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Abstract—The Feasibility Governor (FG) is an add-on unit for Model
Predictive Controllers (MPC) that increases the closed-loop region of
attraction by manipulating the applied reference to ensure the underlying
optimal control problem is always feasible. The FG requires an estimate
of the feasible set of the optimal control problem that underlies the
MPC; obtaining this estimate can be computationally intractable for high-
dimensional systems. This paper proposes a modified FG that bypasses
the need for an explicit estimate, instead relying entirely on the MPC
terminal set. The proposed FG formulation is proven to be asymptotically
stable, exhibits zero-offset tracking, satisfies constraints, and achieves
finite-time convergence of the reference. Numerical comparisons featuring
an MPC with a long prediction horizon show that the FG+MPC system
can achieve comparable closed-loop performance to long-horizon MPC
at a significantly reduced computational cost by suitably detuning the
terminal controller to enlarge the terminal set.

I. INTRODUCTION

Model Predictive Control [1], [2] (MPC) is a high-performance
control strategy that defines a feedback policy by solving a receding
horizon optimal control problem (OCP) at every sampling instant.
MPC is used widely in applications since it can efficiently handle
input and state constraints and is supported by a robust theoretical
literature. Due to the numerous methods for designing MPC con-
trollers, stability guarantees are useful to ensure that the closed-loop
system will behave as desired. A typical method for ensuring stability
and constraint satisfaction is to incorporate terminal elements into the
OCP, e.g. an invariant terminal set and a terminal cost [3].

Often, MPC controllers require the ability to track piecewise-
constant references [4] and to transition between them. Although this
is a simple modification to the OCP, if the reference command being
tracked has a large change in value, the OCP may become infeasible
since the terminal set is no longer reachable within the desired
prediction horizon. While simply increasing the prediction horizon
is an intuitive method for avoiding this problem, it is not always
applicable since it increases the computational complexity of the
underlying OCP. This can result in significantly longer computation
times that may even exceed the real-time requirements.

Another technique for avoiding infeasibility is to treat aspects
of the terminal set as optimization variables inside the OCP; these
additional degrees of freedom are used to enlarge the terminal set.
This method has been applied to various tracking problems [4], [5]
as well as economic operation of nonlinear systems with terminal
state constraints [6]. A different approach is employed in [7], where
a contractive sequence of terminal sets is computed offline. This
sequence is then incorporated into the OCP in order to increase the
region of attraction (ROA) of the MPC controller. A drawback of all
these methods is that they require modifications to the OCP, and are
therefore hard to implement on “off-the-shelf” MPC toolKkits.

An alternative approach is to modify the reference in such a way
to ensure that the OCP always remains feasible. The dual-mode
controller in [8] incorporates a recovery mode that simultaneously
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Fig. 1. A block diagram of the closed loop FG+MPC architecture. Given a
desired reference 7, the FG uses a predicted optimal state {; from the MPC
to modify the auxiliary reference v ensuring the MPC can produce a valid
control input u.

computes a modified reference and control input. Although this
method converges in finite-time, it may reduce performance. Ad
hoc methods such as rate limiting the reference are commonly used
but are suboptimal, and do not come with theoretical guarantees. A
governor-like algorithm in [9] uses ellipsoidal terminal sets and a
specific reference parameterization in order to avoid infeasibility. A
different governor-like algorithm is proposed in [10] and is used as
an intermediate design stage for a explicit MPC. Unfortunately, all
these methods also require modifications to the OCP.

The feasibility governor [11], is an add-on unit inspired by refer-
ence/command governors [12], [13] that guarantees safe transitions
between set-points while avoiding infeasibility of the OCP. As shown
in Figure 1, this is achieved by filtering the applied reference as
opposed to re-designing the MPC. This makes the FG an attractive
solution for practitioners interested in a modular framework. Notably,
the FG add-on unit expands the region of attraction of the underlying
MPC to the set of initial conditions that can reach the terminal
set of any steady state admissible reference. This is accomplished
by solving an optimization problem that uses information about the
feasible set (also known as the N-step backwards reachable set) of
the MPC. While this method is modular and avoids infeasibility of
the OCP, computing the feasible set can be challenging.

