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The goal of this paper is to design a stabilizing feedback controller of roll instability near
stall. This problem becomes immensely challenging since the aileron sensitivity is vanishes and
even reversed sign at stall. This challenge is overcome by employing the recently developed Lie
Bracket Roll Augmentation (LIBRA) mechanism. In this mechanism,the nonlinear dynamics
of the airplane near stall is exploited to achieve a rolling motion that is independent of the
aileron sensitivity. Rather, it depends on the variation of the aileron sensitivity with the angle
of attack which is non-zero at stall. The open loop characteristics of the LIBRA mechanism
have been studied previously. The contribution of the current manuscript lies in using the
LIBRA mechanism in a feedback fashion to stabilize the roll unstable dynamics near stall
using a stabilization scheme based on motion planning techniques for highly oscillatory inputs.

I. Nomenclature

C®(R™) = The set of analytic functions on R”
'(R™) = The set of analytic vector fields on R"
T.R" = The tangent space of R" at the point x
R” = The Euclidean space of dimension n

N = The set of natural numbers

1| = The number of elements in the set I

|x| = The absolute value of the real number x

I1. Introduction

Geometric control theory flourished during the 70s, 80s and 90s. The potential of the theory to generalize the
results from Linear Control theory to systems in the Control-Affine form generated a lot of interest [1]. A variety of
fundamental questions about the structure of nonlinear control systems, Controllability and Observability, Feedback
Linearization, and other questions were framed, and satisfactorily answered in many cases [2][3][4][5]. Moreover,
constructive techniques for Controller Design, Motion Planning and Stabilization were developed. The setting of
Geometric Control theory is natural for nonlinear systems, especially for the control of mechanical systems [6]. Despite
the fact that many fundamental issues remain [7], interest in geometric control theory has been declining since the
beginning of the new century. This unfortunate decline can be attributed to the difficulty of the subject and the tendency
to dismiss the theory as inapplicable for real-world problems. However, the second author demonstrated in a series
of papers that geometric control tools can be used to tackle practical problems [8—12]. It was shown that tools from
geometric control offer a potential roll stability recovery mechanism from the Loss of Controllability during stall and
high angle of attack maneuvers [13—16]. The discovery of this Lie Bracket Roll Augmentation mechanism, dubbed
LIBRA, sparked a strong interest in understanding the physics behind it [17], and in experimentally quantifying its
effectiveness [18]. Moreover, it raised the important question of how to design controllers that utilize this mechanism. It
is the purpose of this work to answer this question. In this manuscript, we introduce a control scheme based on geometric
control techniques that exploits nonlinearities in a control-affine system to provide feedback authority in unactuated
directions. We demonstrate the effectiveness of the proposed scheme on two classic examples in the geometric control
literature in addition to a minimal model representing the LIBRA mechanism for an airplane model inside a windtunnel
that has been introduced recently in [16].
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The remainder of this manuscript is organized as follows. The preliminary definitions and a quick review of the
problem setting are provided in section III. We refer the reader to [19, 20] for a more complete treatment. The main
scheme is outlined in section I'V. The application of the proposed controller scheme to examples is provided in section
V. Finally, the conclusion and future work are discussed in section VI.

ITI. Preliminaries
We begin the discussion by identifying the class of control systems of primary interest. This class is the class of
control-affine systems. Let x € R" be the state of the system. The evolution equation of a control-affine system is then a

differential equation of the form:
m

= fo+ ) fius, (1)
i=1

where fy € T'(R") is the drift vector field, f; € T'(R™), i € {1,...,m} are the control vector fields, and u; € R, €

{1,...,m} are the corresponding control inputs. If fi = 0, the system is called driftless. Denote the family of control

vector fields by ¥ = { f;}. Associated to such a family is the Lie Algebra generated by its elements, which is denoted by

Lie™(¥), and obtained through repeated application of the Lie Bracket operation between different vector field in the

family. The Lie bracket of two vector fields f;, f; is denoted by [ f;, f;], and can be computed in coordinates as follows:

oFf: :
Ui g1 = 20 g 0%

ox ox fi

where % represents the jacobian matrix of the map that defines the vector field f; in the x-coordinates. Another
common notation for the Lie bracket is

ady (f)) = [fi, £
This notation is more compact when iterated Lie brackets are involved. Consider for instance applying the Lie bracket of
Ji with f; twice. This can be expressed as:

adjzci(fj) = [fisad}i(fj)] = [fi. [fi. £i1]

