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Abstract

Limited dispersal of individuals between generations results in isolation by distance, in which individuals further apart in space tend to be
less related. Classic models of isolation by distance assume that dispersal distances are drawn from a thin-tailed distribution and predict
that the proportion of the genome that is identical by descent between a pair of individuals should decrease exponentially with the spa-
tial separation between them. However, in many natural populations, individuals occasionally disperse over very long distances. In this
work, we use mathematical analysis and coalescent simulations to study the effect of long-range (power-law) dispersal on patterns of
isolation by distance. We find that it leads to power-law decay of identity-by-descent at large distances with the same exponent as dis-
persal. We also find that broad power-law dispersal produces another, shallow power-law decay of identity-by-descent at short dis-
tances. These results suggest that the distribution of long-range dispersal events could be estimated from sequencing large
population samples taken from a wide range of spatial scales.
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Introduction
Populations with limited dispersal exhibit “isolation by distance”:
themore distant individuals are from each other in space, the less
related they tend to be (Wright 1946; Rohlf and Schnell 1971;
Slatkin 1991). The strength of isolation by distance can be used
to infer demography and dispersal (Koenig et al. 1996; Cayuela
et al. 2018; Bradburd and Ralph 2019; Battey et al. 2020). For popu-
lations spread over a fairly continuous range, rather than being
clumped into a small number of discrete subpopulations, disper-
sal is often assumed to be thin-tailed, with displacement approxi-
mately following a normal distribution (Barton et al. 2002;
Ringbauer et al. 2017). If dispersal is unbiased and homogeneous,
it is then characterized by a single parameter, the dispersal rate
D. If we track the spatial position of a lineage backwards in time
over multiple generations, its motion will approach a diffusion,
with D as diffusion constant. While in general the spatial pattern
even of neutral genetic diversity depends on selection (Barton et al.
2013a; Allman and Weissman 2018), for populations evolving
completely neutrally the strength of isolation by distance is sim-
ply determined by the balance between dispersal and mutation.
Specifically, pairwise genetic similarity is predicted to decay expo-
nentially with distance, with a decay rate of

!!!!!
μ/D

√
, where μ is the

mutation rate (Kimura and Weiss 1964; Malécot 1975; Slatkin
and Barton 1989; Slatkin and Arter 1991; Slatkin 1993; Rousset
1997, 2000; Barton et al. 2002; Ralph and Coop 2013).

In many populations, however, dispersal is heavy-tailed, with
individuals occasionally moving much farther than the typical
distance (Willson 1993; Clark 1998; Atkinson et al. 2002; Baguette
2003; Brockmann et al. 2006; Dai et al. 2007; Devaux et al. 2007;

Fric and Konvicka 2007; Aguillon et al. 2017; Vallaeys et al. 2017).
In many such populations, the tail of the dispersal distribution
can be approximated by a power law, i.e. the probability that an
individual disperses farther than a long distance y in their lifetime
is proportional to y−α for some α>0. The smaller α, the longer the
tail; distributionswith α≤ 2 have infinite standard deviation,while
those with α≤1 also have infinite mean. (Of course, dispersal tails
must be cut off at some distance corresponding to the diameter of
the population’s range, and correspondinglywhenwe say that the
standard deviation ormean are “infinite”we reallymean that they
are set by the total range size.) These power-law dispersal distri-
butions can lead to qualitatively different lineage trajectories
from the ones produced by thin-tailed dispersal, especially if
α < 2 (Metzler et al. 2009); see Fig. 1. In particular, for any α, the
most likely way for a lineage to travel an unusually long distance
over many generations is for it cover most of the distance in a sin-
gle very long jump in one generation (Vezzani et al. 2019).

The different lineage dynamics produced by power-law disper-
sal can have large effects on evolution, greatly accelerating both
selective sweeps and range expansions, as in both cases indivi-
duals who make rare, long jumps into fresh patches can have
very large numbers of descendants (Mollison 1972; Ibrahim et al.
1996; Mancinelli et al. 2003; Bialozyt et al. 2006; Brockmann and
Hufnagel 2007; Wingen et al. 2007; Fayard et al. 2009; Ralph and
Coop 2010; Hallatschek and Fisher 2014; Paulose et al. 2019;
Paulose and Hallatschek 2020). This is true even for dispersal
with α>2 (Hallatschek and Fisher 2014). It is thus important to de-
termine the tail of the dispersal distribution in natural popula-
tions. But for most populations, particularly non-animal ones,
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very little is known about dispersal, and the tail is particularly
hard to observe directly (Koenig et al. 1996). We would therefore
like to know if power-law dispersal leaves distinctive traces in

patterns of isolation by distance from which it could potentially
be inferred genetically (Nathan et al. 2003; Cayuela et al. 2018).

In this work, we explore the effects of power-law dispersal on
isolation by distance in neutrally evolving, demographically
stable populationswith constant density. This problemwas previ-
ously studied by Nagylaki (1976) in one dimension for moderately
heavy-tailed dispersal with finite mean distance (α>1), and
Janakiraman (2017) studied an analogous problem in chemical
physics and found complementary results. Nagylaki (1976) also
considered Cauchy-distributed dispersal (α=1) in one dimension,
and Chave and Leigh (2002) did the same for two dimensions. We
unify and extend this work to cover arbitrary power-law dispersal
tails in both one and two spatial dimensions and find simple
asymptotic expressions for isolation by distance for both distant
and nearby pairs of individuals. We also find how the distribution
of the time to the most recent common ancestor of a pair of indi-
viduals depends on the distance between them. Ourmost import-
ant novel results are the expression (4) for relatedness between
distant individuals under power-law dispersal with arbitrary α,
which generalizes Nagylaki (1976) and Chave and Leigh (2002)’s
results beyond the special cases of α=1 in d= 2 dimensions and
1≤ α<2 in d=1 dimension, and the expression (6) for relatedness
between nearby individuals under broad power-law dispersal
with α< d, which generalizes Chave and Leigh (2002)’s result be-
yond the special case of α=1 and d=2. We also give heuristic de-
rivations for the results in addition to precise mathematical ones,
to make it easier to tell when they should hold in real biological
populations that do not conform precisely to the mathematical
models.

Model
We consider two individuals sampled in the present a distance x
apart, and trace their lineages backward through time until they
coalesce. We assume that the distance that an individual moves
in one generation is drawn from a distribution that falls off as a
power law at long distances. For concreteness, wewillmostly con-
sider lineages that follow Lévy flights, a flexible, mathematically
tractable way to model dispersal with power-law tails with α<2
(Jespersen et al. 1999; Metzler and Klafter 2000; Metzler et al.
2009). Lévy flights occur naturally as the limit of any trajectory
composed ofmany independent, identically distributed jumps, in-
cluding the special case of diffusive motion in which the jumps
have a finite variance. Apart from the special case of classic diffu-
sion (for which the power-law tail disappears), these trajectories
include rare long-range jumps and are governed by power-law
kernels with infinite variance. We expect that most of our results
are insensitive to the precise shape of the dispersal kernel and de-
pendmostly on the tail behavior. Indeed, we see a goodmatch be-
tween the asymptotic approximations and simulated populations
dispersing according to three different kernels with the same tails
but different short-range behavior: Lévy flights (for one-
dimensional populations with α<2), discrete approximations to
F-distributions (populations with α>2), and other discrete distri-
butions with power-law tails (two-dimensional populations with
α<2); see Methods for simulation details.

In the main text, we will focus on the case of individuals living
in a two-dimensional range; for the one-dimensional case, see the
Methods section. We will assume that the range size is large en-
ough that it is effectively infinite; see the Discussion for more on
this point. For α>2, themotion of a typical lineage is approximate-
ly diffusive at long times. By this we mean that at time t, a typical
lineage will have a displacement of ≈

!!!
Dt

√
. Here D is the diffusion

Fig. 1. The tail of the dispersal distribution controls the size and number of
long-range jumps. Top: Single-generation dispersal distributions. The orange
curve shows a normal distribution, the classic thin-tailed distribution.
The blue and red curves show distributions with power-law tails in which
the probability of jumping farther than a long distance y is proportional to
y−α. Bottom: Two-dimensional randomwalks.When the dispersal distribution
is thin-tailed, the motion reduces to normal diffusion without any
long-range jumps. When the dispersal distribution has a power-law tail,
trajectories can jump large distances in a single time step. If the
power-law tail is broad (α<2), trajectories will have divergent mean
squared displacement, and large jumps become noticeably more
prevalent than for steep power laws with finite variance (α>2). Circles
mark the beginnings of the trajectories, trianglesmark the positions after
10 jumps, and squares mark the ends. The generalized dispersal
constants Dα are chosen such that the trajectories all have similar
characteristic displacements at the time step marked by triangles. On
shorter time scales, the diffusive trajectory tends to have the largest
displacement, while on longer time scales the infinite variance trajectory
in red tends to have the largest displacement.
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constant, which is set by variance of the dispersal kernel. For α<2,
the dispersal kernel has infinite variance, and the typical displace-
ment will instead be ≈(Dα t)1/α, which grows more quickly than the
diffusive displacement at long times (Fig. 1). The parameter Dα is a
generalized diffusion constant with units of distanceα/time, set by
the typical scale (roughly, median) of the dispersal kernel. (For
precise definitions of the Lévy flight dispersal kernel in terms of
α andDα, see (17) and (47) for oneand twodimensions, respectively.)
For α<2, the typical size of the maximum of t dispersal events is
proportional to (Dα t)1/α, and the probability that together they carry
the lineagemore than a long distance y≫ (Dα t)1/α is proportional to
y−α. For Lévyflights,α is knownas the “stabilityparameter.”The sta-
bility parameter is identical to the tail exponent for α<2, but in the
limiting case α=2, the Lévy flight reduces to ordinary diffusion, ra-
ther than a distribution with a power-law tail ∝y−2. For the rest of
this paper, when we refer to “α=2,”wewill mean diffusive motion.
We will discuss dispersal kernels with power-law tails with expo-
nent α>2, but wewill avoid dispersal kernels with exactly quadrat-
ic tails to minimize confusion.

When the two lineages encounter each other, they coalesce at
rate proportional to 1/ρ, where ρ is the density of the population.
Technically, in d=2 dimensions, two lineages of infinitesimal
size will never be at exactly the same position (Mörters and
Peres 2010); the same is true for α≤1 in d=1 dimension (Bertoin
1996, p. 34). So really there must be some small distance δ within
which lineages coalesce at a rate that is approximately 1/(δdρ), the
inverse of the number of individuals within coalescence range. At
these small scales, even the model of independent dispersal of
lineages breaks down (Barton et al. 2010). But we will see below
that this coalescence length scale does not affect isolation by dis-
tance on larger scales x≫ δ. These considerations reflect the ser-
ious issues with finding coalescent models that correspond to
forward-time models in continuous space (Felsenstein 1975). To
avoid these issues, we treat our continuous model as being an ap-
proximation to an underlying discrete-space model of a square
lattice of demes. It is this discrete model that we use in our two-
dimensional simulations, while in one dimension we use the ap-
proximate continuous-space model; see the Simulation Methods
section.

We are interested in the probability ψ of identity by descent of
our sample pair as a function of the distance between them, x,
which we will also refer to as the homozygosity or relatedness.
(See the Discussion for more on the interpretation of ψ.) If the
time to their most recent common ancestor is T and themutation
rate is μ, then ψ is given by:

ψ(x) = E e−2μT | x
[ ]

. (1)

Although usually it is ψ rather than the coalescence time T itself
that is directly observable, T is important for, e.g. determining
whether it is reasonable to assume stable demography, so we
will also find expressions for its probability density p(t | x). See
Table 1 for a list of frequently used symbols and their definitions.

Results
In this section, we will describe ourmain results and provide brief
sketches of the logic behind key features. We will focus on the
scaling of identity ψ with the underlying parameters α, Dα, μ, and
ρ, mostly leaving numerical prefactors for the Methods. Roughly
speaking, the basic intuition is that the sampled pair will be iden-
tical if their lineages coalesce within the past ∝ 1/μ generations. In

this time, they will disperse a typical distance of order
x ≡ (Dα/μ)

1/α, so this is the key length scale over which identity de-
cays: pairs separated by x ≪ x should be relatively closely related,
while identity between pairs separated by x ≫ x should be rare.