Using explicit feasible sets is an intuitive approach for constructing
a FG but comes with a number of downsides from an implementation
perspective. Typically, feasible sets are either ellipsoidal or polyhe-
dral. While, in general, ellipsoidal sets can be easier to compute,
they are typically conservative and lead to quadratic constraints when
implemented. Polyhedral feasible sets are relatively easy to compute
by orthogonal projections [14], and several toolboxes are readily
available to compute them offline [15], [16]. The downside is that
projection methods suffer from the curse of dimensionality, and inner-
approximations [17], [18] are usually required even for moderately
sized systems.

In this paper, we propose an updated version of the feasibility
governor that does not require an explicit estimate of the feasible
set while still maintaining the same safety, asymptotic stability, and
finite-time convergence properties of the original FG. This is done
by using an implicit representation of the feasible set. Moreover, we
discuss a simple heuristic for increasing the size of the terminal set
to recover some of the performance of long prediction horizon MPC.

Notation: For vectors z € R™ and y € R™, (z,y) = [z 37]7 €
R™™™. Consider the set I' C R™™, the slice (or cross-section)



operation is Sy(I',z) = {y | (z,y) € I'}. For z € R", and § > 0,
Ba(z) = {y | |ly — z|| < a}. The identity and zero matrices are
denoted In € RY*Y and Onxar € RV*M | respectively with the
subscripts omitted whenever the dimensions are clear from context.
Given M € R™*", Ker M = {z € R" | Mz = 0}. GivenU C R",
Int U denotes the interior of U. Positive (semi) definiteness of a
matrix P € R"™" is denoted by (P = 0) P > 0 and the induced
norm is ||z||p = Va7 Pz for € R™. The natural numbers (without
zero) are denoted N (N). Our use of comparison functions, i.e.,
class IC, Koo and KL functions, follows [19].

II. PROBLEM SETTING

Similarly to [11], in this paper we address a Linear Time Invariant
(LTT) system in the form

Tp+1 = Azxy + Bug (1a)
yr = Cxp + Duy (1b)
zx = Exp + Fug, (le)

where z, € R"*, up, € R", yr, € R™, and z,, € R™* are the states,
control inputs, constrained outputs, and tracking outputs, respectively,
and k € N is the discrete-time index.

The following assumptions ensure that the system (1) admits a
well-posed tracking problem.

Assumption 1. The pair (A, B) is stabilizable.
System (1) is subject to the pointwise-in-time output constraints
VkeN yp €, (@3]
with Y C R"v,

Assumption 2. The set Y is a compact polyhedron with representa-
tion Y ={y | Yy < h}, and satisfies 0 € Int ).

In order to track a target reference r € R"=, the steady-state of
(1) can be characterized as follows
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Assumption 1 is necessary and sufficient (see e.g. [4]) to ensure
that Ker Z # (). This property allows us to introduce an auxiliary
reference v € R"* that parameterizes the equilibrium manifold.
Every solution to (3) can be written as

Ty = Ggv, Uy = Guv, Zy, = Gy, 4)

where GT = [G] G GI] is a basis for Ker Z. Using the
auxiliary reference v instead of r allows us to handle over/under pa-
rameterization of the equilibrium manifold. The following assumption
excludes pathological cases.

Assumption 3. The matrix G is full rank.

When G, is invertible, it is simple to recover v = r using a change
of basis that maps G, — 1. In the case that G is not invertible,
G, v is either an under or over parameterization of the reference r.
In either case, the inverse can be replaced with the pseudo inverse to
either minimize the error ||G.v — r||?, or minimize the norm ||v||?
while satisfying r = G, v.

Since MPC cannot stabilize points on the boundary of the feasible
set, we introduce a design parameter € € (0,1) and define the set of
strictly steady-state admissible auxiliary references as

Ve={v| Gyv € (1 —¢)V}, )

where G, = CG; + DG,. The set of strictly admissible target
references is then

Re=G Ve ={G.v | v eV} (6)
Finally, we define the strictly steady-state admissible equilibria as
Y ={(z,v) | t = Gav, v € Ve}. @)

Given Assumptions 1-2 as the only limitations to our problem setting,
we now state the control objectives for this paper.