This also generalizes in a straightforward way to iterated Lie brackets of higher orders. In this notation, the Lie algebra
Lie™(F) can be represented as:

Lie™(F) = spance gmy 1fi, ad}j f), ..., ad];j f:),...}

which is essentially all linear combinations, with analytic coefficients, of the control vector fields and their Lie brackets
of arbitrary order. We can also define a sequence of submodules of Lie™ (F):

Lie* (F) = spanc ) Lfi, ad}_,, (fi)s---s ad},. (fi)}

Note that Lie¥ (F) consists of linear combinations, with analytic coefficients, of the control vector fields and their Lie
brackets with order up to k. Associated with each of these submodules is a distribution, which is essentially a smooth
assignment of subspaces of the tangent space 7, R" at each point x. The distribution can be represented as:

Liek (F)(x) = spang { fi(x), ad}, (£)(x), . .,adf (f)(x)} € TeR"

An important property of such a family of vector fields is encountered when the distribution LieX (%) (x) is equal to the
tangent space T, R" at every point x € R", for some finite order k¥ € N. When the family of control vector fields of a
control affine system satisfies this condition, the system is said to satisfy the Strong Lie Algebraic Rank Condition,
or Strong LARC for short. If a control system on R”" satisfies the Strong LARC condition, it is well-known that the
system is completely controllable, i.e. the system can be steered from x; to x, in a finite time, for any two points
x1,x7 € R". Moreover, it is also well-known that if a system satisfies the Strong LARC, then any smooth curve in R"
can be uniformly approximated by controlled trajectories of the system. In particular, this result can be used to solve the
Motion Planning Problem for a control affine system, as outlined in [19]. Suppose that a control affine system given by a
drift vector field fy, and a family of control vector fields # such that it satisfies the Strong LARC with order £, i.e. the



distribution LieX (F)(x) = TyR"™, Vx € R™. Let f;, i € {m + 1,...,r} be a collection of iterated Lie brackets of the
family 7 with an order less than or equal to k. Consider the extended system defined by:

x=fo+ifivi+ 2 fivt
i=1

i=m+1

If r > n, and the set of vector fields {fi, ..., fi, fm+1, R fr} spans the whole tangent space at every point in R",
then any smooth curve in R” can be made into a trajectory of the extended system. Specifically, let r = n and let
v :la,b] 3t y(t) € R" be a smooth curve. Consider the extended inputs defined by

v(t) = (01 (1), v (1) = F(y ()™ (= foly (1) +7(1))

where the matrix-valued map F : R” 5 x — F(x) € R™" is the map that assigns to each point x € R" the matrix
whose columns are given by the values of the control vector fields and the chosen Lie brackets at that point:

F) = [A@ ] [ @) | 1 0] - [ fa) | @)

Since the vector fields are linearly independent at every point, we see that the control inputs v are well defined. Moreover,
we can see that by direct substitution, the curve y automatically satisfies the differential equation governing the control
system when the inputs are given by Eq.(2). In [19], the author outlines an algorithm that produces a sequence of time
varying high frequency high amplitude oscillatory ordinary inputs, i.e. inputs to the original system (not the extended
system), provided that the extended inputs have been determined, such that the sequence of trajectories of the original
system produced by the sequence of inputs uniformly converges to the trajectory of the extended system under the given
extended input on compact time intervals. A detailed explanation of the algorithm is outlined in [19], and a summary of
the algorithm along with examples and a framework to solve the motion planning problem was outlined in our earlier
paper [20], to which we refer the reader. To avoid replicating the material in [19, 20], we will refer to the algorithm
from here on as Liu, and define it as a mapping that converts extended inputs to ordinary inputs:

Liu:R"XIxN> (v,t,j) > u € R"

where [ is the interval on which the extended input is defined, and j is the frequency of oscillation (i.e., a parameter
needed by the algorithm).

An important problem in control theory is the design of feedback control laws that stabilize an equilibrium point of
the system. More concretely, let xo € R" be such that the drift vector field vanishes at the point fy(x¢) = 0. A static
asymptotically stabilizing feedback law is a map

u:R'sx=0Gx. . - @, W) =ueR"

such that the closed loop system given by
m .
i = folx)+ ). filx)ul (x)
i=1

has the point x( as an asymptotically stable equilibrium point. If the system is driftless, then any point xo € R" is
an equilibrium point of the control affine system. In such a case, it is not always possible to design even a merely
continuous static feedback control law such that the closed loop system is asymptotically stable at a given point unless
the impractical, demanding condition m = n is met. This well-known fact is due to Brockett [21] who formulated a
necessary condition for the existence of a static continuous feedback law that asymptotically stabilizes a control system
around an equilibrium point. However, it may still be possible to design time-varying control laws that asymptotically
stabilize the system. In fact, many efforts have been made by several authors to design time-varying stabilizing feedback
control laws [22][23][24][25][26]. Most of the results focused on driftless systems, and the proposed laws vary in
the complexity of the produced trajectories and the difficulty of the design process. In this work, we outline a design
technique based on the motion planning algorithm in [19] to stabilize a control-affine system with drift.



