtWt-1Wt-10Wt-11Wt-160 Pt+1 Pt+2 Pt+3 Pt+4

training
(size 150)

Validation
(size 10)

Predict
(size 5)

Fig. 4. The training and validation data sets, as well as the predictions for
the LSTM model.

SPtSt-1St-2St-151

training
(size 150)

V
a
lid

a
-

tio
n

P
re

d
ic

t

Fig. 5. The training and validation data sets, as well as the predictions for
the tournament predictor model.

the best set. To reduce the search time on a large search space,

contemporary research typically employs Bayesian Optimiza-

tion (BO) [22] or Random Search [23] in this optimization.

Nonetheless, even with better searching algorithms, the large

hyperparameter search space is still one of the main reasons

why some of the state-the-art cloud workload predictors are

time-consuming to train. CloudBruno also employs BO-based

hyperparameter optimization to (re)train individual models

for each workload. However, we reduced the search space

(i.e., potential values for hyperparameters) to bring down the

retraining time. In fact, there is also no need for exploring a

large hyperparameter configuration space, as the models only

need to “learn” from the recent workload patterns.

B. Combining Two Models in CloudBruno

The predictions of SVM and LSTM models are eventually

combined in CloudBruno. That is, a third classifier that works

as an tournament predictor, which determines whether SVM

or LSTM is more accurate for the current workload, and a

predicted more-accurate model will then be used to predict

the workload for the next interval.

The SVM, LSTM, and tournament predictor all need to be

retrained periodically to handle workload changes. As LSTM

models have a longer training time, they will be retrained

less frequently in CloudBruno. On the other hand, SVM

models can be retrained more often due to their lightweight

nature [19]. As the tournament predictor also needs to be

retrained every time the SVM model is updated (i.e., retrained

with the same frequency as the SVM model), the tournament

predictor is also configured to be an SVM classifier in Cloud-

Bruno for fast retraining. Moreover, as the prediction models

are online and focused on making predictions based on the

recently-seen workload patterns, there is no need to employ a

large training data set.

C. The Workflow of CloudBruno

Fig. 2 illustrates the overall workflow of CloudBruno. As

Fig. 2 shows, for every nS interval, a SVM model will be

retrained (Step 1). In the current CloudBruno, ns is set to be

1, indicating that, for every interval, a new SVM model is

trained (to ensure every workload change is captured). Fig. 3

shows the training, cross-valuation data sets and the prediction

of a SVM model in CloudBruno. As Fig. 3 shows, the training

data include 150 (intervals of) most-recent request rates. As

stated previously, the training also includes hyperparameter

optimization, which is conducted with one data point for

validation. Because the SVM model is retrained for every

interval, a trained model is only make one predictions (i.e.,

the Pt in Fig. 3).

For the LSTM model, it will be retrained every nl interval

(Step 2). Please note that nl should be long enough for the

LSTM models to finish training. In the current CloudBruno,

nl is set to be 5 (intervals). The smallest interval used in our

evaluation is 5 minutes, so five 5-minute intervals are slightly

longer than the training time of CloudBruno’s LSTM model.

Fig. 4 illustrates the training, cross-valuation data sets and the

prediction of a LSTM model in CloudBruno. Similar to the

SVM model, the training sets have a size of 150. However, the

validation set has a size of 10 for LSTM because the complex

LSTM model requires more tuning for better accuracy as well

as the LSTM models do not need to be retrained at each

interval like SVM. Moreover, because a LSTM is retrained

every five intervals, it will be used to make five continuous

predictions consecutively.

4

TABLE II
WORKLOADS USED FOR EVALUATION.

Workload Trace Type Interval length (mins)

Wikipedia (Wiki) [7] Web 5, 10, 30

Grid (LCG) [24] Scientific 5, 10, 30

Azure (AZ) [25] IaaS Cloud 10, 30, 60

Google (GL) [8] Data Center 5, 10, 30

Facebook (FB) [26] MapReduce 5, 10

Combined Synthetic All of above at 10-min intervals

After each time a new SVM/LSTM model is trained, the

tournament predictor will also be retrained using the past

model’s errors to determine which model is more accurate

(Step 3). Here, the errors of the past 150 request rates are

used, as shown in Fig. 5. In Fig. 5, Si is a tuple denotes

which model was used in the time i. That is, if Si is {0, 1}
then the SVM is used at time i. If Si is {1, 0} then the LSTM

is used at time i. Once the tournament predictor is built, it is

then used to predict either SVM or LSTM should be used at

time t as a tuple, SPt. For hyperparameter optimization of the

SVM and LSTM models, only 10 iterations of optimization

are performed in CloudBruno for faster training time.

It is worth noting that it may appear that the tournament

predictor can be simply built by comparing the errors of the

past SVM and LSTM models and then picking the one with

the lower average error. However, during the development of

CloudBruno, we learned that this simple method does not

work. We suspect there are two reasons. First, because the

SVM models are frequently retrained, the past errors are not

from the same model, making it mathematically less correct

to compute the average. Second, in some cases, the trend and

variation of the errors as usually as average prediction errors.