Control Objectives: Given the LTI system (1), let )V C R"v be a
constraint set, and let 7 € R"™* be a target reference. The goal of
this paper is to design a full state feedback law that achieves the
following objectives:

o Safety: Ensure that y, € Y Vk > 0;

o Asymptotic Stability: limp_oo(zr,vk) = (zr,v;) where
(z7,vr) = (Gguy,vy) is a stable equilibrium point satisfying
limg oo 2k = 7° = G} with

r* =argmin |[s—r|.
SERe
Remark 1. The proposed formulation handles steady-state inadmis-
sible targets r by steering the system to the closest strictly steady-
state admissible target reference r*. When the tracking problem is
well posed, i.e., when r € R., we recover the more intuitive objective
lmpg oo 2k = 7.

III. CONTROL STRATEGY

We approach the control objective using a classic MPC formu-
lation. Notably, the feedback is obtained by solving the following
parameterized optimal control problem (POCP)

N-1
IQLH||§N*@H§>+;Hfz‘*vaQQJFHM*ﬂvH% (8a)

s.t. o ==, (8b)

€1 = A&+ B, i=1,...,N—1, (8¢)
C&+Duiey, i=1,...,N—1, (8d)

(En,v) €T, (8e)

where N € N is the prediction horizon, = (po,... un—1) are

the decision variables, P,QQ € R™**"* and R € R™*™ are the
cost matrices, and 7 C R"® x R™* is a polyhedral terminal set

T ={(z,v) | Toz + Tov < c}. )

The POCP (8) contains reference tracking objectives by letting Q =
ETE (see e.g. [2, Section 2.4.4]). To ensure that (8) is a well-posed
MPC problem, the following assumptions are required.

Assumption 4. The stage cost matrices satisfy Q@ = QT > 0, with
(A, Q) detectable, and R = R™ ~ 0.

Given the stage cost matrices, the terminal cost P and terminal set
T can be designed starting from the terminal control law

EN(T,0) = Uy — K(z — Zy). 10)

Assumption 5. The terminal set T is constraint admissible, posi-
tively invariant under (10), and satisfies Sz(X,v) C Int Sz (T,v),
Vv € V.. Moreover, given (z,v) € T and the gain K, the terminal

cost satisfies P = PT = 0 and the LMI
(A-—BK)'P(A—BK)-P+K"RK < —-Q. (1)

Clearly, the most straightforward (and most used) choice for the
terminal cost P and terminal feedback gain K is the LQR solution



Fig. 2. The sets defined in this paper for the integrator zp 1 = Tk + ug
subject to |zx| < 1, |ug| < 0.25 and with e = 0.2, T = O%2 and N = 2.

P=AT"PA—- (ATPB)(R+ B"PB)""(BTPA) +Q and K =
(R+ BTPB)"'BTPA. Another choice is detailed in Remark 3,
which provides a heuristic for increasing performance.

As for the terminal set, a suitable choice is 7 = Oqo, Where Oy
is the maximal output admissible set [20] of the terminal closed-
loop system zxy1 = (A — BK)zir + B(Gy + KG)v. Given the
previously defined parameter ¢ € (0, 1), another choice is 7 = O%,
where 05, C O is a positively invariant inner approximation of
Ox, which can be computed efficiently using the algorithm detailed
in [20, Sec. III] and implemented in [15]. Figure 2 illustrates the sets
defined in this paper.

The MPC control action can be computed if and only if (8) admits
a solution. The set of all parameters for which the POCP admits a
solution, i.e., the feasible set, is

I'n ={(z,v) | I pu: (8b) —(8e)} CR™ x R"™, (12)

which is the N-step backwards reachable set of 7. Given (z,v) €
I'n, it is possible to compute the MPC feedback policy
13)

K(z,v) = pg(z,v)

where 4§ (x, v) selects the value of p§ from the minimizer ¢* (z,v) =
(M67 N '7“?\77173376{7 s 757\7) of (8)

Given (x,v) ¢ I'n, the POCP becomes infeasible because xq
cannot be steered to Sz (3, vo) within N steps. As discussed in the
introduction, increasing NV is a potential solution, but the computation
time needed to solve (8) scales unfavorably with N and may simply
exceed the desired sampling time.