For the classic case of diffusive motion (α=2), this length scale
is x =

!!!!!
D/μ

√
, and the probability of identity falls off exponentially

in one-dimensional ranges (Barton et al. 2002):

ψ(x) =
e−x/x

4ρxμ + 1
. (2)

In two dimensions, it falls off logarithmically for x ≪ x and expo-
nentially for x ≫ x (Barton et al. 2002):

ψ(x) ≈

ln (x/δ)
ln (x/δ)+4πρD for x ≪ δ ≪ x
1−ψ(0)
4πρD ln (x/x) for δ ≪ x ≪ x
1−ψ(0)
4ρD

exp (−x/x)!!!!!
2πx/x

√ for x ≫ x ≫ δ.





(3)

Herewe generalize (2) and (3) to α≠2, andfind simple approximate
expressions for ψ in different parameter regimes, illustrated in
Fig. 2. At long distances, we find that ψ(x) has a universal form
for all power-law dispersal kernels. Intuitively, power-law disper-
sal broadens the distribution of coalescence times for pairs at a gi-
ven separation x, creating more overlap in the distributions for
different x values (Fig. 3; see Appendix B for the equivalent sche-
matic in one dimension).

Distant pairs
For distant samples, x ≫ x, we expect substantial isolation by dis-
tance. For the pair to coalesce, their lineagesmust approach with-
in δ of each other. The most likely way for this to happen before a
mutation occurs is for one lineage to cover the distance in a long
jump. In one dimension, the rate of such jumps is proportional
to Dαx−α−1δ: a probability density proportional to Dαx−α−1 for a
jump to have size ≈x, multiplied by a target zone of size δ. In
two dimensions, the rate is ∝ Dαx−α−2δ2: there is an extra factor
∝1/x because the jump not only has to have the right distance
but also the right direction, and now it must hit a target with
area δ2. (Herewe are focusing just on scaling behavior andneglect-
ingO(1) numerical factors like 2 and π.) Combining the two expres-
sions, the rate of jumps bringing the two lineages together is ∝
Dαx−α−dδd, where d=1 or 2 is the spatial dimension. The probability
that sucha jumpoccurs in the time∝ 1/μbefore the lineagesmutate
is therefore approximately ∝ Dαx−α−dδd/μ. The lineages must then
coalesce within their neighborhood of ∝ δdρ individuals before
they mutate. If mutation is frequent compared with coalescence
(1/(ρδd)≫ μ), this occurs with probability ∝1/ (μρδd)≪1.We therefore
expect that the probability of identity is ψ(x)∝ Dαx−α−dδd/μ/(μρδd)=
Dαx−α−d/(μ2ρ), i.e. that there is a power-law dependence of identity

Table 1. Definitions of key symbols.

Symbol Definition

x Distance between samples
d Number of spatial dimensions (1 or 2)
ρ Population density
α Exponent of dispersal tail
Dα Generalized dispersal constant
μ Mutation rate
ψ Probability of identity
x = (Dα/μ)

1/α Characteristic length scale of identity
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on distance, with the same exponent as the dispersal probability
density. We can generalize this expression slightly to also include
the case inwhichmutation is rare comparedwith local coalescence
by including a correction factor that depends on the probability of
identity ψ(0) for a co-located pair:

ψ(x) ∝
1 − ψ(0)
( )

Dα

ρμ2xd+α
for x ≫ x ≫ δ. (4)

See the Methods for a derivation of (4), including the omitted con-
stant of proportionality, which depends on the details of the disper-
sal distribution. For d=1 and 1≤ α<2, (4) was derived by Nagylaki
(1976) (his Eq. (37)); our result extends this to two dimensions and
arbitrary α.We confirm (4)with simulations andnumerical analysis
(see Fig. 4 for two dimensions and Fig. 5 for one dimension). As
shown in Figs. 4 and 5, even steep power-law kernels with α>2
and finite variance lead to a matching power law in ψ(x). (4) tells
us that the probability of identity between widely separated indivi-
duals is farhigher thanwouldbepredictedunderdiffusivedispersal
((2) or (3)), and that identity falls off more slowly at long distances
for dispersal distributions with fatter tails (smaller α).

Nearby pairs
The lineages of nearby pairs (x ≪ x) do not need to take a long
jump to find each other before mutating. In fact, the long-range
jumps in the tail of the dispersal kernel can actually carry the
pair farther away from each other andmake it harder to coalesce.
Intuitively, the pair of lineages take time ∝ xα/Dα to disperse
across the distance between them. (Here, we are assuming α≤2;
steep power laws with α>2 will be approximately described by

the diffusive α=2.) From that time on, they are roughly uniformly
likely to be anywhere within a range of expanding radius ∝ (Dα t)1/α.
They thus coalesce at a decreasing rate ∝ (Dα t)−d/α/ρ. To find the
probability that they coalesce before mutating, we integrate this
rate over time, starting from the time ∝ xα/Dα when they first
approach each other, out to the time ∝1/μ by which they mutate:

ψ(x) ∝
1
ρ

+ 1/μ

xα/Dα

dt

(Dαt)
d/α . (5)

This describes the regimewhere identity is rare,ψ(x)≪1, before it sa-
turates at 1 for sufficiently low density ρ. Notice that the initial sep-
aration x enters into (5) only through the lower limit of integration,
while the mutation rate μ enters only through the upper limit. This
implies that the derivative ψ′(x), the rate atwhich identity decreases
with distance at short distances x ≪ x, should be approximately in-
dependent of μ. The behavior of (5) depends strongly on the compari-
son between the tail exponent α and the dimension d, and so wewill
treat the different cases separately below.

Nearby pairs: broad power-law kernels
We will first consider broad power-law tails, with α< d. In this
case, the exponent d/α of the denominator in (5) is >1, and the in-
tegral is therefore dominated by the region near the lower limit of
integration (short times). In otherwords, nearby lineages are likely
to either coalesce very quickly or to disperse across the whole
range before coalescing (Bertoin 1996, p. 34; Palyulin et al. 2014).
This “now-or-never” dynamic has the interesting effect of making
the local probability of identity by descent independent of the

Fig. 2. For power-law dispersal, the form of isolation by distance is universal at long distances. Approximate form for the probability of identity as a function of
distance, ψ(x), for different dispersal kernel exponents α. Left panel shows results for d=2 spatial dimensions, right panel shows d=1 dimension.
Different regimes of parameter space are labeled by their qualitative dynamics. We use “∼” to denote proportionality in the limit of large population
densitywhere ψ(0)≪ 1. The key length scales are the characteristic length scale of identity, x = (Dα/μ)

1/α, and the short distance δ atwhich coalescence can
occur. Coalescence for distant pairs, x ≫ x, typically occurs via one long jump,which leads to the universal power-law scaling at large distances predicted
by (4) (green). The form of isolation by distance among nearby pairs, x ≪ x, depends on d and α. For sufficiently heavy-tailed dispersal (α< d), nearby pairs
typically either coalesce very quickly (at t≪ 1/μ) or disperse far away from each other andmutate before coalescing, so the probability of identity is set by
a competition between coalescence and dispersal and is nearly independent of the mutation rate ((6), blue). In this regime, identity still follows a power
lawwith distance, although a shallower one than the power law at long distances, andwith the opposite dependence on α. Finite-variance dispersalwith α
>2 is effectively diffusive at short distances, with lineages typically reaching each other via many small jumps, so identity follows the classic diffusive
predictions (2) or (3) (orange). In one dimension, there is an intermediate regime 1< α<2, in which nearby pairs typically reach each other bymany small
jumps but the non-diffusive nature of the jumps is still apparent ((10), purple). For d=2 and α≤1 in d=1, the short-range details of coalescence become
important for very close pairs ((3) or (7), brown). The solid vertical lines at α=1 and 2 indicate sharp transitions, while the dashed horizontal lines at x= δ
and x indicate smooth variation between asymptotic limits (see Figs. 4 and 5).
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mutation rate, because the main competition is between coales-
cence and heavy-tailed dispersal rather than between coales-
cence and mutation. Explicitly, we obtain ψ(x)∝1/(ρDαxd−α), with
the fact that the upper limit of integration is 1/μ rather than infin-
ity only negligibly decreasing ψ(x). So aswith distant pairs, ψ(x) fol-
lows a power law, although a different one from the long-distance
1/xd+α.We calculate ψ(x)more carefully in theMethods to find that
it is given by:

ψ(x) ≈
Γ(1 − α/d)
[ ]dsin (πα/2)

d1+απd
1 − ψ(0)
ρDαxd−α

for δ ≪ x ≪ x. (6)

We include the complicated numerical prefactor for complete-
ness, but it will typically be of order one, and given that themodel
is an idealization of any real system and that the effective density
ρ will only be known very roughly, we do not expect it to be very
important in practice. Note that when d=2 and α=1, (6) reduces
to Eq. (A6) in Chave and Leigh (2002). We confirm (6) with simula-
tions (Figs. 4 and 5).

There are two key features distinguishing (6) from the classic
thin-tailed results. First, the power-law behavior indicates that ψ
can change rapidly even at short distances x ≪ x, unlike the
exponential or logarithmic behavior predicted by (2) and (3),

respectively. Second, as mentioned above, ψ is approximately in-
dependent of the mutation rate μ. We consider the interpretation
of this point in the Discussion below. There is also an interesting
contrast between (6) and (4): α appears with opposite signs in the
two exponents. Thus, while broadening the tail of the dispersal
distribution (by decreasing α) makes isolation by distance weaker
for distant pairs (i.e. the dependence of ψ on x becomes weaker in
(4)), it makes isolation by distance stronger for nearby pairs. This
is because distant pairs rely on long-range jumps to bring them to-
gether, while for nearby pairs such jumps are likely to push them
apart and prevent coalescence.

The power law in (6) makes it diverge at very short distances,
where it breaks down. Instead, for individuals within the same
deme, x< δ, ψ(x) flattens out, with ψ(x) approaching ψ(0). Roughly
speaking, individuals coalesce at rate 1/(ρδd) and disperse outside
of coalescence range at rate of about Dαδ

−α. When coalescence is
faster, probability of identity is high, ψ(0)≈1, while when dispersal
is faster it is low, ψ(0)≈1/(ρδd)/(Dαδ

−α)= 1/(ρDαδ
d−α). A more careful

calculation gives (see Methods):

ψ(0) ≈ 1 1 +
2(α+d+2)/2π

Γ(2/d − α/2)
ρDαδd−α

[ ]/
, (7)

Fig. 3. Long-range jumps affect when and where lineages coalesce. Qualitative illustrations of lineage dynamics and coalescence time distributions for each of
the three dispersal regimes in two dimensions. Typical histories are shown for nearby samples (x ≪ x, blue) and distant samples (x ≫ x, red). Left: For
thin-tailed dispersal distributions (e.g. the normal distribution with α= 2), motion is effectively diffusive and separation x is a relatively good predictor of
coalescence time. Center: For steep power-law dispersal distributions with finite variance (α>2), large jumps broaden the spatial and temporal ranges
over which lineages coalesce. Lineages at large separations x ≫ x are occasionally able to coalesce at times comparable to 1/μ, while lineage dynamics at
short distances are indistinguishable from thin-tailed dispersal. Right: For broad power-law dispersal distributions with infinite variance (α<2), large
jumps are common. This allows for the rapid coalescence of lineages at both small and large distances but also lets even nearby lineages jump very far
away from each other and avoid coalescing until a much later time set by the range size (not shown).
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although these numerical factors depend on the details of the co-
alescence kernel. We confirm (7) with simulations for d=1 (Fig. 6).

In populations with discrete generations, (6) and (7) both break
down if x is small enough that the individuals have a substantial
probability of coalescing in a single generation. More precisely,
the expression xα/Dα in the lower limit of integration in (5) as-
sumes that x is large enough to be in the tail of the single-
generation dispersal kernel. See “Breakdown of models at small
scales” in the Methods below for a discussion of alternative ex-
pressions when this is not satisfied.

