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Abstract: In this study, we develop a comprehensive framework to model the impact of cyberattacks on 
safety, security, and head-to-tail stability of connected and automated vehicular platoons. First, we propose a 
general platoon dynamics model with heterogeneous time delays that may originate from the communication 
channel and/or vehicle onboard sensors. Based on the proposed dynamics model, we develop an augmented 
state extended Kalman filter (ASEKF) to smooth the sensor reading, and use it in conjunction with an anomaly 
detector to detect sensor anomalies. Specifically, we consider two detectors: a parametric detector, the 𝜒2-
detector, and a learning-based detector, the one class support vector machine (OCSVM). We investigate the 
detection power of all combinations of vehicle dynamics models (EKF and ASEKF) and detectors (𝜒2 and 
OCSVM). Furthermore, we introduce a novel concept in string stability, namely, pseudo string stability, to 
measure a platoon’s string stability under cyberattacks and model uncertainties. We demonstrate the 
relationship between the pseudo string stability of a platoon and its detection rate, which enables us to 
identify the critical detection sensitivity/recall that the platoon’s members should meet for the platoon to 
remain pseudo string stable. 

Anomaly detection, connected and automated vehicles, cybersecurity, Kalman filter, 
platoon, stability, time delay, vehicle dynamics model 

1. Introduction

In the past few years, with the continuous advancement in perception technologies and the 
maturity of communications technologies, autonomous driving features and connectivity 
are gradually appearing in more and more vehicles. A connected and automated vehicle 
(CAV), which combines automated and connected vehicle technologies, is envisioned to 
improve the mobility, safety, comfort, and environmental sustainability of the 
transportation sector (Masoud and Jayakrishnan 2017; Wyk, Khojandi, and Masoud 2019; 
Abdolmaleki, Masoud, and Yin 2019; Abdolmaleki et al. 2021). 

Although CAVs offer promising benefits, they are prone to various security and privacy 
risks. In particular, the security risk escalates with increasing levels of connectivity and 
automation as CAVs expose more attack surfaces to malicious hackers. CAVs leverage 
cameras and Light Detection and Ranging (LiDAR) sensors to construct a high resolution 
3D map of their surrounding environment to facilitate safe automated driving. Meanwhile, 
the connectivity between the CAVs and smart infrastructures also necessitates various 
types of sensors to communicate state information and situational awareness. Hence, 
anomalous information due to either malicious cyberattacks or faulty vehicle sensors can 
pose safety risks to road users, and possibly cause fatal crashes. For example, recently 
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there have been demonstrated cyberattacks on vehicle sensors in (Cao, Xiao, Cyr, et al. 
2019; Cao, Xiao, Yang, et al. 2019), where the authors use optimization-based approaches 
to fool the LiDAR sensors aboard vehicles. 

Moreover, as vehicles and infrastructures become more interconnected, a malicious attack 
on a single individual node (e.g., vehicle, traffic control device, etc.) can easily propagate 
throughout the system and affect other components. For instance, (Y. Feng et al. 2018) 
conducted falsified data injection attacks to actuated and adaptive signal control systems 
and showed using simulations that such attacks can effectively increase total system delay. 
Hence, cybersecurity solutions, especially for sensor security, have become increasingly 
more necessary in recent years in order to ensure the reliability and safety of the 
transportation system. 

In order to ensure that a CAV can safely and effectively navigate the network, it needs 
access to robust and accurate data streams. As a result, any anomalous sensor data, if 
undetected, can greatly imperil the decision making process of CAVs. Either a malicious 
cyberattack or a sensor fault can result in an anomaly in CAV sensors. Moreover, with the 
presence of measurement noise, it is crucial to detect any anomalous sensor readings in 
real-time and accurately estimate the true state of the CAV meanwhile to ensure the safety 
of the CAV driving. 

Anomalous sensor readings can be caused by a variety of reasons and manifest in different 
ways. In this paper, we adopt the taxonomy of sensor failure/attack provided by (Van Wyk 
et al. 2019; Y. Wang, Masoud, and Khojandi 2020b, 2020a; Watts et al. 2021) includes ‘bias’, 
‘gradual drift’, ‘noise’, ‘short’, and ‘miss’. Specifically, ‘bias’ and ‘gradual drift’ impose a 
constant offset and a gradual drift from the actual sensor readings, respectively. The 
anomaly type ‘noise’ represents a duration of change of variance in the observed readings. 
The anomaly type ‘short’ refers to a abrupt and short-lived change, and ‘miss’ is a short- or 
long-term missed observation in the sensor readings. The ‘miss’ anomaly type can be 
viewed as a special case of either ‘short’ or ‘bias’ anomaly types, depending on its duration, 
with the sensor reading being zero. 

Meanwhile, connectivity enables a CAV to receive information from its surrounding 
vehicles and infrastructures. However, wireless communications and some forms of 
cyberattacks (e.g., the jamming attack) can introduce time delays to the receiver, which can 
significantly impact the state estimation accuracy and traffic stability, causing delay and 
chaos, and even leading to fatal crashes. Therefore, it is imperative to take time delay into 
consideration during state estimation and anomaly detection processes, and investigate the 
potential impacts of cyberattacks on traffic stability. 
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Figure 1: An example of platoon with 3-predecessor following information flow topology and 
with cloud information. 

Figure 1 shows an illustrative scenario for this study of platoon with 3-predecessor 
following information flow topology. Other topologies discussed in (S. Feng et al. 2019) 
such as predecessor following, predecessor leader following, etc. can also be addressed in 
our framework. A malicious attacker can conduct cyberattacks to one or multiple vehicles 
in the platoon by manipulating the sensor reading of the compromised vehicle. We assume 
each vehicle is equipped with an anomaly detector and is capable of recovering the true 
sensor reading from the cloud once it successfully detects an abnormal sensor reading. The 
information from the cloud used for the recovery of anomalous sensor readings can be 
obtained from a road side unit (RSU), when possible, which monitors the vehicle trajectory 
and is assumed to be free from attacks. 

In this study, we develop a holistic detection framework to improve the safety and security 
of CAV systems. Our framework combines sensor signal filtering and observer-based 
anomaly detection methods. Specifically, we consider anomaly detection in a platoon, 
where the ego vehicle can receive information from multiple sources, including other 
platoon members. We develop a general platooning framework for modeling a CAV’s 
longitudinal dynamics under different types of cyberattacks. We use an augmented state 
extended Kalman filter (ASEKF) to estimate vehicle states from observed sensor readings 
of a CAV based on a nonlinear platooning model. In using the platooning model, the ego 
vehicle (i.e., the following CAV) leverages information from its leading vehicles to detect 
sensor anomalies by utilizing a set of offline-trained One Class Support Vector Machine 
(OCSVM) models. Stochastic and heterogeneous communication time delay factors are 
considered in the platoon dynamics to make it more congruent with real-world 
applications. Furthermore, we propose a novel definition of string stability, namely pseudo 
string stability, which represents the degree of string stability under model uncertainty. We 
establish the relationship between cyberattack detection rate and pseudo string stability, 
and identify the critical detection rate for maintaining pseudo string stability.  

The contributions of this study can be summarized as threefold: 
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1. We extend the longitudinal platoon dynamics from Wang et al. (P. Wang, Wu, and He 
2020), by considering a more realistic setting that accounts for heterogeneous time 
delay instead of a homogeneous time delay in previous literature. With 
heterogeneous time delay, we assume that the onboard sensor readings, i.e., the 
state vector, and the communication channel, i.e., the input vector, may experience 
different time delays. More specifically, we propose a modelling framework that 
supports a comprehensive analysis of CAV platoon performance under cyberattacks, 
including the false injection attack, the jamming attack, etc. We further consider the 
stochastic time delay setting and investigate its impact. 

2. We convert the platoon dynamics into a state-space model, and apply an ASEKF 
combined with a detector to smooth the sensor measurement as well as to detect 
sensor anomalies. For the detector side, we consider both the 𝜒2-detector and 
OCSVM. An augmented state formulation is considered in order to compensate for 
the bias in the state-transition model, which can be caused by stochastic time delay 
or model inaccuracy. We show using numerical experiments that OCSVM 
outperforms the 𝜒2-detector both with and without the augmented state 
formulation. As we demonstrate in the experiments, however, OCSVM does not 
necessarily benefit from the augmented state formulation. Experiments also 
demonstrate that we obtain a significant improvement in detection performance by 
combining the ASEKF model with a 𝜒2-detector compared with 𝜒2-detector without 
augmented state formulation. 

3. One of main advantages of forming platoons is their capability to maintain string 
stability. Therefore, we conduct a comprehensive stability analysis of platoons 
under various types of cyberattacks. We define the concept of pseudo string stability 
to capture the degree of string stability in expectation given an imperfect fault 
detector. To the best of our knowledge, this is the first string stability analysis of 
platoons under cyberattacks and model uncertainty. We demonstrate the 
relationship between the detection sensitivity of the detector and the platoon 
pseudo string stability, and identify the critical detection sensitivity for maintaining 
a pseudo stable string. 

The remaining of this paper is organized as follows: In section 2, we review the literature 
on platooning technology and its cybersecurity concerns. In section 3, we provide the 
details of ASEKF and detection models, and conduct stability analysis of the platoon with 
and without attacks. In section 4, we perform extensive numerical experiments. Lastly, we 
conclude the paper in section 5. 

2. Literature Review 

CAVs can provide safety, mobility, and sustainability benefits by enabling the formation of 
platoon. Platoons can increase road capacity, improve traffic stability, and curb fuel 
consumption (Van Arem, Van Driel, and Visser 2006; Ploeg et al. 2011; Liu et al. 2020, 
2022). A CAV platoon is enabled by using V2V and/or V2I technologies. It has been 
demonstrated that the destabilization effect of communication delay is suppressed by the 
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stabilization effect of multi-anticipations (i.e. more cooperative vehicles) of platoon 
(Ngoduy 2015). Platooning can also reduce fuel consumption, which is significantly 
influenced by air resistance, through shorter following gaps. It has been shown that tightly 
coupled platooning can improve fuel economy for both passenger cars (Liu et al. 2020; 
Shida and Nemoto 2009) and trucks (Alam 2011; Sun 2020). One application of platooning 
is cooperative adaptive cruise control (CACC). CACC extends the adaptive cruise control 
(ACC) by utilizing the V2V communication technology, which provides the ACC system with 
more and higher-quality information about its immediate following vehicle. With 
information of this type, the CACC controller will be able to better anticipate challenges 
ahead, and maneuver in a safer way while at the same time making the ride more 
comfortable for vehicle occupants. CACC systems with V2V communications enable a 
reduction in the mean following time gap/headway from about 1.4 seconds in manual 
driving to approximately 0.6 seconds (Nowakowski et al. 2010). 

There has been a considerable amount of literature over the past few years on network-
aware modeling of a platoons and improving the string stability of platoon-based vehicular 
systems. For instance, the effects of communication delays on string stability of a 
longitudinal dynamic model is addressed in (Zhang and Orosz 2016; Sykora et al. 2020). 
Longitudinal platoon control via communication channels with packet loss is studied in 
(Guo and Wen 2015; Molnár et al. 2015). In (Molnár et al. 2017), Molnár et al. further 
investigated the impact of network delay integrated with packet loss on the platoon 
stability. Although there has been a variety of literature considering network-induced 
phenomena in the vehicular platoon, there exits much fewer studies considering the 
detection of cyberattack and their impact on platoon stability. Since the platoon control 
model heavily relies on the external dynamical information, such as location, velocity, and 
headway, of other vehicles, when the vehicle communication network is under attack, 
transmitted messages will be contaminated or lost, rendering the platoon incapable of 
achieving the expected performance. 