This work follows from [11] which introduced the feasibility
governor (FG), an add-on unit that expands the region of attraction
of the closed-loop without increasing the prediction horizon or
modifying the OCP. The philosophy behind the FG is to modify the
reference so that the MPC problem remains feasible. This concept
follows from command governor (CG) literature [13] where it is
assumed the inner-loop controller is well designed and we do not
wish to modify it. The action of the FG in can be written as the
following optimization problem.

g(z,7) = argmin {¢(v,7) | (z,v) € Tn} (14)
VEVe
where
Sloir) = |G v — 1;\|2L if G, i.s injective 15)
lv—vf||7  otherwise,
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Fig. 3. Feasible set computation time for the single and double input models
used in this paper. We were unable to compute the feasible set for the double
input (a low dimensional example) for N > 5 in a reasonable amount of
time.

and the designer can select any v satisfying

vr € Vi =argmin ||G.v— 7|3, (16)

vEVe
where L > 0 and the additional step in (16) is necessary to ensure
that ¢ is a strongly convex function.

Although this formulation achieves the desired control objectives
and is backed by rigorous proofs, it comes with the drawback of
requiring an explicit representation of the feasible set. Indeed, as
shown in Figure 3, computing I'xy can quickly become intractable
when dealing with systems that have a high dimensional auxiliary
reference space. One possible way to alleviate this issue is to under-
approximate the feasible set using a safe and strongly returnable set
[11]. This approach helps manage the costly polyhedral projections
required for computing I'n, but the approximations may be more
conservative while still being difficult to find. Moreover, the under
approximated sets make this method a more conservative approach
since the sets are only guaranteed to be strongly returnable and safe.
In the following section, we introduce a new feasibility governor
that requires no additional set computations beyond those used in
traditional MPC. This formulation of the FG achieves the desired
control objectives of asymptotic stability, safety/recursive feasibility,
and finite-time convergence of the auxiliary reference.

IV. TERMINAL SET FEASIBILITY GOVERNOR

In this section, we propose a new feasibility governor that relies
entirely on the terminal set 7, which is present in many MPC formu-
lations. The new feasibility governor consists of a slight modification
to the original FG formulation (14), i.e.

9, ) = argmin {¢(v,7) | (n,v) € T}

vEVe

a7

However, proving that (17) achieves the control objectives is chal-
lenging and requires significant changes to the theoretical analysis of
the original FG [11], as detailed in the following section.

In practice, given the state predicted at the previous timestep
5}‘\,|k_1 = ¢n(zr—1,vk—1), the governor computes the virtual
reference vy = g(§Np_1,7), Which is then passed to the MPC
controller to obtain a control action uy = k(xg,vr). We present
Figure 4 to give the reader some intuition behind how the FG
operates. Assuming that the pair (xx,vy) is feasible, the blue line
represents the optimal predicted trajectory at time k. The feasibility
governor then determines vy41 such that £, is inside the slice of
the terminal set at vi41. We then use a one-step shift to construct a
feasible trajectory (red) at time k£ + 1, thus ensuring that the POCP
admits at least one solution.
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Fig. 4. Tllustration of how the feasibility governor assigns the new auxiliary
reference vy 4.1 based on the current optimal trajectory (blue) and why, at the
next timestep, x41 is guaranteed to admit a feasible trajectory (red).

While we claim that the FG requires no modification to the closed
loop MPC, it does require one additional output signal from the
MPC controller. Specifically, it requires f}“\,‘k, which is the current
prediction of the state of the system at the end of the prediction
horizon. This additional signal is readily available as it is generated by
the MPC controller at every time step, either explicitly or implicitly,
depending on the specific solver being used.

Remark 2. In the presence of disturbances, the proposed approach
can be generalized by a) replacing (8) with an MPC that is robustly
recursively feasible (e.g., [21], [22]), and b) designing the terminal
set T to be robustly positively invariant [22, Definition 3.2]. Doing
so enables the FG to be used without any additional modifications.

V. THEORETICAL ANALYSIS

In this section, we analyze the closed-loop properties of the
combined FG and MPC. The target reference is assumed constant
throughout this section, which allows us to suppress any dependence
on r to simply the notation. Nevertheless, the results are easily
extended to piecewise-constant references.