Nearby pairs: marginal kernels
Themarginal case α= d is actually themost familiar, as it includes
the classic case of diffusion in two dimensions. For α= d=2, evalu-
ating (5) recovers (3), up to numerical constants. As mentioned
above, finite-variance dispersal kernels with α> 2 will effectively
be described by α=2, so this case actually describes a broad region
of parameter space. This is shown in Fig. 4 for α=2.05.

There is also the one-dimensionalmarginal case, α=d=1. In the
Methods, we show that like the classic marginal case α=d=2, it
produces logarithmic isolation by distance among nearby pairs:

ψ(x) ≈ ln (x/x)
2πρD1 + ln (x/δ)

for δ ≪ x ≪ x. (8)

We confirm (8) with simulations (Fig. 5).We believe that (8) and the
associated expression for co-located pairs (43) are novel, but that
their relevance to natural populations is limited, as they apply
only in one dimension and for α exactly one. On the other hand,
for selective sweeps suchmarginal exponents canactually describe

the dynamics in a substantial region of parameter space when
there is not a clean separation of scales (Hallatschek and Fisher
2014), and it is possible that something similar could be true
here, in this case perhaps when α is close to one and x is not too
large compared with δ.

Nearby pairs: moderate power-law kernels in one
dimension
In two dimensions, the two cases listed above are the only possi-
bilities. For one-dimensional habitats d=1, there is an additional
regime α>1. For finite-variance dispersal α≥2, this reduces to
the classic diffusive case described by (2). For moderately broad
power laws 1< α<2, the integral in (5) is dominated by the region
near the upper limit of integration (long times). This gives a lead-
ing term ψ(x) ≈ ψ(0) ∝ 1/(ρxμ) that is independent of x. The spatial
dependence enters as a correction from the finite lower limit of in-
tegration, ψ(0)−ψ(x)∝ xα−1/(ρDα). A more detailed analysis (see
Methods) recovers the result of Nagylaki (1976) (Eq. (39)) for ψ(0):

ψ(0) ≈ 1 1 + 2α sin (π/α)ρxμ
[ ]/

. (9)

The leading distance dependence was found by Janakiraman
(2017) (Eq. (C1)) for an analogous problem in chemical physics:

ψ(x) ≈ ψ(0) 1 −
α sin (π/α)

Γ(α) cos (π(1 − α/2))
x
x

( )α−1[ ]
for x ≪ x. (10)

Notice that this matches the scaling predicted by the intuitive ar-
gument. We confirm (9) and (10) with simulations and numerical
analysis (Fig. 5).

Fig. 4. Isolation by distance in two dimensions has the same power-law tail as dispersal. Each panel shows the scaled probability of identity between a sampled
pair of individuals, ψρx2μ, as a function of the scaled distance x/x between them. Points show discrete-space simulation results andmagenta lines show
the power law that emerges at large distances (4) (see (62) for prefactors). For α<2, red curves show the short-range power-law behavior predicted by (6).
For α=2.05, the red curve shows the classic diffusive prediction, (3). Notice that even for this finite-variance case that looks diffusive on short scales, the
underlying non-diffusive power law is apparent at long scales. ρ=1 in all panels. For these parameter values, identity is rare even for co-located
individuals, ψ(0)≪ 1. In this and all following figures, error bars (which in this figure are smaller than the points) show 68% percentile bootstrap
confidence intervals (see Methods).
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While (10) is similar to the pattern for finite-variance dispersal
(2) in that ψ is only slowly changing for small x, the details are
slightly different, in that (10) predicts a linear correction to ψ
with x to leading order, while (10) predicts a leading term ∝ xα−1.
But this is only a modest difference and it is unclear if it could
be detected in data from natural populations; the long-distance
behavior discussed above presents a much clearer contrast.

Because the constants in (10) are the result of behavior over
many jumps, allowing the lineage displacements to approach a
Lévy stable distribution, they should be independent of the details
of the dispersal kernel. However, they are typically of order one
and are unlikely to be practically important.

Discussion
Summary and related work
Limited dispersal produces a correlation between spatial and gen-
etic distance (Wright 1946; Malécot 1975; Slatkin 1991, 1993;
Slatkin and Arter 1991). While most previous models have only
considered diffusive dispersal, dispersal can be heavy-tailed in
many natural populations. Nagylaki (1976) was the first to gener-
alize classic diffusive models of isolation by distance by allowing
dispersal distance in one-dimensional populations to have a
power-law tail (with 1≤ α<2). This groundbreaking work has
largely been neglected, likely because of the lack of data to which
to compare it at the time; it was last cited by Chave and Leigh
(2002), who extended the results to two dimensions for the special
case of Cauchy flights (α=1) in a paper modeling ecological diver-
sity. Recent studies suggest that heavy-tailed dispersalmay in fact
be common (Willson 1993; Clark 1998; Atkinson et al. 2002;
Baguette 2003; Brockmann et al. 2006; Dai et al. 2007; Devaux
et al. 2007; Fric and Konvicka 2007; Aguillon et al. 2017; Vallaeys
et al. 2017), and we hope that this paper will reintroduce these
classic results to population genetics now that the field may
have sufficient data to apply them. We also extend this previous
work to all tail exponents α in both one and two dimensions.
We find that, for all α, power-law dispersal leads to much

Fig. 5. Isolation by distance in one dimension also has the same power-law tail as dispersal.As in Fig. 4, each panel shows the scaled probability of identity between
a sampled pair of individuals, ψρxμ, as a function of the scaled distance x/x between them. Points show simulation results and magenta lines show the
same long-distance power law (4). Black curves show numerical solutions of ψ(x) calculated from (33) with δ=0 and 1−ψ(0)→ 1. (As in Fig. 4, parameters
are chosen such that ψ(0)≪ 1.) Red curves show the asymptotic behavior predicted at short distances by (6) for α=0.5, by (8) for α=1, by (9) and (10) for α=
1.45, and by the classic diffusive result (2) for α=2.05. Again, the finite-variance case looks diffusive at short distances but follows the underlying power
law of dispersal at long distances. ρ=100 in all panels, and data with ρ=10 and ρ=1 (not shown) yield indistinguishable plots.

Fig. 6. For heavy-tailed dispersal with α<d, relatedness at short distances is
independent of mutation rate but is sensitive to the length scale δ of coalescence at
very short distances. Nearby lineages at x ≪ x either coalesce quickly and
are identical, or jump very far away from each other and never coalesce.
Points show continuous-space simulation results in one dimension, and
red and magenta lines show the asymptotic predictions of (6) and (41),
respectively. The black curve shows a numerical solution of ψ(x)
calculated from (33) with μ=10−4. ρ=100 in all plots, and data with ρ=10
and ρ=1 (not shown) yield indistinguishable plots.
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more heavy-tailed relatedness than diffusive dispersal, with re-
latedness having the same power-law tail in distance as the dis-
persal kernel. This is true even for steep kernels with finite
variance. In this case, even though a diffusive approximation
can fit the pattern of isolation by distance between nearby indi-
viduals, it will greatly underestimate the degree of relatedness
between distant individuals.

In addition to the power-law tail of relatedness at long dis-
tances, we also find that heavy-tailed dispersal with α< d (where
d is the number of spatial dimensions) produces a different, shal-
lower power-law decay of relatedness at short distances. This is in
contrast to the pattern predicted under diffusivemodels, in which
relatedness depends only weakly on distance until falling off ex-
ponentially at longer distances ((2) and (3)). The patterns predicted
by heavy-tailed dispersal seems more consistent with examples
from natural populations (e.g. Aguillon et al. 2017) in which there
is clear isolation by distance even at short distances, but still sub-
stantial relatedness at long distances.

Barton et al. (2013b) and more recently Forien (2022) and Forien
andWiederhold (2022) have considered a similarmodel for popula-
tions evolving according to a spatial Λ-Fleming-Viot process in
which large extinction–recolonization events causing dispersal
and coalescence of many lineages have a power-law distribution
of spatial extents. Our model differs from Barton et al. (2013b) and
Forien (2022) in that dispersal of different lineages and coalescence
are all independent, and in that coalescence is purely short-range.
Very recently, Forien andWiederhold (2022) have constructed anal-
ternative spatial Λ-Fleming-Viot model that can accommodate a
closer match to our analysis, as well as other patterns of dispersal
and coalescence. Specifically, they have two different distributions
for the locations of offspring andparents, allowing dispersal and co-
alescence tobepartiallydecoupled.Theydemonstrate thatour scal-
ing results can apply both to their model and to the original (Forien
2022). An even closer match between models could be achieved by
having two classes of events: dispersal would be primarily driven
by very mild but long-range events affecting lineages with a small
probability decaying as a power law from the epicenter of the event,
while coalescence would primarily be driven by intense but loca-
lized events. Note that while this would give an exact continuous-
space backwards-time model to which our analysis would apply,
the spatial Λ-Fleming-Viot only has an approximate forwards-time
counterpart (Barton et al. 2013b), while the discrete-space simula-
tions we use correspond exactly to a forwards-time model.

Possible application in dispersal inference
Our results connect power-law dispersal kernels and the resulting
patterns of pairwise relatedness. Standard methods for inferring
dispersal from pairwise measures of relatedness or autocorrela-
tions in allele frequency typically assume either thin-tailed, diffu-
sive motion (Rousset 1997, 2000; Robledo-Arnuncio and Rousset
2010; Ringbauer et al. 2017; Bradburd et al. 2018) (perhaps with re-
cent long-range admixture Bradburd et al. 2016) or a small number
of discrete demes (Slatkin 1991; Whitlock and McCauley 1999;
Rousset and Leblois 2011; Petkova et al. 2016; Al-Asadi et al. 2019;
Lundgren andRalph 2019). Methods using cline theory to infer dis-
persal from the width of hybrid zones make similar assumptions
about the motion of lineages being diffusive (Barton 1983; Barton
and Hewitt 1985; Sotka and Palumbi 2006; Rieux et al. 2013;
Gagnaire et al. 2015; Cayuela et al. 2018). Thesemethods can be ad-
justed to accommodate occasional infinite-range dispersal by
treating it analogously to mutation (Rousset 2007), but this does
not give rise to the kinds of new functional forms for isolation

by distance found here. Methods for non-stable demographies
based on historical biogeography or coalescent theory tend to
also assume a small number of discrete demes (Ree and Smith
2008; Sanmartín et al. 2008; Hey 2010).

Other genetic methods such as parentage analysis are better
equipped to infer heavy-tailed dispersal on continuous ranges,
but these techniques require exhaustive sampling of the popula-
tion to ensure that the parents of each individual can be located
(Adams et al. 1992; Jones and Ardren 2003; Bacles and Ennos
2008; Wang and Santure 2009). More recent methods for pollen
dispersal have been developed that allow for the inference of
heavy-tailed dispersal without the need for exhaustive sampling,
but knowledge of maternal genotypes for all sampled individuals
is still required (Austerlitz et al. 2004; Robledo-Arnuncio et al.
2006). For plant species where these data are available, our results
could serve as the basis for complementary inference methods.
While the pollen dispersal methods are focused on inferring the
dispersal kernel over a single generation, isolation by distance re-
flects the history of dispersal over many generations, so a com-
parison of the results could reveal changes in dispersal over
time. For species where no such pedigree data are available,
continuous-space inference methods based on the model devel-
oped here could allow for the presence (or the absence) of heavy-
tailed dispersal to be inferred for the first time.

One key open question is to what extent it is possible to detect
the genetic traces of rare heavy-tailed dispersal in natural popula-
tions, and if so howwell the formof heavy-tailed dispersal (e.g. the
tail exponent α) can be determined. Austerlitz et al. (2004) were
able to detect heavy-tailed pollen dispersal in Sorbus torminalis
tree populations using parentage analysis and the seed-specific
TwoGener method. There was substantial uncertainty in their es-
timates of α, but this was based on data from 2000, and sequen-
cing data have grown enormously in the two decades since. The
combination of vastly more data and a complementary inference
method based on our results could allow for reasonable precision
in estimating α. However, estimating power laws is difficult in gen-
eral (Clauset et al. 2009), and it seems unlikely that one would be
able to confidently distinguish between, say, α=1.1 and α=1.2;
on the other hand, this distinction is not likely to be very import-
ant in real populationswith finite range sizes, while the difference
between α≈1.2 and thin-tailed dispersal is likely to be quite im-
portant and should be apparent in data.