IV. Control Scheme

We assume that a control affine system in the canonical form:
m
i=fo+ ) fiu (3)
i=1

Let the control system satisfy the Strong LARC condition with iterated Lie brackets of order no more than k. Let
{fm+1s-- -, fn} be the additional Lie brackets that are needed in order to satisfy the Strong LARC. Then, associated to
the ordinary system (3) is the extended system given by:

x=f0+ifivi+zn:f~ivi “4)
i=1

i=m+1

Suppose that f,(0) = 0, and that we would like to design a control law that asymptotically stabilizes the origin 0 € R”.

A. Step I:
The first step in the framework is to design a control law that asymptotically stabilizes the origin for the extended
system. One such control law is given by the feedback law:

v(x) = —F(x)™' (fo(x) + Ax) &)
where A > 0. By direct substitution, we see that this control law produces the closed loop extended system:
% = fo(x) + F(x)v(x) = fo(x) = F(x)F (x)™' (fo(x) + Ax) = —Ax

for which the origin is clearly exponentially stable.

B. Step II:

The second step in the framework is to produce ordinary input feedback laws that “track” the closed loop trajectory
of the extended system. The infinite time horizon [0, o) is divided into intervals of equal length 7 > 0, and the problem
of stabilization reduces to a sequence of independent trajectory tracking problems on the intervals. Feedback is made at
the beginning of each interval where the current state of the system is used as the initial condition for the closed loop
extended system over the interval. The trajectory of the closed loop extended system on each interval starting from
the initial condition supplied by feedback is then used to generate the open loop extended inputs that give rise to this
trajectory. Finally, these extended inputs are passed on to the map Liu to produce open loop ordinary inputs to be applied
to the ordinary system over the duration of the interval. This scheme can be summarized in the following algorithm:

Algorithm 1: Stabilization Scheme
k=0;
while rrue do
Setly = [kT,(k+1)T];
Setx; =x(kT);
while 7 € I, do
Set yi (1) = ¢ (x);
Setvi () = a(yk(1),1);
Setuy(t) = Liu(vi(t),t, j);
Apply the open loop control u (¢) to the system
end
k = k+1;

end

In the above algorithm, the map ¢’ : R" — R” represents the flow along the vector field of the closed loop extended
system under the feedback law @ : R” x R — R”. If we choose « to be given by the feedback law (5), then the flow ¢’
is simply given by:

¢t(x) — e—/lI t x
where I is the n X n identity matrix. It can be shown that under this sampled feedback law, the origin can be made into a
practically asymptotically stable point for the ordinary system. We will provide a proof of this result in the appendix.



V. Examples
In this section, we apply the proposed stabilization scheme on two examples. We begin by a well-known example
from the geometric control literature:

A. Example 1:
The first example is the well-known Brockett integrator, for which we have the two control vector fields and their Lie
bracket given by:

fl(x) = (1,0,—)62)
fZ(x) = (0’ l’xl)
Lf1, f2](x) = (0,0,2)

where x = (x!,x2,x%) € R?. We also assume a drift vector field fo(x) = x, and the system is given in control affine
form by:

2
X=f=fo+Zfiui
i=1

Note that the origin is an equilibrium point for the system, and that the drift vector field is destabilizing. The linearization
of the system around the origin is given by the matrices:

i

B ox x=0,u=0 B

b O

h ou x=0,u=0 B

S O =
S = O
- O O
S O =
S = O

To investigate controllability of the linearization, we form the controllability matrix:

C=[B|AB|A’B] =

S O =

010
1 0 1
0 0 0

S O =

0
1
0

Clearly, the linearization is not controllable since rank(C) = 2. Moreover, the linearization is not even stabilizable
since the third mode of the linearization is unstable and independent of the other states and the control inputs. Hence,
linear control tools completely fail to tackle this problem. However, the Brockett integrator satisfies the Strong LARC
condition since:

spang { f1(x), f2(x), [fi, f21(x)} = TeR, Vx € R?

