

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Wei Wang, Kathy B. Ewoldt, Mimi Xie, Alberto M. Mestas-Nuñez, Sean Soderman, and Jeffrey Wang

the programming activities, the summer camp also included guest
presentations and a panel, where the guests and panelists who
worked in Computer Science and other STEM fields presented their
personal career experiences and career paths.

The camp in 2020 was half-day and lasted for two weeks with
nine students enrolled. The camp in 2021 was full-day and lasted for
one week with six students. All students were 14+ years old high
school students with disabilities including Autism, learning disabil-
ities, and blindness and vision impairments (BVI). The instruction
team of ExploreSTEM included faculty members with expertise in
Computer Science, Special Education, and Earth Science, as well as
several undergraduate and graduate student tutors. There was also
a high school student who evaluated the difficulty of the program-
ming activities before the camp started.
Outcomes The summer camp in both years was successful. All
students were able to finish all programming tasks. Our students
also expressed positive feelings regarding the camp. The outcomes
are summarized in the following list,

(1) All students correctly finished all programming tasks, al-
though some students did need additional time and assis-
tance in debugging. Themajority of the students also showed
good understanding regarding programming and machine-
learning/AI concepts.

(2) Students also expressed that they enjoyed the career ex-
perience of Computer Science and the summer camp. One
student returned for the second year’s camp.

(3) Overall, our experience shows that online programming
camps for high-school students with disabilities are feasible,
and students with disabilities can potentially be success-
ful Computer Science professionals. We also feel the effort
required to adjust the online teaching for students with dis-
abilities is not extremely high.

Lessons Learned The lessons-learned regarding curriculum,
programming activities, and schedule include,

(1) The programming activities should reduce the length of the
statements, the number of punctuation marks, and the use
of identifiers that mix letters, digits, and underscores. Each
block of code should include no more than 5 lines of state-
ments and should be independently executable/verifiable to
simplify debugging. These simplified programming activi-
ties are particularly important for students with Autism and
blindness, as they avoided over-stressing the students and
were more friendly to screen readers.

(2) Extra tutoring time can help alleviate issues from students’
different programming progresses. The differences in the
teaching needs among the students lead to differences in
progress. Therefore, we found that individual tutoring ses-
sionswere particularly helpful for students who neededmore
time to code without impeding the teaching for others.

(3) Guest speaker presentations and the panel discussion were
valuable additions to the lectures and hands-on activities.
They provided the students with personal career experience
in other STEM areas and career-building advice. More im-
portantly, they provided an opportunity for the students to
discuss the difficulties beyond academia, such as working
environments, accommodations, and financial support.

(4) To encourage students with disabilities to attend colleges,
discussion of potential financial support is also important.
One of the major topics brought up during our panel discus-
sion was financial support, which turned out to be a major
obstacle for students with disabilities in attending college.
Our panelists mentioned several supports they have used,
which were less-known to our students, their parents, and
even some social workers.

The lessons learned for technology/accessibility include,

(1) Google Colab, or more generally, cloud-based Jupyter Note-
books, greatly reduced the difficulty of teaching and debug-
ging assistance, which is also consistent with our own ex-
perience of teaching programming in courses for typical
students and with other reports [2].

(2) The student with blindness required a screen reader to read
code examples, as well as his own code. However, the screen
reader had trouble providing comprehensible readings for
program statements that mixed letters, digits, and punctua-
tion marks. Moreover, the student also had trouble navigat-
ing inside his own code. During teaching, our instructors
and tutors frequently had to read the example codes, instead
of using the screen reader. We also needed to monitor and
assist his cursor movement in the code. These difficulties
showed that there needed better technological support for
screen reading and code navigation to assist students with
BVI to learn Computer Science, which is also consistent with
other reports [5, 6, 15, 16, 39, 50].

(3) Image outputs from the code (including images generated by
students’ code) should have image descriptions, which can
be read by screen readers to assist students with blindness.

The presence of a special educator is also indispensable,

(1) Our special education professor provided training for the in-
structors and tutors, which ensured the camp’s success. The
training included characteristics of disabilities, accommoda-
tions for learning, and strategies that promote engagement.
It also prepared them to follow the evidence-based practices
for teaching students with disabilities [17, 36, 42].

(2) Despite the training, there still must be a special educator
present at the camp to closely monitor the students. As our
camp is open to students with any disability, we need to
satisfy a variety of teaching needs. Moreover, even with
training, CS instructors may still overlook certain require-
ments. Therefore, our special education professor constantly
monitored the teaching and would intervene when neces-
sary, to avoid student over-stressing, to clarify instructions,
and to maintain ordered communication.