Scaling “mutation” by varying the length of
genomic blocks
Along with predicting characteristic scaling of identity by descent
with distance, our results predict characteristic scaling with the
mutation rate μ, and also a scaling of the typical length scale of
identity x with μ. While mutation rate cannot be varied directly
as distance can, μ here should be understood as referring to the
mutation rate in a block of non-recombining genome, and so a
wide range of effective μ values can be scanned by considering
identity by descent in blocks of varying size (Weissman and
Hallatschek 2017). This will be valid as long as recombination is
rare relative to mutation, or even if recombination is frequent as
long as “μ” is understood to mean the sum of the block mutation
and recombination rates, and recombination events can be reli-
ably detected using marker loci. In this case, ψwould be the prob-
ability that a region of fixed length is identical by descent, as
opposed to being interrupted by either mutation or a recombin-
ation “junction” (Fisher 1954). (And if one has a population se-
quenced only at marker loci, ψ could be defined as just the
probability that the region is free of junctions, neglecting
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mutation, in which case “μ”would be just the block recombination
rate.) This suggests that it should be possible to measure identity
by descent statistics corresponding to μ values ranging over five
orders of magnitude in a single sample (Harris and Nielsen
2013). A natural extension of the present theory would be to con-
sider the expected distribution of lengths of segments of identity by
descent as a function of distance (Ralph and Coop 2013; Ringbauer
et al. 2017) under different dispersal kernels.

This ability to increase the effective μ is crucial to dispersal in-
ference in general. In natural populations, per-nucleotide pair-
wise genetic diversity is low (π≪1, Buffalo 2021), i.e. ψ(x)≈ 1
even for large x when we using the single-site mutation rate for
μ. This means that finite range effects play a strong role on these
time scales, limitations in dispersal have a correspondingly small
effect, and there is little hope of detecting the scaling behavior we
find here. But increasing the effective μ by looking at longer gen-
omic regions restricts our time horizon for coalescence. This
makes ψ insensitive to the right tail or even the bulk of the coales-
cence time distribution, and instead focuses on unusually rapid
coalescence events, where isolation by distance is muchmore ap-
parent (Ralph and Coop 2013; Aguillon et al. 2017; Ringbauer et al.
2017). Ideally, one can find an optimal range of genomic lengths,
short enough that identity by descent is fairly frequent among
nearby individuals but long enough that it is much less frequent
among distant individuals.

Seen in this light, our result that the identity ψ for nearby pairs
of individuals is nearly independent of μ for α< d ((6) and (42))
means that we predict that any blocks of identity by descent be-
tween nearby individuals should be very long. They should not ex-
tend over the whole genome, however, because our definition of
“nearby,” x ≪ x, contains an implicit μ dependence through
x ≡ (Dα/μ)

1/α. Solving the condition x ≪ x for μ, this suggests that
the size of blocks of identity by descent between a pair of indivi-
duals a distance x apart should be broadly distributed up to a gen-
omic length proportional to Dα/xα, beyond which mutation and
recombination become effective in breaking them up.

As noted above, (5) implies that the rate at which identity de-
creases with distance at short distances, ψ′(x) for x ≪ x, is inde-
pendent of μ for all α and d as long as ψ(0)≪1. (This can also be
seen in the full results by differentiating (2), the middle line of
(3), (6), and (10).) This suggests that if the probability of identity
as a function of distancewere plotted for blocks of genomic length
l, the curves for different values of l (i.e. different values of “μ”)
should be approximately parallel at short distances. Because
this pattern does not depend on the details of the dispersal kernel,
deviations from it would indicate that other processes, e.g. demo-
graphic fluctuations or local adaptation, were important in deter-
mining isolation by distance.

Effect of finite range size
Our analysis has neglected effects due to finite range size,
although our two-dimensional simulations take place in habitats
of finite length. To better understand the effect of finite range size,
we can consider a pair of individuals sampled from random loca-
tions within a habitat of length L; the mean coalescence time be-
tween themwould then be the “effective population size,” Ne. The
mean pairwise genetic diversity π is directly proportional to this
time, π=2Neμ. The pair will typically be sampled a distance of
about L fromeach other, and so it will typically take a time of order
Lα/Dα for their lineages to overlap in space. At this point, the an-
cestry is effectively well mixed, and coalescence takes time pro-
portional to the total population size N= Ldρ, where d=1 or 2 is

the dimension of the habitat. For Lα/Dα ≪ Ldρ, the mixing time
has little effect, while for Lα/Dα ≳ Ldρ, the mean coalescence
time is substantially higher than onewould expect in the panmic-
tic limit, Ne>N. For thin-tailed dispersal, α=2, structure substan-
tially increases the mean coalescence time in a one-dimensional
habitat of length L ≳ Dρ (Maruyama 1971), while in two dimen-
sions the effect of space depends only on the local neighborhood
size Dρ (Maruyama 1972), up to logarithmic corrections (Cox and
Durrett 2002). The effect of population structure thus either in-
creases with the spatial extent of the population (at fixed density)
or is nearly insensitive to it.With heavy-tailed dispersal, however,
we see a new qualitative pattern. For α< d, i.e. for broad power
laws, the effect of structure on mean time to coalescence
counterintuitively becomes weaker as the range size L grows, be-
cause Lα/Dα grows more slowly than Ldρ.

This new pattern suggests that the structure of genetic vari-
ation in space might be quite different for α< d than it is for the
classic α=2 models. In the classic diffusive models, if spatial
structure is weak enough that the effective population size is
not much more than the census size, Ne≈N, then even nearby
lineages must typically wander over the whole range before co-
alescing. Conversely, if nearby individuals are frequently identical
by descent (by which we mean coalescing in time ≪Ne), then
structuremust be strong enough tomakeNe≫N, an unusual situ-
ation in natural populations. For α< d, on the other hand, move-
ment can be slow relative to coalescence on short scales,
allowing for substantial local identity by descent, while still being
rapid on long scales and keeping Ne≈N.

Outlook
Our use of stable distributions for the dispersal kernel has been
partly motivated by the fact that any isotropic single-generation
dispersal kernel will converge to a stable one if it is repeated
over many independent generations. But as we have noted, this
is only true asymptotically, and in any real population there will
be correlations across generations, spatial inhomogeneities, shifts
in dispersal over time, limits due to finite range size, and many
other effects that cannot be captured by a stable distribution. It
is therefore better to see it as a simple reference model, possibly
one step closer to reality than the purely diffusive one, that can
serve as a background againstwhich tomeasure all these other ef-
fects.Whether it is worth adding the extra parameter α to the sim-
ple diffusive model with α=2 will depend in part on whether the
population of interest has a range large enough compared with
typical single-generation dispersal distances for the tail of the dis-
persal distribution to matter.

What other processes could produce similar patterns to heavy-
tailed dispersal? One obvious one is if individuals are performing
somethingmore like a “Lévy walk” than a Lévy flight, in which dis-
persal in any one generation is thin-tailed but can be correlated
across many generations (Zaburdaev et al. 2015). Such an effect
can be produced at the level of alleles by hitchhiking on beneficial
substitutions (Allman and Weissman 2018). But this should be
readily distinguishable from neutral heavy-tailed dispersal by
considering the distribution of relatedness across multiple indivi-
duals and loci—hitchhiking will produce heavy-tailed relatedness
at the same few loci across all individuals, whereas neutral effects
will be more evenly distributed. It is an open question whether
other neutral processes, in particular demographic fluctuations,
might produce similar patterns.Webelieve that the increase in se-
quence data from natural populations means that the time has
come to develop theories which seriously connect spatial patterns
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of genetic diversity and the full range of plausible underlying dy-
namics, beyond the standard simplest cases.

Methods
Simulation methods in two dimensions
All simulation code and displayed data are available at https://
github.com/weissmanlab/Long_Range_Dispersal. We simulate
our model in two stages. First, for each value of present-day sep-
aration x, dispersal constantDα, and tail parameter α, we simulate
dispersal of the lineages, ignoring coalescence, and mutation.
Then, for each value of ρ and μ, we calculate the expected homo-
zygosity and coalescence time distribution for each simulated tra-
jectory. We then average over many independent trajectories.
This two-part method has two advantages. First, the same disper-
sal simulations can be used for calculating the homozygosity and
coalescence time distribution for multiple choices of ρ and μ.
Second, the latter part of themethod, in which conditional expec-
tations are calculated for previously generated paths, is entirely
deterministic, reducing computational cost and noise. Note that
this backward-time model corresponds exactly to a forward-time
model of Wright–Fisher reproduction within demes and dispersal
among demes according to the simulated kernel; this exact cor-
respondence is only possible because we are using a discrete-
space model.

We simulate lineage motion using a discrete time random
walk,

Xt+1 = Xt + ΔXt, (11)

whereXt represents the position of a lineage at a given time (ignor-
ing coalescence., i.e. assuming ρ→∞), and the displacement, ΔXt,
is a vector of integer-valued randomvariables drawn from the dis-
persal distribution at each integer time t. We use the GNU
Scientific Library’s efficient pseudorandom generators for both
stable distributions and the F-distribution (Galassi et al. 2009).
Because these are available only for the one-dimensional distribu-
tions, we draw radial distances using the one-dimensional distri-
butions and then select a direction in which to move uniformly at
random.

To draw increments ΔXt for α<2, we first draw a positive ran-
dom number from the continuous one-dimensional Lévy alpha-
stable distribution:

K1(y) =
1
2π

+ ∞

−∞
dk exp −iky − Dα|k|α

( )
. (12)

We then convert this to a two-dimensional vector y by drawing a
direction uniformly at random. Finally, to keep lineages on a dis-
crete lattice of demes, we round y to the nearest pair of integers,

i.e. the closest point in Z2, to obtain ΔXt. In the GNU Scientific
Library, the scale of the Lévy alpha-stable distribution is parame-
terized not by Dα but rather by c≡ (Dα)1/α, the characteristic spread
c of each lineage after one generation (t=1). We use c=10 for all
two-dimensional simulations with α<2. Notice that (12) does
not match the two-dimensional Lévy alpha-stable distribution
((47) below) that we use for our analytical approximations, so
the match between the analytical results and the simulations
shows that the results are robust to the details of the dispersal
kernel.

To simulate steeper tails with α>2, we follow the same proced-
ure as in the previous paragraph, but instead of drawing the initial

continuous dispersal distance y from (12), we draw it from a de-
generate F-distribution:

K1(y) =
1
ω

1 +
y
αω

( )−α−1
, (13)

where ω scales the characteristic single-generation dispersal dis-
tance. (Technically, we obtain y by drawing from the GNU
Scientific Library F-distribution with degrees of freedom ν1=2
and ν2=2α and scaling the result by ω.) Because this kernel has fi-
nite variance, the central limit theorem implies that at long times
the bulk of the displacement distribution approaches that of a dif-
fusive kernel, with dispersal constant D given by one-quarter the
single-generation variance in position:

D =
α2

2 α − 2( ) α − 1( )ω
2.

We use D= 200 for all two-dimensional simulations with α> 2.
For each pair of simulated dispersal trajectories {xt}, we then

compute the path-specific distribution of coalescence times
p({xt′≤t}), i.e. the probability of coalescing at and not before time
t, and the path-specific mean homozygosity ψ({xt′≤∞}), i.e. the
probability that lineages following these exact trajectories have
not mutated before coalescence:

p({xt′≤t}) = 1 − e−
1
ρδx1x2

( )
exp −

1
ρ

∑t−1

t′=1

δx1x2

[ ]

for t > 1, (14)

ψ({xt′≤∞}) =
∑∞

t=1

p({xt′≤t}) e−2μt. (15)

We start (14) and (15) at t=1 because we assume that the indivi-
duals are sampled immediately after dispersal, so no coalescence
takes place at t=0. δx1x2 in (14) is the Kronecker delta function:

δx1x2 ≡
1 if x1 = x2
0 otherwise.