Therefore, we eventually employed SVM classifiers to build

the tournament predictor.

IV. EVALUATION

This section reports the evaluation results of CloudBruno.

This evaluation focused on the prediction accuracy and train-

ing time of CloudBruno.

A. Experiment Setup

Workload Traces. Five real workload traces were employed

in this evaluation, representing different cloud use cases, such

as web applications [7], data analytics [8], [26], data center

applications [25], and scientific computing [24]. Table II

describes the detailed information of these workloads. For each

workload, two or three interval lengths were used, ranging

from 5 minutes to 1 hour. That is, a workload’s request rate

may represent the number of jobs/requests every 5 minutes to

every hour. In total, 14 real workload traces were used in this

evaluation. The large number of workloads ensured a thorough

evaluation and also allowed us to examine the generality of

CloudBruno. Fig. 1 and Fig. 6 visualize these workloads.

In addition to these 14 real-world workloads, we also

devised a synthetic workload by combining the five workload

0 50 100 150 200 250
0 · 10

0

5 · 10
2

1 · 10
3

1.5 · 10
3

2 · 10
3

Intervals

Jo
b

s

(a) LCG Grid workload job count every hour.

0 100 200 300 400 500 600 700
0 · 10

0

2 · 10
3

4 · 10
3

6 · 10
3

Intervals

Jo
b

s

(b) Azure Cloud workload job count every hour.

0 50 100
0

50

100

150

Intervals
Jo

b
s

(c) Facebook workload job count every 10 minutes.

Fig. 6. Traces of the LCG, Azure, and Facebook workloads used in the
evaluation.

traces. This combined workload is used to evaluate Cloud-

Bruno at the worst-case scenario – a workload with extremely

varying request rates.

Baselines. We compared CloudBruno with four state-of-

the-art workload predicting frameworks. The first framework

is LoadDynamics [10], which employs LSTM and hyperpa-

rameter tuning to build predictive models for each workload.

The second framework is WGAN-gp transformer [13], which

employed (hyperparameter-) optimized Wasserstein Genera-

tive Adversarial Network with gradient penalty (WGAN-gp)

to train transformer models for workload prediction. The third

framework employs Hybrid Bidirectional LSTM (BiLSTM)

models [17], [18]. The fourth framework is CloudInsight [19],

[27], which is also an online prediction framework based on

various statistical learning models to build predictors. These

four frameworks allow us to compare with both complex

offline deep learning frameworks as well as faster online

framework from the literature.

Metrics. We employed mean absolute percentage error

(MAPE) to evaluate the accuracy of all prediction frameworks.

MAPE is calculated as average percentage differences between

real request rate wi and its predicted request rate pi for all n

predictions. MAPE is expressed as:

MAPE =
100

n

∑
|
pi − wi

pi
| (1)

5

For training overhead, the wall-clock time training is reported.

Hardware Platforms. For CloudBruno’s training and work-

load prediction, we employed the free VM provided by Google

Colaboratory2. This VM has a generic Intel 2GHz Xeon

processor with two cores. We intentionally chose this VM

as it has an even less powerful CPU than Google cloud’s

free-tier e2-micro VMs, which have a 2.3GHz generic Intel

Xeon processor3. With such a low-end CPU, we could more

strictly evaluate the training time of CloudBruno when it is

used on free cloud resources. The baseline models require a

longer training time. Therefore, they were trained using more

powerful CPUs and GPUs in our labs – LoadDynamics and

WGAN-gp models were trained on NVIDIA GTX 2080 Ti

GPU, BiLSTM models were trained on NVIDIA Tesla T4

GPU, and CloudInsight was trained on eight AMD Opteron

4386 CPUs.

Hyperparameter Search. The hyperparameter search space

for CloudBruno’s LSTM models is shown in Table III. The

Facebook workload is smaller than all other workloads. There-

fore, the hyperparameter search space for it was also smaller

(i.e., it is not long enough for a long history size). To reduce

training time, we set the number of hyperparameter optimiza-

tion iterations to 10. That is, 10 sets of hyperparameters were

used in BO for CloudBruno’s LSTM model. For the SVM

model, the hyperparameter search space consists of different

values of C (regularization parameter) and gamma (rbf kernel

coefficient), where both values range from 1 to 5.

For the baseline frameworks, the hyperparameter search

spaces reported in their original papers were used.

B. Evaluation of Accuracy with Real Workloads

1) Accuracy of CloudBruno: Fig. 7 reports the accuracy

(MAPE) of CloudBruno (the “green” bar) for the 14 workloads

described in Table II. As Fig. 7 shows, CloudBruno had

high accuracy for the Wikipedia (Wiki) workloads, where the

maximum error (MAPE) was only 1.3%. CloudBruno also

had less than 12% error for the Google (GL) workloads.

CloudBruno’s errors for the Grid (LCG), Azure (AZ), and

Facebook (FB) workloads were relatively higher and were

mostly in the range of 20% to 40%. These relatively higher

errors were partially due to the way MAPE was computed

(Equation-1). That is, when the actual request rate wi is too

small, even a small absolute error may lead to a very large

percentage error. As we show later with the case study, these

predictions with high MAPE but small absolute errors would

still yield overall system performance improvements for cloud

deployments. The average error for CloudBruno for all 14

workloads was only 20.5%.