The rest of this paper is organized as follows: Section 2 gives
an overview of the activities of our summer camp; Section 3 sum-
marizes teaching outcomes; Section 4 presents lessons learned;
Section 5 discusses related work; and Section 6 concludes the paper.

2 CAMP SYLLABUS

2.1 Camp Schedule

Table 1 and Table 2 give the detailed schedule of our summer camps.
As Table 1 shows, the camp in 2020 lasted for two weeks (10 days),

459

Virtual Summer Camp for High School Students with Disabilities – An Experience Report SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

Hours (AM) Day 1 Day 2 Day 3 Day 4 Day 5

Week 1
9-11 Prog. Extra

Tutor
Prog. Extra

Tutor
Prog.

11-12 Guest Guest Guest

Week 2
9-11 Prog. Extra

Tutor
Instr. Extra

Tutor
Prog.

11-12 Guest Guest Guest

Table 1: Schedule of the 2020 camp. "Prog" stands for pro-

gramming activities, and "Guest" stands for guest speakers.

Hours Day 1 Day 2 Day 3 Day 4 Day 5

Morning
9-11 Prog. Prog. Prog. Prog. Prog.
11-12 Guest Guest Guest Guest Panel

Afternoon 13-15
Extra
Tutor

Extra
Tutor

Extra
Tutor

Extra
Tutor

Extra
Tutor

Table 2: Schedule of the 2021 camp. "Prog" stands for pro-

gramming activities, and "Guest" stands for guest speakers.

with new instructions and programming activities given in the
morning every other day. The days (mornings) between two instruc-
tional days were reserved as additional tutoring time for students
who needed more time to code. For each instructional morning,
there was a 2-hour teaching session and a 1-hour guest speaker
presentation session. Moreover, each 2-hour session of instruc-
tion/programming activities were partitioned into two 45 to 50
minutes blocks with 15-minute breaks in between.

Table 2 shows that the 2021 camp lasted for one week (5 days),
with instructions and programming activities in the morning and
tutoring in the afternoon. If no one required additional tutoring on a
day, the tutoring time was used for backup programming activities.

2.2 Programming Activities

The camp was originally planned as in-person, where the student
would build small self-driving robots. However, due to COVID19,
the camp has to be converted to online. Therefore, we removed
the robot component and chose to emphasize on programming
activities and machine learning. The most challenging parts of
this change are the debugging support and programming activity
complexity. This section presents the programming activities first.
The debugging support and programming activity complexity will
be discussed in Section 4.

Seven programming activities were provided for Python pro-
gramming, image segmentation, handwritten-digit recognition, and
autonomous driving. Short lectures on the concepts were also given
along with the programming activities. For programming activities,
the students were first asked to copy (by typing) programs follow-
ing the example code. After the examples, they were also asked to
do exercises independently to further understand the code.

Python Programming – 2 Activities. As Python is the com-
mon language for Machine Learning, we started with basic Python
programming. Figure 1 shows parts of our Python programming ac-
tivities. In the first Python activity (Figure 1a), the students learned
and programmed basic Python statements, such as variable assign-
ments, math operations, function invocations, if-else statements,
and for loops. In the end, the students were asked to modify their
loop code and to generate a word cloud with their own paragraphs
of text. In the second (and more difficult) Python programming
activity, the students were asked to write a "Turtle Racing" drawing

(a) Basic python programming activity.

(b) Turtle race programming activity.

Figure 1: Python programming activities.

Figure 2: Satellite Image segmentation activity. Left: the orig-

inal image; right: image with old sea ice identified (in red).

program (Figure 1b) that mimics the Logo language in Python. In
the end, the students were asked to increase how far the turtle can
go in the field as a competition.

Color-Based Image Segmentation – 2 Activities. As a simple
introduction to Computer Vision, the students were tasked to con-
duct color-based image segmentation. The first segmentation task
was to segment the clownfish in a picture. The students were first
shown the code of segmenting the orange pixels from the original
picture, then they were tasked to isolate white pixels from the pic-
ture by themselves. Finally, the segmented orange and white pixels
were combined to identify the clownfish. To showcase the real-life
use of color-based segmentation, the students also segmented polar
sea-ice images obtained with the Sentinel-2 satellite [10] (Figure 2).
By isolating white-ish pixels, the students identified old (thick) sea
ice from young (thin) sea ice and open water. This activity is derived
from our ongoing research on polar sea ice retreat monitoring.

