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Abstract— Time-distributed Optimization (TDO) is a
method for reducing the computational cost of Model Pre-
dictive Control (MPC) where optimization iterations are dis-
tributed over time by maintaining a running solution esti-
mate that is updated at each sampling instant. In this paper,
TDO is applied to linear MPC with state and input con-
straints using a regularized primal-dual gradient descent
method as the optimizer. A detailed analysis of the rate
of convergence shows how different design choices, i.e.
maximum number of iterations, value of the regularization
term, and prediction horizon length, affect the stability of
TDO-MPC. Additionally, it is shown that significant stability
improvements can be achieved by using the Closed-Loop
Paradigm to improve the conditioning number of the op-
timal control problem. Numerical simulations on an open-
loop unstable system demonstrate the overall impact on
stability and constraint satisfaction of each design choice.

Index Terms— Optimization, Optimal control, Stability
analysis, Real-time systems, Predictive control

I. INTRODUCTION

MODEL Predictive Control (MPC) is a feedback policy
that enacts the solution to a receding horizon Optimal

Control Problem (OCP) at every sampling instant [1]. De-
spite the overall success of MPC, the main bottleneck for
its widespread adoption is the fact that, depending on the
system complexity, hardware specifications, and sampling rate,
solving the OCP in real-time may not be feasible.

An approach to help reduce the computational complexity of
the OCP is to distribute the optimizer iterations over multiple
time steps while ensuring important properties of the closed-
loop system (e.g. asymptotic stability, recursive feasibility) are
retained. This method, known as Time-distributed Optimiza-
tion (TDO) [2], relies on a running solution estimate that is
refined at each time step by performing a fixed number of
solver iterations. The suboptimal control input is then given
to the system which evolves according to its dynamics, thereby
creating a feedback loop between the plant and optimizer, as
shown in Figure 1.

Various properties of suboptimal MPC have been studied
in literature including performance, stability, and robustness.
Control schemes using continuous-time optimizer dynamics
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Fig. 1. Suboptimal MPC can be interpreted as a feedback intercon-
nection between the plant and an optimization algorithm with a solution
estimate z as its internal state, k the time index, dynamics defined by ℓ
iterations of the algorithm T ℓ, and a output selection matrix Ξ.

are in investigated in [3]–[5]. Suboptimal MPC of uncon-
strained discrete-time nonlinear systems is studied in [6]
and their stability is investigated in [7] in the absence of
constraints. A detailed stability analysis of linear systems
subject to input constraints can be found in [8], [9].

This paper extends the results from [9], which is limited to
input constraints, by handling both state and input constraints,
which are addressed using a regularized primal-dual algorithm
since it allows for a significant amount of transparency in
the stability analysis. Using Input-to-State Stability (ISS)
techniques, we derive an analytic expression for the optimizer
gain, show a sufficient condition for asymptotic stability using
the small gain theorem, and explore how the various system
parameters affect these properties. Moreover, we show how
the use of the Closed-Loop Paradigm for MPC [10] can
significantly improve the stability of the interconnected closed-
loop system at no additional cost.

A. Notation
The normal cone mapping of a convex set C is defined as

NC(v) =

{{
y | yT (w − v) ≤ 0, ∀w ∈ C

}
, if v ∈ C,

∅ else.

For matrices A ∈ Rn×m and B ∈ Rp×q; A ⊗ B ∈ Rnp×mq

denotes the Kronecker product. Let Rn
+ ⊂ Rn be the positive

orthant and (Sn++, Sn+) denote the set of symmetric n × n
positive (definite, semidefinite) matrices. Given x ∈ Rn and
W ∈ Sn++, the W -norm of x is ∥x∥W =

√
xTWx and

the maximum and minimum eigenvalues of W are denoted
λ+(W ) and λ−(W ). For two vectors x ∈ Rn, y ∈ Rm, the



vector (x, y) = [xT yT ]T ∈ Rn+m. We use In ∈ Rn×n and
0n×m ∈ Rn×m to denote the identify and zero matrix. The
subscripts are omitted when the dimensions are apparent. A
vector of N 1’s is denoted 1N , the standard basis vectors are
1i, and the projection onto a convex set C is ΠC(·).