To illustrate the impact of the SVM predictor, we also

evaluated CloudBruno with only LSTM models. That is, only

using the LSTM models in CloudBruno without the SVM and

the tournament predictor. The results were also reported in

Fig. 7 (“CloudBruno-LSTM-Only”, the “orange” bar), which

showed that without SVM, LSTM-only CloudBruno had high

2https://colab.research.google.com
3https://cloud.google.com/compute/docs/machine-types

TABLE III
HYPERPARAMETER SEARCH SPACE FOR THE LSTM MODELS IN

CloudBruno.

Workload Hist Len (n) Cell Input size Layers # Batch #

Wiki

[1-99] [1-100]
[1-5]

[16-256]
LCG
Azure
Google
Facebook [1-50] [1-50] [8-64]

errors. In particular, for FB-5m, the MAPE was 96%. The

average error of LSTM-only CloudBruno was 33.1%, which

was also considerably higher than that of CloudBruno (the

average error was 20.5%). The main issue with LSTM-only

CloudBruno was because the LSTM model was retrained

every 5 intervals, it could not adapt to workload changes that

happened within those 5 intervals. However, the faster SVM

models in the complete CloudBruno are retrained after every

interval, allowing CloudBruno to adapt to every workload

change. These results also suggest that, for better accuracy, it is

crucial that online workload predictor can adapt immediately

after a workload change.

2) Accuracy Comparison with Baselines: Three of the

baselines, LoadDynamics, WGAN-gp, and BiLSTM, em-

ployed complex NN models. Following the common practice

in deep learning and their original papers, these three baselines

were trained using 60% of the workloads, and their accuracy

were also reported in Fig. 7. As Fig. 7 shows, CloudBruno

(“green” bar in the figure) had higher accuracy than the

BiLSTM model (“gray” bar) for all workloads. Fig. 8 reports

the differences of the overall average MAPEs of CloudBruno

and the baselines. Here, the overall average of a predicting

framework refers to the average MAPE of all 14 workloads

for this framework. As shown in Fig. 8, BiLSTM’s error

was 7.6% higher than CloudBruno. The main issue with

BiLSTM model is that its hyperparameters were selected for

the Google workload [17], making it difficult to handle all

other workloads.

Fig. 7 also shows that the accuracy of CloudBruno was

similar to LoadDynamics and WGAN-gp. In one case, Azure

workload with 10-minute intervals (AZ-10m), CloudBruno’s

error was more than 11% lower than both LoadDynamics and

WGAN-gp. It’s worth noting that in some cases (e.g., FB-5m),

CloudBruno may be worse than LoadDynamics and WGAN-

gp, mainly because of the smaller hyperparameter search space

in CloudBruno. Fig. 8 shows that CloudBruno’s error was

only 2.5% (“white” bar) higher than LoadDynamics and 0.5%

(“black” bar) higher than WGAN-gp. CloudBruno’s compa-

rable accuracy to complex NN models of LoadDynamics and

WGAN-gp shows the first main benefit of CloudBruno –

it does not require prior knowledge of the workload and large

training sets to provide high accuracy comparable to optimized

complex NN models.

The fourth baseline, CloudInsight, was also an online pre-

diction framework that employed multiple statistical learning

models. As Fig. 7 shows, CloudBruno had better performance

6

 0

 10

 20

 30

 40

 50

 60

FB-5m

FB-10m

LCG-5m

LCG-10m

LCG-30m

AZ-10m

AZ-30m

AZ-60m

W
iki-5

m

W
iki-1

0m

W
iki-3

0m
GL-5m

GL-10m

GL-30m

93 7496
M

A
P

E
 (

%
)

CloudBruno
Bruno-LSTM-Only

LoadDynamics

WGAN-gp
BiLSTM

CloudInsight

Fig. 7. Prediction errors (MAPE) of CloudBruno for 14 real workloads. Note that, WGAN-gp does not have MAPE for grid (LCG) and Wiki-5m workloads,
due to insufficient memory error when training on the GPU.

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

Overall Avg

M
A

P
E

 D
i�

 (
%

)

CloudBruno-LSTM-Only
LoadDynamics

WGAN-gp
BiLSTM

CloudInsight

Fig. 8. The differences of the overall average MAPE between the baselines
and CloudBruno. Negative differences mean lower MAPE than CloudBruno,
while positive differences mean higher MAPE than CloudBruno.

 0

 10

 20

 30

 40

 50

 60

 70

Combined Synthetic Workload

M
A

P
E

 (
%

)

CloudBruno
LoadDynamics

WGAN-gp
BiLSTM

CloudInsight

Fig. 9. Predication errors (MAPE) of the combined workload.

than CloudInsight (“violet” bar) for all workloads. On average,

CloudBruno’s error was 6.1% lower than CloudInsight. As an

online prediction framework, CloudInsight was also optimized

for low train time by employing faster statistical models, such

as ARIMA and Random Forest. However, these models have

lower accuracy for complex workloads with low seasonality.