Autonomous Driving – 2 Activities. To illustrate more ad-
vanced Computer Vision, the students were tasked to conduct lane
detection and vehicle detection for autonomous driving. Both detec-
tion tasks used the open data set from Udacity [53]. Example codes
for both activities are given in Figure 3. The lane detection activity
employed traditional Computer Vision techniques of Gaussian Blur
and Hough Transform. The vehicle detection required training a
Support Vector Machine (SVM) model. After finishing the detection
activities following the example code, the students were asked to
write code to randomly pick images to test.

Handwritten Digit Recognition – 1 Activity. To finally show-
case working in deep-learning careers, we taught the students the

460

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Wei Wang, Kathy B. Ewoldt, Mimi Xie, Alberto M. Mestas-Nuñez, Sean Soderman, and Jeffrey Wang

(a) Part of the lane detection activity

(b) Part of the vehicle detection activity.

Figure 3: Autonomous driving programming activities.

Figure 4: MNIST handwritten digit recognition.

classic digit recognition problem with the MNIST data set [29] (Fig-
ure 4). In this task, the students programmed following the example
code to experience tasks such as data visualization, feature analysis,
data normalization, neural network construction, model training,
and model validation. The students were also asked to write code
independently to test their models with random images.

2.3 Guest Speakers and Panel Discussion

Because the goal of ExploreSTEM is to provide STEM career experi-
ences, we also invited guest speakers from fields outside software
engineering and deep learning. Our guest speakers included ar-
chitect, pilot, aircraft engineer, Geologist, Bio-chemist, electronic
engineer, and computer graphics designer. Moreover, these guest
speakers also provided personal career experiences that were miss-
ing from the lectures and hands-on activities, such as careers paths,
motivations, work environments, and even personal struggles. One
of our guest speakers also had disability.

In the last day of our 2021 camp, a panel was assembled to
provide career and education experiences. The panel consisted of
five panelists whowere either STEM college/post-graduate students
or professionals with disabilities. Each panelist first described their
career/education experience. Then together, they answered the
questions raised by the students, parents, and social workers.

3 OUTCOMES

3.1 Outcome of Programming and Lectures

Overall, the summer camps were successful. All students were able
to finish all programming activities. The majority of them also fin-
ished the exercises with no or limited help. The capabilities of the
students did vary. Some students may need help with debugging,
which was easily addressed over Colab file sharing. Some students
needed more time to program in our tutoring sessions. Nonetheless,
several students could write programs as well as students without
disabilities. One student with Autism could even finish the pro-
gramming on first attempts without any bugs, which corroborates
the belief that some with Asperger’s Syndrome or high-functioning
Autism may be well suited for software development [21].

We also employed post-camp surveys, which included questions
on programming and machine learning concepts. Among the 15
students who attended in two years, 11 of them showed good under-
standing of most concepts in the survey. The students also viewed
the camp positively, as exemplified in a news report [22].

These outcomes have two implications.

• Teaching virtual programming summer camp to students
with disability is feasible. There need changes to the teach-
ing and the material, and require assistance from special
educators. However, the amount of effort required to make
these changes is not significantly high.

• Our experience with this camp showed that students with
disabilities, such as Autism, learning disabilities, and BVI,
may become successful CS professionals. However, teaching
CS students with disabilities previously in standard college
classes was less successful for the authors. This difference
suggests that there may be a need to redesign CS courses
specifically for students with disabilities, a need to directly
involve special educators.

3.2 Outcome of Guest Speakers and Panel

The guest speakers and panel had become a more important part of
the summer camp than we initially expected. The personal STEM
career experiences were easier for the students to understand, espe-
cially if the experience is also from someone with disabilities. The
students were particularly interested in the speakers’ careers path
and their personal accounts of handling hardship in their work.

Moreover, several students also expressed interest in non-CS
STEM fields, which were only discussed by the guests. Some of our
students were eager to join STEMfields because they had innovative
ideas that utilize STEM technologies to improve the life of people
with disabilities. These ideas imply that students with disabilities
joining STEM fields will not only benefit themselves but may also
benefit the community of disabilities.

4 LESSONS LEARNED

4.1 Lessons for Curriculum Design

Programming Activity Adjustment. The programming and com-
puter vision topics were interesting and manageable for the stu-
dents. However, the programming activities did need adjustments.

Our programming activities were derived from summer camps
for students without disabilities. After the first day, we learned that

461

Virtual Summer Camp for High School Students with Disabilities – An Experience Report SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

print("The val is" +

 str(d) + "\n");

A print statement:

print lef paren quotes the val

is quotes plus

Screen reading from

Emacspeak for two lines:

s t r left paren d right paren

plus quote backslash quote

right paren semicolon

A statement of print function

invocation. The parameter is

a string "The val is", plus the

variable d converted into string,

plus the new line character,

backslash n.