which means that the system is, in fact, completely controllable. Suppose that we would like to stabilize the origin for
the Brockett integrator. We see that the matrix F(x) and its inverse will be given by:

1 0 0 1 0 0
Fx)= o 1 o], Fx)'=| o 1 0
-x2 X' 2 %xz —%xl %

Let A = 1. The feedback law that stabilizes the origin for the extended system can now be readily computed as
a(x) = =F ()™ (fo(x) +x) = (-2x!, -22%, %) (©)
For the Brockett integrator, the function Liu defined by the algorithm in [19] can be shown to be:
u=_Liulv,t,j)= (v1 +r]1(v3)\/2_jcos(jt),v2 + 7]2(v3)\/2_jsin(jt)) @)
where n',77% : R — R can be any absolutely continuous functions such that

n' ()’ (x) = x
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Fig. 1 Simulation Results for Example 1

One possible choice for these functions is ' (x) = 1, %(x) = x. Another possible choice is ' (x) = /|x[, P?(x) =
\/m sgn(x), where sgn(x) is the sign function. Both of these choices are absolutely continuous functions, and so
convergence of trajectories is guaranteed by the results in [19]. However, the trajectories produced by the two are
qualitatively different, especially near the origin. Specifically, the latter choice produces trajectories that seem to
converge to the origin asymptotically, whereas the trajectories of the former converge to a region around the origin
but keep oscillating indefinitely. Simulation results for this example are shown in Fig.(1). We used a initial condition
xo = (=2,-2,2), interval length T = 0.04 and frequency j = 507x.

B. Example 2:
The second example has a state x € R, and two control vector fields with their Lie brackets given by:

fi(x) = (1,0,—x%,0, - (x%)?)

fo(x) = (1,0,—x",0,-(x")?)

[f1. f2](x) = (0,0,2,0,2(x" +x?))
Lf1. Lfi, £211(x) = (0,0,0,2,0)
[f2. Lf1- f2]1(x) = (0,0,0,0,2)

Let the drift vector field be fy(x) = x. The linearization of the system is also not controllable nor stabilizable, similar to
Example 1, due to the presence of three uncontrollable and unstable modes in the linearization. However, the system
satisfies the Strong LARC condition:

spang { f1(x), f2(x), [f1, £21(x), Lf1, LA, 211, L L1, £11(x)} = TR, Vx € R

Suppose that we would like to stabilize the origin. The matrix F(x) for this system and its inverse take the form:

1 0 0 00 1 0 0 00

0 1 0 00 0 1 0 00

Fx)=| x> x 2 o0 0| Fx'=[ ¥ L' 1 00
0 2 ! 20 -0 = Lo

-2 0 222 0 2 0 Ixlx -1 0 §



Let A = 5. The feedback law for the extended system can be taken as in Eq.(5). The algorithm in [19] can be shown to
produce the map:

u=(u',u®) = Liu(v,1, j)

u' = v+ V2w j cos(jt)ni (v*) - y[Bwswej? cos(wsjt)ns(v°)
+ [Bwswa j2( cos(ws jt)n3 (v + cos(wajt)na (v*))

u? = v* + 2017 sin(jO)m (v?) - [8wswa 2 cos(ws jH)ns(v*)
+ J8wewr j2(cos(ws j1)ms (v¥) + cos(wr jnm (v))

where the functions 7; are absolutely continuous functions that satisfy:
m@n(x) =x,  n3()na(x)ns(x) =x,  n6(x)n7(x)ns(x) = x
and the constants w; are given by:
w =2, w3=1, w4 =3, ws=4, weg=15, w3 =7, wg =12

Once again, the choice for the functions r; determines the qualitative behavior of the trajectories as they approach the
origin. The first choice, referred to as choice A, is:

mx) =1 n2(x) =x n(x) =1 n4(x) =1
n5(x) =x ne(x) =1 n7(x) =1 ns(x) =x

The second choice, referred to as choice B, is given by the functions:

71 (x) = Vx| m(x) = VIxlsgn(x) m(x) = VI na(x) = VIl
15(x) = Vlxlsgn(x) 16(x) = Vx| 17(x) = x| 78 (x) = Vlx|sgn(x)

The simulation results are shown in Fig.(2). We used a initial condition x¢ = (1,1, 1, 1, 1), interval length T = 0.05
and frequency j = 40n. We clearly see the advantage of choice B, which shows the asymptotic convergence of the
trajectories to the origin, whereas choice A suffers from persistent oscillations.