C. Evaluation of Accuracy with Highly-dynamic Workload

One of the main design goals of CloudBruno is to provide

accurate predictions for workloads that experience dynamic

changes after deployment, i.e., for workloads with patterns

that are not included in the training data sets. To evalu-

ate CloudBruno’s accuracy with such highly-dynamic work-

loads, we also generated a synthetic workload by concatenat-

ing/combining the five 10-minute-interval traces in Table II. As

these workloads are from five different use cases, the variation

in this synthetic workload is extremely high, which allowed

us to evaluate CloudBruno in this extreme scenario.

Fig. 9 reports the MAPE of CloudBruno and the four

baselines with this synthetic workload. As Fig. 9 shows,

CloudBruno had lower error than all four baselines. Within

the four baselines, CloudInsight had the lowest error. Cloud-

Bruno’s and CloudInsight’s better accuracy was the result of

their online prediction nature. For this combined workload,

TABLE IV
THE (RE-)TRAINING TIME OF THE ONLINE MODELS IN CloudBruno.

Workload
Interval
(min.)

SVM
(sec.)

LSTM
(min.)

Tournament predictor
(msec.)

Facebook
5 min. 3.7 4 13

10 min. 1.5 6 13

LCG
5 min. 1.4 21 13

10 min. 3.2 38 15

30 min. 3.5 26 15

Azure
10 min. 2.3 34 17

30 min. 5.0 19 13

60 min. 5.9 36 17

Wiki
5 min. 4.6 20 20

10 min. 5.0 18 19

30 min. 1.7 17 16

Google
5 min. 1.7 18 19

10 min. 2.8 36 18

30 min. 5 36 22

Average 3.4 23.5 16.43

there is little correlation between concatenated workloads.

Therefore, the training data set used by the NN baselines

(LoadDynamics, WGAN-gp, and BiLSTM) cannot represent

the later workloads. Therefore, the NN baselines all had high

errors. On the contrary, both CloudBruno and CloudInsight

dynamically retrain their models to adapt to each concatenated

workload, allowing them to enjoy lower prediction error. More

specifically, as shown in Fig. 9, CloudBruno’s error was at

least 8.8% lower than the NN baselines (8.8% lower than

WGAN-gp).

Moreover, CloudBruno’s error was also 5% lower than

CloudInsight, mainly due to its use of SVM and LSTM, which

can better handle workloads with little seasonality. These

results illustrate the second main benefit of CloudBruno –

it can provide high accuracy prediction for unknown workload

changes before deployment.

D. Evaluation of CloudBruno’s Training Time

1) Training Time of CloudBruno: Table IV reports the

detailed training time of all the components in CloudBruno

for each workload configuration. As reported in the table, the

training of the SVM prediction models was very fast, with a

maximum training time of only 5.9 seconds and an overall

average training time of only 3.4 seconds. Similarly, because

the tournament predictor is also an SVM model internally, its

7

 0

 50

 100

 150

 200

 250

 300

Facebook LCG Azure Wiki Google

T
ra

in
in

g
 T

im
e

(m
in

.)

CloudBruno (LSTM)
LoadDynamics

 WGAN-gp
 BiLSTM

Fig. 10. Training time of CloudBruno and NN baselines. Note that, the
hardware used for training is reported in Section IV-A

 0
 1
 2
 3
 4
 5
 6
 7
 8

Average

N
o

rm
al

iz
ed

 T
im

e CloudBruno (LSTM)
LoadDynamics

WGAN-gp
BiLSTM

Fig. 11. Overall average training time of CloudBruno and NN baselines.
Averaged over all 14 workloads and normalized to CloudBruno

training is also fast – the maximum training time was only 22

microseconds, and the overall average training time was 16.4

microseconds. These fast training times show that it is feasible

to retrain a new SVM model for every interval, as long as the

interval length is longer than 5.9 seconds.

The training of the online LSTM models took longer,

compared to the SVM models, as expected. The maximum

training time of the online LSTM models was 38 minutes, and

the overall average training time was 23.5 minutes. Although

these training times were considerably longer than the SVM

models, they were still fast enough to retrain new online LSTM

models within 5 intervals for each workload configuration. For

example, the longest training time, 38 minutes, was observed

with LCG workload at 10-minute intervals. Five 10-minute

intervals (i.e., 50 minutes) were still longer than the 38-minute

training time.

Although the training data set size and hyperparameter

optimization iteration count were the same for all workload

configurations, the actual training times for each workload

configuration were still different. This difference in training

time was due to the hyperparameter optimization process.

Difference workloads have different optimal sets of hyperpa-

rameters. Hence, the hyperparameter optimization under BO

searched different parameter sets for different workloads – if

more complex LSTM model hyperparameters were searched

during the optimization, then the training time would increase.

It is worth noting that the low training time of CloudBruno

was achieved with a free cloud CPU. These results illustrate

the third benefit of CloudBruno – it can be used as an online

workload predictor without additional cloud usage cost.