Previous literature have considered the impact of cyberattacks on vehicular platoons via 
simulation (Cui et al. 2018; Khattak, Smith, and Fontaine 2021), but they did not rigorously 
investigate the effect of cyberattacks on platoon stability. In (Ngoduy 2015), a car-following 
model was designed to receive the velocity and location of a fixed number of cooperative 
vehicles with constant information transmission time delays. Following this direction, in (P. 
Wang, Wu, and He 2020), Wang et al. extended the framework by incorporating a 
communication range to dynamically adjust the number of cooperative vesicles. In 
(Alipour-Fanid et al. 2017), Alipour-Fanid et al exemplified a CACC model where an UAV 
imposed jamming attacks on the wireless channel. Based on the CACC framework, other 
types of cyberattacks have been studied recently. In (Mousavinejad et al. 2019), 
Mousavinejad et al. considered the attacks on not only the inter-vehicle signals, but also the 
onboard sensor measurement outputs. (Biron, Dey, and Pisu 2018) focused on detecting 
the Denial of Service (DoS) attack using CACC model and estimating the effect on the CAV 
system if attacks occurred. While these studies provided valuable insights on vehicular 
platoon performance under cyberattacks, the traditional CACC model, which mostly only 
utilizes one leading vehicle’s information for each ego vehicle, cannot fully leverage the 
Vehicle-to-Everything (V2X) capability, which is key in addressing future challenges in 
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dynamics control and fuel consumption reduction. Therefore, an advanced platoon vehicle 
dynamics model should be deployed. 

To mitigate the risk of being attacked, both detection and recovery techniques are 
necessary to safeguard platoon operations. Little attention has been paid to cyberattack 
detection. (Mousavinejad et al. 2018) proposed a cyberattack detection algorithm that is 
capable of detecting attacks that violate both measurements and control command data in 
platoon-based vehicular systems. In (Biroon, Biron, and Pisu 2021), Biroon et al. developed 
a partial differential equation model for detection and isolation of cyberattacks. They 
considered a specific type of attack, which is modeled as a ghost vehicle being injected into 
the connected vehicles network to disrupt the performance of the entire system. In (Ju, 
Zhang, and Tan 2020), Ju et al. proposed a distributed Kalman filter with a modified 
generalized likelihood ratio algorithm to detect deception attacks. However, all of 
aforementioned studies only considered a specific platoon dynamic model and a rather 
specific attack model, which may limit the generalizability of their conclusions in practice. 
Moreover, none of them considered the time delay effect. This study aims to bridge this gap 
by proposing a general framework describing platoon dynamic, which considers the 
heterogeneous time delay effect as well as multiple types of sensor anomalies resulted 
from either sensor faults or cyberattacks. 

3. System Modelling and Solution Methodology 

In this section, we first propose a general model to describe the longitudinal dynamics of 
CAVs in a platoon. Then, we discuss how to reconfigure the platooning model to a state-
space model, which includes a continuous state-transition model with heterogeneous time 
delays in an augmented state formulation, and a discrete measurement model. The 
continuous state-transition model represents the intrinsic nature of vehicle motion, and the 
discrete measurement model represents the discrete nature of sensor sampling. Based on 
the derived state-space model, we propose a filtering and anomaly detection method, 
which combines ASEKF with an anomaly detector. For the anomaly detector, we adopt a 
semi-supervised learning model, namely, OCSVM. We also introduce a 𝜒2-detector and later 
compare its performance with OCSVM in section 4. Finally, we conduct string stability 
analysis of the proposed platooning model under cyberattacks, and propose a novel 
definition of string stability under cyberattacks and model uncertainty. 

3.1 Platooning Vehicle Dynamics with Heterogeneous Time Delay 

We consider an extended version of the platoon dynamics model proposed by Wang et al. 
(P. Wang, Wu, and He 2020). Specifically, the CAV platoon dynamics in the absence of 
cyberattacks can be modeled as follows: 
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𝑣̇𝑛(𝑡) = 𝑓(𝑣𝑛(𝑡 − 𝜏1), 𝛼𝑛1𝑤𝑛1(𝑡 − 𝜏1)𝑔𝑛(𝑡 − 𝜏1) + ∑𝛼𝑛𝑗

𝑀

𝑗=2

𝑤𝑛𝑗(𝑡 − 𝜏2)𝑔𝑛−𝑗+1(𝑡 − 𝜏2),

𝛽𝑛1𝑤𝑛1(𝑡 − 𝜏1)𝛥𝑣𝑛(𝑡 − 𝜏1) + ∑𝛽𝑛𝑗

𝑀

𝑗=2

𝑤𝑛𝑗(𝑡 − 𝜏2)𝛥𝑣𝑛−𝑗+1(𝑡 − 𝜏2))

  (1) 

where 𝑣𝑛(𝑡) represents the velocity of 𝑛-th vehicle; 𝑥𝑛(𝑡) is the location of the 𝑛-th vehicle; 
𝑔𝑛(𝑡) represents the clearance gap between the 𝑛-th vehicle and (𝑛 − 1)-th vehicle, which 
is defined as 𝑔𝑛(𝑡) : = 𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝑙𝑛−1; 𝑙𝑛−1 represents the length of (𝑛 − 1)-th 
vehicle; 𝛥𝑣𝑛(𝑡) is the relative velocity between 𝑛-th vehicle and (𝑛 − 1)-th vehicle defined 
as 𝛥𝑣𝑛(𝑡) : = 𝑣𝑛(𝑡) − 𝑣𝑛−1(𝑡); 𝛼𝑛𝑗 and 𝛽𝑛𝑗 represent the weighting coefficients associated 

with the clearance gap and relative velocity between vehicle pair 𝑛 − 𝑗 and 𝑛 − 𝑗 + 1; 𝑀 
represents the number of cooperative leading vehicles; 𝜏1 and 𝜏2 represents the time delay 
of onboard measurement and communication channel, respectively; 𝑤𝑛𝑗(𝑡) is the row-𝑛-

column-(𝑛 − 𝑗 + 1) element of the adjacency matrix 𝐖(𝑡), and 𝑤𝑛𝑗(𝑡) = 1 if vehicle 𝑛 

receives information from vehicle 𝑛 − 𝑗 + 1 at time 𝑡 and 𝑤𝑛𝑗(𝑡) = 0 otherwise. For 

example, considering a platoon of 𝑁 vehicles indexed from 0 to 𝑁 − 1, when assuming each 
vehicle in the platoon only receives information from its leading/preceding vehicles, the 
adjacency matrix 𝐖(𝑡) will be a lower triangular matrix and can be represented as: 

𝐖(𝑡) =

[
 
 
 
 
 
 

0 0 ⋯ 0 ⋯ 0 0
𝑤11(𝑡) 0 ⋯ 0 ⋯ 0 0

𝑤21(𝑡) 𝑤22(𝑡) 0 ⋱ 0 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮

𝑤𝑛1(𝑡) 𝑤𝑛2(𝑡) ⋯ 𝑤𝑛𝑛(𝑡) 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮

𝑤(𝑁−1)1(𝑡) 𝑤(𝑁−1)2(𝑡) ⋯ 𝑤(𝑁−1)𝑗(𝑡) ⋯ 𝑤(𝑁−1)(𝑁−1)(𝑡) 0]
 
 
 
 
 
 

  (2) 

By defining the 𝑛-th vehicle as the ego vehicle, the platooning model in equation (1) takes 
three inputs, namely, velocity of the ego vehicle, weighted average of clearance gaps, and 
weighted average of relative velocities between each pair of its cooperative vehicles. The 
platooning model determines the acceleration of the ego vehicle. Note that we consider two 
heterogeneous time delay factors, one for onboard measurements and one for the 
communication channel. To be specific, a time delay factor 𝜏1 incurs on all onboard 
measurements of the ego vehicle, including its velocity, the clearance gap and the relative 
velocity between the ego vehicle and its immediate leading vehicle. Meanwhile, another 
time delay factor 𝜏2 is imposed to the rest of the inputs of model (1), which are obtained via 
the communication channel. For a complete list of notations, see Table 1. 
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Table1: Table of notation 

𝑓(⋅) ≜ general platooning model 

𝑁 ≜ number of vehicles in platoon 

𝐖(𝑡) ≜ adjacency matrix at time 𝑡 

𝜏1 ≜ time delay of onboard measurements 

𝜏2 ≜ time delay of the communication channel 

𝑙𝑛 ≜ length of vehicle 𝑛 

𝑣𝑛(𝑡) ≜ velocity of vehicle 𝑛 in the platoon at time 𝑡 

𝑥𝑛(𝑡) ≜ position of vehicle 𝑛 in the platoon at time 𝑡 

𝑔𝑛(𝑡) ≜ clearance gap between the preceding vehicle 𝑛 − 1 and vehicle 𝑛 at time 𝑡 

𝛥𝑣𝑛(𝑡) ≜ relative velocity between vehicle 𝑛 and its preceding vehicle 𝑛 − 1 at time 𝑡 

𝛼𝑛𝑗 ≜ weighting coefficients associated with the clearance gap/relative velocity 

 /𝛽𝑛𝑗 from vehicle 𝑛 − 𝑗 to vehicle 𝑛 − 𝑗 + 1 

 

3.2 State-Space Model 

We define a state-space model which includes a continuous state-transition model and a 
discrete measurement model. Define the state vector 𝑠𝑛(𝑡) as the location and the velocity 
of the ego vehicle, i.e., 

𝑠𝑛(𝑡) = [𝑥𝑛(𝑡), 𝑣𝑛(𝑡)]⊺  (3) 

where ⊺ represents transpose. Also define the input vector as 𝑢𝑛(𝑡; 𝜏1, 𝜏2), which associates 
with two time delay factors 𝜏1 and 𝜏2 and includes the clearance gap and the relative 
velocity, 

𝑢𝑛(𝑡; 𝜏1, 𝜏2) =

[
 
 
 
 
 

𝛼𝑛1𝑤𝑛1𝑔𝑛(𝑡 − 𝜏1) + ∑𝛼𝑛𝑗

𝑀

𝑗=2

𝑤𝑛𝑗(𝑡 − 𝜏2)𝑔𝑛−𝑗+1(𝑡 − 𝜏2)

𝛽𝑛1𝑤𝑛1(𝑡 − 𝜏1)𝛥𝑣𝑛(𝑡 − 𝜏1) + ∑𝛽𝑛𝑗

𝑀

𝑗=2

𝑤𝑛𝑗(𝑡 − 𝜏2)𝛥𝑣𝑛−𝑗+1(𝑡 − 𝜏2)
]
 
 
 
 
 

  (4) 

The platoon dynamics (1) can be therefore recast into a state-transition model as follows, 

𝑠̇𝑛(𝑡) = [
𝑥̇𝑛(𝑡)

𝑣̇𝑛(𝑡)
]

= [
𝑒2

⊺𝑠𝑛(𝑡)

𝑓(𝑒2
⊺𝑠𝑛(𝑡 − 𝜏1), 𝑒1

⊺𝑢𝑛(𝑡|𝜏1, 𝜏2), 𝑒2
⊺𝑢𝑛(𝑡|𝜏1, 𝜏2))

]

  (5) 

where 𝑒𝑖 represents a base vector with its 𝑖-th element being 1, and other elements set to 0. 
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When 𝜏1 = 0, the state-transition model (5) satisfies the Markovian property, allowing for 
applying an extended Kalman filter (EKF). However, because of the time required for data 
processing and computations, in practice 𝜏1 can be non-zero. Similarly, communication 
delay may cause 𝜏2 to be non-zero. Under such circumstances, the Kalman filer cannot be 
directly applied to equation (5). Instead, we approximate the state-transition model by 
using an augmented state formulation. Specifically, assuming each vehicle has a bounded 
acceleration range, we can obtain a delay differential equation (DDE), describing the 
delayed state-transition model: 

𝑠̇𝑛(𝑡) = [
𝑥̇𝑛(𝑡)

𝑣̇𝑛(𝑡)
]

= [
𝑒2

⊺𝑠𝑛(𝑡 − 𝜏1) + ∫ 𝑎𝑛

𝑡

𝑡−𝜏1

(𝑟)𝑑𝑟

𝑓(𝑒2
⊺𝑠𝑛(𝑡 − 𝜏1), 𝑒1

⊺𝑢𝑛(𝑡|𝜏1, 𝜏2), 𝑒2
⊺𝑢𝑛(𝑡|𝜏1, 𝜏2))