Choice B turns out to be always possible no matter the order of the Lie brackets involved in the extended system.
The control laws produced by the algorithm in [19] will contain |V| sets of functions {{771" } iEI}v v » €ach set being
associated to one of the extended inputs v € V. All of the functions need to be absolutely continuous, and they must
satisfy the condition that

nniv(x) =x,YvevV

i€l
It is now clear that we can always pick all the functions associated to an extended input v to be 17} (x) = Vx|, except for

one function which we pick to be n;’ (x) = W sgn(x). This choice satisfies the requirement on the functions, and so the
convergence properties of the trajectories are not affected. However, the qualitative behavior as the system approaches
the origin will differ. The functions n} appear as the amplitude of a high frequency high amplitude oscillations in the
ordinary input. When these functions do not vanish at the origin, amplitude of the oscillations remain finite and so the
oscillations in the input will persist. However, if the functions are made to vanish at the origin, then the amplitude of the
oscillations will decrease asymptotically, and the system will not suffer from the persistent oscillations.

C. Example 3

In the third example, we consider the three DOF model illustrating the LIBRA mechanism which was introduced in
the recent article [16]. The model represents an airplane in a wind-tunnel with three degrees of freedom: pitching,
rolling, and heaving. Near stall, the sensitivity to aileron deflections becomes zero and even changes sign. This notorious
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Fig. 2 Simulation Results for Example 2

situation leads to the failure of linear techniques in recovering from stall. The situation is exacerbated by the fact the
dynamics of rolling motion is inherently unstable. The model in [16] can be put on the form:

é | 1 tan(6)sin(¢) P 9)
61 o cos(¢) Q
W =go+gi6e (19
P
[Q’ ]=fo+flae+f26a+[fl,fz]ae,a (i

where the vector fields f; can be found in [16]. It is shown in [15-17] that the Lie Bracket vector field [ fi, f>] recovers
controllability near stall; it provides rolling control authority even when the vector field f, = 0. Therefore, the extended
system given by the equations:

i=w (12)

l ¢ ]zl 1 tan(0)sin(¢) || P (13)
6 0 cos(¢) Q

W =go+gi6e (14)

[ g l:f0+f156+f26a+[.fl’fZ](Se,a (15)

which does not suffer from the loss of controllability problem near stall. Consequently, we may apply the techniques
introduced in the previous subsection to design a controller that provides control authority near-stall. We begin by
designing a control law for the extended system. To that end, we design a controller for the extended system using a
backstepping approach. First, we design the desired rates Py and Q to track a step command ¢4 and 64:

Py
Qu

Uy =

_ [ 1 tan(@) sin(¢) l_l[ ¢a—¢ l (16)

0 cos(¢) 04 —0
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Fig.3 Simulation Results for Example 3

‘We observe that:

é _| 1 tan(0)sin(¢) wo = | $29 (17)
6 0 cos(¢) * a6

which is an exponentially stable system with the Lyapunov function:
1 2 1 2
Ve = 5(¢=da)"+ 5(0 - 6a) (18)

Applying the back stepping technique, we obtain the following control law for the extended system:

66 . T
sa | = foo LA S]] (u—[ (1) tan(9) sin(¢) VVx—fo—e) (19)
5 cos(¢)

where e = [P, Q] T —u,,and  denotes the Moore-Penrose inverse. Observe that, for the sake of demonstration, we are
effectively neglecting the dynamics of heaving W in the design and are only interested in regulating the angles 6 and ¢.
The above control law stabilizes the extended system around a step input defined by 6,4 and ¢,. Using the techniques
introduced in the previous subsection, we design the ordinary inputs of the original system to perform a rolling maneuver
near stall for the original system. The model is required to track a step input roll angle ¢4 = 3° and maintain 64 = 11.4°
at stall. The initial conditions are taken to be @ = 6 = 11.4°, ¢ = W = P = Q = 0. The simulation results are shown in
Fig.3. We observe how the system is able to track the step input despite the fact that there is a complete loss of aileron
sensitivity at this initial condition. This fact can be observed in the extended inputs time-history where only the elevator
input 6, and the extended input 6. , are non-zero, whereas the aileron deflection input ¢, is zero.

VI. Conclusion
In this manuscript we utilized trajectory tracking technique to design a time-varying control scheme that provides
practical stability for control-affine systems with drift when the Strong LARC is satisfied. We provided several



applications of the results here, including the problem of airplane dynamics in the case of Loss of Controllability during
stall using a minimal model that illustrates the recently introduced LIBRA mechanism. Future work will consider a
better control design technique for the extended system and a comparison with the traditional methods employed in the
case of loss of controllability.