2) Training Time Comparison with Baselines: Fig. 10 re-

ports the training time for CloudBruno and the three NN

baselines. Due to space limitation, only the average training

times for each of the five workload traces are shown. For ex-

ample, for the Google workload, the average training time for

the 5-min., 10-min., and 30-min. intervals is shown for each

predicting framework. Moreover, only the LSTM component’s

 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90

Jo
b

 T
im

e
(s

ec
)

CloudBruno
LoadDynamics

WGAN-gp
BiLSTM

CloudInsight

Fig. 12. Average job turn-around time for Google Cloud auto-scaling case
study.

 0

 20

 40

 60

 80

 100

CloudBruno

LoadDynamics

WGAN-gp

BiLSTM

CloudInsig
ht

P
er

c
(%

)

Over-prov
Under-prov

Fig. 13. Under-provisioning and over-provisioning rates for the proactive
auto-scaling case study.

training time of CloudBruno was shown, and the faster SVM

training time (shown in Table IV) is omitted due to the y-axis

scale.

Fig. 10 shows that CloudBruno had a significant train-

ing time reduction against the baselines for every workload.

Fig. 11 shows that CloudBruno’s overall average training time

was 4.0× faster than LoadDynamics, 7.4× faster than WGAN-

gp, and 5.7× faster than BiLSTM. This significant training

time reduction is because CloudBruno employs efficient train-

ing data set size, space-efficient hyperparameter optimization,

and the use of faster SVM and tournament predictor. More-

over, it is worth noting that CloudBruno achieved similar

accuracy to these NN baselines even with such high training

time reduction.

The fourth baseline, CloudInsight, employed fast statistical

learning models. Therefore, CloudInsight also have low train-

ing time comparable to the SVM component of CloudBruno.

However, as shown in Fig. 7, CloudInsight had higher errors

than CloudBruno.

V. CASE STUDY

To demonstrate the benefit of CloudBruno for predictive

auto-scaling, we also conducted a case study on Google

Compute Engine (GCE) with an auto-scaling policy. We used

the Azure-30m workload in this case study as it was from

an IaaS cloud (Azure VMs), which fits the IaaS cloud GCE.

The 30-minute interval was chosen (instead of 10-minute or

60-minute intervals) to balance the workload length and the

number of requested VMs per interval. Moreover, Azure-30m

is also chosen because CloudBruno’s MAPE for this workload

is close to the overall average MAPE for CloudBruno for all

14 workloads.

The auto-scaling policy for this case study works as follows.

Near the end of each time interval, CloudBruno is used to

predict the number of jobs that will arrive in the next interval.

Then, a group of VMs will be created proactively for the

incoming jobs. The number of VMs in this group is the same

8

as the predicted job count. When the next interval starts, the

incoming jobs are assigned to the proactively created VMs. If

there are more jobs than predicted, then additional VMs are

created on-demand to execute these jobs. This process repeats

for every interval until the whole workload is processed.

We used the In-Memory Analytics benchmark from Cloud

Suite [28] as the job. General-purpose e2-medium VMs were

also used execute the jobs. Besides CloudBruno, we also

evaluated the four baselines in this case study.

Fig. 12 reports the average turnaround time for each pre-

dictive framework in this case study. The turnaround time

refers to the time between the job arrives and the job finishes

execution. As Fig. 12 shows, CloudBruno had the lowest

job turnaround time, whereas the BiLSTM framework had

the longest turnaround time. More specifically, CloudBruno’s

average turnaround time was 3% faster than the best baseline

WGAN-gp and 7% faster than the worst baseline BiLSTM.

These turnaround time results are generally in-line with the

prediction errors reported in Fig. 7, where CloudBruno has

the lowest error, whereas BiLSTM has the highest error.

To further analyze the VM scaling behaviors of differ-

ent prediction frameworks, we also collected the under-

provisioning and over-provisioning rates for this case study,

which are reported in Fig. 13. Here, the under-provisioning

and over-provisioning rates refer to the percentages of intervals

that experienced under- or over-provisioning (i.e., fewer than

or more than required VMs). Fig. 13 shows that the total (sum)

of under- and over-provisioning rates were the lowest for both

CloudBruno and WGAN-gp, which corroborates the results

in Fig. 12 where CloudBruno and WGAN-gp had the two

lowest average turnaround times. Nonetheless, CloudBruno

had a lower under-provisioning rate than WGAN-gp. Hence,

CloudBruno had fewer on-demand VMs created, leading to a

better turnaround time than WGAN-gp.

VI. RELATED WORK

Many studies have been proposed for workload prediction

because of the benefit of predictive (proactive) auto-scaling.

This section provides a review of these models.