Reading by a human instructor:

Figure 5: Screen reader’s reading and human’s reading for a

Python statement.

these activities had two problems. First, these activities required
each student to type six to ten statements at a time. However, typing
six to ten statements may introduced many typos, which were
very stressful for the students with Autism to fix. Second, many
statements mixed letters, digits, and punctuation marks, which
made screen reading hard to understand.

Therefore, after the first day of our camp, we redesigned the
programming activities so that each time a student only needed to
type no more than five statements (usually 2 to 3). These statements
cloud also be independently executed and examined, reducing the
difficulty of debugging. These short chunk of executable statements
also followed the “chunking” material principle in the evidence-
based teaching practices [42]. To be more friendly to the screen
reader, we also reduced the number of digits and punctuationmarks,
by offeringwrapper functions with fewer parameters, and renaming
the identifiers to use only common English words. These modifi-
cations turned out to be quite effective to enabling independent
programming activities.

Schedule. Our schedules in 2020 and 2021 (Table 1 and Table 2)
were different due to funding requirements. However, in 2021, we
observed that the students were usually tired and less focused in
the afternoon. Therefore, we recommend the instructions were only
given in the mornings. The additional tutoring time was also very
useful for handling students’ different programming progresses.

Non-CS Topics. Including guest speakers from non-CS fields
complemented the summer camp and helped students who are
interested in other STEM fields. Moreover, a particularly interesting
observation from the panel discussion was the lack of information
on financial support for college education. Several students and
parents asked our panelists about the financial means to support
their education. The panelists provided some federal and state
resources. These resources were little known to the students and
their parents. This observation made us believe that STEM out-
reaching programs for students with disabilities should also include
some discussion on the financial support resources.

4.2 Lessons for Technology and Accessibility

For most students, Google Colab was sufficient. Occasionally, the
instructors and tutors would use Colab’s share function to directly
modify a student’s code for difficult bugs. This debugging support
through Colab sharing also follows the "immediate, corrective-
feedback" principle in the evidence-based practice for teaching [36,
42]. Overall, our experience with Google Colab is positive.

However, we did encounter three accessibility difficulties for the
student with blindness. The first difficulty is the screen reader’s lim-
ited capability to properly read computer program statements. Our
student used the Jaws screen reader [18]. However, screen readers

are designed to read English text, not program statements, which
are usually mixtures of English letters, digits, punctuation marks,
and white spaces. Therefore, when applied to program statements,
screen readers usually deteriorate to read one character at a time,
making it very difficult for the listeners to understand. Figure 5
gives an example of how a screen reader reads a Python statement,
where every character is read except for a few English words. Even
with the adjusted programming activities, the reading could still be
confusing, and our instructors had to read the statements instead.
Figure 5 also shows how our instructor read this statement, where
the meaning of the statement is read instead of just characters.
Although the instructor still read individual characters occasionally
to teach the syntax, reading the statement by its meaning makes
programming education easier to students with blindness.

The second difficulty comes from code navigation. Program-
ming involves frequent cursor moving (navigation) within program
code to fix bugs. This common task, however, was very difficult
for our student with blindness (and also for programmers with
blindness [4]). To find a specific statement, the student needed to
move the cursor line by line, while listening to the screen readings
to determine if they have hit the statement they want to visit. This
process was so time-consuming and frustrating that, in every case,
the student gave up debugging and asked the instructors for help.
Our instructors usually had to tell the student how many lines to
move to locate the desired statement.

Although we addressed the above two accessibility issues with
human efforts, ideally, better screen reading and better support for
code navigation, should be provided to aid students with blindness
and vision impairment (BVI).

The third accessibility difficult comes from the teaching material.
As we taught Computer Vision, many of our activities involved
images. Initially, we found the images were ignored by the screen
reader. We assumed screen readers couldn’t handle images, and we
described the image to the students. However, later we found that
the screen reader was able to describe some images from Udacity’s
data set (likely due to Jaws’ Picture Smart database), which made
learning much easier for the student. Therefore, we recommend
adding image descriptions in the teaching material of all image
outputs to make them more accessible for screen readers. Note
that the student with blindness was indeed interested in Computer
Vision, as he saw it as a necessary tool to assist people with BVI.