]

= [
1,0,1
0,1,0

] ×

[
 
 
 
 

𝑒2
⊺𝑠𝑛(𝑡 − 𝜏1)

𝑓(𝑒2
⊺𝑠𝑛(𝑡 − 𝜏1), 𝑒1

⊺𝑢𝑛(𝑡|𝜏1, 𝜏2), 𝑒2
⊺𝑢𝑛(𝑡|𝜏1, 𝜏2))

∫ 𝑎𝑛

𝑡

𝑡−𝜏1

(𝑟)𝑑𝑟
]
 
 
 
 

= [
1,0,1
0,1,0

] × [

𝑒2
⊺ 𝑠̃𝑛(𝑡 − 𝜏1)

𝑓(𝑒2
⊺ 𝑠̃𝑛(𝑡 − 𝜏1), 𝑒1

⊺𝑢𝑛(𝑡|𝜏1, 𝜏2), 𝑒2
⊺𝑢𝑛(𝑡|𝜏1, 𝜏2))

𝑒3
⊺ 𝑠̃𝑛(𝑡 − 𝜏1)

]

  (6) 

where we define the augmented state vector as 

𝑠̃𝑛(𝑡) = [𝑥𝑛(𝑡), 𝑣𝑛(𝑡), 𝛿𝑛(𝑡)]⊺  (7) 

with augmented state 

𝛿𝑛(𝑡 − 𝜏) = {∫ 𝑎𝑛

𝑡

𝑡−𝜏

(𝑟)𝑑𝑟  if 𝜏 > 0

0  otherwise

  (8) 

The augmented state 𝛿𝑛(𝑡) is used to compensate potential bias caused by the time delay. 
Since 𝛿𝑛(𝑡) is unknown, we assume that at each time it is sampled from a random process 

with a small variance. Thus we have 𝛿𝑛̇(𝑡) ≈ 0. 

Then we can obtain the state-transition model with the augmented state vector 𝑠̃𝑛(𝑡) as 
follows: 
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𝑠̇̃𝑛(𝑡) = [

𝑥̇𝑛(𝑡)

𝑣̇𝑛(𝑡)

𝛿𝑛̇(𝑡)

]

≈ [
𝑒2

⊺ 𝑠̃𝑛(𝑡 − 𝜏1)

𝑓(𝑒2
⊺ 𝑠̃𝑛(𝑡 − 𝜏1), 𝑒1

⊺𝑢𝑛(𝑡; 𝜏1, 𝜏2), 𝑒2
⊺𝑢𝑛(𝑡; 𝜏1, 𝜏2))

0

] + 𝜃(𝑡)

= 𝒯(𝑠̃𝑛(𝑡 − 𝜏1), 𝑢𝑛(𝑡; 𝜏1, 𝜏2)) + 𝜃(𝑡)

  (9) 

where 𝒯(⋅) is the state-transition model, and 𝜃(𝑡) is the process noise which accounts for 
the approximation error and model inaccuracy. 

At each time epoch, the ego vehicle obtains its trajectory information from measurements 
by its onboard sensors. As such, using the new augmented state vector 𝑠̃𝑛(𝑡), we can obtain 
the state-space model with an augmented state vector as follows: 

𝑠̇̃𝑛(𝑡) = 𝒯(𝑠̃𝑛(𝑡 − 𝜏1), 𝑢𝑛(𝑡; 𝜏1, 𝜏2)) + 𝜃(𝑡)

𝑧𝑛(𝑡𝑘) = ℳ(𝑠̃𝑛(𝑡𝑘)) + 𝜂(𝑡𝑘),  𝑘 ∈ {0 ∪ ℤ+}
  (10) 

where ℳ(⋅) represents the measurement model, 𝑧𝑛(⋅) is sensor readings of the ego vehicle, 
𝜂(𝑡𝑘) denotes the observation noise, which is assumed to be mutually independent from 
the process noise, 𝑡𝑘+1 = 𝑡𝑘 + 𝛥𝑡,  𝑘 ∈ {0 ∪ ℤ+}, and 𝛥𝑡 is the sampling time interval for 
sensors. 

3.3 Stochastic Time Delay of Input 

We further consider a more general setting where the time delay factors 𝜏1 and 𝜏2 are not 
known constants, i.e., the input vector suffers from stochastic time delay. We assume the 
stochastic time delay obeys a linear model, 

𝜏̃1 = 𝜏1 + 𝜅1

𝜏̃2 = 𝜏2 + 𝜅2
  (11) 

where 𝜅1 and 𝜅2 follow truncated normal distributions with mean 0 and variance 𝜎1
2 and 

𝜎2
2, and within the intervals (𝑎1, 𝑏1) and (𝑎2, 𝑏2), respectively. That is, time delays 𝜏̃1 and 𝜏̃2 

are within the range (𝜏1 + 𝑎1, 𝜏1 + 𝑏1) and (𝜏2 + 𝑎2, 𝜏2 + 𝑏2), respectively. The dynamics of 
the ego vehicle’s most immediate leader can be simplified as a linear model, 

{
𝑥̇𝑛−1(𝑡) = 𝑣𝑛−1(𝑡)

𝑣̇𝑛−1(𝑡) = 𝑎𝑛−1(𝑡)
  (12) 

where 𝑎𝑛−1(𝑡) is the acceleration of the 𝑛 − 1-th vehicle at time 𝑡. Then, we can obtain the 
following proposition: 

Proposition 1.  Having stochastic time delays 𝜏̃1 and 𝜏̃2 is equivalent to adding noises into 
the input vector 𝑢𝑛(𝑡; 𝜏1, 𝜏2) with fixed time delays 𝜏1 and 𝜏2, i.e.,  

𝑢𝑛(𝑡; 𝜏̃1, 𝜏̃2) = 𝑢𝑛(𝑡; 𝜏1, 𝜏2) + 𝐶(𝑡)  (13) 

where 𝐶(𝑡) represents the noises caused by stochastic time delay. 
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Proof. Let us start by considering the communication delay, 𝜏2. For an arbitrary cooperative 
leader of the ego vehicle, i.e. (𝑛 − 𝑗)-th vehicle where 1 ≤ 𝑗 ≤ 𝑀, its clearance gap 
𝑔𝑛−𝑗(𝑡 − 𝜏̃2) is defined as 𝑔𝑛−𝑗(𝑡 − 𝜏̃2) = 𝑥𝑛−𝑗−1(𝑡 − 𝜏̃2) − 𝑥𝑛−𝑗(𝑡 − 𝜏̃2) − 𝑙𝑛−𝑗−1. By 

integrating 𝑥̇𝑛−𝑗−1(𝑡 − 𝜏̃2), we have 

𝑥𝑛−𝑗−1(𝑡 − 𝜏̃2) = ∫ 𝑣𝑛−𝑗−1

𝑡−𝜏̃2

0

(𝜉)𝑑𝜉

= ∫ 𝑣𝑛−𝑗−1

𝑡−𝜏2−𝜅2

0

(𝜉)𝑑𝜉

= ∫ 𝑣𝑛−𝑗−1

𝑡−𝜏2

0

(𝜉)𝑑𝜉 − ∫ 𝑣𝑛−𝑗−1

𝑡−𝜏2

𝑡−𝜏2−𝜅2

(𝜉)𝑑𝜉

= 𝑥𝑛−𝑗−1(𝑡 − 𝜏2) + 𝜖1(𝑡 − 𝜏2; 𝜅2)

  (14) 

where 𝜖1(𝑡 − 𝜏2; 𝜅2) = −∫ 𝑣𝑛−𝑗−1
𝑡−𝜏2

𝑡−𝜏2−𝜅2
(𝜉)𝑑𝜉. Similarly, by integrating 𝑥𝑛−𝑗(𝑡 − 𝜏̃2), we 

can obtain, 

𝑥𝑛−𝑗(𝑡 − 𝜏̃2) = 𝑥𝑛−𝑗(𝑡 − 𝜏2) + 𝜖2(𝑡 − 𝜏2; 𝜅2)  (15) 

where 𝜖2(𝑡 − 𝜏2; 𝜅2) = −∫ 𝑣𝑛−𝑗
𝑡−𝜏2

𝑡−𝜏2−𝜅2
(𝜉)𝑑𝜉. 

Therefore, by combing (14) and (15), we obtain 

𝑔𝑛−𝑗(𝑡 − 𝜏̃2) = 𝑥𝑛−𝑗−1(𝑡 − 𝜏2) − 𝑥𝑛−𝑗(𝑡 − 𝜏2) − 𝑙𝑛−𝑗−1 + 𝜖1(𝑡 − 𝜏2; 𝜅2) − 𝜖2(𝑡 − 𝜏2; 𝜅2)

= 𝑔𝑛−𝑗(𝑡 − 𝜏2) + 𝜖1(𝑡 − 𝜏2; 𝜅2) − 𝜖2(𝑡 − 𝜏2; 𝜅2)
  (16) 

Equation (16) shows that having stochastic time delay on the clearance gap is equivalent to 
adding a noise term 𝜖1(𝑡 − 𝜏2; 𝜅2) − 𝜖2(𝑡 − 𝜏2; 𝜅2) into the clearance gap with a constant 
time delay. Note that we only consider the communication delay 𝜏2. However, similar 
results can be easily obtained for onboard measurement delay 𝜏1. Also note that the noise 
term is not necessarily zero mean with respect to 𝜅2, since it also depends on the vehicle 
velocity: 

𝔼𝜅2
[𝜖1(𝑡 − 𝜏2; 𝜅2) − 𝜖2(𝑡 − 𝜏2; 𝜅2)] = 𝔼𝜅2

[𝜖1(𝑡 − 𝜏2; 𝜅2)] − 𝔼𝜅2
[𝜖2(𝑡 − 𝜏2; 𝜅2)]

= ∫ 𝜙̃
𝑏2

𝑎2

(𝜄; 0, 𝜎2, 𝑎2, 𝑏2)∫ 𝑣𝑛−𝑗−1

−𝜄

0

(𝜉 + 𝑡 − 𝜏2)𝑑𝜉𝑑𝜄

−∫ 𝜙̃
𝑏2

𝑎2

(𝜄; 0, 𝜎2, 𝑎2, 𝑏2)∫ 𝑣𝑛−𝑗

−𝜄

0

(𝜉 + 𝑡 − 𝜏2)𝑑𝜉𝑑𝜄

= ∫ 𝜙̃
𝑏2

𝑎2

(𝜄; 0, 𝜎2, 𝑎2, 𝑏2)∫ 𝛥
−𝜄

0

𝑣𝑛−𝑗(𝜉 + 𝑡 − 𝜏2)𝑑𝜉𝑑𝜄

  (17) 

where 𝜙̃(𝜄; 𝜇, 𝜎, 𝑎, 𝑏) represents the probability density function of truncated normal 
distribution, 
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𝜙̃(𝜄; 𝜇, 𝜎, 𝑎, 𝑏) =
1

𝜎

𝜙 (
𝜄 − 𝜇

𝜎 )

𝛷 (
𝑏 − 𝜇

𝜎
) − 𝛷 (

𝑎 − 𝜇
𝜎

)
  (18) 

where 𝜙(⋅) and 𝛷(⋅) are the probability density function and cumulative density function of 
the standard normal distribution, respectively. 

Similarly, by integrating 𝑣𝑛−𝑗−1(𝑡 − 𝜏̃2) and 𝑣𝑛−𝑗(𝑡 − 𝜏̃2), we obtain 

𝑣𝑛−𝑗−1(𝑡 − 𝜏̃2) = 𝑣𝑛−𝑗−1(𝑡 − 𝜏2) + 𝜖3(𝑡 − 𝜏2; 𝜅2)

𝑣𝑛−𝑗(𝑡 − 𝜏̃2) = 𝑣𝑛−𝑗(𝑡 − 𝜏2) + 𝜖4(𝑡 − 𝜏2; 𝜅2)
  (19) 

where 𝜖3(𝑡 − 𝜏2; 𝜅2) = −∫ 𝑎𝑛−𝑗−1
𝑡−𝜏2

𝑡−𝜏2−𝜅2
(𝜉)𝑑𝜉 and 𝜖3(𝑡 − 𝜏2; 𝜅2) = −∫ 𝑎𝑛−𝑗

𝑡−𝜏2

𝑡−𝜏2−𝜅2
(𝜉)𝑑𝜉. 