Time series models. As workloads are naturally time

series, various time series models have been employed in

this prediction. Mistral was a cloud management system that

employed a time series model, ARMA, to predict future

workload [29]. Roy et al. also employed ARMA in their

predictive auto-scaling solutions [5]. Another commonly used

time series model is ARIMA, which has been employed for

VM consolidation [30] and auto-scaling [31]. There is also

a group of studies that employed weight moving average

(WMA) models for workload prediction [32]–[36]. Woods

et al. employed Fast Fourier transform (FFT) model and a

discrete-time Markov chain for workload prediction [1]. As

shown by prior work [6], time series models are good at

predicting workloads with good seasonality and/or relatively

stable autocorrelation. However, they have high prediction er-

rors for non-seasonal workloads, which are typically for cloud

computing (such as the workloads used in our evaluation).

Statistical learning models. Cortez et al. presented work-

load traces from Microsoft Azure and employed Random

Forest and Extreme Gradient Boosting Tree models to predict

various characteristics in these traces [25]. There is also a

group of work employed Linear Regression (LR) for workload

prediction [2], [37]–[39]. Wrangler is a cloud management

system that aims at improving the performance of straggler

tasks, and it employs SVM models to predict if a task with

straggle [40]. Similarly, Khan et al. employed Hidden Markov

Model [41]. Similar to the time series models, these statistical

learning models are usually not generic and cannot handle all

types of workloads [6]. Moreover, similar to all other machine

learning models, these statistical learning models also require

representative workloads as training data sets, and hence, may

have trouble handling unknown workload patterns.

Multi-predictor and ensemble models. As a single type

of time series and statistical learning model has difficulty

achieving generality, prior workload also considered employ-

ing multiple types of predictive models. Baig et al. employed

Random Forest to predict the best models from LR, SVM, Gra-

dient Boosting, and Gaussian Process [42]. Similarly, Loff and

Garcia proposed to use k-Nearest Neighbors to select the best

predictor [43]. Jiang et al. employed a mixture of time series

(AR/MA), SVM, neural network, and genetic programming in

their prediction [44]. Herbst et al. also employed four groups

of time series models, such as moving average, ARIMA,

and exponential smoothing [45]. Liu et al. proposed to first

classify workload types and then employ different predictors

based on the classification [46]. CloudInsight is an ensemble

framework that can combine the prediction results of any type

of models [27] and can be viewed as a generic extension

of prior multi-predictor/ensemble solutions. CloudBruno is

inspired by these prior studies. However, as shown in our

evaluation, the use of only time series and statistical learning

models provided lower accuracy than CloudBruno.

Deep learning models. The rise of deep learning has

also inspired many studies to employ neural network (NN)

models. Several studies have employed various types of LSTM

models, such as ANN [47], multivariate LSTM [11], parallel

LSTM [12], BiLSTM [18], LSTM Encoder-Decoder [48],

LSTM with Savitzky-Golay (S-G) filter [49], and Bi-

directional and Grid LSTM [17]. Jayakumar et al. also em-

ployed LSTM for workload prediction [10]. However, they

showed that hyperparameter optimization is a key to achieving

generality and high accuracy across various workloads for

LSTM models. Zhang et al. employed a stacked autoencoder

for workload prediction [50]. Kumar et al. employed offline-

trained multi-layer NN models, whose prediction results were

adjusted based on online feedback [47]. Arbat et al. employed

transformers trained with WGAN-gp for workload prediction,

which was shown to be more accurate than LSTM models [13].

Although deep learning models can provide high accuracy for

a large variety of workloads, they usually require representa-

tive training data sets, making it difficult to handle unknown

workload patterns, as shown in our evaluation. Moreover, our

evaluation results also illustrated that our online model, Cloud-

9

Bruno, has similar accuracy to NN models even when they had

enough training data. At last, many complex NN models are

usually time-consuming and require more expensive hardware

to train, while CloudBruno can be trained with low-cost CPUs.

VII. CONCLUSION

In this paper, we presented the design of CloudBruno, an

online workload predictor for cloud auto-scaling. CloudBruno

combines the predictions of the more accurate LSTM models

and the less expensive SVM models to achieve both high

accuracy and low cost. CloudBruno has at least 8.8% lower

error than the existing complex neural network (NN) based

framework for highly-dynamic workloads whose future work-

load changes are unseen in training data. CloudBruno also had

comparable accuracy as NN frameworks for workloads with

comprehensive training data. More importantly, CloudBruno

can effectively execute on a free cloud CPU, allowing it to be

used as an online workload predictor without additional cost.

ACKNOWLEDGMENT

This research was in part supported by the U.S. Department

of Agriculture (USDA), under award number 2021-67019-

34342, as well as by National Science Foundation (NSF),

under grants, 2155096, 2202632, 2221843, and 2215359. Any

opinions, findings, conclusions, or recommendations expressed

in this publication are those of the authors and do not necessar-

ily reflect the view of the USDA and NSF. The authors would

like to thank the anonymous reviewers for their insightful

comments.

REFERENCES

[1] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems.
In ACM Symposium on Cloud Computing (SoCC), Cascais, Portugal,
October, 2011.

[2] Timothy Wood, Ludmila Cherkasova, Kivanc M. Ozonat, and Prashant J.
Shenoy. Profiling and Modeling Resource Usage of Virtualized Applica-
tions. In ACM/IFIP/USENIX 9th International Middleware Conference

(Middleware), Leuven, Belgium, December, 2008.