II. PROBLEM SETTING

Consider a Linear Time Invariant (LTI) system

xk+1 = Axk +Buk, (1)

where x ∈ Rn is the state and u ∈ Rm is the control input. The
control objective is stabilize the origin of (1) while enforcing
pointwise-in-time constraints

xk ∈ X , uk ∈ U , ∀k ∈ N (2)

Assumption 1. The constraint set X ×U is a closed, convex
polyhedra, and contains the origin in its interior.

A natural way to approach this constrained problem is with
MPC. Consider the following Parameterized Optimal Control
Problem (POCP) with parameter x

min
µ

1

2
∥ξN∥2P +

1

2

N−1∑
i=0

∥ξi∥2Q + ∥µi∥2R, (3a)

s.t. ξi+1 = Aξi +Bµi, i = 0, . . . , N−1, (3b)
ξi ∈ X , µi ∈ U , i = 0, . . . , N−1, (3c)
ξ0 = x, ξN ∈ XN (3d)

where N > 0 is the horizon length, Q ∈ Rn×n, R ∈ Rm×m

and P ∈ Rn×n are weighting matrices, x ∈ Rn is the current
system state, µ = (µ0, . . . , µN−1), ξ = (ξ0, . . . , ξN ), and
XN ⊂ Rn is a polyhedral terminal set.

The MPC feedback law can then be defined as u = Ξµ∗(x),
where Ξ = 11⊗Im selects µ0 from µ and µ∗(x) is the solution
to (3) for the parameter value x. To ensure that (3) can be used
to construct a stabilizing feedback law for (1), we make the
following assumptions.

Assumption 2. The pair (A,B) is stabilizable and the cost
matrices satisfy R ∈ Sm++, Q ∈ Sn+, and (A,Q) observable.

Assumption 3. The terminal set XN contains the origin in its
interior, is constraint admissible, and is positively invariant
under the fictitious terminal control law uN (x) = −Kx.
Given x ∈ XN and a gain K, the terminal cost satisfies
P = Q+ATPA−(ATPB)(R+BTPB)−1(BTPA) ∈ Sn++.

A typical way to solve (3) is using an iterative optimization
algorithm. In this paper, we address the case that there are
not enough computational resources available to solve (3) to
completion at every sampling instant. Instead, we utilize TDO
by performing a finite number of iterations ℓ ∈ (0,∞) and
warmstarting the optimization algorithm using the subopti-
mal solution from the previous sampling instant. The plant-
optimizer dynamics are then

zk = T ℓ(zk−1, xk), (4a)
xk+1 = Axk +BΞzk, (4b)

where zk denotes the running solution estimate (i.e. the
suboptimal solution) at time instant k and T ℓ is the output
of the optimization algorithm after ℓ steps.

III. OPTIMIZATION STRATEGY

To efficiently handle the constraints, we first note that the
equality constraints of (3) can be written in the form

ξ = Âx+ B̂µ, (5)

where

B̂ =


0 · · · 0

B
. . .

...
...

. . . 0
AN−1B · · · B

 , and Â =


I
A
...

AN

 . (6)

Additionally, since the constraint sets are polyhedral by As-
sumption 1, we may rewrite (3c) in the form

Cξi +Dµi ≤ h, for i = 0 , ... , N − 1. (7)

where C ∈ Rp×n, D ∈ Rp×m, and h ∈ Rp. Substituting (5)
into (3a), and replacing (3c) with (5) substituted into (7) we
arrive at the standard condensed form [1]

min
µ∈Ū

f(µ, x) =
1

2
µTHµ+ µTGx+

1

2
xTWx, (8a)

s.t. Eµ+ Fx ≤ d. (8b)

where Ū = UN and the cost matrices are R̂ = IN ⊗ R,
H = B̂T ĤB̂ + R̂, G = B̂T ĤÂ, W = Q + ÂT ĤÂ, Ĉ =[
IN ⊗ (C −DK) 0p×n

]
, D̂ = IN ⊗ D, E = ĈB̂ + D̂,

F = ĈÂ, d = (1N ⊗ h), and Ĥ =

[
(IN ⊗Q) 0

0 P

]
. As

detailed in [1], it follows from Assumption 2 that H ∈ S++.