Then we have 

𝛥𝑣𝑛−𝑗(𝑡 − 𝜏̃2) = 𝛥𝑣𝑛−𝑗(𝑡 − 𝜏2) + 𝜖3(𝑡 − 𝜏2; 𝜅2) − 𝜖4(𝑡 − 𝜏2; 𝜅2)  (20) 

Therefore according to (16) and (20), having stochastic time delays is equivalent to adding 
noises into the input vector with the fixed time delays. ◻ 

When the time delays of the input vector are stochastic, according to Proposition 1, 
substituting equation (13) into (10) could induce a non-zero mean for the process noise 
𝜃(𝑡), depending on the specific formulation of the platooning model. As mentioned in the 
next section, such a bias in 𝜃(𝑡) could negatively affect the performance of the classic 𝜒2-
detector, whereas using ASEKF and OCSVM can mitigate this issue. 

3.4 Augmented State Extended Kalman Filter with Anomaly Detector 

Extended Kalman filter (EKF) is a well-known algorithm that takes a series of observed 
measurements and estimates the unknown state of a non-linear system in a timely and 
accurate manner (Ribeiro 2004). However, similar to other types of Kalman filter-based 
algorithms, it poses an assumption on both the process noise and the observation noise to 
be zero-mean Gaussian distributed. It has been shown that regardless of the Gaussian 
assumption, if the process covariance and measurement covariance are known, the Kalman 
filter is still the best possible linear estimator in the sense of minimum mean-squared-error 
(Humpherys, Redd, and West 2012). However, its performance can deteriorate significantly 
when there exits a background bias that is not incorporated in the model, as it violates the 
zero-mean assumption. In this study, in order to denoise CAV sensor measurements while 
compensating potential but unknown biases, we apply an augmented state extended 
Kalman filter (ASEKF) to the state-space model in (10) with three objectives: (i) to smooth 
the CAV sensor noise and estimate vehicle state in real time, (ii) to compensate potential 
but unknown bias caused by stochastic time delays or model inaccuracy, and (iii) to detect 
anomalous sensor readings by incorporating surrounding vehicles’ information. 

ASEKF includes two major stages to obtain the state estimation of 𝑠̃𝑛(𝑡𝑘) from the sensor 
input 𝑧𝑛(𝑡𝑘), namely, predict and update. Let 𝑠̂(𝑘|𝑘 − 1) and 𝑃(𝑡𝑘|𝑡𝑘−1) denote the state 
prediction and state covariance prediction at time 𝑡𝑘  given the estimate at time 𝑡𝑘−1, 
respectively. Note that for ease of notation, we use state vector notation 𝑠 instead of the 
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augmented state vector 𝑠̃, and we also omit subscript 𝑛 for simplicity. Hence, given the 
state-space model in equation (10), the ASEKF consists of the following three steps: 

Step 0 - Initialize state mean and covariance: 

𝑠̂𝑘|𝑘−1 = 𝔼[𝑠(𝑡0)]

𝑃𝑘|𝑘−1 = Var[𝑠(𝑡0)].
  (21) 

Step 1 - Predict state and state covariance: 

Solve {
𝑠̇̂(𝑡) = 𝒯(𝑠̂(𝑡 − 𝜏1), 𝑢(𝑡; 𝜏1, 𝜏2)),

𝑃̇(𝑡) = 𝐹(𝑡 − 𝜏1)𝑃(𝑡 − 𝜏1) + 𝑃(𝑡 − 𝜏1)𝐹(𝑡 − 𝜏1)
⊺ + 𝑄(𝑡)

with {
𝑠̂(𝑡𝑘−1) = 𝑠̂𝑘−1|𝑘−1

𝑃(𝑡𝑘−1) = 𝑃𝑘−1|𝑘−1

⇒ {
𝑠̂𝑘|𝑘−1 = 𝑠̂(𝑡𝑘)

𝑃𝑘|𝑘−1 = 𝑃(𝑡𝑘)

  (22) 

where 𝐹(𝑡 − 𝜏1) =
∂𝒯

∂𝑠
|𝑠̂(𝑡−𝜏1),𝑢(𝑡;𝜏1 ,𝜏2) is the first-order approximation of the Jacobian matrix 

of state-transition model 𝒯(⋅). 

Step 2 - Update state and state covariance: 

𝜈𝑘 = 𝑧(𝑡𝑘) − ℳ(𝑠̂𝑘|𝑘−1)

𝑆𝑘 = 𝐻(𝑡𝑘)𝑃𝑘|𝑘−1𝐻(𝑡𝑘)⊺ + 𝑅𝑘

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻(𝑡𝑘)⊺𝑆𝑘
−1

𝑠̂𝑘|𝑘 = 𝑠̂𝑘|𝑘−1 + 𝐾𝑘𝜈𝑘

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻(𝑡𝑘)𝑃𝑘|𝑘−1

  (23) 

where 𝐻(𝑡𝑘) =
∂ℳ

∂𝑠
|𝑠̂𝑘|𝑘−1

, 𝑄(𝑡) is the covariance matrix of the process noise at time 𝑡, 𝑅𝑘 =

𝑅(𝑡𝑘) is the covariance matrix of the measurement noise at time 𝑡𝑘 , and 𝜈𝑘  is innovation, 
which is the difference between the measurement and the prediction at time 𝑡𝑘 . 

One advantage of using ASEKF to estimate sensor data is that it can detect anomalies 
during the filtering procedure. One of the traditional anomaly detectors used in conjunction 
with Kalman filter is the 𝜒2-detector (Brumback and Srinath 1987; Bar-Shalom and Li 
1995). Since ASEKF belongs to the family of Kalman filters, the 𝜒2-detector can be 
seamlessly applied. Specifically, it constructs a gate region by computing the 𝜒2 test 
statistics, and determines whether the new measurement falls into the gate region. The 
gate region is defined by the gate threshold 𝛾, as shown in the following: 

𝑉𝛾(𝑘) = {𝑧: (𝑧 − 𝑧̂𝑘|𝑘−1)
⊺
𝑆𝑘

−1(𝑧 − 𝑧̂𝑘|𝑘−1) ≤ 𝛾}  (24) 

where 𝑧̂𝑘|𝑘−1 is the predicted value of measurement at time 𝑡𝑘 . The 𝜒2 test statistics for the 

anomaly detector is defined as 

𝜒2(𝑡𝑘) = 𝜈𝑘
⊺𝑆𝑘

−1𝜈𝑘  (25) 
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The 𝜒2-detector relies on the Gaussian assumption and zero-mean assumption of the 
ASEKF, as it essentially constructs a “spherical" decision boundary with the centroid of the 
origin point in the space of normalized innovation, which is defined as 

𝜈‾(𝑡𝑘) = 𝑆𝑘

−
1
2 ⋅ 𝜈𝑘  (26) 

The normalized innovation instances falling outside this spherical decision boundary will 
be classified as anomalies. However, as we showed earlier in section 3.3, the process noise 
𝜃(𝑡) may not be zero-mean under stochastic time delay, and the additive noise caused by 
the stochastic time delay does not follow a zero-mean Gaussian distribution. Moreover, the 
approximation step in (9) may also introduce such a bias. Therefore, we also consider a 
learning-based method, namely, one class Support Vector Machine (OCSVM), to actively 
learn the decision boundary in the normalized innovation space. 

Consider 𝐿 training data samples {𝜈‾(𝑡1), . . . , 𝜈‾(𝑡𝐿)} from a training set ℒ, which only 
contains normal data. Define a kernel mapping function 𝒦 as ℒ → ℱ, where ℱ represents 
the feature space. OCSVM minimizes the following quadratic optimization problem: 

min
𝑜∈ℱ,𝛙∈ℝ𝐿,𝜌∈ℝ

 
1

2
∥ 𝑜 ∥2+

1

𝑐𝐿
∑ 𝜓𝑗

𝑗

− 𝜌

subject to  𝑜 ⋅ 𝒦 (𝜈‾(𝑡𝑗)) ≥ 𝜌 − 𝜓𝑗 ,  𝜓𝑗 ≤ 0

  (27) 

where 𝑐 is a constant parameter in the range of (0,1). Decision variables 𝑜 define a 
hyperplane and separate at least 1 − 𝑐 percentage of the data points from the origin in the 
feature space ℱ so as to maximize the distance from this hyperplane to the origin. This 
results in a region in the input space that encompasses at least 1 − 𝑐 percentage of data 
points. Decision variables 𝜓𝑗 are slack variables introduced to allow some data points 

violate the constraint 𝑜 ⋅ 𝒦 (𝜈‾(𝑡𝑗)) ≥ 𝜌. 

Unlike the 𝜒2-detector which uses a decision boundary predefined by the threshold 
parameter 𝛾, OCSVM learns the decision boundary from only non-anomalous training data, 
which can be collected easily without the need to enumerate all possible types of 
anomalies. It can also directly learn the potential bias from the training data, and is more 
robust. Furthermore, unlike the 𝜒2-detector, it does not impose distributional assumptions 
on the data. 

3.5 String Stability Analysis 

String stability reflects how platoons respond to imposed perturbations in longitudinal 
dynamics and stabilize back to the equilibrium state. String stability can be mathematically 
defined in both time-domain and frequency domain. String stability conditions are easy to 
verify, but hard to derive, in time-domain. Therefore, we conduct analysis in the frequency-
domain. Note that in the presence of time delay, deploying power-series and the decay rate 
of perturbations to approximate the vehicle dynamics response and derive string stability 
conditions is not mathematically guaranteed for a non-linear dynamics model at high 
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angular frequency. To ensure the validity of the analysis, we pursue the transfer function 
approach instead. Obtaining inter-vehicle transfer functions under the standard definition 
of string stability is not trivial when their inputs and outputs are heavily correlated, i.e., one 
vehicle receiving information from multiple preceding vehicles as its control input. In this 
study, we adopt an extension of the standard string stability, namely, the head-to-tail string 
stability, originally proposed in (Jin and Orosz 2014) to address this problem: 

Definition 1.  A platoon is called head-to-tail string stable if any perturbations that cause the 
first vehicle in the platoon (i.e., the platoon head) to deviate from its equilibrium state can be 
attenuated at the very last vehicle (i.e. the platoon tail). 

Head-to-tail string stability views a platoon of any size as a system with input 
(perturbation at the platoon head) and output (perturbation at the platoon tail). This input-
output relationship between the platoon head and any vehicle following it can be 
established by truncating the platoon at the corresponding number of vehicles. This 
facilitates describing vehicle responses in complicated longitudinal dynamics, i.e., the 
vehicle takes outputs of multiple preceding vehicles, and its output serves as an input for 
other vehicles. Specifically, a transfer function that connects the input of the platoon head 
and the output of the platoon tail is called a head-to-tail transfer function, as described in 
(Jin and Orosz 2014). For a subject vehicle in the platoon, its correlated inputs can be 
neatly decoupled and represented in the form of head-to-tail transfer functions, using 
multiple transfer functions of any two vehicles between the platoon head and the subject 
vehicle itself. A detailed description will be provided later in this subsection. To better 
understand head-to-tail string stability and how it works with control dynamics, an 
example of vehicular communication topology is shown in Figure 2. 

 

Figure 2: The topology in the above figure is called M-predecessor following (MPF), where 
here M=3 denotes the number of predecessors of vehicle 𝑛 with communication capabilities. 
Vehicles 𝑛 to 𝑛 − 3 are called a cooperative vehicle group. State information of position and 
velocity are transmitted via the vehicular network. 