[3] Marco A.S. Netto, Carlos Cardonha, Renato L.F. Cunha, and Marcos D.
Assuncao. Evaluating Auto-scaling Strategies for Cloud Computing
Environments. In 2014 IEEE 22nd International Symposium on Mod-

elling, Analysis Simulation of Computer and Telecommunication Systems

(MASCOTS), Paris, France, September, 2014.

[4] Laura R. Moore, Kathryn Bean, and Tariq Ellahi. Transforming Reactive
Auto-Scaling into Proactive Auto-Scaling. In The 3rd International

Workshop on Cloud Data and Platforms (CloudDP), Prague, Czech
Republic, April, 2013.

[5] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient Au-
toscaling in the Cloud using Predictive Models for Workload Forecast-
ing. In IEEE International Conference on Cloud Computing (CLOUD),
Washington DC, USA, July, 2011.

[6] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. Empirical
Evaluation of Workload Forecasting Techniques for Predictive Cloud Re-
source Scaling. In IEEE International Conference on Cloud Computing

(CLOUD), San Francisco, CA, USA, June, 2016.

[7] Erik-Jan van Baaren. Wikibench: A Distributed, Wikipedia-based Web
Application Benchmark. VU University Amsterdam, 2009.

[8] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and
Michael Kozuch. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In ACM Symposium on Cloud Computing

(SoCC), San Jose, CA, USA, October, 2012.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8), 1997.

[10] Vinodh Kumaran Jayakumar, Jaewoo Lee, In Kee Kim, and Wei Wang.
A Self-Optimized Generic Workload Prediction Framework for Cloud
Computing. In IEEE International Parallel and Distributed Processing

Symposium (IPDPS), Virtual Event, May, 2020.

[11] Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate LSTM-
Based Location-Aware Workload Prediction for Edge Data Centers.
In IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), Larnaca, Cyprus, May, 2019.

[12] Xiaoyong Tang. Large-Scale Computing Systems Workload Prediction
Using Parallel Improved LSTM Neural Network. IEEE Access, 7, 2019.

[13] Shivani Arbat, Vinodh Kumaran Jayakumar, Jaewoo Lee, Wei Wang, and
In Kee Kim. Wasserstein Adversarial Transformer for Cloud Workload
Prediction. In The Thirty-Fourth Annual Conference on Innovative

Applications of Artificial Intelligence (IAAI-22), Vancouver, BC, Canada,
February, 2022.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is All You Need. In 31st International Conference on Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, 2017.

[15] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved Training of Wasserstein GANs.
In Advances in Neural Information Processing Systems (NIPS), Long
Beach, CA, USA, December, 2017.

[16] William S Noble. What is A Support Vector Machine? Nature

biotechnology, 24(12):1565–1567, 2006.

[17] Jing Bi, Shuang Li, Haitao Yuan, and MengChu Zhou. Integrated
Deep Learning Method for Workload and Resource Prediction in Cloud
Systems. Neurocomputing, 424:35–48, 2021.

[18] Siddhant Kumar, Neha Muthiyan, Shaifu Gupta, Dileep A.D., and Aditya
Nigam. Association Learning based Hybrid Model for Cloud Workload
Prediction. In International Joint Conference on Neural Networks

(IJCNN), Rio de Janeiro, Brazil, July, 2018.

[19] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. Forecasting
Cloud Application Workloads with CloudInsight for Predictive Resource
Management. IEEE Transactions on Cloud Computing, 2020.

[20] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink,
and Jürgen Schmidhuber. LSTM: A Search Space Odyssey. IEEE

Transactions on Neural Networks Learning Systems, 28(10):2222–2232,
2017.

[21] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing
and Optimizing LSTM Language Models. In International Conference

on Learning Representations (ICLR), Vancouver, BC, Canada, April,
2018.

[22] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian
Optimization of Machine Learning Algorithms. In Annual Conference

on Neural Information Processing Systems (NIPS). Lake Tahoe, NV,
USA, December, 2012.

[23] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. of Machine Learning Research, 13(Feb):281–305, 2012.

[24] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Du-
mitrescu, Lex Wolters, and Dick H.J. Epema. The Grid Workloads
Archive. Future Generation Computer Systems, 24(7), 2008.

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource Central: Understanding and
Predicting Workloads for Improved Resource Management in Large
Cloud Platforms. In ACM Symposium on Operating Systems Principles

(SOSP), Shanghai, China, October, 2017.

[26] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The
Case for Evaluating MapReduce Performance Using Workload Suites.
In IEEE International Symposium on the Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS),
Singapore, July, 2011.

[27] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. CloudInsight:
Utilizing a Council of Experts to Predict Future Cloud Application
Workloads. In IEEE International Conference on Cloud Computing

(CLOUD), San Francisco, CA, USA, July, 2018.

[28] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the Clouds:
A Study of Emerging Scale-out Workloads on Modern Hardware. In
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), London, U.K., March,
2012.