Appendix: Proof Sketch and Remarks
In this appendix, we provide a sketch of the proof of practical stability for the proposed control scheme. We begin
by recalling an important proposition from [19]

Proposition 1 Let F = {fo, f1,..., fm} be a family of smooth time-varying vector fields on R" that are jointly
differentiable in (x,t). Assume that the solution x generated by v and the extended system for ¥ with initial condition
x(0) = xg € R" is defined on [0,T], T > 0. Then there exists a constant K such that the solutions xJ generated by
u;(-) = Liu(v,-, j) and ¥ and initial condition x (0) = xo are defined on [0,T] for j large enough and

sup ij(t) —x(t)“ <K j_%
t€[0,T]

where r is the highest order of Lie brackets in the extended system. Let A C R" be a compact set that contains the
trajectory x in its interior. Then the constant K depends on F restricted on A, for a fixed choice of the functions {n;}.

This proposition allows us to choose the frequency j independently from the interval in the proposed algorithm when
all the trajectories of the extended system lie inside a compact set. Such is the case when the extended system is
asymptotically stable under a smooth feedback control law.

Fix T > 0, and consider the control affine system in Eq.(3) under the proposed control scheme with interval length 7.
Let R > 0, and consider initial conditions in the compact ball around the origin:

Br(0) = {x e R" | [x|][< R} cR"

Any trajectory of the closed loop extended system with initial condition xy € Bg(0) will remain inside Bg(0). The
norm of the trajectory of the extended system in the first interval is given by:

Ix(@)]I< x)lle™ < Re™, 1€]0,T]

So, in particular x(¢) € Bg(0), Vt € [0,T]. Let§ € (0,1),e € (0, (1 — 6)R), and let j; be such that V;j > jj, the
trajectories of the ordinary system exist and satisfy:

sup Hx"'(t) —x(t)H < Kj_%
t€[0,T]

where K > 0 is as in Proposition 1 with a fixed choice for the functions {r;} and the compact subset Br,.(0). Let
A* = 7 log ({7=4z=5). Then, we see that:

Re ™ <Re T — g, Vae (1, )
where a = Tl log(ﬁ) > 0. Fix 4 € (1%, ). Then, the trajectory of the ordinary system satisfies:
e/ (1)l1= [lx7 (1) = x (1) + 2 (D)l|< 1/ (1) = x D[+ x (D)< K7 + [x(O)le™, 1€ [0.7]
Let j > (£)". Then, ¥j € (max(jy, j2), ), we have:
lx/ (1)< e+ |x(0)|[e™™ < e+ Re™™, te]0,T]
Thus, the trajectory of the ordinary system satisfies:

X/ ()ll< Re™', 1€ [0,T]

10



In particular, we have that ||x/(T)||< Re~T, which implies that x/(T) € Bg(0), and so the initial condition for the

extended system in the next interval is again inside Bg (0). Consequently, the same choice made for j holds for the
second interval, and all subsequent intervals as well. Hence, we have:

I/ (D1 < & +[lx(0)[le™", t€[0,7]
e/ ()l < &+ llx(T)lle™ >, t € [T,2T)
e/ () < &+ llx (kT)[le™* =T, t € [kT, (k+ 1)T]

All these inequalities can be combined to obtain:

~

e/ (l1< &( D (7)) + e/ @lle™, 1 € [0, (k+ DT]

i=0

Taking the limit as k — oo, we obtain the relation:
I/ (D1l T + I/ O™ < Z 4 5/ @)™, 1 € [0,00)
—e

We see that starting from a fixed value of &, we were able to find a parameter j large enough such that the trajectories of
the ordinary system satisfy a relationship of the form:

I/ ()< llx/ (0)]le™*" +Cs, 1 € [0, 00)
where C > 0 is a constant. This concludes the sketch of the proof.

A few remarks concerning the required frequency of oscillation are due. First, notice that the sufficiently high
frequency grows exponentially with the order of the Lie bracket used. It also depends on the size of the compact set in
which we would like to stabilize the system, and the small neighborhood around the equilibrium point that the system
will eventually converge to. Thus, the frequency can be prohibitively high for normal operation. However, in the case of
Loss of Controllability, traditional methods fail to provide stabilizing control laws. Hence, the merit of the proposed
scheme.
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