With the state space model defined earlier, the state of vehicle 𝑛 at time 𝑡 under flow 
equilibrium conditions is denoted as 𝑠𝑛

∗(𝑡) = [𝑥𝑛
∗ (𝑡), 𝑣𝑛

∗(𝑡)]⊺, where 𝑥𝑛
∗(𝑡) = 𝑥𝑛(0) + 𝑡 ⋅

𝑣𝑛
∗(𝑡) is the expected position of vehicle 𝑛 at time 𝑡 without perturbations. The actual 

position of vehicle 𝑛 at time 𝑡 is denoted as 𝑥𝑛(𝑡), and the vehicle length is 𝑙. One can easily 
obtain 𝑔∗ = 𝑥𝑛−1

∗ (𝑡) − 𝑥𝑛
∗(𝑡) − 𝑙 = 𝑥𝑛−1

∗ (0) − 𝑥𝑛
∗(0) − 𝑙, which is a constant determined by 

the initial condition of vehicle 𝑛. When perturbations are imposed at time 𝑡, the 
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relationship between the perceived position and velocity, the actual position and velocity, 
and perturbations can be formulated as follows: 

𝑥𝑛(𝑡) = 𝑥𝑛
∗ (𝑡) − 𝑥𝑛(𝑡)

𝑣̃𝑛(𝑡) = 𝑣𝑛
∗(𝑡) − 𝑣𝑛(𝑡)

  (28) 

where 𝑥𝑛(𝑡) and 𝑣̃𝑛(𝑡) are the perturbations imposed on location and velocity, respectively. 
For vehicle 𝑛 which utilizes information received from its cooperative leading vehicles, its 
longitudinal dynamics model can be linearized as follows: 

𝑣̇̃𝑛(𝑡) = 𝑓𝑛
𝑣𝑣̃𝑛(𝑡 − 𝜏1) + 𝑓𝑛

𝑔
(𝛼𝑛1𝑤𝑛1(𝑡 − 𝜏1)𝑔̃𝑛(𝑡 − 𝜏1) + ∑ 𝛼𝑛𝑗

𝑀

𝑗=2

𝑤𝑛𝑗(𝑡 − 𝜏2)𝑔̃𝑛−𝑗+1(𝑡 − 𝜏2))

+𝑓𝑛
𝛥𝑣 (𝛽𝑛1𝑤𝑛1(𝑡 − 𝜏1)𝛥𝑣̃𝑛(𝑡 − 𝜏1) + ∑𝛽𝑛𝑗

𝑀

𝑗=2

𝑤𝑛𝑗(𝑡 − 𝜏2)𝛥𝑣̃𝑛−𝑗+1(𝑡 − 𝜏2))

  (29) 

where 

𝑓𝑛
𝑣 =

∂𝑓

∂𝑣̃𝑛
|𝑠=𝑠𝑛

∗ ,  𝑓𝑛
𝑔

=
∂𝑓

∂𝑔̃𝑛
|𝑠=𝑠𝑛

∗ , 𝑓𝑛
𝛥𝑣 =

∂𝑓

∂𝛥𝑣̃𝑛
|𝑠=𝑠𝑛

∗   (30) 

The adjacency matrix 𝐖 is omitted since the communication topology is fixed for 𝑀 leading 
vehicles. We also denote 𝛼𝑛𝑗 and 𝛽𝑛𝑗 as 𝛼𝑗 and 𝛽𝑗 , respectively, for simplicity. The 

corresponding state space model can be formulated as: 

𝑠̇̃𝑛(𝑡) = [
𝑥̇𝑛(𝑡)

𝑣̇̃𝑛(𝑡)
]

= [
0 1
0 0

] ⋅ [
𝑥𝑛(𝑡)

𝑣̃𝑛(𝑡)
] + [

0 0
−𝛼1𝑓𝑛

𝑔
𝑓𝑛

𝑣 + 𝛽1𝑓𝑛
𝛥𝑣] ⋅ [

𝑥𝑛(𝑡 − 𝜏1)

𝑣̃𝑛(𝑡 − 𝜏1)
]

+ ∑ [
0 0

(𝛼𝑗 − 𝛼𝑗+1)𝑓𝑛
𝑔

(𝛽𝑗+1 − 𝛽𝑗)𝑓𝑛
𝛥𝑣]

𝑀−1

𝑗=1

⋅ [
𝑥𝑛−𝑗(𝑡 − 𝜏2)

𝑣̃𝑛−𝑗(𝑡 − 𝜏2)
]

+ [
0 0

𝛼𝑀𝑓𝑛
𝑔

−𝛽𝑀𝑓𝑛
𝛥𝑣] ⋅ [

𝑥𝑛−𝑀(𝑡 − 𝜏2)

𝑣̃𝑛−𝑀(𝑡 − 𝜏2)
]

𝑦𝑛(𝑡) = [0 1] ⋅ [
𝑥𝑛(𝑡)

𝑣̃𝑛(𝑡)
]

  (31) 

After Laplace transformation of equation (31), the relationship between the output of 
vehicle 𝑛 and its cooperative leading vehicles is shown as follows: 
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𝑌𝑛(𝑠) = [0 1] ⋅ (𝑠𝐼 − [
0 1
0 0

] − 𝐴𝑛
𝜏1 ⋅ 𝑒−𝑠𝜏1)−1 ⋅

[
 
 
 
 

(∑𝐵𝑛−𝑗
𝜏2

𝑀

𝑗=1

𝑌𝑛−𝑗(𝑠)) ⋅ 𝑒−𝑠𝜏2 [
1

𝑠
1

]

]
 
 
 
 

= ∑𝑇𝑛−𝑗

𝑀

𝑗=1

(𝑠)𝑌𝑛−𝑗(𝑠)

  (32) 

where 

𝐴𝑛
𝜏1 = [

0 0
−𝛼1𝑓𝑛

𝑔
𝑓𝑛

𝑣 + 𝛽1𝑓𝑛
𝛥𝑣]

𝐵𝑛−𝑗
𝜏2 = [

0 0
(𝛼𝑗 − 𝛼𝑗+1)𝑓𝑛

𝑔
(𝛽𝑗+1 − 𝛽𝑗)𝑓𝑛

𝛥𝑣] ,  1 ≤ 𝑗 ≤ 𝑀 − 1

𝐵𝑛−𝑀
𝜏2 = [

0 0
𝛼𝑀𝑓𝑛

𝑔
−𝛽𝑀𝑓𝑛

𝛥𝑣]

  (33) 

Here 𝑇𝑛−𝑗(𝑠) represents the transfer function between vehicle 𝑛 − 𝑗 and vehicle 𝑛. 

According to the definition, the head-to-tail transfer function is in the form of: 

𝑌𝑛(𝑠) = 𝐺𝑛,0(𝑠)𝑌0(𝑠)  (34) 

However, in this case, the head-to-tail transfer function is difficult to derive directly as the 
outputs of the leading vehicles are highly coupled within one vehicle group (vehicle 𝑛 and 
its 𝑀 cooperative leading vehicles). Inspired by the method proposed in (Zhang and Orosz 
2016), we can derive the head-to-tail transfer function by iteration. By substituting 
equation (34) into equation (32), we can get: 

𝐺𝑛,0(𝑠) = ∑ 𝑇𝑛−𝑗

𝑀

𝑗=1

(𝑠)𝐺𝑛−𝑗,0(𝑠)  (35) 

Rearrange the equation (35) to a transition model. It can be shown that: 

[
 
 
 
 
 
 

𝐺𝑛,0(𝑠)

𝐺𝑛−1,0(𝑠)

𝐺𝑛−2,0(𝑠)

𝐺𝑛−3,0(𝑠)

⋮
𝐺𝑛−𝑀,0(𝑠)]

 
 
 
 
 
 

=

[
 
 
 
 
 
𝑇𝑛−1(𝑠) 𝑇𝑛−2(𝑠) 𝑇𝑛−3(𝑠) ⋯ 𝑇𝑛−𝑀(𝑠) 0

1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0]

 
 
 
 
 

⋅

[
 
 
 
 
 
 

𝐺𝑛−1,0(𝑠)

𝐺𝑛−2,0(𝑠)

𝐺𝑛−3,0(𝑠)

𝐺𝑛−4,0(𝑠)

⋮
𝐺𝑛−𝑀−1,0(𝑠)]

 
 
 
 
 
 

  (36) 

From (36), for any two sequential vehicle groups, one with starting and ending vehicles 𝑛 −
𝑀 and 𝑛, respectively, and the other with starting and ending vehicles 𝑛 − 𝑀 − 1 and 𝑛 − 1, 
respectively, the relationship between the two groups of vehicles’ head-to-tail transfer 
functions can be clearly established. Denote 
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𝑃̂𝑛(𝑠) =

[
 
 
 
 
 
𝑇𝑛−1(𝑠) 𝑇𝑛−2(𝑠) 𝑇𝑛−3(𝑠) ⋯ 𝑇𝑛−𝑀(𝑠) 0

1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0]

 
 
 
 
 

𝒢𝑛(𝑠) =

[
 
 
 
 
 
 

𝐺𝑛,0(𝑠)

𝐺𝑛−1,0(𝑠)

𝐺𝑛−2,0(𝑠)

𝐺𝑛−3,0(𝑠)

⋮
𝐺𝑛−𝑀,0(𝑠)]

 
 
 
 
 
 

  (37) 

where 𝑃̂𝑛(𝑠) is the transfer matrix and 𝒢𝑛(𝑠) is the vector containing head-to-tail transfer 
functions of vehicles from 𝑛 to 𝑛 − 𝑀. According to Theorem 2 in (Zhang and Orosz 2016), 
if ∥ 𝒢𝑛(𝑠) ∥<∥ 𝒢𝑛−1(𝑠) ∥ for any two consecutive vehicle groups with leading vehicle 𝑛 and 
𝑛 − 1 respectively, then perturbations can be mitigated iteratively from the platoon head to 
the platoon tail, reaching head-to-tail string stability. We adopt this theorem to a platoon 
model with identical longitudinal vehicle dynamics. As a result, from equations (35)-(37), it 
requires that 

sup
∀𝜔>0

|𝜆𝑘 (𝑃̂𝑛(𝑖𝜔))| < 1, 𝑘 = 1,2, . . . , 𝑀  (38) 

where 𝜆𝑘 (𝑃̂𝑛(𝑖𝜔)) is the 𝑘-th eigenvalue of the transfer matrix 𝑃̂𝑛(𝑖𝜔) with frequency 𝜔. 

3.6 Pseudo String Stability Analysis under Cybersecurity Uncertainties 

In section 3.5, we conduct string stability analysis of the platooning model (1) in the attack-
free scenario. In this section, we further extend the stability analysis under cyberattacks 
while taking the detection and recovery into account. Specifically, we aim to model the 
system with the ability to detect anomalies and fully recover the true measurements once 
the anomalies are detected. We assume the recovery can be achieved by utilizing other 
sources of information, e.g., road side units (RSUs). The detection sensitivity/recall may not 
always be 100%, meaning that there exists uncertainty in the platooning model where it 
switches between the compromised model and the normal model. Note that current tools 
for stability analysis do not consider such probabilistic models. Therefore, in this study, we 
define the concept of pseudo string stability for the case where the model is probabilistic. 