10

[29] Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi, Richard D.
Schlichting, and Calton Pu. Mistral: Dynamically Managing Power,
Performance, and Adaptation Cost in Cloud Infrastructures. In Interna-

tional Conference on Distributed Computing Systems (ICDCS), Genova,
Italy, June, 2010.

[30] Hao Lin, Xin Qi, Shuo Yang, and Samuel P. Midkiff. Workload-
Driven VM Consolidation in Cloud Data Center. In IEEE International

Parallel and Distributed Processing Symposium (IPDPS), Hyderabad,
India, May, 2015.

[31] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar
Buyya. Workload Prediction Using ARIMA Model and Its Impact on
Cloud Applications’ QoS. IEEE Transactions on Cloud Computing,
3(4), 2015.

[32] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic Placement
of Virtual Machines for Managing SLA Violations. In IFIP/IEEE

International Symposium on Integrated Network Management (IM),
Munich, Germany, May, 2007.

[33] Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and
Lin Yuan. Online Self-reconfiguration with Performance Guarantee for
Energy-efficient Large-scale Cloud Computing Data Centers. In IEEE

International Conference on Services Computing (SCC), Miami, FL,
USA, July, 2010.

[34] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys,
David E. Culler, and Randy H. Katz. NapSAC: Design and Im-
plementation of a Power-Proportional Web Cluster. ACM Computer

Communication Review, 41(1), 2011.

[35] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A.
Kozuch. AutoScale: Dynamic, Robust Capacity Management for Multi-
Tier Data Centers. ACM Transactions on Computer Systems, 30(4),
2012.

[36] Eyal Zohar, Israel Cidon, and Osnat Mokryn. The Power of Prediction:
Cloud Bandwidth and Cost Reduction. In ACM SIGCOMM 2011

Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications (SIGCOMM), Toronto, ON, Canada,
August, 2011.

[37] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical
Prediction models for Adaptive Resource Provisioning in the Cloud.
Future Generation Computer Systems, 28(1), 2012.

[38] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Zexiang Mao, and Junliang
Chen. Workload Predicting-Based Automatic Scaling in Service Clouds.
In IEEE International Conference on Cloud Computing (CLOUD), Santa
Clara, CA, USA, June, 2013.

[39] Peter Bodik, Rean Griffith, Charles A. Sutton, Armando Fox, Michael I.
Jordan, and David A. Patterson. Statistical Machine Learning Makes
Automatic Control Practical for Internet Datacenters. In USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud), San Diego,
CA, USA, June, 2009.

[40] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz.
Wrangler: Predictable and Faster Jobs using Fewer Resources. In ACM

Symposium on Cloud Computing (SoCC), Seattle, WA, USA, November,
2014.

[41] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload
Characterization and Prediction in the Cloud: A Multiple Time Series
Approach. In IEEE International Symposium on Network Operations

and Management (NOMS), Maui, HI, USA, April, 2012.

[42] Shuja ur Rehman Baig, Waheed Iqbal, Josep Lluis Berral, Abdelkarim
Erradi, and David Carrera. Adaptive Prediction Models for Data Center
Resources Utilization Estimation. IEEE Transactions on Network and

Service Management, 2019.

[43] Joao Loff and Joao Garcia. Vadara: Predictive Elasticity for Cloud
Applications. In IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), Singapore, December, 2014.

[44] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong N. Chang. ASAP: A
Self-Adaptive Prediction System for Instant Cloud Resource Demand
Provisioning. In IEEE International Conference on Data Mining

(ICDM), Vancouver, BC, Canada, December, 2011.

[45] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich
Amrehn. Self-Adaptive Workload Classification and Forecasting for
Proactive Resource Provisioning. In ACM/SPEC International Con-

ference on Performance Engineering (ICPE), Prague, Czech Republic,
April, 2013.

[46] Chunhong Liu, Chuanchang Liu, Yanlei Shang, Shiping Chen,
Bo Cheng, and Junliang Chen. An Adaptive Prediction Approach based

on Workload Pattern Discrimination in the Cloud. Journal of Network

and Computer Applications, 80, 2017.
[47] Jitendra Kumar, Ashutosh Kumar Singh, and Rajkumar Buyya. Self Di-

rected Learning Based Workload Forecasting Model for Cloud Resource
Management. Information Sciences, 543:345–366, 2021.

[48] Hoang Minh Nguyen, Gaurav Kalra, and Daeyoung Kim. Host load
prediction in cloud computing using Long Short-Term Memory En-
coder–Decoder. Journal of Super Computing, 2019.

[49] Jing Bi, Shuang Li, Haitao Yuan, Ziyan Zhao, and Haoyue Liu. Deep
Neural Networks for Predicting Task Time Series in Cloud Computing
Systems. In IEEE International Conference on Networking, Sensing and

Control (ICNSC), Banff, AB, Canada, May, 2019.
[50] Qingchen Zhang, Laurence T. Yang, Zheng Yan, Zhikui Chen, and Peng

Li. An Efficient Deep Learning Model to PredictCloud Workload for
Industry Informatics. IEEE Transactions on Industrial Informatics, 14,
2018.

11