4.3 Lessons for Special Educator Involvement

It is necessary that special educators present at the camp to monitor
the class and intervene when necessary. The special education
professor was indispensable to our camp in four aspects.

First, the special education professor provided training to our CS
professors and tutors, which included characteristics of disabilities,
accommodations for learning, and strategies that promote engage-
ment. The training also led the instructors to follow the evidence-
based practice for teaching students with disabilities [17, 36, 42],
such as explicit instructions, clear communications, chunking ma-
terials in logical orders, and corrective feedback.

Second, the CS professors might still overlook certain teaching
requirements even after being trained. The special education pro-
fessor would intervene to clarify or correct the instruction. For

462

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Wei Wang, Kathy B. Ewoldt, Mimi Xie, Alberto M. Mestas-Nuñez, Sean Soderman, and Jeffrey Wang

example, when teaching students with Autism, the instructions
much be clear and specific. However, this requirement tended to be
forgotten during teaching. There was once, at the end of the day,
the CS professor tried to dismiss the class by saying "That’s all for
today, and I’ll see you tomorrow." This sentence implied that the
students should leave the online meeting. However, some students
with Autism didnot understand the implied message and remained
in the meeting. Our special educator immediately discovered the
issue and told the students that they should leave.

Third, our special education professors were more capable at
discovering when students were over-stressed and calming them
down. For example, some of our students got stressed if there were
many bugs in their code. Our special education professor would
intervene in this case, told the CS instructors to temporarily leave
the student, and calmed down the student before proceeding to
further debugging. Our special education professor was constantly
monitoring the class to handle similar issues.

Forth, the special education professor was better at handling
the large variety of disabilities. Our summer camp was designed
for students with any disabilities. Even for the same disability,
different students manifest differently. It was impossible that pre-
camp training could enable the CS instructors to handle every issue.
Hence, the presence of special educators is a must for us.

5 RELATEDWORK

AccessCSforAll [25] is a joint research effort by University of Wash-
ington and University of Nevada Las Vegas to offer CS education
to K-12 students with disabilities. AccessCSforAll provided novel
programming language [51, 52], accessibility tools, and curricula.
University of Washington also had a program called DO-IT [37],
which aims at assisting people with disability in education, research,
and career. Our summer camp is partially inspired by these prior
efforts. DO-IT also directly assisted us with the panel discussion. CS
education for students with disabilities has recently received more
attention from CS educators. SIGCSE has held keynote talk [13],
panels [24, 27] and Birds-of-a-Feather sessions [1, 26] for CS edu-
cators who are interested in educating students with disabilities.
Game-of-Life is a cellular automata framework for CS outreach [28].
Blaser and Ladner also reported and analyzed the difficulty to col-
lect and understand data on disability in CS education [8]. We
hope our report could also provide useful experience and lessons
to like-minded educators.

The difficulties of teaching CS to individuals with BVI were
observed by prior studies [5, 6, 16, 39, 50]. Emacspeak [41] allows
reading code in the Emacs editor. JavaSpeak [11, 48] was based on
Emacspeak to read Java programs. Besides speech, auditory cues,
such as spearcons and white noses, have been shown to be effective
in assisting programmers with BVI [3, 31, 49]. These accessibility
tools, however, are not available for Google Colab.

Many studies also observed the challenge of teaching program-
ming to students with BVI due to the complex syntax [32, 38].
Quorum [52] is a text-based programming language that has more
intuitive statements. Kane and Bigham [19] reported that Ruby
might be a more suitable language for students with BVI. Audio
Programming Language (APL) [43] was a programming language
with a set of reduced (simplified) commands. Due to the popularity

of block-based languages (BBL), many studies also investigatedmak-
ing BBL more accessible [35], such as Bonk [20], StoryBlocks [23],
and Block4All [33]. Physical programming devices have also been
developed. Ludi et al. taught programming through robotics [30].
Torino [34] included a new language and physical programming
devices with beads and cables. Howard et al. employed haptic and
auditory tools to teach programming with Lego Mindstorms [14].
Franqueiro and Siegfried improved Visual Basic to make it more
accessible [12]. Schanzer et al. investigated improving WeScheme
for students with BVI, which is a web-based programming environ-
ment for language Scheme [45]. These new languages and devices
are powerful at introducing computer programming and its con-
cepts. However, to provide a career experience, we taught Python
in our summer camp, which is more common in the IT industry.

There was also work for better code navigation and debugging.
CodeTalk [40] was a plugin for Visual Studio that offers code sum-
mary trees, code summaries, and function lists. StructJumper [7]
translated nested Java classes into a tree to simplify code reading.
Smith et al. [47] improved tree views for code navigation. Schanzer
et al. [44]. employed compiler syntax analysis to aid in navigating
nested hierarchical code. These tools may potentially be integrated
into Colab or Juypter Notebook to improve accessibility.