{

For every time-step, the lineages spend in the same deme, there is
a probability of coalescence 1− exp (−1/ρ). Note that this means
that we interpret ρ as a local effective population size, rather
than as the actual census size, e.g. ρ=1 is interpreted as coales-
cence at unit rate, rather than certain coalescence in one gener-
ation. We do not expect that changing ρ to be the census size
would significantly change our results. Note also that because
we calculate only pairwise quantities, any value of ρ can be
matched exactly in a forward-time model with deme census
size N> ρ by increasing the variance in offspring number
appropriately.

We then average (14) and (15) across all simulated trajectories
with present-day separation x to obtain p(t | x) and ψ(x). All error
bars in plots show 68% confidence intervals, as determined by
the percentile bootstrap with 1,000 bootstrap samples (Davison
and Hinkley 1997). At large distances, the distribution of the prob-
ability of identity across sample trajectories is highly skewed,with
most trajectories having very low probabilities of identity, but a
few having the lineages rapidly jump close to each other and hav-
ing a high probability of identity. This means that we cannot
quantify the uncertainty in our estimates using, for example,
the standard error of the mean, but it also means that we must
simulate many independent trajectories to get good enough
coverage for the bootstrap to be accurate (Chernick 2011).
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For the simulations ofmeanhomozygosityψ shown in Fig. 4, we
simulate 107 independent runs of 1,000 generations each for each
combination of present-day separation x and tail parameter α. We
also apply periodic boundary conditions, with the range size ex-
tending from−5,000 to 5,000 along both dimensions of the discrete
lattice. Our choice of range size is significantly larger than the
maximum value used for present-day separation between pairs
(x=237). For the largest mutation rate considered, μ= 1, coales-
cence before mutation is extremely rare, and so we increase the
number of independent runs to 108 (with the number of genera-
tions reduced to ten).

Simulation methods in one dimension
Our one-dimensional simulation methods are very similar to
those used in two dimensions, with only three significant differ-
ences that together make them much simpler. Firstly, instead of
having to track two random walks, one for each lineage, we can
just track the difference between their positions. Secondly, we
take space to be continuous rather than discrete, i.e. we do not
round the difference in positions and do not require the difference
to be exactly zero for coalescence. Note that, as mentioned in the
Model section above, this means that these simulations are only
meant as approximations to some underlying model that has an
exact forward-time counterpart. Finally, we take the range size
to be effectively infinite, limited only by the maximum size of
double-precision numbers.

Explicitly, we again simulate lineage motion using a discrete
time random walk,

Xt+1 = Xt + ΔXt, (16)

where Xt now represents the signed distance between two
lineages at a given time, and the step size,ΔXt, is a real-valued ran-
dom variable drawn from the dispersal distribution at each inte-
ger time t. For α< 2, we use Lévy alpha-stable distributions for
dispersal, with each lineage’s single-step displacement having
probability density K1(y) given by:

K1(y) =
1
2π

+ ∞

−∞
dk exp −iky − Dα|k|α

( )
. (17)

The quantity we actually simulate, ΔXt, the increment in the
signed distance between the two individuals, is the sum of the
two lineages’ independent jumps. Thus its probability density K
is the convolution of K1 with itself:

K(y) =
1
2π

+ ∞

−∞
dk exp −iky − 2Dα|k|α

( )
. (18)

Because the distributions are stable, K differs from K1 only by an
extra factor of two in the dispersal constant.

To simulate steeper tails with α>2, we again use a degenerate
F-distribution, drawing ΔXt from the two-sided distribution:

K(y) =
1
2ω

1 +
y
αω

( )−α−1
. (19)

At long times, the bulk of the displacement distribution ap-
proaches that of a diffusive kernel, with dispersal constant D
equal to half the mean squared single-generation displacement
of one lineage:

D =
c2

2
=

α2

2 α − 2( ) α − 1( )ω
2.

For each simulated trajectory {xt}, we then compute the path-
specific distribution of coalescence times p({xt′≤t}) and path-
specific mean homozygosity ψ({xt′≤∞}):

p({xt′≤t}) = 1 − e−(1/ρ)R(xt)
( )

exp −
1
ρ

∑t−1

t′=1

R(xt′ )

[ ]

, for t > 1 (20)

ψ({xt′≤∞}) =
∑∞

t=1

p({xt′≤t}) e−2μt. (21)

R(x) in (20) is a rectangular function representing a uniform rate of
coalescence of all lineages within a distance δ:

R(x) ≡ 1/(2δ) if |x| < δ
0 otherwise.

{

For every time-step, the lineages spend in this region, there is a
probability of coalescence 1− exp [−1/(2ρδ)]. We discuss issues
with the microscopic interpretation of this model after we intro-
duce our analytical model below.

Unconditioned values p(t|x) and ψ(x) are again obtained by aver-
aging across all simulated trajectories. Error bars in plots show
68% confidence intervals, as determined by the percentile boot-
strap with 104 bootstrap samples.

Weset δ= 0.5 for all simulations inonedimension. For the simu-
lations of mean homozygosity ψ shown in Fig. 5, we simulate
250,000 independent runs of 1,000 generations each for each com-
bination of present-day separation x and tail parameter α. We set
the dispersal constant Dα indirectly by setting the characteristic
spread c of two lineages after one generation (t=1), c= (2Dα)1/α, to
be fixed at c=250 for α<2, and c=179.68 for α=2.05. For the largest
present-day separations, x=e10 and e11, coalescence within 1,000
generations is very rare, so we increase the number of runs to 1.25
×106. For Figs. 6 and 8,we chooseDα such that c=0.2, and simulate
10,000 independent runs of length 1,000 generations each.

For the simulations of the cumulative distribution of coales-
cence times P(t) shown in Fig. 7, we set present-day separation
x=0 and generate 10,000 independent trajectories of 1.5 million
generations each for each combination of c and tail parameter α.
We set c= 3.59 for α>2, c= 5 for 1< α< 2, and c=1 for α≤1.

Analytical model in one dimension
Generic dispersal
Wewant to find a tractable analytical approximation to themodel
described above. For recurrent motion, the lineages will some-
times be in exactly the same place, andwe canmodel coalescence
with a δ distribution, i.e. as taking place at rate (1/ρ)δ(Xt). For tran-
sient motion, however, they will never coincide (Palyulin et al.
2014), and we must allow coalescence to take place at a finite dis-
tance. Let the coalescence kernel be some probability densityN (x)
symmetric about x=0 and with width ∼δ, with coalescence taking
place at rate (1/ρ)N (Xt). The δ-distribution is just the limit ofN as δ
goes to 0, so we can treat the two cases together. Forien (2022)
avoids this issue by using a spatialΛ-Fleming-Viotmodel in which
dispersal and coalescence are produced by the same heavy-tailed
process, but this leads to dispersal distances for an individual’s
offspring being strongly correlated rather than independent
(Barton et al. 2013b). Very recently, Forien and Wiederhold (2022)
have examined a spatial Λ-Fleming-Viot model that addresses
this by having separate dispersal and coalescence kernels, allow-
ing amathematically rigorous treatment in continuous space.We
instead interpret our continuous-space model as an approxima-
tion to an underlying discrete-space model as in our two-
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dimensional simulations. As mentioned in the Simulation Model
section, this means that the continuous-space model must break
down at some point, which we discuss below in “Breakdown of
models at small scales.”

The probability density of coalescence times for lineages with
initial displacement x is then:

p(t | x) = E
1
ρ
N (Xt) exp −1

ρ

+ t

0
dτN (Xτ)

( )
|X0 = x

[ ]
, (22)

and the probability of identity is its Laplace transform:

ψ(x) =
+ ∞

0
dt p(t | x) e−2μt. (23)

There are several different ways to derive an explicit expression
for ψ from (23), including balancing mutation, coalescence, and
dispersal over an infinitesimal time step (Malécot 1975; Barton
et al. 2002) or, for Lévy flights, using a fractional diffusion equation
(Janakiraman 2017) (see Appendix A). Here we start with a gener-
alization of Barton andWilson (1995)’s expression for p(t | x) that is
valid for any two-lineage dispersal kernel K, which is defined as
the convolution of K1 with itself. Assuming that N (x) = δ(x):

p(t | x) = 1
ρ
K(x | t) −

+ t

0
dt′p(t − t′ | 0) 1

ρ
K(x | t′). (24)

Fig. 8. For heavy-tailed dispersal with α<d, continuous-time and discrete-time
models differ at short distances. Scaled probability of identity ψ as a function
of distance x for α= 0.5, δ=0.5, and ρ= 100. Points show discrete-time
one-dimensional continuous-space simulation results. For the
continuous-time model, the black curve shows the result of numerically
integrating (33), while the dashed red and magenta lines show the
asymptotic approximations (42) and (41), respectively. The
continuous-time model predicts that ψ should only plateau within the
coalescence distance δ, but for distance between δ and the typical
single-generation dispersal distance c, the change in ψ is driven by the
probability of coalescing at 0< t≪1. In the discrete-time model, these
lineages have to wait until t=1 to coalesce, leading to a lower, broader
plateau, given by (72) (dashed green line). This discrepancy only exists for
δ< x≪ c, i.e. if c< δ then the discrete-time and continuous-time models
agree (blue points).

Fig. 7. The distribution of coalescence times has a power-law tail. Points show one-dimensional simulation results. Dashed magenta curves show the
asymptotic predictions (in order of increasing α) (67), (71), (68), and (70). Time is scaled to dimensionless units. See Simulation Methods section for Dα

values.We show statistics based on the cumulative distribution P(t) rather than the density p(t) because simulation estimates for the latter are very noisy.
Top left: for α<1 in one dimension, the distribution of coalescence times is proportional to the probability of lineages being nearby, K(0 | t)∝ t1−1/α. Plot shows P(∞)− P(t)
rather than 1− P(t) because lineages can disperse infinitely far away from each other and avoid coalescing entirely, i.e. P(∞)<1. We use the simulated
value of P(t= 106) to approximate P(∞). This empirical value deviates from the continuous-time prediction (41) by ≈ 30% due to differences in the amount
of coalescence in the first few generations (see “Breakdown of models at small scales”). Top right: the distribution of coalescence times has a logarithmic tail for
α=1 in one dimension. In thismarginal case, lineages do eventually coalesce even in infinite ranges, but can take extremely long to do so. Bottom left: for 1<
α< 2, the distribution of coalescence times in one dimension decays more quickly than the probability of lineages being nearby. The coalescence time
probability density has a power-law tail, p(t|x)∝ t1/α−2. This deviation from the scaling of the dispersal kernel at long times is due to the high probability of
previous coalescence events. Bottom right: for α>2, the coalescence time distributionmay approach the diffusive limit. The scaling of 1− P appears to be
close to that of the diffusive prediction, (70), but there is at least a difference in prefactor, perhaps again due to different probabilities of coalescence at
very recent times. Present-day separation x was set to zero for all simulation results shown.
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To interpret (24), notice that the first term is the probability of co-
alescing at time t neglecting the possibility that the lineages have
coalescedmore recently. The second term corrects for thesemore
recent coalescences: for every trajectory where the lineages coin-
cide at t′< t, we subtract off the probability that the lineageswould
coalesce at t′ and then again exactly at t. Notice that we do not
need to correct again for lineages that coincide three times, at
t″< t′< t: the factor of p guarantees that each trajectory is
weighted appropriately.

We can immediately find a simple expression for ψ for recur-
rent dispersal by taking the Laplace transform of (24):

ψ(x) =
1 − ψ(0)

ρ
K̃(x, 2μ), (25)

where tilde denotes the Laplace transform. Plugging in x= 0, we
can solve (25) for ψ(0) and express ψ(x) purely in terms of the dis-
persal kernel:

ψ(x) =
K̃(x, 2μ)

ρ + K̃(0, 2μ)
. (26)

Note that, for diffusive dispersal, (25) reduces to the classical
Wright–Malécot formula for isolation by distance (Barton et al.
2002).

