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Table 1: Benchmark suites used in the evaluation, includ-

ing the GitHub organization (GitHub Org.), the name of the

benchmark suite (Bench. Name), and the number of bench-

marks inside each suite (Num.)

GitHub Org. Bench. Name Num.

apache arrow 46
raphw byte-buddy 39
apache camel 35
cantaloupe-project cantaloupe 103
prometheus client_java 33
crate crate 39
eclipse eclipse-collections 2415
h2oai h2o-3 73
hazelcast hazelcast 144
HdrHistogram HdrHistogram 75
apache hive 1402
imglib imglib2 25
JCTools JCTools 172
jdbi jdbi 76
eclipse jetty.project 212
jgrapht jgrapht 91
apache kafka 3578
zalando logbook 20
apache logging-log4j2 572
netty netty 1746
prestodb presto 1534
protostuff protostuff 31
r2dbc r2dbc-h2 20
eclipse rdf4j 132
RoaringBitmap RoaringBitmap 1620
ReactiveX RxJava 1302
yellowstonegames SquidLib 334
apache tinkerpop 57
eclipse-vertx vert.x 41
openzipkin zipkin 63

2 TAIL LATENCY TESTING METRICS

Long tail latencies from code snippets can significantly worsen a

system’s overall performance, ultimately leading to poor user expe-

riences. To evaluate the tail performance, we use the percentage

difference38 5 5 to quantify the performance impacts caused by long

tail latencies. For each microbenchmark, the percentage difference

38 5 5 is calculated by comparing the tail performance %4A 5C08; with

the median performance, %4A 5<4380= , using the following equation,

38 5 5 = |
%4A 5C08; − %4A 5<4380=

%4A 5<4380=

| × 100%. (1)

As described in Section 1, tail latencies are measured as the per-

formance of a small percentage of requests that take considerably

longer to complete than the other requests. Ideally, the percentage

difference 38 5 5 should be calculated by comparing %4A 5C08; with

the mean performance %4A 5<40= . However, we selected the median

performance over the mean performance because the median is a

more robust statistic, indicating that it is less affected by changes

and outliers in the given dataset. In particular, the median per-

formance is chosen over the mean performance because it is less

affected by extreme performance values like the tail performance.

3 EVALUATION

3.1 Evaluation Setup.

This section describes the dataset and experimental evaluations we

adopted for this study.

Benchmarks andEnvironments.Weused the benchmark datasets

collected by Traini et al. [17] for the evaluation. The datasets pro-

vide the performance results of 586 microbenchmarks from 30 Java

benchmark suites. Those 30 Java benchmark suites (shown in Ta-

ble 1) were selected based on their popularity on GitHub. From these

benchmark suites, 586 benchmarks were randomly picked for evalu-

ation. For each benchmark, 10 JHM (JavaMicrobenchmark Harness)

forks were executed, and each fork contained 3000 benchmark in-

vocations for at least 300 seconds of execution time [17]. All the

benchmarks were tested on a bare-metal server with 40 cores (dual

2.3GHz Intel Xeon E5-2650v3 CPU) and 80 GiB of RAM running

Ubuntu Linux 18.04.2 LTS. To reduce the potential performance-

affecting factors, Traini et al. disabled Intel Turbo Boost, Address

Space Layout Randomization, unnecessary Linux processes and

daemons, and SSH login. They also fixed the available JVM heap

memory to 8GB and reduced context switching [17].

Evaluation Methodologies. The relative performance deviation

for non-steady forks can be significantly reduced by continuously

warming each fork up for 300 iterations [17]. For both steady and

non-steady forks, it’s safe to assume that the data points collected

after 1500 iterations have relatively low performance fluctuations

caused by JVM optimizations. Thus, we can use the data points

collected after 1500 iterations for evaluation. To split the forks

that never entered the steady phase, we adopted the approach of

Kalibera et al. [11], and the parameters from Traini et al. [17].

For the first set of evaluations, we tested the tail latencies using

all the data points collected after 1500 iterations; that is, we used

1500 data points from iteration-1500 to iteration-3000 to test each

steady-phase fork. In the second set of evaluations, we reduced the

sample size to 500 (from iteration-2500 to iteration-3000) for each

steady-phase fork to see how the tail latency analysis would be

affected by different sample sizes. In the last set of evaluations, to

check if including data points from the warmup phase impacts the

tail latency analysis, we adopted all data points from both steady

and non-steady phases.

Parameters. In this evaluation, we chose 95%ile performance (P95)

and 99%ile performance (P99) to represent the tail latencies. Then,

we can calculate the percentage difference 38 5 5 using the equation

in Section 2. After the 38 5 5 were calculated, we compared to see

the percentages of 38 5 5 that are greater than 5%, 30%, and 50%.

3.2 Experiment Results and Discussion

In this subsection, we present and discuss the long tail performance

observed from the benchmark executions. This evaluation seeks

to answer the following research questions: 1) How severe are

tail latencies in Java microbenchmarks? 2) Will data points from

warmup phases affect tail latency analysis?

Due to space limitations, we only show the graph of four bench-

marks, including jdbi1, hdr2, bytebuddy3, and apache4.

P99 Performance. Figure 1 presents the percentage difference

38 5 599%8;4 between P99 execution time and median execution time

for four benchmarks. Specifically, each benchmark contains 10 forks,

1org.jdbi.v3.benchmark.QualifiersBenchmark.mapUnqualifiedBean
2bench.HdrHistogramEncodingBench.skinnyEncodeIntoCompressedByteBuffer
3net.bytebuddy.benchmark.TrivialClassCreationBenchmark.benchmarkJdkProxy
4org.apache.kafka.jmh.record.RecordBatchIterationBenchmark
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