6 CONCLUSIONS

This paper presented our experience in teaching an online pro-
gramming and machine learning summer camp for high-school
students with disabilities. Overall, our experience shows that online
programming camps for high-school students with disabilities are
feasible, and students with disabilities can potentially be successful
Computer Science professionals. Nonetheless, accommodations and
adjustments were necessary, especially in the curriculum, schedule,
teaching practices, and the involvement of special educators. We
plan to continue offer this camp in the future.

ACKNOWLEDGEMENT

This work is primarily supported by Texas Workforce Commission
(TWC) Vocational Rehabilitation Services contracts 3020VRS072
and 3021VRS085. WeiWang and Kathy B. Ewoldt were also partially
supported by the National Science Foundation (NSF) under grant
2202632. Wei Wang was also partially supported by NSF grants,
2221843, 2155096, and 2215359. Alberto M. Mestas-Nuñez was sup-
ported in part by NASA Grant 80NSSC19M0194. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied of TWC, NSF, and
NASA. We thank Tammy Winkenwerder, Kevin Markel, Adriana
Martinez, Mayra Gutierrez, and all TWC staff involved for the camp
organization. We would also like to thank our guest speakers and
panelists, as well as Kayla D. Brown and University ofWashington’s
DO-IT program for organizing the panel. The authors sincerely
thank the anonymous reviewers for their insightful comments.

REFERENCES
[1] Jennfier Akullian, Adam Blank, Brianna Blaser, Elba Garza, Christian Murphy,

and Kendra Walther. 2022. Diversity Includes Disability Includes Mental Illness:
Expanding the Scope of DEI Efforts in Computer Science. In Proc. of the 53rd
ACM Technical Symp. on Computer Science Education V. 2.

463

Virtual Summer Camp for High School Students with Disabilities – An Experience Report SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

[2] Abdulmalek Al-Gahmi, Yong Zhang, and Hugo Valle. 2022. Jupyter in the Class-
room: An Experience Report. In ACM Technical Symp. on Computer Science Edu-
cation.

[3] Khaled Albusays. 2018. Exploring Auditory Cues to Locate Code Errors and
Enhance Navigation for Developers Who Are Blind. SIGACCESS Access. Comput.
120 (Jan. 2018), 11–15.

[4] Khaled Albusays, Stephanie Ludi, andMatt Huenerfauth. 2017. Interviews andOb-
servation of Blind Software Developers at Work to Understand Code Navigation
Challenges. In Int’l ACM SIGACCESS Conference on Computers and Accessibility.

[5] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2018. A Comparison of
Program Comprehension Strategies by Blind and Sighted Programmers. IEEE
Trans. on Software Engineering 44, 8 (2018), 712–724.

[6] Catherine M. Baker, Cynthia L. Bennett, and Richard E. Ladner. 2019. Educational
Experiences of Blind Programmers. In ACM Technical Symp. on Computer Science
Education. 759–765.

[7] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. StructJumper:
A Tool to Help Blind Programmers Navigate and Understand the Structure of
Code. In Proc. of ACM Conf. on Human Factors in Computing Systems.

[8] Brianna Blaser and Richard E. Ladner. 2020. Why is Data on Disability so Hard
to Collect and Understand?. In Research on Equity and Sustained Participation in
Engineering, Computing, and Technology.

[9] Kevin Buffardi. 2017. Comparing Remote and Co-Located Interaction in Free and
Open Source Software Engineering Projects. In ACM Conf. on Innovation and
Technology in Computer Science Education.

[10] Matthias Drusch, Umberto Del Bello, Sébastien Carlier, Olivier Colin, Veron-
ica Fernandez, Ferran Gascon, Bianca Hoersch, Claudia Isola, Paolo Laberinti,
Philippe Martimort, et al. 2012. Sentinel-2: ESA’s optical high-resolution mission
for GMES operational services. Remote sensing of Environment 120 (2012), 25–36.

[11] Joan M. Francioni and Ann C. Smith. 2002. Computer Science Accessibility for
Students with Visual Disabilities. In SIGCSE Technical Symp. on Computer Science
Education.

[12] Kenneth G. Franqueiro and Robert M. Siegfried. 2006. Designing a Scripting
Language to Help the Blind ProgramVisually. In Int’l ACM SIGACCESS Conference
on Computers and Accessibility.