A. Optimization Algorithm
To solve the Quadratic Program (QP) (8), we employ a regu-

larized primal-dual algorithm [11]. The regularized Lagrangian
for the problem is

Lϵ(µ, λ, x) =
1

2
µTHµ+µTGx+λT (Eµ+Fx−d)− ϵ

2
∥λ∥22,

(9)
where λ ∈ Rq is the dual variable associated with the in-
equality constraints, and ϵ > 0 is the regularization parameter.
An important property of (9) is that it is strongly convex in
µ and strongly concave in λ. These properties allow us to
derive a convergence result which is sufficient to prove ISS
stability of the algorithm. Additionally, the following pair of
Variational Inequalities (VI) are both necessary and sufficient
for optimality [12],

−∇µLϵ(µ, λ, x) ∈ NŪ (µ), (10a)
∇λLϵ(µ, λ, x) ∈ NRp

+
(λ). (10b)

Remark 1. The VI (10b) is sufficient for optimality since it
enforces the gradient, positivity, and complementary slackness
conditions for the dual variables. Additionally, we know the
duality gap is zero, and we require no constraint qualifiers



since the cost function is quadratic and the inequality con-
straints are affine.

The solution mapping of the algorithm can be written as

S(x) = A−1(−Ḡx− d̄), A = H̄ +NZ (11)

with Z = Ū × Rq
+, H̄ =

[
H ET

−E ϵI

]
, Ḡ =

[
G
−F

]
, and

d̄ =

[
0
d

]
. Primal-dual algorithms work by descending in the

primal variable and ascending in the dual variable to find the
saddle-point of the Lagrangian. Letting z = (µ, λ), a single
primal-dual step can be concisely written as

zj+1 = ΠZ(z
j − αΦ(zj)) (12)

where α is the step size and the mapping Φ is defined as

Φ(z) =

[
∇µLϵ(z, x)
−∇λLϵ(z, x)

]
=

[
Hµ+Gx+ ETλ

−Eµ− Fx+ d+ ϵλ

]
. (13)

The following Lemma explicitly computes the strong mono-
tonicity and Lipschitz continuity constants of the mapping Φ
as a function of H , E, and ϵ.

Lemma 1. Let Assumptions 1–3 hold and let ϵ > 0. Then,
the regularized mapping Φ is strongly monotone and Lipschitz
over Z with constant ηΦ(ϵ) = min{λ−(H), ϵ} and LΦ(ϵ) =√

λ+(Γ), where

Γ =

[
H2 + ETE (H − ϵI)ET

E(H − ϵI) ϵ2I + EET

]
.

Proof: First we show Φ is strongly monotone. For two
vectors z1 = (µ1, λ1), z2 = (µ2, λ2) ∈ Ū × Rq

+, we have

(Φ(z1)− Φ(z2))
T (z1 − z2)

= ∥µ1 − µ2∥2H + ⟨(µ1 − µ2), E
T (λ1 − λ2)⟩

− ⟨(λ1 − λ2, E(µ1 − µ2)⟩+ ϵ∥λ1 − λ2∥22
= ∥µ1 − µ2∥2H + ϵ∥λ1 − λ2∥22
= (z1 − z2)

T H̃(z1 − z2)

≥ min{λ−(H), ϵ}∥z1 − z2∥22,

where H̃ =

[
H 0
0 ϵI

]
. Thus, (Φ(z1) − Φ(z2))

T (z1 − z2) ≥

min{λ−(H), ϵ}∥z1 − z2∥22 which gives us our strong mono-
tonicity constant ηΦ(ϵ) = min{λ−(H), ϵ} since H ∈ S++.