First, the feasible set of the FG is defined as
A=TnN(R" x Vo). (18)

The closed loop dynamics of (1) under the combined FG and MPC
policy are

vk+1 = g(En (k, vk)), (19a)
Try1 = [Tk, vk), (19b)
yr = Cxp + Dr(xk, vk), (19¢)

where f(z,v) = Az + Bk(z,v). We begin by showing the set A is
forward invariant and that it satisfies the Safety control objective.

Theorem 1. (Safety and Recursive Feasibility). Let Assumptions 1-5
hold, given (xy,vi) € A the solution to (19a) exists and is such that
(19b) satisfies (xp+1,vk+1) € A. Moreover, y, € Y,Vk € N.

Proof. To show that the FG+MPC is recursively feasible, we need to
show that given (zy,vx) € A it is possible to compute a solution at
time k + 1. By the definition of A, we know the optimal solution to
(8) at time k exists, is unique by Assumption 4, and can be written
as

i = {uier

(20a)
(20b)

Hu;(\lfl\k}a

Moreover, since (zx,vx) € A implies (§x, vk) € T, it is obvious
that vg41 = v is a feasible solution to (17), thus proving that
(192) admits a solution. Given (£, vk+1) € T, we proceed by
constructing the following sequences for time k£ + 1

U1 = {1jks - - - KN 1)1 KN (EN > VB 41) }

Xir1 = {El ks - ENpis AEN i + Brn (EN s vkt1) }
where kn(Ex,vk+1) is the terminal control law in (10). Since the
terminal set is invariant under the terminal control law, the sequences

U+1, X411 are feasible solutions to (8) at time k + 1. Since (19b)
entails Tx41 = &7, we show that (Tk41,vk+1) € A

Finally, since (xx,vx) € A, Vk € N, the MPC feedback policy
k(z,v) is such that y, € Y, Vk € N. O

The following well-known result proves Input-to-State Stability
(ISS) for the nominal MPC with a varying v. This paper leverages a
direct consequence of the ISS property.

Theorem 2. ( [11, Lemma 5]) Given Assumptions 1-5, and the
system Tp+1 = f(zr,vi), the error signal e, = xp — Gzuy is
ISS [23] with respect to the input Avy, = Vk41 — Uk, L.e., there exist
B € KL and v € K such that

o = Gl < B0k oo — Givol) + 7 (sup vy )
i>
Moreover, ~y is an asymptotic gain, i.e.,
limsup ||zx — Gavk|lg < v (lim sup HAka) . (21)
k— o0 k— o0
Corollary 1. Let Assumptions 1-5 hold, then it is also true that
limsup ||Ex 1k — Gzokllp < 7 (lim sup HAka) (22)
k— o0 k—o0
where ¥ = a,, 0y € K.

Proof. Theorem 2 implies the existance of an ISS Lyapunov function
J:T'n — R for the system xx+1 = f(x, v), that satisfies

J(f(z,0),0) = J(z,v) < —a(||lz = GavllQ),
ai(llz = GavllQ) < J(z,v) < au(llz — GavllQ)

(23)
(24)

for all (xz,v) € 'y where J is the cost function (8a) evaluated at
the optimal solution ¢*(z,v), and o, oy, .y € K.

Let W : 7 — R be defined as W (£x,v) = ||€x — Govl|%. Since
W is the terminal cost in J, and the remaining terms are positive

(semi-)definite, we can bound W as
W(En (z,v),v) < J(2,v) < au(llz — GavllQ) 25)

for all (x,v) € A. Moreover, since J is a ISS-Lyapunov function we
know that

limsup J(zk,vr) < @y oy (limsup ||Avk||> . (26)
k— o0 k—o0
Combining (25) and (26) leads to the result. O

The following sequence of four Lemmas build up to the result that
the auxiliary reference produced by the FG necessarily converges in
finite time. We begin by showing in the next two Lemmas that if
the FG has not yet converged, the rate of change of the auxiliary
reference can be infinitesimal for only a finite amount of time.