[13] Vicki L. Hanson. 2007. Inclusive Thinking in Computer Science Education. In
Annual SIGCSE Conf. on Innovation and Technology in Computer Science Education.

[14] Ayanna M. Howard, Chung Hyuk Park, and Sekou Remy. 2012. Using Haptic and
Auditory Interaction Tools to Engage Students with Visual Impairments in Robot
Programming Activities. IEEE Trans. on Learning Technologies 5, 1 (2012), 87–95.

[15] Earl W. Huff, Kwajo Boateng, Makayla Moster, Paige Rodeghero, and Julian
Brinkley. 2020. Examining The Work Experience of Programmers with Visual
Impairments. In IEEE Int’l Conference on Software Maintenance and Evolution.

[16] Earl W. Huff, Kwajo Boateng, Makayla Moster, Paige Rodeghero, and Julian
Brinkley. 2021. Exploring the Perspectives of Teachers of the Visually Impaired
Regarding Accessible K12 Computing Education. In Proc. of ACM Technical Symp.
on Computer Science Education.

[17] Charles A. Hughes, Jared R. Morris, William J. Therrien, and Sarah K. Benson.
2017. Explicit Instruction: Historical and Contemporary Contexts. Learning
Disabilities Research & Practice 32, 3 (2017), 140–148.

[18] Freedom Scientific Inc. 2022. JAWS. https://www.freedomscientific.com/products/
software/jaws/. (2022).

[19] Shaun K. Kane and Jeffrey P. Bigham. 2014. Tracking @stemxcomet: Teaching
Programming to Blind Students via 3D Printing, Crisis Management, and Twitter.
In ACM Technical Symp. on Computer Science Education.

[20] Shaun K. Kane, Varsha Koushik, and Annika Muehlbradt. 2018. Bonk: Accessible
Programming for Accessible Audio Games. In ACM Conf. on Interaction Design
and Children.

[21] L. R Kendall. 2013. A Phenomenological Inquiry into the Perceptions of Software Pro-
fessionals on the Asperger’s Syndrome/High Functioning Autism Spectrum and the
Success of Software Development Projects. Ph.D. Dissertation. Capella University.

[22] KENS-TV. UTSA camp expands STEM opportunities for teens with disabili-
ties. https://www.kens5.com/article/news/education/coding-classes-utsa/273-
ff650357-fc44-4724-b01a-69a36db4a5ae. (????).

[23] Varsha Koushik, Darren Guinness, and Shaun K. Kane. 2019. StoryBlocks: A
Tangible Programming Game To Create Accessible Audio Stories. In CHI Conf.
on Human Factors in Computing Systems.

[24] Richard E. Ladner, Caitlyn Seim, Ather Sharif, Naba Rizvi, and Abraham Glasser.
2021. Experiences of Computing Students with Disabilities. In Proc. of ACM
Technical Symp. on Computer Science Education.

[25] Richard E. Ladner, Andreas Stefik, and Brianna Blaser. 2019. Addressing Disability
in CS for All. In Research on Equity and Sustained Participation in Engineering,
Computing, and Technology.

[26] Richard E. Ladner, Andreas Stefik, Amy J. Ko, and Brianna Blaser. 2019. Access
to Computing Education for Students with Disabilities. In ACM Technical Symp.
on Computer Science Education. 1249.

[27] Richard E. Ladner, Andreas Stefik, Amy J. Ko, Brianna Blaser, Stacy Branham,
and Raja Kushalnagar. 2022. Disability in Computer Science Education. In ACM

Technical Symp. on Computer Science Education V. 2.
[28] Richard E. Ladner and Tammy VanDeGrift. 2008. The Game of Life: An Outreach

Model for High School Students with Disabilities. SIGCSE Bull. 40, 1 (mar 2008).
[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based Learning

Applied to Document Recognition. Proc. IEEE 86, 11 (1998).
[30] Stephanie Ludi, Lindsey Ellis, and Scott Jordan. 2014. An Accessible Robotics

Programming Environment for Visually Impaired Users. In Int’l ACM SIGACCESS
Conference on Computers & Accessibility.

[31] Stephanie Ludi, Jamie Simpson, and Wil Merchant. 2016. Exploration of the Use
of Auditory Cues in Code Comprehension and Navigation for Individuals with
Visual Impairments in a Visual Programming Environment. In Proceedings of the
18th International ACM SIGACCESS Conference on Computers and Accessibility.

[32] S. Mealin and E. Murphy-Hill. 2012. An Exploratory Study of Blind Software
Developers. In IEEE Symp. on Visual Languages and Human-Centric Computing.