Next, we show that Φ is Lipschitz on its domain. For two
vectors z1 = (µ1, λ1), z2 = (µ2, λ2) ∈ Ū × Rq

+, we have

∥Φ(z1)− Φ(z2)∥22
= (µ1 − µ2)

THH(µ1 − µ2) + 2(µ1 − µ2)
THET (λ1 − λ2)

+ (λ1 − λ2)
TEET (λ1 − λ2) + (µ1 − µ2)

TETE(µ1 − µ2)

− 2ϵ(µ1 − µ2)
TET (λ1 − λ2) + ϵ2(λ1 − λ2)

T (λ1 − λ2)

= (z1 − z2)
T

[
H2 + ETE (H − ϵI)ET

E(H − ϵI) ϵ2I + EET

]
(z1 − z2).

This gives us the relation

∥Φ(z1)− Φ(z2)∥22 ≤ λ+(Γ)∥z1 − z2∥22,

leading to the Lipschitz constant LΦ(ϵ) =
√
λ+(Γ).

A single iteration of (12) is represented by

zj+1 = T (zj , x), (14)

where T : RNm × Rq × Rn → RNm × Rq . When running
the algorithm for multiple iterations, we have the following
recursive definition for T ℓ

T ℓ(z, x) = T (T ℓ−1(z, x), x), (15)

where z ∈ RNm × Rq is the solution estimate, x the input
parameter, and T 0(z, x) = z. The following theorem explicitly
defines the convergence properties of the regularized primal-
dual gradient algorithm as a function of H , E, and ϵ.

Theorem 1. Suppose Assumptions 1–3 hold. Let T ℓ represent
ℓ steps of the regularized primal-dual (12), and pick any x ∈
Rn. Then, for any z ∈ RNm × Rq ,

∥T ℓ(z, x)− S(x)∥2 ≤ ρℓ∥z − S(x)∥2,

where ρ = max{|1− αηΦ|, |1− αLΦ|} and α ∈ (0, 2/LΦ).

Proof: Using the standard approach to proving conver-
gence for strongly convex, smooth cost functions, we have

∥T ℓ(z, x)− S(x)∥2,
= ∥ΠZ [T ℓ−1(z, x)− αΦ(T ℓ−1(z, x))]− S(x)∥2,
= ∥ΠZ [T ℓ−1(z, x)− αΦ(T ℓ−1(z, x))]

−ΠZ [S(x)− αΦ(S(x))]∥2,
≤ ∥(T ℓ−1(z, x)− S(x))− α(Φ(T ℓ−1(z, x))− Φ(S(x)))∥2.

Where the last step is from the non-expansivity of the pro-
jection operator. From Lemma 1, we know Φ is strongly
monotone and Lipschitz so ∥I − αΦ∥ ≤ max{|1− αηΦ|, |1−
αLΦ|}. If we let ρ = max{|1− αηΦ|, |1− αLΦ|}, we have

∥T ℓ(z, x)− S(x)∥2 ≤ ρ∥T ℓ−1(z, x)− S(x)∥2
≤ ρℓ∥T 0(z, x)− S(x)∥2

Then, for α ∈
(
0, 2

LΦ

)
we have ρ < 1.