Lemma 1. Under Assumptions 1-5 define,

meSs(X) = {(z,v) |veV., |lz—Guv|lp <6},  (27)



where ¥ = So(X) = {(z,v) | z = Gzv, v € V.}. Then, given
0 > 0 satisfying Ss(X) C Int T, 3a > 0 such that

[vkt1 — vkl = o
V41 = v*

if [lox = 0" > a,

. . (28)
if [lor =" < a,

for any (§x 1, vk) € Ss(2).
Proof. We approach this proof by constructing a point v’(¢) such
that (v’ (t)) < 9 (v) for each case. Since S5(X) C Int T for any
(&N, v) € S5(2), Ja = a(d) > 0 such that B, (v) C S, (T, &) for
all v € V..

Fix « and define the set Co = Ve N Ba(v) and the ray v'(t) =
v+ t(v* —w) for t € [0,1] and assume v # v*. To show that ¢
decreases along v’ (t) recall that 1) is a convex function, therefore

P (1) = (1 = thv +tv7) < Y(v) = tfp(v) — ("))

forall v € Ve \ v" and ¢ € [0, 1].

Given |lux—v"|| > a. choose p = =5 < 1, and it is clear that
v'(p) € Ca. Additionally, since ¥ (v*) < ¢(v) for all v € Ve\v* and
p € (0,1) we have from the convexity of V. that ¥ (v'(p)) < ¥(v).
This implies

V(g(En)) = P(s) <P (p) <v(v). (29

min
sESy (Tafj*\r)
The strong convexity of ¢ along with (29) entails ||vg4+1 — vk > a.

Given |lvx — v*|| < «a it is clear that v* € C, This implies
Y(g(€x)) = ¥(v*) = 0, which further implies vg41 = v™ by the
strong convexity of . O

Lemma 2. Under Assumptions 1-5, let (§N |, Vko) € T, then there
always exists a finite time k; > ko such that

Hg(&k\llkivvki) _UkiH >n or g(‘f;\flkivvki) =v" (30)
with 1 € (0, min(a(8),571(5))).

Proof. Obviously, if ko satisfies either condition then we can choose
ki = ko. To prove the existence of k; for the nontrivial case we
proceed by contradiction.

Assume that Ak; satisfying (30). Then our system must satisfy

H1)k+1 — ’Uk” <n< ’771((5)7 Vk > ko.
Following from Corollary 1 we have
lim sup [|€ — Govillp < 5(n) <5077'(8) = 6.
—o0

Thus, there exists a finite &; such that (£, vk;) € Ss(X). It then
follows from Lemma 1 and the choice n < « that vk, +1—vg, || > 7,
which satisfies (30). O

The remaining two Lemmas show that if there are enough “large”
jumps of the auxiliary reference, then it must converge to 7.

Lemma 3. Given Assumptions 1-5, for all (xr,vr) € A there exists
h > 0 such that the FG satisfies

o = 0" < llo = "I = hllow —vesa |2 B
where vig+1 = g(En (xk, vk)).

Proof. Recall that 1 is strongly convex so there exists h > 0 such
that
P(v) > Y((') + V(o) (v — ') + hllv — |2

for all v,o" € R™. The optimally conditions associated with
g(€x) = arg minseSU(T,g}*\,) P(s) are

Vi(9(En))" (v = g(€X)) 20 Vo € Su(T, ER).

(32)

(33)

Substituting v' = g(&y), plugging (33) into (32) and rearranging
completes the proof. O

Lemma 4. Letr Assumptions 1-5 hold and define M =
® )12
ceil (%) If there exists a sequence of M time instants

ki,ka, ..., kar such that (30) is satisfied at each ki, then vy, =
v, Vk > ky + 1.

Proof. Clearly, if g(§xy,,vk;) = v* for any i* < M, we obtain
9Nk, > Vk;) = v Vi > i". Thus, the worst-case scenario is if
l9(€x x> Vk;) — vk |l = Vi € {1,..., M}. In this case, it follows
from Lemma 3 that

(9N s » VEar) — 07 11* < flvo — o™ = Mhn® < 0.
Which is sufficient to show ||vy,,+1 — v*||> = 0. O

Having assembled all the required components, we prove the
following Theorems.

Theorem 3. (Finite Time Convergence). Given Assumptions 1-5 and
(Exjorv0) € T, 3K™ > 0 such that vy = v* Vk > k™.