For transient dispersal, we must consider a coalescence kernel
of finite width, and (24) generalizes to:

p(t | x) =
+

dy
1
ρ
N (y)K(x − y | t)

−
+ t

0
dt′

+
dyp(t − t′ | y) 1

ρ
N (y)K(x − y | t′).

(27)

(27) is exactly the same as (24) except that now wemust integrate
over possible locations y of coalescence at both t and t′. Taking the
Laplace transform of (27) now gives:

ψ(x) =
1
ρ

+
dy(1 − ψ(y))N (y)̃K(x − y, 2μ). (28)

To simplify (28), we can make the approximation that 1−ψ(y) is
nearly constant over all separations |y| ≲ δ where N (y) is non-
negligible, allowing us to pull it out of the integral:

ψ(x) ≈
1 − ψ(0)

ρ

+
dyN (y)̃K(x − y, 2μ). (29)

This approximation will necessarily be accurate when identity is
low, ψ(0)≪ 1 because 1−ψ will be close to 1 for all y. However,
for 1−ψ(0)≪ 1, the approximation can become inaccurate; we dis-

cuss this below. At long distances x≫ δ, K̃will also be roughly con-
stant in the integral, and we simply recover (25), although now
only as an approximation:

ψ(x) ≈
1 − ψ(0)

ρ
K̃(x, 2μ) for x ≫ δ. (30)

We see that the details of the short-range behavior only affect the
long-range probability of identity by descent through the overall
factor 1−ψ(0) (Barton et al. 2002). Mathematically, the main chal-

lenge is to find simple expressions for ψ(0) and especially K̃.
Because (30) is invalid for x=0, we cannot solve it directly for

ψ(0) as we could with (25), and so we must also work with (29).
We can simplify the convolution in (29) by taking the spatial
Fourier transform F { · }:

ψ̂(k) ≈ 1 − ψ(0)
ρ

N̂ (k)̂̃K(k, 2μ). (31)

where ψ̂ and ̂̃Kare the Fourier transforms of ψ and ̂̃K.

Lévy flight dispersal

For Lévy flights, the characteristic function is K̂(k | t) = exp ( −
2Dαt|k|α) and the Fourier–Laplace transform

iŝ̃K(k, 2μ) = 1/(2μ + 2Dα|k|α). (31) for ψ̂ is correspondingly simple:

ψ̂(k)
1 − ψ(0)

≈
N̂ (k)

2ρ(μ + Dα|k|α)
. (32)

To get anexplicit expression forψ, weneed to specify a form for the
coalescence kernel N . We will use a normal distribution with
standard deviation δ, which has the simple Fourier transform

N̂ (k) = exp (−δ2k2/2). Then we can invert the Fourier transform in
(32):

ψ(x)
1 − ψ(0)

≈
1
2πρ

+ ∞

0
dk

cos (kx) e−δ
2k2/2

μ + Dαkα
, (33)

which can be re-expressed in dimensionless units as

ψ(x)
1 − ψ(0)

≈ 1
2πρμx

+ ∞

0
dκ

cos (κx/x) e−(δ/x)
2κ2/2

1 + κα
. (34)

Examining (33), we see that the power-law tail in the integrand
can be cut off either when oscillations in the cosine factor become
rapid at k∼1/x or by the normal factor at k∼1/δ. As long as we are
sampling pairs that are outside the immediate range of coales-
cence,x≫ δ, the formercutoffwill happenat lower k, and therefore
the normal factor can be neglected (by setting δ= 0), leaving (in di-
mensionless form):

ψ(x)
1 − ψ(0)

≈
1

2πρμx

+ ∞

0
dκ

cos (κx/x)
1 + κα

for x ≫ δ. (35)

(35) can equivalently be derived directly from (30) by substituting

in the Lévy flight dispersal kernel and writing K̃ as the inverse

Fourier transform of̂̃K.
We can solve (34) for ψ(x) by first evaluating it at x=0 to

find ψ(0); we do this below. But it is interesting that the ratio
Ψ(x) ≡ψ(x)/(1−ψ(0)) has the simplest relationship to the under-
lying parameters, as shown by Rousset (1997) for short-range
dispersal. Ψ is closely related to Rousset (2000)’s statistic ar: ar
= Ψ(0)−Ψ(r). It is also related to the expected pairwise FST be-
tween demes separated by x:

E FST(x)
[ ]

=
Ψ(0) − Ψ(x)

2 +Ψ(0) −Ψ(x)
.

Probability of identity for distant pairs x ≫ x, α< 2

For large x≫ (Dα t)1/α, the dispersal kernel has a simple asymptotic
form for α<2 (Nolan 2018, Theorem 1.12):

K(x|t) ≈ 2Γ(α + 1)
π

sin
πα
2

( ) Dαt
xα+1

for x ≫ (Dαt)
1/α

.

Plugging this into (30) and evaluating the Laplace transform gives
the probability of identity for distant pairs, which was originally
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found by Nagylaki (1976):

ψ(x)
1 − ψ(0)

≈ Γ(α + 1)
2π

sin
πα
2

( ) Dα

ρμ2xα+1
for x ≫ x. (36)

Probability of identity for distant pairs x ≫ x, α> 2
There is no stable distribution with α>2, but in discrete-time
models such as the oneweuse in our simulations,we can consider
single-generation jump kernels K(y | 1) with power-law tails with
α > 2. These will approach a diffusion with diffusion constant
D =Var(K )/4. At long distances y ≫

!!!
Dt

√
, however, the tail will

still be dominated by the probability of taking a single large jump
(Vezzani et al. 2019), so for x ≫ x, we will have
K(x | t ≲ 1/μ) ≈ K(x|1)t. Plugging this into (30) and evaluating the
Laplace transform gives:

ψ(x)
1 − ψ(0)

≈ K(x | 1)
4ρμ2

for x ≫ x. (37)

For the F-distribution kernel (19) used in the simulations, this is

ψ(x)
1 − ψ(0)

≈ Dα

8ρμ2(x/α)α+1
for x ≫ x, (38)

where we have defined Dα≡ωα/generation, i.e. Dα has the same va-
lue asωα, but its dimensions are now lengthα/time. (38) is confirmed
by simulations (Fig. 5, α=2.05). We can then use the classic diffu-
sive expression for ψ(0) to get an explicit expression for probability
of identity at large distances:

ψ(x) ≈ 1 +
1

8ρxμ

( )−1 Dα

4ρμ2(x/α)α+1
for x ≫ x.

Moderately heavy-tailed dispersal, 1< α< 2
For α>1, (25) and (35) are exact for all x (when δ=0). Evaluating
(35) for x=0 gives ψ(0):

ψ(0) =
1

2α sin (π/α)ρxμ + 1
. (39)

Plugging (39) into (36) lets us solve for ψ(x) at large distances x ≫ x:

ψ(x) ≈
sin (πα/2)Γ(α + 1)/(2π)
1 + 1/(2α sin (π/α)ρxμ)

Dα

ρμ2xα+1
for x ≫ x.

For 0 < x ≪ x, Janakiraman (2017) (Eq. (C1)) found that to leading
order ψ falls off as:

ψ(x) ≈ ψ(0) 1 −
α sin (π/α)

Γ(α) cos (π(1 − α/2))
x
x

( )α−1[ ]
for x ≪ x. (40)

When α=2, the above expression is equivalent to the classic
diffusive result for x ≪ x, which can be found by integrating (28)
with δ= 0:

ψ(x) =
e−x/x

4ρxμ + 1
.

Very heavy-tailed dispersal, α< 1
For α<1, the finite width δ of the coalescence kernel is important
for determining ψ(0). Setting x=0 in (34) gives:

ψ(0)
1 − ψ(0)

≈
1

2πρμx

+ ∞

0
dκ

e−(δ/x)
2κ2/2

1 + κα

≈ Γ(1/2 − α/2)
2(α+3)/2πρDαδ1−α

,

where in evaluating the integral we have assumed that δ ≪ x, i.e.
that themutation rate is not extremely large.We see that on small
scales, the probability of identity by descent is independent of the
mutation rate (Fig. 6), i.e. there is a large probability that indivi-
duals from the same deme are differentiated even for very low
mutation rates:

ψ(0) ≈ 1 1 +
2(α+3)/2π

Γ(1/2 − α/2)
ρDαδ1−α

[ ]/
. (41)

Very heavy-tailed dispersal of nearby lineages causes them to
quickly wander away from each other, and for infinite range size
many pairs will never coalesce. While (41) is only accurate for
ψ(0)≪ 1, the independence from mutation rate should persist
even for large ψ(0).

Plugging (41) for ψ(0) into (36) gives an explicit expression for
the probability of identity of distant pairs:

ψ(x) ≈
Γ(α + 1) sin (πα/2)/(2π)

1 + Γ(1/2 − α/2)/(2(α+3)/2πρDαδ1−α)
Dα

ρμ2xα+1
for x ≫ x.

For pairs that are nearby but still well outside of coalescence
range, δ ≪ x ≪ x, the integral in (35) is dominated by κ≫1 and is
approximately:

ψ(x)
1 − ψ(0)

≈
Γ(1 − α) sin (πα/2)

2π
xα−1

ρDα
for δ ≪ x ≪ x.

Again, the probability of identity is independent of the mutation
rate to lowest order. Substituting in (41) gives an explicit expres-
sion for ψ:

ψ(x) ≈ Γ(1 − α) sin (πα/2)/(2π)
1 + Γ(1/2 − α/2)/(2(α+3)/2πρDαδ1−α)

xα−1

ρDα
for δ ≪ x ≪ x. (42)

While ψ(x) is independent of μ only for α<1, note that the rate at
which ψ(x) changes for small x, ∂xψ(x)|x≪x, is independent of μ for
all α when ρ is large.

Marginal case α= 1
The analysis of the marginal case α=1 is essentially the same as
for α<1 above, but we have separated it out because the form of
the final expressions is very different. As with α<1, the finite co-
alescence width δ is important for x=0:

ψ(0)
1 − ψ(0)

≈
1

2πρD1

+ ∞

0
dκ

e−(δ/x)
2κ2/2

1 + κ

=
2 ln (x/δ) + ln 2 − γ

4πρD1
,
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where γ≈0.58 is Euler’s constant. Again assuming δ ≪ x = D1/μ,
the constant terms in the numerator can be neglected and ψ is ap-
proximately:

ψ(0) ≈ 1 +
2πρD1

ln (x/δ)

( )−1
. (43)

Recall that the approximation we used to derive (43), (29) is only
justified when ψ(0)≪ 1.

For pairs that are nearby but still well outside of coalescence
range, δ ≪ x ≪ x, (35) gives:

ψ(x)
1 − ψ(0)

≈ ln (x/x) − γ
2πρD1

for δ ≪ x ≪ x. (44)

Plugging the expression (43) for ψ(0) into (44) and (36) gives explicit
expressions for ψ(x) at both short and long distances:

ψ(x) ≈
ln (x/x)/ 2πρD1 + ln (x/δ)

[ ]
for δ ≪ x ≪ x

(x/x)2/ 2πρD1 + ln (x/δ)
[ ]

for x ≫ x.

{

(45)

Analytical model in two dimensions
Generic dispersal
For generic dispersal, the solution for ψ in two dimensions can
again be found from (28), nowwith the integral over two spatial di-
mensions. The Fourier transform ψ̂ has the same form as the one-
dimensional equation (31):

ψ̂(k) ≈
1 − ψ(0)

ρ
N̂ (k)̂̃K(k, 2μ), (46)

where again we make the approximation that 1−ψ(x) is approxi-
mately constant over the x values where N (x) is non-negligible.
This is again accurate for ψ(0)≪1, but may need to be adjusted
for 1−ψ(0)≪1. While (46) looks exactly like the one-dimensional
expression (31), its interpretation is different: k is now the magni-
tude (wavenumber) of the two-dimensional spatial frequency vec-
tor (wave vector), k= |k|. Note that because dispersal is isotropic,
(46) has no angular dependence. The key point is that if we want
to transform (46) back to real space, we now must use the two-
dimensional inverse Fourier transform. For pairs that are far out-
side coalescence range, x≫ δ, the simple relation (30) between ψ(x)

and K̃(x, 2μ) still holds.