We assume all platoon members will be affected by the attack. This can be achieved by a 
drone or a wireless device conducting false injection attacks or jamming attacks to affect 
either onboard measurements or the input vector. We also assume each platoon member is 
equipped with the same detector with detection sensitivity 𝑝, which is defined as the 
number of true positive anomaly detections, divided by the total number of anomalous 
instances. Then, the platoon model (1) becomes a probabilistic model, 
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𝑣̇𝑛(𝑡) = 𝜂𝑡𝑓 (𝑣𝑛(𝑡 − 𝜏1), 𝑔‾𝑛(𝑡; 𝜏1, 𝜏2), 𝑑‾𝑛(𝑡; 𝜏1, 𝜏2))

+(1 − 𝜂𝑡) ⋅ 𝑓(𝑣𝑛(𝑡 − 𝜏1̃) + 𝐴̃, 𝑔‾𝑛(𝑡; 𝜏̃1, 𝜏̃2) + 𝐵̃, 𝑑‾𝑛(𝑡; 𝜏̃1, 𝜏̃2) + 𝐶̃)
  (39) 

where 

𝑔‾𝑛(𝑡; 𝜏1, 𝜏2) := 𝛼1𝑔𝑛(𝑡 − 𝜏1) + ∑𝛼𝑗

𝑀

𝑗=2

𝑔𝑛−𝑗+1(𝑡 − 𝜏2)

𝑑‾𝑛(𝑡; 𝜏1, 𝜏2) : = 𝛽1𝛥𝑣𝑛(𝑡 − 𝜏1) + ∑ 𝛽𝑗

𝑀

𝑗=2

𝛥𝑣𝑛−𝑗+1(𝑡 − 𝜏2)

  (40) 

and 𝜂𝑡 is a Bernoulli random variable with ℙ(𝜂𝑡 = 1) = 𝑝̃ = 𝑝𝑁 and ℙ(𝜂𝑡 = 0) = 1 − 𝑝̃ 
given 𝑁 vehicles in the platoon. Note that for the ease of stability analysis and for security 
concerns, we adopt the most conservative setting where if any platoon member fails to 
detect the attack, the whole platooning model becomes compromised with 𝜂𝑡 = 0. The 
attack parameters are 𝜏̃1, 𝜏̃2, 𝐴̃, 𝐵̃, and 𝐶̃, where 𝜏̃1, 𝜏̃2 can be affected by jamming attacks 
and the rest of three parameters can be affected by false injection attacks. Note that 
without abuse of notation we denote 𝜏̃1 and 𝜏̃2 as any time delays different from the single 
values 𝜏1 and 𝜏2, which can also account for stochastic time delays. 

Since the platoon model in (39) is a probabilistic model, we define pseudo string stability 
under model uncertainty as follows: 

Definition 2.  Consider a vehicle string with semi-infinite length in equilibrium state. Impose 
a transient perturbation on the head vehicle. The vehicle string is pseudo string stable if the 
perturbation eventually vanishes when reaching the tail vehicle in the string. 

Note that by Definition 1 the perturbation could be amplified for some time periods and a 
subset of vehicles. However, if the vehicle string is sufficiently long, the perturbation will 
vanish at the tail vehicle. Note that this is different from Definition 1, which requires 
perturbation attenuates at the end of the vehicle string even for a finite-length vehicle 
string. 

Denote the transfer matrix of the compromised dynamic model as 

𝑃̂𝑛(𝑠; 𝛬) =

[
 
 
 
 
𝑇𝑛−1(𝑠; 𝛬) 𝑇𝑛−2(𝑠; 𝛬) … 𝑇𝑛−𝑀(𝑠; 𝛬) 0

1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0]

 
 
 
 

  (41) 

where 𝛬 represents the set of attack parameters 𝜏̃1, 𝜏̃2, 𝐴̃, 𝐵̃, and 𝐶̃. Denote the transfer 
matrix of the probabilistic platooning model (39) as 𝑃̂𝑛(𝑠; 𝛬, 𝑝̃). Then, given a detection 
sensitivity 𝑝, we can obtain the mean transfer matrix of the probabilistic platooning model 
(39), 
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𝑃̂‾𝑛(𝑠; 𝛬) : = 𝔼𝑝̃[𝑃̂𝑛(𝑠; 𝛬, 𝑝̃)]

= 𝑝̃ ⋅ 𝑃̂𝑛(𝑠) + (1 − 𝑝̃) ⋅ 𝑃̂𝑛(𝑠; 𝛬)

=

[
 
 
 
 
𝑇‾𝑛−1(𝑠; 𝛬) 𝑇‾𝑛−2(𝑠; 𝛬) … 𝑇‾𝑛−𝑀(𝑠; 𝛬) 0

1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0]

 
 
 
   (42) 

where 𝑇‾𝑖(𝑠; 𝛬) = 𝑝̃ ⋅ 𝑇𝑖(𝑠) + (1 − 𝑝̃) ⋅ 𝑇𝑖(𝑠; 𝛬). 

Given a stochastic model ℱ(𝑝̃, 𝜉̂), it is pseudo string stable if it satisfies 

sup
∀𝜔>0

|𝜆𝑘 (𝑃̂‾𝑛(𝑖𝜔; 𝛬))| < 1, 𝑘 = 1,2, . . . ,𝑀  (43) 

By formulas (41) and (42), we can validate whether a detection sensitivity can ensure a 
pseudo stable string given a set of attack parameters 𝛬. 

After showing that the head-to-tail string stability is a function of detection sensitivity, as 
illustrated later in section 4, it is worthwhile and possible to find the critical detection 
sensitivity under a set of specific cyberattack parameters, such that if all detectors can 
successfully detect and recover from the attacks with a probability higher than the critical 
detection sensitivity, then the pseudo head-to-tail string stability can be maintained. 

4. Numerical Experiments 

In this section, we perform extensive numerical experiments to investigate the anomaly 
detection performance of our proposed methods in Section 3. First, we investigate the 
performance of the 𝜒2-detector and OCSVM under a mixed set of anomaly types introduced 
in Section 1, namely, ‘short’, ‘noise’, ‘bias’, ‘gradual drift’, and ‘miss’, with random attack 
magnitude and duration. This experiment explores the potential of using OCSVM and an 
augmented state formulation in the presence of sensor measurement and communication 
time delays. Next, we conduct sensitivity analysis on the attack parameters and investigate 
their impact on platoon string stability. This experiment demonstrates the stability of the 
platoon under different combinations of attack scenarios. Lastly, we analyze the 
relationship between the detection sensitivity/recall and the pseudo string stability of a 
platoon under cyberattacks. We further find the the critical detection sensitivity under 
which one can maintain a pseudo stable string. 

We adopt a variant of the well-known intelligent driver model (IDM), originally proposed 
by Treiber et al. (Treiber and Kesting 2013), namely the cooperative intelligent driver 
model (CIDM) from (P. Wang, Wu, and He 2020) as our platooning model of choice, and 
implement our framework to compare the anomaly detection performance of the 𝜒2-
detector and OCSVM in conjunction with EKF and AEKF. According to (Treiber and Kesting 
2013), IDM is suitable for describing the characteristics of automated driving, e.g. ACC. 
Although IDM has no explicit reaction time, it can also be easily extended to capture the 
communication delay, as described in the literature (Y. Wang, Masoud, and Khojandi 
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2020b; P. Wang, Wu, and He 2020). Note that compared with the CIDM model in (P. Wang, 
Wu, and He 2020), in this paper we further extend the IDM model to the setting of 
heterogeneous time delay. The CIDM with heterogeneous time delay can be described as 
follows, 

𝑣̇𝑛(𝑡) = 𝑎∗ (1 − (
𝑣𝑛(𝑡)

𝑣0
)

4

− (
𝑆∗ (𝑣𝑛(𝑡), 𝑑‾𝑛(𝑡; 𝜏1, 𝜏2))

𝑔‾𝑛(𝑡; 𝜏1, 𝜏2)
)) with

𝑆∗ (𝑣𝑛(𝑡), 𝑑‾𝑛(𝑡; 𝜏1, 𝜏2)) = 𝑠0 + 𝑇 ⋅ 𝑣𝑛(𝑡) +
𝑣𝑛(𝑡) ⋅ 𝑑‾𝑛(𝑡; 𝜏1, 𝜏2)

2√𝑎∗𝑏∗

  (44) 

where 𝑑‾𝑛(𝑡; 𝜏1, 𝜏2) and 𝑔‾𝑛(𝑡; 𝜏1, 𝜏2) are defined in (39), 𝑎∗, 𝑏∗ represent the maximum 
acceleration and the maximum comfortable deceleration respectively, 𝑣0 represents the 
desired free-flow velocity, 𝑆∗(⋅) is the desired clearance gap, 𝑠0 denotes the minimum 
clearance gap in jammed traffic, and T is the desired time headway to follow the immediate 
leading vehicle. 

𝑣0 

Table 2: CIDM parameters 

33.33 m/s Desired free-flow velocity 

𝑙 5 m Vehicle length 

𝑇 1.1 s Safety time headway 

𝑠0 2 Minimum clearance gap 

𝑎∗ 1 m/𝑠2 Maximum acceleration 

𝑏∗ 2 m/𝑠2 Maximum comfortable deceleration 

4.1 Detection Performance under a Single Vehicle Attack 

To measure the effectiveness of our proposed detection methodologies, we conduct 
sensitivity analysis over the Kalman filter configuration (i.e., with and without augmented 
state formulation), the anomaly detection methodology (i.e., the 𝜒2-detector and OCSVM), 
and time delays 𝜏1 and 𝜏2. We calculate the area under the curve (AUC) of each receiver 
operating characteristic (ROC) curve which summarizes the trade-off between the true 
positive rate and false positive rate (1 − specificity) for a predictive model at various 
threshold settings, by changing the values of 𝛾 of the 𝜒2-detector in (24), and parameter 𝑐 
of OCSVM in (27). Since we are using an imbalanced dataset in which the number of non-
anomalous cases is substantially higher than the number of anomalous cases, we further 
calculate the AUC score of the precision-recall curve, which summarizes the trade-off 
between the true positive rate and the positive predictive value (PPV, or precision) for a 
predictive model at various threshold settings, and is more suitable for imbalanced dataset. 

Our experiments are based on the Safety Pilot dataset from the Safety Pilot Model 
Deployment (SPMD) program (Bezzina and Sayer 2014) funded by the US department of 
Transportation, and collected in Michigan. The sampling frequency is 10 HZ (i.e. 𝛥𝑡 = 0.1s). 
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We sample the in-vehicle speed from the SPMD dataset with 4000 samples (400 seconds) 
for training set and 2000 samples (200 seconds) for testing set. 

The testing scenario contains a vehicle platoon with 10 vehicles and each vehicle except for 
the platoon leader adopts the CIDM model in (43), and each vehicle except for the first two 
vehicles receive two cooperative leading vehicles’ information. For simplicity, we set 𝛼1 =
𝛽1 = 0.8 and 𝛼2 = 𝛽2 = 0.2. The measurement vector 𝑧𝑛 includes the location and velocity 
of the 𝑛-th vehicle. The platoon leader’s trajectory is extracted from SPMD dataset, and the 
trajectory of the rest of the platoon members are generated as the baseline based on the 
following rule: 

𝑥𝑛(𝑘 + 1) = 𝑥𝑛(𝑘) + 𝑣𝑛(𝑘) ⋅ 𝛥𝑡

𝑣𝑛(𝑘 + 1) = 𝛥𝑡 ⋅ 𝑓(𝑣𝑛(𝑘 − ⌊𝜏̃1/𝛥𝑡⌋), 𝑔‾𝑛(𝑘; ⌊𝜏̃1/𝛥𝑡⌋), ⌊𝜏̃2/𝛥𝑡⌋)), 𝑑‾𝑛(𝑘; ⌊𝜏̃/𝛥𝑡⌋), ⌊𝜏̃/𝛥𝑡⌋))

+𝑣𝑛(𝑘) + 𝜖𝑘

  (45) 

where 𝜖𝑘  is sampled from a random variable to represent the inaccuracy caused by the 
flooring operation, and 𝜖𝑘  is sampled from a uniform distribution within range [−0.1,0.1]. 
After obtaining the baseline data, we add Gaussian white noise with a variance of 0.3 to the 
baseline data to represent the measurement noise. Random anomalies are generated with 
10% anomaly rate and injected into the trajectory data of the 5-th vehicle in the platoon 
using algorithm 1 in (Y. Wang, Masoud, and Khojandi 2020b). The anomaly magnitude for 
each type of anomaly is uniformly distributed within range (0,1], and the anomaly 
durations are also uniformly distributed from 1 to 20 time epochs. 