Remark 2. The regularization term ϵ > 0 is essential for
our analysis of the primal-dual algorithm. Although S(x) is
not the true solution to the QP (8), [13] has a bound on the
suboptimality of the solution. If we define (µ̄∗, λ̄∗) = S(x) we
have the bound

∥µ∗ − µ̄∗∥+ ϵ

2
∥λ̄∗∥ ≤ ϵ

2
∥λ∗∥, ∀λ∗ ∈ D∗,

where D∗ ⊂ Rq
+ is a bounded subset of Rq

+ used to ensure
∥λ∥ is bounded. Since the goal of our MPC is to drive the
state of the system to the origin, which is strictly inside the
constraint set by Assumption 1, all the inequality constraints
will eventually become inactive. As a result, we can take D∗ =
{0} to recover

∥µ∗ − µ̄∗∥ = 0.
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Fig. 2. The effect of the CLP-MPC on the condition number of Φ for the
inverted pendulum example in Section V.

B. Closed-Loop Paradigm

Although the convergence proof in Theorem 1 gives us
a range of allowable step sizes for (12), we will use α =
2/(LΦ + ηΦ) for the remainder of the paper. This choice
of α maximizes the worst case convergence rate [14] of the
algorithm (12). This choice leads to ρ = (κ−1)/(κ+1) where
κ = LΦ(ϵ)/ηΦ(ϵ) is the conditioning number of Φ.

Since the convergence rate of our primal-dual algorithm is
strongly tied to the conditioning of Φ, we make use of the
Closed-Loop Paradigm (CLP) [10] to improve the conditioning
of our problem. The CLP effectively pre-staiblizes the system
by introducing a feedback gain K and redefining the control
inputs as uk = −Kxk + wk, ∀k ∈ (0, N − 1) where wk

becomes our new optimization variable. Choosing K = (R+
BTPB)−1BTPA (i.e. the optimal LQR gain), our new QP
becomes

min
ω

f(ω, x) =
1

2
ωT (IN ⊗ (BTPB +R))ω +

1

2
xTPx,

(16a)
s.t. Eω + Fx ≤ d, (16b)

where any use of A is replaced by (A−BK) in (6) and C by
(C −DK) in (7). Note that the CLP QP has a unique form
where H = IN⊗(BTPB+R), and G = 0 which significantly
improves the conditioning of H as seen in Figure 2.

IV. STABILITY ANALYSIS OF THE COUPLED SYSTEM

In this section, we analyze the closed loop dynamics of the
coupled system (4) using the ISS framework. The analysis of
the nominal MPC and the Closed-Loop Paradigm is identical
except for the variable changes discussed after (16). This
analysis extends the general guidelines established in [9] to
the regularized primal-dual gradient descent.

A. Solution Mapping Properties

We begin by deriving the properties of the solution mapping
since they will be important for determining ISS stability of
the optimizer.

Lemma 2. Under Assumptions 1–3, and with A defined in
(11), the following hold:

1) A is strongly monotone: ⟨u− v, y − z⟩ ≥ ∥y − z∥2
Ĥ

2) A−1 is a co-coercive function:
⟨A−1u−A−1v, u− v⟩ ≥ ∥A−1u−A−1v∥2

Ĥ
3) A−1 is Lipschitz continuous:

∥A−1u−A−1v∥Ĥ ≤ ∥u− v∥Ĥ−1

for all y, z ∈ Z and u ∈ A(y), v ∈ A(z).

Proof: 1) By monotonicity of the normal cone NZ [12],
and A− H̄ = NZ

⟨u− H̄y − v + H̄z, y − z⟩ ≥ 0,

=⇒ ⟨u− v, y − z⟩ ≥ ⟨H̄(y − z), y − z⟩ = ∥y − z∥2
Ĥ
,

.
2) Follows directly from 1 [15, Example 22.6].
3)Rewriting 2 yields

∥A−1u−A−1v∥2
Ĥ

≤ ⟨A−1u−A−1v, u− v⟩

≤
〈
Ĥ

1
2 (A−1u−A−1v), Ĥ− 1

2 (u− v)
〉

≤ ∥A−1u−A−1v∥Ĥ∥u− v∥Ĥ−1 ,

where the last line follows from the Cauchy-Schwartz inequal-
ity. Dividing by ∥A−1u−A−1v∥Ĥ completes the proof.