Lévy flight dispersal
For a two-dimensional Lévy flight, the dispersal kernel of a single
lineage takes the form of an isotropic stable distribution
(Zolotarev 1981):

K1(y | t) =
1
2π

+ ∞

0
dkkJ0(ky) exp −Dαtkα

( )
, (47)

where K(y | t) is the probability density of being at a particular
point a distance y away from the initial position at time t, and J0
is the zeroth Bessel function of the first kind. As in one dimension,
the density for the displacement between the two Lévy flights is
the same, but with twice the dispersal constant:

K(y | t) = 1
2π

+ ∞

0
dkkJ0(ky) exp −2Dαtkα

( )
. (48)

(48) is the two-dimensional inverse Fourier transform (equivalent-
ly, the inverse zeroth-order Hankel transform) of the characteristic

function K̂(k | t) = exp ( − 2Dαtkα). The Fourier–Laplace transform is

again ̂̃K(k, 2μ) = 1/(2μ + 2Dα|k|α). At large distances, y≫ (Dα t)1/α, K
has a power-law tail (Nolan 2013):

K(y | t) ≈ α2Γ(α/2)2

21−απ2
sin

πα
2

( ) Dαt
yα+2

for y ≫ (Dαt)
1/α

. (49)

In two dimensions, wemust allow coalescence to take place at a fi-
nite distance for all α (Mörters and Peres 2010). For the coalescence
kernel, we use an isotropic normal distribution N (x) with mean
zero and standard deviation δ, with coalescence taking place at
rate (1/ρ)N (Xt). Inverting the Fourier transform in (46) then gives:

ψ(x)
1 − ψ(0)

≈
1

4πρ

+ ∞

0
dk

kJ0(kx) e−δ
2k2/2

μ +Dαkα
(50)

=
1

4πρμx2

+ ∞

0
dκ

κJ0(κx/x) e−(δ/x)
2κ2/2

1 + κα
, (51)

The analysis of (51) parallels that of the one-dimensional case, but
all α<2 can be treated together for all distances x, not just x ≫ x,
and so we can conduct one unified analysismoving from short dis-
tances to long ones.

Probability of identity for co-located pairs, x= 0
For pairs sampled from the same location, x=0, the Bessel func-
tion in (51) is simply equal to one and can be dropped:

ψ(0)
1 − ψ(0)

≈ 1
4πρμx2

+ ∞

0
dκ

κe−(δ/x)
2κ2/2

1 + κα

≈
Γ(1 − α/2)

22+α/2πρDαδ2−α
,

(52)

where in the last line we have assumed that δ ≪ x. Intuitively, (52)
can be understood as roughly the ratio between the time to co-
alesce, i.e. the neighborhood size ∼ρδ2 and the time ∼ δα/Dα that
the lineages will spend in the same neighborhood before jumping
apart. Note that mutation does not enter: in two dimensions, all
α <2 act like α<1 does in one dimension, where locally mutation
is irrelevant. Again, (52) is only accurate for ψ(0)≪ 1.

Solving (52) for ψ gives:

ψ(0) ≈ 1 +
22+α/2π

Γ(1 − α/2)
ρDαδ2−α

( )−1

. (53)

For α=2, integrating (51) with x=0 recovers the classic diffusive
result in two dimensions, whichwe expect to hold for pairs in con-
tact when α≥2 (Barton et al. 2002):

ψ(0) ≈ ln (x/δ)
ln (x/δ) + 4πρD2

. (54)

Probability of identity for separated but nearby pairs,
δ ≪ x ≪ x
For pairs that are outside coalescence range, x≫ δ, we can find ψ
from (30):

ψ(x)
1 − ψ(0)

≈ 1
4πρμx2

+ ∞

0
dκ

κJ0(κx/x)
1 + κα

for δ ≪ x ≪ x. (55)

This looks different from the one-dimensional equation (33)
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because nowwehad to apply the two-dimensional inverse Fourier

transform to ̂̃K to obtain K̃. For nearby pairs x ≪ x, the integral in
(55) is dominated by κ≫1 and for α< 2we can approximate the de-
nominator in the integrand as 1 + κα ≈ κα, giving:

ψ(x)
1 − ψ(0)

≈
Γ(1 − α/2)

Γ(α/2)21+απρDα
xα−2 for δ ≪ x ≪ x. (56)

The convergence of (55)–(56) is however quite slow in x/xwhen α is
close to 0 or 2. For example, for x/x = 0.01, the two expressions dif-
fer by ≈ 30 − 40% for α=0.25 and α=1.75, and only approach to
within 10% of each other at extreme values of x/x (≈10−5 and
≈10−4 for α=0.25 and α=1.75, respectively).

Plugging (53) for ψ(0) into (56) lets us solve for ψ:

ψ(x) ≈ 1 +
Γ(1 − α/2)

22+α/2πρDαδ2−α

( )−1

×
Γ(1 − α/2)
Γ(α/2)21+απ

xα−2

ρDα
for δ ≪ x ≪ x.

(57)

We see that in two dimensions, relatedness at short distances is in-
dependent of μ to leading order for all α<2. However, the slow con-
vergence mentioned above means that for most biologically
reasonable parameter values, this should be interpreted asmeaning
that thedependenceonmutationrate isweak rather thannegligible.

For α=1 and δ ≪ x ≪ x, we recover Eq. (A6) of Chave and Leigh
(2002) for Cauchy dispersal. Note that they consider distances
large compared with the typical single-generation dispersal dis-
tance, c≡ (2 Dα)1/α, but small compared with x, and thus our result
for δ ≪ x ≪ x is consistent with their findings.

For α=2 and δ ≪ x ≪ x, we can recover the known result for dif-
fusive motion by approximating (51) as

ψ(x)
1 − ψ(0)

≈
1

4πρμx2

+ ∞

0
dκ

J0(κx/x)κ
1 + κ2

for δ ≪ x ≪ x. (58)

Integrating (58) confirms that we find logarithmic scaling of ψ(x) at
short distances (Barton et al. 2002):

ψ(x)
1 − ψ(0)

≈
1

4πρD2
ln (x/x), (59)

which we expect to hold at δ ≪ x ≪ x for all α≥2.

Probability of identity by descent for distant pairs, x ≫ x
The probability of identity by descent for distant pairs x ≫ x ≫ δ
can be immediately be read off from (30) by substituting in the
tail of the two-dimensional dispersal kernel (49) for α<2:

ψ(x)
1 − ψ(0)

≈
α2Γ(α/2)2

23−απ2
sin

πα
2

( ) Dα

ρμ2
x−α−2 for x ≫ x. (60)

Plugging in (53) for ψ(0) lets us solve for ψ:

ψ(x) ≈ α2Γ(α/2)/[23−απΓ(1 − α/2)]
1 + Γ(1 − α/2)/[22+α/2πρDαδ2−α]

Dαx−α−2

ρμ2
for x ≫ x.

When α=2, we instead recover classic expression for two-
dimensional diffusivemotion at large distances (Barton et al. 2002):

ψ(x)
1 − ψ(0)

≈ 1
4ρD2

exp ( − x/x)
!!!!!!!
2πx/x

√ for x ≫ x. (61)

For our simulations, rather than using a true two-dimensional
stable distribution, we use radial draws from a one-dimensional
stable distribution and then pick a direction at random. The result-
ing dispersal kernel is shown in (12). At large distances, x ≫ x, we
can apply (37) to find that the tail expression for IBD (when α<2)
is simply (πx)−1 times (36):

ψ(x)
1 − ψ(0)

≈
Γ(α + 1)
2π2

sin
πα
2

( ) Dα

ρμ2xα+2
for x ≫ x. (62)

For the finite variance 2D kernel (13) used when α>2, we can again
apply (37) to find the tail expression for IBD:

ψ(x)
1 − ψ(0)

≈
Dα

4παρμ2(x/α)α+2
for x ≫ x, (63)

where Dα is defined as ωα for the single lineage kernel (13).
While the above expressions are accurate in continuous time,

we multiply by an extra factor to adjust for discrete time in the
tail expressions of Fig. 4 where μ = 1. This factor f is the ratio be-
tween the discrete time sum of t e−2t from t=1 to t=∞ and the
continuous-time integral of t e−2t from t=0 to t=∞: f≈0.7.

Coalescence time distribution
In this section, we will find asymptotic expressions for the coales-
cence time distribution. As stated in the Results, intuitively we
can think of the probability of identity ψ as measuring the prob-
ability of the pair of lineages coalescing ≲ 1/(2μ) generations ago.
We can make this statement more rigorous using the Hardy–
Littlewood Tauberian theorem connecting the long (short) time
probability of coalescence to the small (large) mutation rate limit
of ψ. It states that a function f (t) has the limiting behavior f (t)∼ (1/
Γ(β))tβ−1 L(t) as t→∞ (t→0), where L is a slowly varying function
and β>0, if and only if its Laplace transform f̃ (2μ) has the limiting
behavior f̃ (2μ) ∼ (2μ)−βL(1/(2μ)) as μ→ 0 (μ→∞) (Feller 1971, XIII.5,
Theorem 4). Here we follow Feller in using “∼” to denote that the
expressions approach each other asymptotically, i.e. that their ra-
tio approaches 1.

Recent times
First we will consider the limit of recent times, t→ 0 / μ→∞. For
pairs sampled within coalescence range, x ≲ δ, by definition the
coalescence time density approaches p(t | x)∝1/(ρδd), up to numer-
ical factors that depend on the details of the coalescence kernel.
Here d is the dimensionality of the range, d=1 or 2. For pairs
sampled well outside coalescence range, x≫ δ, we can assume
that x ≫ x as well, because x = (Dα/μ)

1/α # 0 as μ→∞. We can
also assume that 1−ψ(0)→1 is independent of μ to leading order.
(For α< d our expressions for ψ(0) (43) and (53) are also independ-
ent of μ and non-zero, but these are only valid when x ≫ δ, i.e.
when μ is not arbitrarily large.) We can therefore apply the
Tauberian theorem to (36) and (60) to obtain:

p(t | x) ≈ 2dα
Γ(1 + α/d)

π

( )d

sin
πα
2

( ) Dαt
ρxα+d

for t ≪ xα/Dα

≈
1
ρ
K(x | t).

(64)

Our heuristic derivation in the Results section essentially pro-
ceeded in the opposite direction, starting from p(t ≪ xα/Dα | x) ≈
(1/ρ)K(x | t) and then deriving ψ(x) from that. (64) is thus essentially
just a restatement of our expressions for the tail of ψ, and its accur-
acy can be seen from the same simulation results shown in Fig. 5.
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Long times
While there is a single unified expression for p in the t→0 limit,
corresponding to the single expression for ψ in the x→∞ limit, for
the opposite limit, t→∞/μ→0, we must treat different values of α
separately, just as we did for ψ at small x. We verify our results
with simulations, shown in Fig. 7. Note that these expressions will
only hold at long times on an infinite range. For any range of finite
size, the right tail of the coalescence time distributionwill decay ex-
ponentially, as in the case of a panmictic population (Wilkins 2004).

For α< d, we can simply take the inverse Laplace and Fourier
transforms of (31) to find p, because 1−ψ(0) is independent of μ
to leading order. Because we are concerned with times long com-
pared with the time for the lineages to traverse the coalescence
zone, t ≫ δα/Dα, the normal factor in (31) can be neglected and
p(t | x) is simply given by the inverse Laplace transform of (30):

p(t | x) ≈ 1 − ψ(0)
ρ

K(x | t) for t ≫ δα

Dα
(65)

≈ 1 − ψ(0)
α2d−1πρ

Γ(d/α)

(2Dαt)
d/α for t ≫ xα

Dα
. (66)

Integrating (66) yields the cumulative distribution for t ≫ xα/Dα:

P t | x( ) ≈ P(∞ | x) − Γ(d/α)(1 − ψ(0))(2Dα)
−d/α

(d − α)2d−1πρtd/α−1
for t ≫ xα

Dα
, (67)

where P(∞ | x)= lim μ→0ψ(x) is given by (41), (42), (53), or (57), de-
pending on x and d.