The experiments are separately implemented into four models for ablation study, where 
model 1 is composed of a 𝜒2-detector in conjunction with EKF, model 2 is composed of a 
𝜒2-detector in conjunction with ASEKF, model 3 is composed of OCSVM in conjunction with 
EKF, and model 4 is composed of OCSVM in conjunction with ASEKF. The CIDM parameters 
are set according to Table 2. Table 3 shows the performance of three models under three 
testing scenarios with different time delay settings, i.e. 0 seconds, 0.5 seconds, and 1.5 
seconds, where 𝜏1 = 𝜏2 = 0 for scenario 1. For scenario 2 and scenario 3, we consider 
stochastic time delay with 𝔼[𝜏̃1] = 𝔼[𝜏̃2] = 0.5 and 𝔼[𝜏̃1] = 𝔼[𝜏̃2] = 1.5, respectively, with 
bounds of stochastic time delays 𝑎1 = 𝑎2 = −0.1, and 𝑏1 = 𝑏2 = 0.1. The measurement 
function ℳ(⋅) of ASEKF in equation (10) is defined as: 

ℳ(𝑠̃) = [
1,0,1
0,1,0

] ⋅ 𝑠̃  (46) 
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Table 3: Detection performance of three models measuring on AUC scores of ROC curve and 
PR curve. 

Time 
Delay 

Scen 1: 𝜏1 = 𝜏2 = 0 s Scen 2: 𝔼[𝜏1]
0.5 

=
s 

𝔼[𝜏2] = Scen 3: 𝔼[𝜏1]
1.5 

=
s 

𝔼[𝜏2] =

Metric ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC 

𝜒2 EKF 0.968 

± 0.018 

0.922 

± 0.054 

0.946 

± 0.018 

0.895 

± 0.054 

0.866 

± 0.016 

0.820 

± 0.049 

𝜒2 ASEKF 0.968 

± 0.021 

0.920 

± 0.056 

0.953 

± 0.024 

0.902 

± 0.060 

0.938 

± 0.030 

0.866 

± 0.068 

OCSVM 
EKF 

0.977 

± 0.011 

0.959 

± 0.020 

0.974 

± 0.010 

0.956 

± 0.019 

0.964 

± 0.012 

0.933 

± 0.019 

OCSVM 
ASEKF 

0.970 

± 0.017 

0.933 

± 0.019 

0.966 

± 0.014 

0.936 

± 0.026 

0.959 

± 0.014 

0.931 

± 0.024 

 

̃ ̃ ̃ ̃

and the measurement function ℳ(⋅) of EKF is defined as: 

ℳ(𝑠) = [
1,0
0,1

] ⋅ 𝑠  (47) 

The experiments indicate that the OCSVM with EKF fault detection method provides a 
significant improvement (up to 13.8% in PR AUC and 11.3% in ROC AUC) compared with 
the performance of the two 𝜒2-detector models, regardless of the value of time delay. Also, 
we observe that using augmented state formulation can significantly improve the 
performance of 𝜒2-detector under stochastic time delay (scenario 2 and scenario 3). 
However, when there is no time delay (scenario 1), using ASEKF does not lead to a better 
performance because there is no need to use the augmented state to compensate for 
potential bias caused by the time delay factors, and it introduces more uncertainties to the 
actual state which decreases the detection performance. Unlike the 𝜒2-detector, we 
observe a slight decrease of performance in OCSVM when it is combined with ASEKF. The 
reason is that OCSVM itself can learn the potential background bias in state-transition 
model and therefore the marginal benefit of using ASEKF is not prominent compared with 
the case for the 𝜒2-detector. Moreover, we observe that when using an augmented state 
formulation, the value of the augmented state is affected by the existence of anomalies and 
therefore the innovation distribution of the testing data is changed compared with that in 
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the training data, which makes it more difficult for the trained OCSVM classifier to detect 
anomalies. Additionally, we observe a systematic deterioration of the detection 
performance as we increase the time delays, due to the fact that the time delays decrease 
the estimation accuracy of both EKF and ASEKF and therefore affect the detection 
performance. 

 

Figure 3: Vehicle velocity in platoon. Top: without detection and recovery. Bottom: with 
detection and recovery. 

4.2 Detection Performance under Multiple Vehicle Attacks 

Next, we investigate the impact of cyberattacks on multiple vehicles in the platoon, and the 
effect of the detection and recovery. We assume each individual platoon member is 
equipped with a detector and is able to recover the true state only if it successfully detects 
an anomaly. All platoon vehicles are initialized at the steady state, i.e. with equilibrium 
clearance gap of 𝑔∗ and equilibrium velocity of 𝑣∗, which can be obtained by having all 
vehicles in the platoon travel with the same constant velocity 𝑣∗, 

𝑔∗ = 𝑣∗(𝑠0 + 𝑇𝑣∗) (1 − (
𝑣∗

𝑣0
)

4

)

−0.5

− 𝑔0  (48) 

where 𝑔0 is the initial clearance gap between each pair of adjacent vehicles. 

We consider a ten-vehicle platoon in a road-ring configuration (starting from ID 0 to ID 9). 
Each vehicle receives information from its immediate three leading vehicles, with 𝛼1 =
𝛽1 = 0.7, 𝛼2 = 𝛽2 = 0.2, and 𝛼3 = 𝛽3 = 0.1. Again, we use the same parameters in CIDM as 
presented in Table 1. The time delay is set to a fixed value of 0.5 seconds for both 𝜏1 and 𝜏2. 
A mixed set of anomaly types with anomaly rate of 10% were applied to five vehicles in the 
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platoon, starting from the second vehicle to the sixth vehicle. The left and right subfigures 
in Figure 3 show the vehicle velocity with and without anomaly detection and recovery, 
respectively. We can observe a significant fluctuation of velocity under the attack scenario 
without detection and recovery, and conversely much smoother trajectories after detection 
and recovery. 

 

Figure 4: Spacing error over time under cyberattacks. Top: without anomaly detection and 
recovery. Bottom: with anomaly detection and recovery. 

Figure 4 shows the spacing error between each pair of adjacent vehicles in the platoon in 
the span of 200 seconds. The top subfigure shows the spacing error without anomaly 
detection, and the bottom subfigure shows the spacing error with anomaly detection and 
recovery. The spacing error 𝛥𝑔𝑛(𝑡) for the 𝑛-th vehicle at time 𝑡 is defined as 

𝛥𝑔𝑛(𝑡) = 𝑔𝑛(𝑡) − 𝑔∗  (49) 

and becomes zero when all vehicles in the platoon are in the equilibrium state. We can 
observe that when the platoon is under attack, there exist a lot of perturbations in terms of 
spacing error if no detector is deployed. Such perturbations are greatly reduced when 
using a detector, followed with a recovery step. 

Figure 5 further shows the maximum spacing error with and without anomaly detection 
and recovery. The maximum spacing error is defined as max𝑡|𝛥𝑔𝑛(𝑡)|. According to 
Definition 1, the head-to-tail string stability can also be described in time domain: 

max
𝑡

|𝛥𝑔𝑁−1(𝑡)| <. . . < max
𝑡

|𝛥𝑔𝑛(𝑡)| <. . .< max
𝑡

|𝛥𝑔0(𝑡)|  (50) 

In Figure 5 we can observe an unstable vehicle string when there is no detector. However, 
the platoon stabilizes with detection and recovery. 
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Figure 5: Maximum absolute spacing error under cyberattacks. Top: without anomaly 
detection. Bottom: with anomaly detection and recovery. 

4.3 Sensitivity Analysis on the Attack Parameters 

We further conduct sensitivity analysis to study the effect of attack parameters on the 
platoon’s string stability. Specifically, we analyze the effects of attack parameters 𝐴̃, 𝐵̃, 𝐶̃, 𝜏̃1, 
and 𝜏̃2 on the platooning model without anomaly detection: 

𝑣̇𝑛(𝑡) = 𝑓(𝑣𝑛(𝑡 − 𝜏1̃) + 𝐴̃, 𝑔‾𝑛(𝑡; 𝜏̃1, 𝜏̃2) + 𝐵̃, 𝑑‾𝑛(𝑡; 𝜏̃1, 𝜏̃2) + 𝐶̃)  (51) 

In our simulations so far, the three attack parameters (noise terms) 𝐴̃, 𝐵̃, 𝐶̃ have been fixed. 
To further investigate the influence of attack intensity on platoon string stability, we 
experiment with multiple sets of attack parameters and keep the rest of parameters fixed, 
as in Table 2. We keep the same topology, where each vehicle will receive information from 
three predecessors, as shown in Figure 2, and 𝛼1 = 𝛽1 = 0.7, 𝛼2 = 𝛽2 = 0.2, and 𝛼3 = 𝛽3 = 
0.1. The attack parameters tested for sensitivity analysis are listed in Table 2. 

Table 4: Sensitivity Analysis Parameters 

Parameter Lower Bound Upper Bound Step Size 

𝐴̃ -15 m/s 15 m/s 0.2 m/s 

𝐵̃ -15 m 15 m 0.2 m 

𝐶̃ -15 m/s 15 m/s 0.2 m/s 
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Figure 6: The white area in each subplot represents that given the set of attack parameters, 
the platoon can remain string stable. The color bar indicates the value of the largest 
eigenvalue of the transfer matrix. 
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Figure 7: The left plot indicates the influence of the manipulated onboard time delay, 𝜏̃1, and 
the manipulated communication time delay 𝜏̃2 on platoon string stability when 𝐴̃ = 𝐵̃ = 𝐶̃ =
0. The right plot shows the influence of 𝜏̃1 and 𝜏̃2 when the platoon is string unstable even in 
the absence of any attacks, and with 𝐴̃ = −3 m/s, 𝐵̃ = −5 m, 𝐶̃ = −11 m/s. As a reference, 
the initial largest magnitude of eigenvalues of the transfer matrix when 𝜏̃1 = 𝜏̃2 = 0 is 5.2835. 
The maximum magnitude of eigenvalues with time delays is 5.3288. The white color 
represents the string stable region. 

Figure 6 shows the heat map of the largest eigenvalue of the transfer matrix given the 
combination of attack parameters 𝐴̃, 𝐵̃, and 𝐶̃. The color white indicates that the platoon 
will remain head-to-tail string stable for the given parameter combinations, while the 
colored region indicates loss of head-to-tail string stability. The color intensity indicates the 
magnitude of perturbation amplifications when the platoon is string unstable. 

It can be observed that as 𝐴̃ increases from negative values to positive values, the unstable 
region shifts to the left. In an unstable platoon, when fixing the distance-targeted attack 
parameter 𝐵̃, to achieve the same level of peak amplification of perturbations in the 
platoon, the other two velocity-targeted attack parameters, 𝐴̃ and 𝐶̃, should be adjusted in 
opposite directions, i.e., increasing (decreasing) 𝐴̃, but decreasing (increasing) 𝐶̃. One 
explanation is that by increasing 𝐴̃, the ego vehicle falsely perceives its velocity higher than 
its actual velocity. Meanwhile if we do not change (or increase) 𝐶̃, which affects the relative 
velocity between the ego vehicle and its cooperative leaders, this indicates that the 
cooperative leaders are moving in higher velocities. Therefore within the current range of 
attack parameters, an attack that erroneously leads to a perceived higher velocity of 
leaders in the platoon compensates the damage done by an attack that erroneously leads to 
a perceived higher velocity of the ego vehicle, and could make the platoon more stable for 
some ranges of these attack parameters. 

The relationship between the distance-targeted attack parameter and the two velocity-
targeted attack parameters is even more complicated. However, we notice that when 𝐴̃ >
−3, there is a trend that when fixing 𝐶̃, to make the platoon achieve the same level of peak 
amplification of perturbations requires 𝐴̃ and 𝐵̃ to change in the same direction, i.e., 
increasing (decreasing) 𝐴̃ and 𝐵̃ together. One possible explanation is that, under the 
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current range of attack parameters, by increasing 𝐴̃, the ego vehicle perceives its velocity 
higher than its actual velocity. Increasing 𝐵̃, which affects the perceived clearance gap 
between the ego vehicle and its cooperative leaders, could illude the ego vehicle to actually 
drive faster, thereby making the platoon more unstable. 

