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Abstract—This work presents a novel low-power CMOS imple-
mentation for fast statistical feature extraction from time series.
Machine learning (ML) models have become standard for time
series processing, however, need to rely on a statistical feature
extraction stage. Low power statistical feature extraction from
time series has received limited attention despite its central role.
Addressing this gap, we present a CMOS-based nonparametric
statistical feature extraction. We exploit hardware-level oppor-
tunities in the analog domain, such as eliminating additions by
current outputs and simplifying kernel cells. We also leverage
algorithmic opportunities to utilize continuous-domain sample
integration to downsample time series without affecting accuracy.
Our propositions are experimentally verified using TSMC 65nm
test chip and show 17-75× lower energy than an advanced digital
design on various statistical features. While analog processing is
susceptible to non-idealities, co-designing the downstream ML
model against such non-idealities can retain accuracy to benefit
from the analog domain’s area/energy efficiency.

Index Terms—Anomaly detection, statistical feature extraction

I. INTRODUCTION

The gaining prominence of internet-of-things (IoT), cyber-

physical systems (CPS), and digital twins have created the

need for efficient, real-time on edge processing of time-series.

In addition, machine learning (ML) methods are becoming

prominent for time-series analytics. Mainly, spatial-domain

ML models such as convolution neural networks (CNN) and

auto-encoder (AE), traditionally developed for images, are be-

ing increasingly applied on time series. For example, ADEPOS

[1] determines time series anomalies by extracting statistical

features such as mean, variance, kurtosis, and other higher-

order moments over a sweeping window. The statistical feature

map is then processed through AE. The feature extraction

reduces the downstream ML model. It fuses data from multiple

time series by converting it on a spatial map such that streams

with mismatching and varying sampling rate can be efficiently

combined. Likewise, in [2], similar time-series preprocessing

was followed by wavelet transformation.

Although DNN accelerators are vigorously being re-

searched, efficient on-edge time series feature extraction has

received only limited attention. Addressing this critical gap,

we make the following key contributions in this paper:

• We present efficient circuits for nonparametric feature ex-

traction from time-series. A nonparametric model makes

minimal assumptions on the underlying data statistics, un-

like parametric models. Therefore, our feature extraction

modules are generic, especially suited for testbeds where

data statistics is obscure or changes frequently.

• Our time-series processing is lightweight. Gaussian ker-

nels are implemented in analog mode to leverage current-

mode output, avoiding dedicated adders for kernel inte-

gration and enabling parallel processing. We recast the

mathematical framework for statistical moment extraction

such that the same hardware units can be multiplexed for

any moment order. Our processing also exploits continu-

ous domain sample interpolation, allowing downsampling

of time series to minimize workload significantly.

• We also experimentally verify our propositions using a

65 nm CMOS test-chip. While analog domain processing

is susceptible to various non-idealities, using predictive

maintenance as a test example, we show that downstream

ML models can be trained against such non-idealities to

harness the benefits of analog processing.

II. NON-PARAMETRIC STATISTICS ESTIMATION AND

HIGHER-ORDER MOMENTS EXTRACTION

A. Non-Parametric Statistics Estimation
Unlike parametric statistical models such as Gaussian or

Poisson distribution, a non-parametric model makes fewer

assumptions about the underlying statistics of input data.

Thereby, non-parametric statistical models are widely applica-

ble, even for the cases where signal stream statistics changes

frequently. For nonparametric density estimation, we adopt

Kernel Density Estimation (KDE). Using KDE, the density

f(x) of a random variable x can be estimated from observed

samples xi as

f(x) =
1

N

N−1∑
i=0

k
(x− xi

h

)
(1)

where k() is a kernel function, h is kernel function width,

and N is number of observed samples. For k(), symmetric

and unimodal functions such as Gaussian or Triangular are

suitable [3]. Fig. 1(a) shows an example density estimation.

B. Statistical Moment Extraction from Density Function
A Kth order moment of random variable x is computed as

E[xK ] =
∫
xKf(x)dx. Here, E[] is an expectation operator

and f(x) is probability density function. To efficiently extract

various order moments, the following scheme is pursued.

f(x) is estimated nonparametrically using (1). For Kth order

moment from f(x), a time-sweep x = g(t) is applied to the

function f(x) and the function output is integrated. Aiming

hardware efficiency as a key objective, our main rationale

behind the approach is to reuse the same density estimator for

f(x) and integrate its outputs using appropriate time-sweeps

g(t) for various statistical order moments. Hence,∫
f(g(t))dt =

∫
1

g′(g−1(x))
f(x)dx. (2)
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Figure 1: (a) Example nonparametric statistical density estimation. (b) Time-sweeps of g(t) for various order moments. (c) Mixed-mode non-parametric
statistical feature extraction from streaming sensor data. Extracted statistical feature map is passed to downstream ML model.