Proof. By virtue of Lemma 2, (30) can only be violated for a finite
amount of time. Thus, given a sufficiently long wait, there always
exists a finite sequence of times instants ki, k2, ..., kas that satisfy
Lemma 4, which completes the proof. O

Using the finite time convergence of FG, we can finally prove
asymptotic stability of the FG+MPC.

Theorem 4. (Asymptotic Stability) Let Assumptions 1-5 hold. For
the coupled FG+MPC, the point (z*,v") is asymptotically stable.

Proof. Theorem 2 shows the closed-loop MPC is ISS with respect to
the changing reference vi. Therefore, to prove asymptotic stability
(AS), it is sufficient to show that limsup,_, . |[Avk| = 0. This
follows directly from Theorem 3. O

Remark 3. While the FG is an effective tool for enforcing feasibility
at low computational cost, it is typically less performant than long
horizon MPC. A potential method for recovering performance from
the FG+MPC is to leverage the degree of freedom enabled by
Assumption 5, which does not require (K, P) to satisfy the infinite-
horizon LOR solution K = (R + BTPB) *BTPA. Indeed, the
terminal gain K can be obtained using a “less aggressive” control
strategy that increases the size of the terminal set T. This can be
done without modifying terminal cost P, as long as the LMI (11) is
satisfied. A possible option for obtaining the terminal control gain K
is to solve a different LOR problem where the input cost matrix is re-
scaled using R, = pR, with p > 1. After checking if the pair (K, P)
satisfies (11) the terminal set T can then be computed normally.

VI. NUMERICAL EXAMPLES

The goal of this section is to demonstrate the benefits of the
proposed feasibility governor using two examples. The first shows
that there is no decrease in performance when compared to the FG in
[11] (denoted FG2), which relies on the explicit computation of 'y .
The second showcases a system where computing I"x is intractable
for even small prediction horizons. Comparisons with a long-horizon
MPC show the significant reduction in computational cost at the
expense of closed-loop performance. We then conclude the section
by illustrating how to potentially recover most of the performance
loss by de-tuning the terminal controller to increase the size of the
terminal set.



Fig. 5. The bicycle model of the lateral vehicle dynamics.

A. Single Input Model

Consider the lateral dynamics of a car moving forward at a constant
speed of V; = 30m/s. The model is based on the one in [24], [25]
without rear steering and roughly represents a 2017 BMW 740i sedan
and is identical to the example in [11]. Figure 5 contains a diagram
of the bicycle model used to represent the system.

The state of the system is 7 = [s ¢ 8 w] where s is the lateral
position of the vehicle, v is the yaw angle, 3 = §/V, is the sideslip
angle, and w = 4 is the yaw rate. The control input is the front
steering angle u = ;. The system is subject to constraints on y” =
[y ar df] where oy and i are the front and rear slip angle, and
the tracking output is z = s. The system matrices are

0 Vi Ve 0 0
0 0 0 1 0
A= 2Ca Callr—Ly) B= N
Ca(tr—Ly) Ca(3463) aly
0 0 T.. ! - Izzvzf 122
00 -1 —% 1
=0 0 -1 & |,D=]|0],
0 0 0 0 1

E=[1000], and F = 0, where {; = 1.56 m and ¢,, = 1.64 m are
the moment arms of the front and rear wheels relative to the center
of mass, and C = 246994 N/rad is the tire cornering stiffness,
m = 2041 kg is the mass of the vehicle, and I, = 4964 kg-m? is
the moment of inertia about the yaw axis. The continuous time system
matrices are converted to discrete-time using a zero-order hold with
a sampling time of ¢; = 0.01 seconds. The constraint set is

Y =1[-8° 8°] x [-8°, 8°] x [-30°, 30°], (34)
which are limits on the front and rear slip angles (to prevent drifting)
and mechanical limits on the steering angle. The control horizon for
this example is N = 15, the initial condition is zo = 0 and the target
position r = 5 m is chosen such that zg ¢ S (I'15,r). The weighting
matrices are ) = ETE, R=0.1, L = 1, and the terminal cost and
gain are computed using the linear quadratic regulator. Finally, the
choice of terminal set is 7 = O%0!.

Figure 6 compares the response between FG2 and the new FG
presented in this paper. In both cases, the FG+MPC systems produce
desirable closed loop responses, and the lack of knowledge of the fea-
sible set in the new FG formulation does not decrease performance.