For d≤α≤2, the leading behavior of the cumulative distribution is
trivial: it approaches one at large times, limμ→0ψ(x)= limt→∞ P(t | x)=1.
So to find interesting asymptotic behavior, we must instead consider
the complementary cumulative distribution, P(t | x) ≡ 1 − P(t | x), also
known as the survival function. Its Laplace transform is:

P̃(2μ | x) = 1
2μ

− P̃(2μ | x)

=
1
2μ

1 − ψ(x)
[ ]

.

We can now apply the Tauberian theorem to P and P̃. Becausewe are
taking the μ→0 limit, we have x # ∞, and we need only consider
ψ(x ≪ x).

For d=1 and 1< α≤2, inspecting (39) and (40), we see that they
have the limit:

1
2μ

1 − ψ(x)
[ ]

# α sin (π/α)ρx as μ # 0.

Because x = (Dα/μ)
1/α, P has the limit:

P(t | x) ≈ α sin
π
α

( ) ρ(2Dα)
1/α

t1−1/α
for t ≫ xα/Dα. (68)

Differentiating (68) yields the density p(t | x):

p(t | x) ≈ (α − 1) sin
π
α

( ) ρ(2Dα)
1/α

t2−1/α
for t ≫ xα/Dα, (69)

in agreement with Janakiraman (2017)’s Eq. (19).
For α=2, (68) and (69) simplify to the classic diffusive results:

P(t | x) ≈ 2ρ
!!!!!!
2D/t

√
for t ≫ x2/D,

p(t | x) ≈ ρ
!!!!!!!
2D/t3

√
for t ≫ x2/D.

(70)

For α>2, we expect the coalescence rate p(t | x)/P(t | x) to behave
similarly at long times, as the dispersal approaches a diffusion.
But the distribution P may be different, due to differences in the
probability of early coalescence (Fig. 7, bottom right).

For the marginal cases α= d=1 and α= d= 2, we can find the
limit of 1−ψ(x) from the expressions for ψ in (43), (45), (54), and
(59):

1 − ψ(x) ≈
2dπρDd

ln (x/δ)+2dπρDd
for x ≪ δ

ln (x/δ)+2dπρDd
ln (x/δ)+2dπρDd

for x ≫ δ.






These two limits are similar enough that it makes sense to com-
bine them into one approximation that works for both large and
small x:

1 − ψ(x) ≈ ln (1 + x/δ) + 2dπρDd

ln (x/δ) + 2dπρDd
.

After dividing by 2μ and substituting in x = (Dd/μ)
1/d, we can then

apply the Tauberian theorem to find the complementary cumula-
tive distribution of coalescence times:

P(t) ∼
ln (1 + x/δ) + 2dπρDd

ln (2Ddt/δd)/d + 2dπρDd
for t ≫

xd

Dd
. (71)

Note that the Tauberian theorem does not guarantee the correct-
ness of sub-leading behavior for t→∞; in this case, thatmeans the
term 2 dπρDd in the denominator. However, we have confirmed
that is indeed accurate via simulation (Fig. 7, α=1, top right).
Interestingly, the simulations show that (71) is accurate even for
P(t)≪1. We can also differentiate (71) to find the density p:

p t | x( ) ≈ ln (1 + x/δ) + 2dπρDd

t ln (2Ddt/δ) + 2dπρDd
[ ]2 for t ≫ xd/Dd.

Note that in two dimensions, α= d= 2 represents the diffusive lim-
it, and we expect these expressions for the marginal case to hold
for all α≥ 2.

Breakdown of models at small scales
Great care must be taken in defining coalescent models in con-
tinuous space in order to guarantee that they have a consistent
forward-time biological interpretation (Felsenstein 1975; Barton
et al. 2010). We have not done this, and therefore the microscopic
behavior of our continuous approximations does not correspond
to any biological population. However, the behavior at large scales
(time long compared with one generation, distance long com-
pared with the coalescence scale δ and the typical single-
generation dispersal distance c≡ (2Dα)1/α) should be accurate
(Barton et al. 2002).We have shown via simulation that our results
accurately describe a stepping-stone model of discrete demes of
size ∼ρδd separated by distance ∼δ.

The key place in which the microscopic details matter even
for large distances and long times is the factor 1−ψ(0) which ap-
pears in many of our expressions. As discussed above, for α< d
even here themicroscopic details are not necessarily important,
but for α≥ d they are. Practically speaking, this quantity would
typically have to simply be measured in a population or else
treated as a fitting parameter when matching the large-scale
predictions to data.

At a microscopic level, we expect that our continuous-time
analytic model should deviate from discrete-time models such
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as the one we use in our simulations. As shown in Fig. 8, this be-
comes apparent for α<1 in one dimension (or more generally,
α< d). The two differ at scales smaller than the typical single-
generation dispersal distance, x< c= (2 Dα)1/α, when this scale is
large compared with the coalescence scale, c≫ δ. In continuous
time, nearby pairs with x≪ c would be able to coalesce at times
smaller than a single generation, t≪1. But in discrete time no
pairs can coalesce until t=1, by which time the dispersal kernel
K(x | 1) is roughly flat out to x ≲ c, and probability of identity thus
becomes approximately constant for x ≲ c. (For α≥ d, the
continuous-time model already predicts that ψ should be chan-
ging slowly at x ≪ x, and therefore we do not expect a disagree-
ment with the discrete-time model.) Recall that our
discrete-time model assumes no coalescence at t=0 even for
lineages starting at x< δ; if wewere to change this, ψwould discon-
tinuously jump up to a second, higher plateau for x< δ.

We can estimate the discrete-time value of ψ(x≪ c) from a
heuristic argument, at least when ψ≪1. In the absence of coales-
cence, the probability of the lineages being within coalescence
range of each other in generation t≥1 is ≈(2δ)K(x | t)≈ (2δ)K(0 | t).
For ψ≪ 1, including the possibility of coalescencewill only slightly
decrease this probability. Given that the lineages are in coales-
cence range, they coalesce with probability 1/(2δρ). So in any one
generation the probability of coalescence is ≈K(0 | t)/ρ and we
can find ψ by summing over all generations:

ψ(x ≪ c) ≈
∑∞

t=1

K(0|t)
ρ

=
Γ(1/α)ζ (1/α)

α
1
ρc

,

(72)

where ζ is the Riemann zeta function. Fig. 8 shows that (72) accur-
ately describes the simulations.
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Appendix A. Alternative derivations of the
probability of identity by descent
Starting from a recursion equation
(31) can also be derived starting froma recursion equation forψ re-
quiring that it remain constant over an infinitesimal timestep dt
(Malécot 1975; Barton et al. 2002):

ψ(x) =
dt
ρ
(1 − ψ(x))N (x) + e−2μdt

+
dyψ(x − y)K(y |dt). (A1)

(A1) is saying that at equilibrium the local increase in identity due
to coalescence (first term)must be balanced by the loss of identity
due to mutation and the spreading of identity due to dispersal
(both included in the second term).

Taking the spatial Fourier transform F { · } of (A1) simplifies the
second term at the expense of complicating the first:

ψ̂(k) =
dt
ρ
F {(1 − ψ(x))N (x)}(k) + e−2μdtψ̂(k)̂K(k |dt).

Solving for ψ̂ gives:

ψ̂(k) =
F {(1 − ψ(x))N (x)}(k)

ρ
dt

1 − e−2μdtK̂(k |dt)

=
F {(1 − ψ(x))N (x)}(k)

ρ

∑∞

j=0

dt e−2μjdtK̂(k |dt)j,
(A2)

where in the second line we can take the Taylor series expansion

because e−2μ dt<1 and K̂(k |dt) ≤ 1 because it is a characteristic
function. Assuming dispersal is Markovian, we can simplify (A2)
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by noting that K̂(k |dt)j = K̂(k | jdt), i.e. the distribution after time
j dt is just the convolution of j dispersal steps of time dt each.
Using this, we can convert the sum into an integral to find (31):

ψ̂(k) =
F {(1 − ψ(x))N (x)}(k)

ρ
̂̃K(k, 2μ)

≈
1 − ψ(0)

ρ
N̂ (k)̂̃K(k, 2μ),

where in the second line we have used the same approximation
that 1−ψ(x)≈1−ψ(0) for |x| ≲ δ that we used in the main text.

Fractional diffusion equation
For Lévy flight dispersal, (32) can also be derived using a fractional
diffusion equation. When Xt follows a diffusion, (23) can be writ-
ten as a Feynman–Kac (diffusion) equation for ψ (Barton et al.
2002; Allman and Weissman 2018). For α<2, this generalizes to
a fractional differential equation:

0 = 2Dα
∂2

∂x2

( )α/2

ψ(x) − 2μψ(x) +
1
ρ
N (x) 1 − ψ(x)

( )
, (A3)

where (∂2/∂x2)α/2 is aRiesz fractionalderivative, definedby its Fourier

transform F {(∂2/∂x2)α/2f }(k) = −|k|αF {f }(k) (Metzler et al. 2009; Carmi
et al. 2010; Janakiraman 2017). It is therefore simpler to consider the
Fourier transform of (A3), which is equivalent to (32):

0 = −(2Dα|k|α + 2μ)̂ψ(k) +
1
ρ
F N (x)(1 − ψ(x))
{ }

(k)

≈ −(2Dα|k|α + 2μ)̂ψ(k) +
1 − ψ(0)

ρ
N̂ (k).

(A4)

For all α<2, the solution for ψ in two dimensions can be alsowritten
as a fractional differential equation (Chen et al. 2012):

0 = 2Dα
∂2

∂x2
+
1
x
∂
∂x

( )α/2

ψ(x) − 2μψ(x) +
1
ρ
N (x) 1 − ψ(x)

( )
, (A5)

where (∂2/∂x2+ (1/x)(∂/∂x))α/2 is a fractional Laplacian, defined by

its Fourier transform F {(∂2/∂x2 + (1/x)(∂/∂x))α/2}(k) = −|k|αF {f }(k)
(Kwaśnicki 2017; Lischke et al. 2020). Note that the rotational sym-
metry of the problem allows us to write the Laplacian in terms of
just the radial coordinate x, and ignore the angular coordinate.
The two-dimensional Fourier transform of (A5) has exactly the
same form as (A4), although again the interpretation is different. k
is now the radial coordinate in two-dimensional k-space, i.e. the
magnitude of the two-dimensional wavenumber vector.

Appendix B. Cartoon lineage trajectories in
one dimension
In one spatial dimension, the qualitative classification of possible
lineage dynamics is similar to that in two dimensions (shown in
Fig. 3). But really, the key separation among different forms of
power-law dispersal is whether they are recurrent, i.e. the com-
parison between α and the spatial dimension d. So while in two di-
mensions the split is between dispersal with finite or infinite
variance, in one dimension it is between dispersal with finite or in-
finite mean. This is illustrated in Fig. B1.

Communicating editor: J. Ross-Ibarra

Fig. B1. Long-range jumps affect when andwhere lineages coalesce in one dimension.Qualitative illustrations of lineage dynamics for each of the three α regimes
of one-dimensional Lévy flights. Typical histories are shown for nearby samples (x ≪ x, blue) and distant samples (x ≫ x, red). Left: For diffusivemotion, α
=2, the initial separation x is a relatively good predictor of coalescence time.Center: For dispersal with an infinite variance but finitemean, 1< α<2, large
jumps broaden the spatial and temporal ranges over which lineages coalesce. Lineages at large separations x ≫ x are occasionally able to coalesce at
times shorter than 1/μ. The coalescence time distribution for nearby lineages x ≪ x is onlymodestly affected. Non-Lévy flights with α>1, even those with
finite variance (α≥2), follow a similar pattern. Right: For dispersal with an infinitemean, α<1, large jumps are common. This allows for rapid coalescence
of lineages at both small and large distances, but also lets lineages jump very far away fromeach other and avoid coalescing until amuch later time set by
the total range size.
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