The influence of two time delay terms, 𝜏̃1 and 𝜏̃2, are also studied after fixing attack 
parameters 𝐴̃, 𝐵̃, and 𝐶̃. We use the same communication topology as shown in Figure 2 
with 𝛼1 = 𝛽1 = 0.7, 𝛼2 = 𝛽2 = 0.2, and 𝛼3 = 𝛽3 = 0.1. The time delays and attack 
parameters are set as follows: we first set 𝜏̃1 = 0 and 𝜏̃2 = 0, where no time delays exist in 
the system. For the first set of parameters, which create stable conditions, we set 𝐴̃ = 𝐵̃ =
𝐶̃ = 0 such that the platoon becomes string stable without any time delay. In the second set 
of attack parameters, which provide unstable conditions, we set 𝐴̃ = −3 m/s, 𝐵̃ = −5 m, 
and 𝐶̃ = −11 m/s to make the platoon string unstable even without any time delays. All 
combinations of (𝜏̃1, 𝜏̃2) are then tested in the range of [0,  5] seconds with a step size of 0.1 
seconds. The results are shown in Figure 7. 

From Figure 7, we observe that when the dynamics model is attack-free, onboard time 
delay 𝜏̃1 has more power in affecting platoon stability compared to the communication time 
delay 𝜏̃2, as we can always find an unstable region by fixing 𝜏2 and adjusting 𝜏̃1, but not vice 
versa. Furthermore, it appears that there is a threshold value 𝜏̃1

∗ (𝜏̃1
∗ = 2 seconds in this 

case) such that the platoon will remain string stable as long as 𝜏̃1 < 𝜏̃1
∗, when 𝜏̃2 is smaller 

than 5 seconds. An extreme case is when 𝜏̃2 = ∞, where the platoon is under a pure car-
following model. In this case, 𝜏̃1 represents the delay from the ego vehicle’s onboard 
measurements, which in addition to the status of the ego vehicle provides information 
about its immediate leading vehicle. On the right subplot, we observe a more complex 
pattern. When fixing 𝜏̃2, the peak amplification of perturbations can be altered greatly by 
changing 𝜏̃1. However, except for the stable region in the upper part of figure, 𝜏̃2 seems to 
have a more subtle impact on the peak amplification of perturbations. One interesting 
finding is that if the platoon is originally string unstable, increasing 𝜏̃1 from 0 to 2.5 seconds 
can achieve a lower peak amplification of perturbations. This suggests that, when the 
platoon is unstable to begin with, the peak amplification of perturbations can be reduced 
by a slight increase of latency in onboard measurement. However, there may exist different 
trends for a broader range of attack parameters, because of the complex nature of the 
mutual impact of different attack parameters on the characteristics of stability region, 
which is characterized by the eigenvalues of the transfer matrix. Moreover, introducing 
larger time delays can eventually cause a crash, which is not reflected in stability analysis. 

4.4 Pseudo String Stability Analysis 

In this section, we conduct pseudo string stability analysis on model (39). One major 
contribution of this work is to bridge the gap between anomaly detection and platoon 
string stability. Since in practice the detection sensitivity/recall is not always 100%, as 
discussed in Section 3.6, the platoon model becomes a probabilistic model under detection 
uncertainties. Therefore, it is critical to find a minimum required detection 
sensitivity/recall such that any detector with a higher detection sensitivity can make the 
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platoon maintain pseudo string stability. Here we present several case studies to find the 
desired detection rate that determines the pseudo string stability of the platoon. 

 

Figure 8: The blue curve represents the largest magnitude of all eigenvalues of the mean 
transfer matrix under detection uncertainties, i.e., 𝑝̃. The red dashed line indicates the critical 
point 𝑝̃∗ = (𝑝∗)10 = 0.86, when the largest magnitude becomes exactly 1, denoting a pseudo 
string stable platoon of 10 vehicles. 

First, in order to investigate the existence and characteristics of such critical detection 
sensitivity, we conduct sensitivity analysis on the pseudo string stability of a platoon with 
10 vehicles under different detection sensitivities. We use the same communication 
topology as shown in Figure 2 with 𝛼1 = 𝛽1 = 0.7, 𝛼2 = 𝛽2 = 0.2, and 𝛼3 = 𝛽3 = 0.1. 
According to inequality (42), to maintain pseudo string stability, one needs to make sure 
that the largest magnitude of eigenvalues of the transfer matrix is always smaller or equal 
to 1 across all frequency values. In this experiment, the parameters selected for CIDM 
remain the same as shown in Table 1. Time delays take values of 𝜏̃1 = 0 and 𝜏̃2 = 0.5. The 
attack parameters use 𝐴̃ = −5 m/s, 𝐵̃ = 15 m, and 𝐶̃ = −6 m/s. From Figure 8, we can see 
that given the existing topology of three predecessors in a ten-vehicle platoon, as the 
anomaly detection sensitivity increases from 0 to 1, the platoon will incrementally reach 

pseudo string stability with the critical detection sensitivity 𝑝∗ = √𝑝̃∗10 ≈ 0.985. 
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(a) 𝜏̃1 = 0 s, 𝜏̃2 = 0 s (b) τ̃1 = 0 s, τ̃2 = 1 s (c) 𝜏̃1 = 0 s, 𝜏̃2 = 2 s 

   

(d) 𝜏̃1 = 1 s, 𝜏̃2 = 0 s (e) 𝜏̃1 = 1 s, 𝜏̃2 = 1 s (f) 𝜏̃1 = 1 s, 𝜏̃2 = 2 s 

   

(g) 𝜏̃1 = 2 s, 𝜏̃2 = 0 s (h) 𝜏̃1 = 2 s, 𝜏̃2 = 1 s (i) 𝜏̃1 = 2 s, 𝜏̃2 = 2 s 

Figure 9: Critical detection sensitivity  𝑝̃∗ under different attack parameters 𝐴̃ ∈ [−15, 15] 
m/s and 𝐵̃ ∈ [−15, 15] m by fixing 𝐵̃ = −1 m/s. Each subfigure contains a hyperplane which 
represents the critical detection sensitivity 𝑝̃∗ under different time delay factors 𝜏̃1and 𝜏̃2 in 
range {0,1,2}  seconds. 

In order to further investigate how attack parameters affect the critical detection 
sensitivity value, we conduct sensitivity analysis by varying the different attack 
parameters, including 𝐴̃, 𝐵̃, 𝜏̃1, and 𝜏̃2, and calculating the corresponding critical 𝑝̃∗. 
Specifically, we consider a platoon with 10 vehicles and with 3 predecessors, where 𝛼1 =
𝛽1 = 0.7, 𝛼2 = 𝛽2 = 0.2, and 𝛼3 = 𝛽3 = 0.1, following the CIDM parameters in Table 2. 
Figure 9 shows the critical detection sensitivity 𝑝̃∗ that maintains pseudo string stability of 
the platoon. In each subfigure, the hyperplane represents 𝑝̃∗ in z-axis for a range of 𝐴̃ ∈
[−15,15] in x-axis and 𝐵̃ ∈ [−15,15] in y-axis by fixing 𝐶̃ = −1. We generate 9 subfigures 
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by considering all combinations of 𝜏̃1 ∈ {0,1,2} seconds and 𝜏̃2 ∈ {0,1,2} seconds. We first 
observe that in the given range of parameters, both attack parameters 𝐴̃ and 𝐵̃ determine 
the value of 𝑝̃∗, whereas the effect of destabilization is more prominent for the attack 
parameter 𝐴̃ when 𝜏̃1 = 0. From subfigures 9c-9i, when 𝐴̃ > −3 m/s, we observe the same 
trend as in Figure 6, i.e., when 𝐴̃ > −3 m/s, in order to maintain the same level of peak 
amplification of perturbations, one needs to increase (decrease) 𝐴̃ and 𝐵̃ together. Each 
column of the subfigures in Figure 9 indicates that as we increase the value of 𝜏̃1, we obtain 
a larger pseudo unstable region where we have non-zero critical detection sensitivity 𝑝̃∗. 
The destabilization effect of 𝜏̃2 is less prominent than 𝜏̃1, as we only observe a minimal 
change of hyperplane distribution in each row of Figure 9, which works in concert with our 
observation in Figure 7. 

 

Figure 10: Critical detection sensitivity 𝑝∗ under different attack parameters 𝜏̃1 and 𝜏̃2 by 
fixing the values of 𝐴̃, 𝐵̃, and 𝐶̃ to be 0. 

In Figure 10, we investigate the standalone impact of manipulated delay factors 𝜏̃1 and 𝜏̃2 
on the critical detection sensitivity. Figure 10 represents the critical detection sensitivity 𝑝̃∗ 
(z-axis) that maintains the pseudo string stability under different time delay factors 𝜏̃1 ∈
[0,5] seconds (x-axis) and 𝜏̃2 ∈ [0,5] seconds (y-axis), where we fix the values of 𝐴̃, 𝐵̃, and 𝐶̃ 
to 0. Note that the projection of the hyperplane on the x-y plane is equivalent to the left 
figure in Figure 7 when 𝜏̃1 and 𝜏̃2 are within [0,3] seconds, which indicates the pseudo 
unstable region of the platoon when we do not use any anomaly detector. 

Conclusion 

CAVs can receive and utilize information from multiple sources to form vehicular platoons. 
However, literature has demonstrated that a CAV is more vulnerable to cyberattacks, as it 
has more attack surfaces. Existing literature either only investigates the impact of 
cyberattacks on platoons or defense methodologies, such as detection and protocol design. 
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Instead, in this study, we develop a comprehensive framework to model the impact of 
cyberattacks on platoons and to detect sensor measurement anomalies caused by either 
malicious attacks or sensor faults. Specifically, we propose a general platoon dynamics 
model under heterogeneous time delays, and design a state-space model for filtering and 
anomaly detection by utilizing cooperative vehicles’ information. We further extend this 
model to consider stochastic time delays and show its impact on the state-space model. In 
order to investigate the impact of cyberattacks on platoons, we first conduct string stability 
analysis of the proposed platoon dynamics model. To the best of our knowledge, this is the 
first head-to-tail string stability analysis under heterogeneous time delay. Next, we propose 
a new definition for string stability under cyberattacks and model uncertainties, which we 
call pseudo string stability. 

For vehicle state estimation, we show that under stochastic time delay, there may exist 
potential bias in the process noise of our proposed state-space model. To compensate for 
this, we propose an augmented state extended Kalman filter (ASEKF) for vehicle state 
estimation. For anomaly detection in the vehicle sensor measurements, we adopt two 
anomaly detectors, namely the 𝜒2-detector and the one class support vector machine 
(OCSVM), in conjunction with ASEKF. We conduct extensive experiments to demonstrate 
the effectiveness of our proposed detection framework. Specifically, we conduct an ablation 
study showing that an extended Kalman filter with an OCSVM detector achieves the best 
performance, whereas an augmented state formulation can significantly boost the 
performance of the 𝜒2-detector under time delay. Our experiments also show a negative 
impact of the time delay on the overall anomaly detection performance. 

To study the impact of cyberattacks on the platoon’s string stability, we conduct sensitivity 
analysis on the attack parameters. We observe certain relationships between the distance- 
and velocity-targeted attack parameters in affecting the peak amplification of 
perturbations in the platoon. In our experiments, we further investigate the pseudo string 
stability of platoons under different detection sensitivities and obtain the critical detection 
sensitivity to ensure a pseudo stable vehicle string. 

The study is subject to certain limitations. In our experiments, similar to previous studies 
in the literature, due to the paucity of real-world anomalous CAV data, the anomalous 
instances in the sensor data are simulated with a mix of five types of anomalies. This 
implicitly imposes an assumption on the characteristics of the anomalous data. To partially 
address this limitation, we adopt a OCSVM model to learn the detection threshold by 
merely learning from normal data. It may be beneficial to test for novel anomaly types 
using real-world anomalous data to more accurately measure the effectiveness of our 
proposed detection methods. 
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