Corollary 1. Let Assumptions 1–3 hold, then for all x, y ∈ Rn

the solution mapping is Lipschitz continuous i.e.

∥S(x)− S(y)∥Ĥ ≤ ∥Ḡ(x− y)∥Ĥ−1 . (17)

B. ISS Gain of the Regularized Primal-Dual Method
Using the properties of the solution mapping, we can now

show that the optimizer dynamics are ISS for the regularized
primal-dual algorithm.

Theorem 2. Consider the optimizer dynamics z+ = T ℓ(z, x).
Under Assumptions 1–3 , the error signal e = z−S(x) is ISS
with respect to the state update ∆x = x+ − x and satisfies
the bound

lim sup
k→∞

∥ek∥2 ≤ γ2(ℓ, ϵ) lim sup
k→∞

∥∆xk∥Ĥ−1 , (18)

where γ2 = bρℓ/(1−ρℓ), b = ∥Ĥ− 1
2 Ḡ∥2, and γ2 is a class L

function. The values of Ḡ and ρ are defined below (11) and
in Theorem 1, respectively.

Proof: Using the results from Theorem 1 and Corollary
1 along with the triangle inequality, we have

∥z+−S(x+)∥2 ≤ ρℓ∥z − S(x+)∥2
= ρℓ∥[z − S(x)] + [S(x)− S(x+)]∥2
≤ ρℓ∥z − S(x)∥2 + ρℓ∥Ĥ− 1

2 [S(x+)− S(x)]∥Ĥ
≤ ρℓ∥z − S(x)∥2 + ρℓb∥x+ − x∥Ĥ−1

where b contains the Lipschitz constant for S and Ĥ− 1
2 and

ρ ∈ (0, 1). If we let ek+1 = z+ − S(x+) and ∆xk = x+ − x
we arrive at

∥ek+1∥2 ≤ ρℓ∥ek∥+ ρℓb∥∆xk∥Ĥ−1

=⇒ ∥ek∥2 ≤ ρℓk∥e0∥+
ρℓb

1− ρℓ
sup
k≥0

∥∆xk∥Ĥ−1 ,

which concludes the proof.
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Fig. 4. Demostration of how increasing the number of iterations
recovers stability and enforces constraints.

C. Stability of the Coupled Optimizer-MPC System
The following well-known result proves ISS for nominal

MPC with a varying additive disturbance ek.

Theorem 3. [16]: The ideal MPC law (3) is ISS with respect
to the suboptimality error ek = zk − S(xk) and satisfies

lim sup
k→∞

∥xk∥ ≤ γ1 lim sup
k→∞

∥B̄ek∥,

where B̄ = BΞ and γ1 is a finite scalar.

Corollary 2. Following from Theorems 2 and 3, the closed-
loop system (4) is asymptotically stable if ζγ1γ2(ℓ, ϵ) < 1.

Remark 3. Corollary 2 is a direct application of the small-
gain theorem [17]. Since γ2(ℓ, ϵ) is a monotonically decreas-
ing function and ζ, γ1 > 0, ∃ℓ∗ such that ζγ1γ2(ℓ, ϵ) < 1.
Thus, the system can always be made asymptotically stable by
performing a sufficient number of iterations.

V. NUMERICAL EXAMPLES

In the following sections, we will explore how the various
optimizer parameters affect the ISS gain of the regularized
primal-dual algorithm when coupled with both nominal and
CLP-MPC. Consider the linearized inverted pendulum on a
cart. The equations of motion are

4/3 ml2ϕ̈−mlÿ = mglϕ (19a)

−mlϕ̈+ (M +m)ÿ = −bẏ + F, (19b)
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Fig. 5. Optimizer ISS gain compared to the horizon length under the
nominal number of iterations. The solid lines represent nominal MPC,
and dashed line represents CLP-MPC.
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Fig. 6. Demonstration on how decreasing the horizon length recovers
stability of the coupled system using the nominal ℓ = 2500.