[33] Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All: Overcoming Accessi-
bility Barriers to Blocks Programming for Children with Visual Impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.

[34] Cecily Morrison, Nicolas Villar, Anja Thieme, Zahra Ashktorab, Eloise Taysom,
Oscar Salandin, Daniel Cletheroe, Greg Saul, Alan F Blackwell, Darren Edge,
Martin Grayson, and Haiyan Zhang. 2020. Torino: A Tangible Programming
Language Inclusive of Children with Visual Disabilities. Human–Computer
Interaction 35, 3 (2020), 191–239.

[35] Aboubakar Mountapmbeme and Stephanie Ludi. 2020. Investigating Chal-
lenges Faced by Learners with Visual Impairments Using Block-Based Program-
ming/Hybrid Environments. In Int’l ACM SIGACCESS Conference on Computers
and Accessibility.

[36] Institiue of Education Sciences. 2022. Evidence-based teaching prac-
tices. https://ies.ed.gov/ncee/edlabs/infographics/pdf/REL_SE_Evidence-based_
teaching_practices.pdf. (2022).

[37] University of Washington. 2022. DO-IT: Disabilities, Opportunities, Internet-
working, and Technology. https://www.washington.edu/doit/. (2022).

[38] Charles BOwen, Sarah Coburn, and JordynCastor. 2014. TeachingModernObject-
Oriented Programming to the Blind: An Instructor and Student Experience. In
2014 ASEE Annual Conference & Exposition. 24–1167.

[39] Maulishree Pandey, Vaishnav Kameswaran, Hrishikesh V. Rao, Sile O’Modhrain,
and Steve Oney. 2021. Understanding Accessibility and Collaboration in Program-
ming for People with Visual Impairments. Proc. ACM Hum.-Comput. Interact. 5
(April 2021).

[40] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar
Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving Programming
Environment Accessibility for Visually Impaired Developers. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems.

[41] T.V. Raman. 1997. Emacspeak-an Audio Desktop. In IEEE COMPCON.
[42] Barak Rosenshine. 2012. Principles of Instruction: Research-based Strategies that

All Teachers Should Know. American Educator 36, 1 (2012), 12.
[43] Jaime Sánchez and Fernando Aguayo. 2005. Blind Learners Programming through

Audio. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems.
[44] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible

AST-Based Programming for Visually-Impaired Programmers. In ACM Technical
Symp. on Computer Science Education.

[45] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2020. Adapting
Student IDEs for Blind Programmers. In Koli Calling Int’l Conf. on Computing
Education Research.

[46] Darja Šmite, Nils Brede Moe, and Richard Torkar. 2008. Pitfalls in Remote Team
Coordination: Lessons Learned from a Case Study. In Product-Focused Software
Process Improvement, Andreas Jedlitschka and Outi Salo (Eds.).

[47] Ann C. Smith, Justin S. Cook, Joan M. Francioni, Asif Hossain, Mohd Anwar, and
M. Fayezur Rahman. 2003. Nonvisual Tool for Navigating Hierarchical Structures.
In Proc. of Int’l ACM SIGACCESS Conf on Computers and Accessibility.

[48] A. C. Smith, J. M. Francioni, and S. D. Matzek. 2000. A Java Programming Tool
for Students with Visual Disabilities. In Int’l ACM Conf. on Assistive Technologies.

[49] Andreas Stefik, Christopher Hundhausen, and Robert Patterson. 2011. An Em-
pirical Investigation into the Design of Auditory Cues to Enhance Computer
Program Comprehension. Int’l Journal of Human-Computer Studies 69, 12 (2011).

[50] Andreas Stefik, Richard E. Ladner, William Allee, and Sean Mealin. 2019. Com-
puter Science Principles for Teachers of Blind and Visually Impaired Students. In
ACM Technical Symp. on Computer Science Education.

[51] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Trans. Comput. Educ. (Nov. 2013).

[52] Andreas M. Stefik, Christopher Hundhausen, and Derrick Smith. 2011. On the
Design of an Educational Infrastructure for the Blind and Visually Impaired in
Computer Science. In ACM Technical Symp. on Computer Science Education.

[53] Auro Robotics Udacity. 2022. An Open Source Self-Driving Car. https://github.
com/udacity/self-driving-car. (2022).

[54] Maria Wachal. 2019. What is it like to work remotely as a software devel-
oper? https://blog.softwaremill.com/what-is-it-like-to-work-remotely-as-a-
software-developer-1c0777e4a2a9. (2019).

464