B. Double Input Model

In this section we address the case where the rear wheel steering
angle is used as an additional control input, as detailed in [24], [25].
The state of the system remains the same, but the input (and output)

.......... G.v FG2 ——FG2| |
G, FG ——FG |
- = =G, CG ——CG
25 3 35 4
——————————————
oo [~ Comsrans ]
Ej_:c 0 ‘ ' ~ V

Rear Slip
Angle [o]

Fig. 6. Comparison between the two different feasibility governors and an
LQR plus command governor [13] where the control objective is to track the
lateral position command.

FG (orange) is from this paper and FG2 (blue) is the older version.

Both perform in a nearly identical manner.

TABLE I
EXECUTION TIME FOR THE LATERAL VEHICLE MODEL WITH THE
STANDARD AND MODIFIED TERMINAL SET

Nominal 7~
MPC FG MPC FG+MPC | T (Computed
(N=67) (N=10) (N=10) Offline)
TAVE [ms] 236 0.098 2.89 2.99 1510
TMAX [ms] 914 1.35 9.33 9.43 2840
Modified T
MPC FG MPC FG+MPC | T (Computed
(N=53) (N=10) (N=10) Offline)
TAVE [ms] 139 0.057 2.40 2.45 2250
TMAX [ms] 475 1.12 9.96 9.98 3710

are modified to include u” = [§; &]. Thus, the (B, C, D) system
matrices are adjusted to

0 0 00 -1 —if
0 0 -1 &
B = Co Co ) C= 00 ! Vo )
Tl 00 0 0
and D = [I,, I,,]" to include the additional control input. We

also use the same sampling time of ¢; = 0.01 seconds to convert
the continuous time system matrices to discrete-time. The updated
constraint set is

Y =[-10° 10°* x [-35°, 35°] x [-6°, 6°], (35)
and the weighting matrices are Q = ETE, R = diag([0.01 1]), and
L = diag([1 10]).

As discussed in Section III, we were unable to compute I"n for this
system due to the excessive computational requirements, making the
FG2 intractable. Figure 7 shows a comparison between the FG+MPC
feedback law with N = 10 and an ungoverned MPC with N =
N™* = 67 where N* is the shortest prediction horizon length such that
(zo,7) € I'n. Although the ungoverned MPC clearly outperforms
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Fig. 7. Closed-loop two input lateral vehicle dynamic responses for the
FG+MPC with N = 10 and both nominal and modified terminal set vs.
an ungoverned long horizon MPC controller with N = N* = 67. The
rise/settle-time of the FG+MPC with nominal 7 is only marginally worse
than the ungoverned MPC while the FG with modified 7 outperforms the
MPC.

the FG+MPC in rise and settle times, Table I shows that both its
average and max computation times' are over 50 times slower than
the combined FG+MPC.

Figure 7 also demonstrates the behavior obtained using R, = 50 R
to determine (K, 7") as described in Remark 3. Due to the increased
size of the terminal set, the prediction horizon required by the
ungoverned MPC is now N* = 53, which entails a slight reduc-
tion in computational cost with absolutely no loss in performance
compared to the previous ungoverned MPC. When combined with
the FG+MPC, the new terminal set leads to a significant increase in
performance while maintaining a reduced computational cost.

VII. CONCLUSIONS

This paper introduced an add-on unit that guarantees the feasibility
of finite-horizon MPC by manipulating its applied reference so that
the final prediction is always contained in the terminal constraint set.
The proposed method requires no modifications to the primary MPC
controller and is supported by rigorous proofs of feasibility, safety,
and convergence. Numerical comparisons between a traditional MPC
with a long prediction horizon and a governed MPC with a signif-
icantly shorter prediction horizon show that the feasibility governor
drastically reduces computational costs. The potential loss in closed-
loop can partially be recovered by suitably modifying the terminal
controller to increase the size of the terminal set.

ITimings are done on an ASUS-UXS550VE (2.8 GHz i7, 16GB RAM)
running MATLAB 2021b using tic and toc. The computation time for the
terminal set (which does not depend on the prediction horizon N) is also
included as an average over fifty test runs in Table 1.
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