where y is the position of the cart, ϕ is the angle of the
pendulum, g = 9.81 m/s2 is the gravitational constant, M =
1 kg is the mass of the cart, and m = 0.1 kg, b = 0.1 Ns/m,
and l = 1 m are the mass, damping coefficient, and length of
the pendulum respectively. The states and control inputs are
x = [y ẏ ϕ ϕ̇]T and u = F . The angle ϕ = 0 corresponds to
the upright position and the inverted pendulum dynamics are
generated by linearization around the origin. Given the initial
state x0 = [1.9 0 0 0]T , the control objective is to drive the
system to the origin under constraints

X = [−2, 2]× [−0.5, 0.5]× [−5◦, 5◦]× [−5, 5],

U = [−0.75, 0.75].

TDO-MPC is implemented using a sampling period of ts =
0.2 s, Q = I , R = 1, N = 10, ϵ = 10−4, ℓ = 2500, and a
solver tolerance of 10−8. This choice of parameters is such that
the interconnected MPC+optimizer is at the limit of instability.
The following subsections detail how asymptotic stability can
be recovered by choosing different parameters.

A. Influence of the number of Solver Iterations
As discussed in Remark 3, the most obvious way to attain

closed-loop stability of TDO-MPC is by increasing the number
of optimizer iterations per time step. Figure 3 shows how the
optimizer gain γ2 quickly tends to zero as long as a sufficient
number of iterations are run. Additionally, it shows how the
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Fig. 7. Comparison between nominal MPC and CLP-MPC using
the same number of iterations ℓ = 2500. The CLP-MPC enforces
constraints within 1% while the nominal MPC is unstable and requires
at least ℓ = 5 · 107 iterations to enforce constraints.

conditioning number improvement seen in Figure 2 propagates
to the optimizer gain γ2.

Figure 4 shows how increasing the number of allowable
iterations improves stability. An increase to ℓ = 7500 iterations
is sufficient to staiblize the system, but in order to enforce
constraints to within a 1% threshold, the system requires at
least ℓ = 5 · 107 iterations.

Although increasing the number of solver iterations is
guaranteed to ensure stability, this solution goes against the
general TDO philosophy of reducing computational complex-
ity. The following sections investigate alternative strategies
for stabilizing the interconnected MPC/optimizer system by
improving the conditioning number of the OCP.

B. Influence of the prediction horizon length

For unstable systems, we see that the optimizer gain grows
with the chosen horizon length since the dense QP formulation
contains Ak terms. Figure 5 confirms this intuition and we see
in Figure 6 that by decreasing the horizon length N , we are
able to recover stability of our coupled system. Although re-
ducing N may limit the feasibility region of (3), recent results
[18] show that this can be offset throuh proper management
of the reference.

C. Influence of the Closed-Loop Paradigm

Implementing the Closed-Loop Paradigm on TDO-MPC has
shown significant improvements in decreasing the optimizer
gain as seen in Figures 3 and 5. This is a direct conse-
quence of using the LQR gain which removes the linear
term from the QP and sets the Hessian’s condition number
to cond(R + BTPB). Moreover, when constraints are not
being violated, the solution to the QP (16) becomes ω∗ = 0
and the coupled system is trivially stabilized by the internal
LQR controller. This allows the online optimization algorithm
to “focus” on enforcing constraints, significantly reducing the
required number of iterations as illustrated in Figure 7.

VI. CONCLUSION

This paper analyzed a special case of TDO-MPC where we
used a regularized primal-dual solver to enforce both input
and state constraints for linear MPC. The solver sufficiently
enforces constraints to within an arbitrary 1% threshold as
long as the solver parameters are tuned properly. Additionally,
we have shown that the Closed-Loop Paradigm achieves
significant performance improvements in terms of minimum
number of iterations required for constraint satisfaction. Future
work includes decoupling the step size between the primal and
dual variables and further exploring the benefits of the Closed-
Loop Paradigm in TDO implementations.
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