Here, g′ = dg/dt. Note that by setting g′ = 1/xK = 1/gK ,

the integral of the above time-sweep will compute the Kth

order moment of x. The equivalent function for such moment

extraction is g(t) = [(K + 1)t]1/(K+1). Note that the above

relation is valid only when g(t) is invertible, i.e., for each

x, t = g−1(x) exists. Since the captured sensor traces are

range-limited, the estimated density function is range-limited

as well. Considering that sensor outputs are mapped from zero

to VDD, g(t) becomes invertible with respect to x, hence the

above procedure is applicable.

To extract Kth order moment, t should be swept from zero

to
V K+1
DD

(K+1) to consider 0 – VDD sweep of x. Practically, to

complete time-sweeps for various K within a constant time

interval Tmax, a scaling factor αK = VDD

[(K+1)Tmax]1/(K+1) can

be applied, i.e. g(t)= VDD

[(K+1)Tmax]1/(K+1) [(K + 1)t]1/(K+1).

The true Kth order moment can then be extracted by dividing

the integral output by αK . Fig. 1(b) shows such time-sweeps

of g(t) for various order moments. At higher order moments,

the curvature of g(t) w.r.t. time increases.

III. FRONT-END FOR STATISTICAL FEATURE EXTRACTION

Fig. 1(c) shows a system-level overview of our statistical

feature extraction on time-series using the above approach. In

Fig. 1(c), a nonparametric density estimator extracts f(x) from

the captured time-trace. A feature extractor operates on f(x)
to extract various order moments, i.e., E[xK ]. Signal moments

are digitized and then passed to the following deep learning

stage. We discuss each component in detail:

A. Kernel Cell for Density Estimation
We use Gaussian kernel function for our KDE-based density

extraction. Fig. 2(a) shows the circuit of Gilbert Gaussian

Cell (GGC) to implement a density kernel. An input voltage

(corresponding to x in Eq. (1)) is applied to vtest terminal and

potential applied at vi is equivalent to xi in Eq. (1). Fig. 2(b)

shows the simulated Iout vs. vtest characteristics for different

vi using TSMC 65nm models. Notably, peak of the Gaussian

Iout decreases with increasing common mode voltage vi. A

higher vi reduces the over-drive voltage of M8 (tail-device)

and reduces the peak current. Degradation in peak current can

be overcome by complementing PMOS-based input stage with

a similar NMOS-based stage as shown in Fig. 2(c), however

doubling the overheads. Even though the analog approach

introduces such systematic non-idealities in feature extraction,

we will later discuss that downstream ML processing of time-

series can be co-designed against such non-idealities.

B. Non-parametric Statistical Feature Extractor
Fig. 2(d) shows mixed-mode implementation of non-

parametric statistical feature extractor based on GGCs. KDE

is implemented using parallel GGC-based Gaussian kernels.

Shorting outputs of GGCs adds-up current from all cells to

generate a total current ITotal which essentially estimates

the likelihood of test input vtest against reference samples

[v1, .., vN ], i.e., P (vtest|v1, .., vN ). To generate the time-sweep

of vKtest for the Kth order moment, pre-encoded time-sweep

values following vKtest = VDD

[(K+1)Tmax]1/(K+1) [(K+1)t]1/(K+1)

are digitally stored and a DAC applies them as input to KDE-

based density estimator within a time interval of 0 – Tmax. The

output of density estimator is integrated using an amplifier to

estimate moments in analog domain, which are later digitized

for the downstream ML processing. By repeating the time-

sweep vKtest for various order moments, the same circuit can

be utilized for various moment order extraction.

IV. DENSITY FUNCTION MEASUREMENTS

The test chip for KDE-based density estimation was de-

signed with 65nm TSMC technology. The prototype chip

consisted of 10 GGCs and a two-stage OPAMP (operating

as transimpedance amplifier), covering a total area of 0.0207

mm2. Fig. 3(a) shows the measurement setup. A personal

computer (PC) programs Pynq-Z2 FPGA to control the serial-

to-parallel (SPI) interface and configure DAC array with input

and reference samples. DAC array generates analog reference

voltages [v1,...,vN ] and input vtest for the density estimator.

Subsequently, the test-chip output is read out using a logic

analyzer and visualized on PC. Fig. 3(b) shows the output

transfer characteristics of on-silicon GGCs at various common-

mode voltage. Earlier, we discussed that with only a PMOS-

type input stage, GCCs experience a drop in current peak as

the common-mode voltage increases. The same is observed ex-

perimentally. The measured GGC characteristics were curve-

fitted to functionally evaluate the proposed methodology with

more GGCs than implemented on the test chip. A key goal

of our experimental setup was to analyze the impact of

analog-domain non-idealities such as deviation in GGC curves

from true Gaussian function. On-silicon KDE consumed an

average power of 48μW at VDD=1.2V allowing ∼350 MHz

processing speed. Since the majority of IoT applications deal

with time traces sampled at a much lower frequency, the power
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Figure 2: (a) Gaussian kernel implemented using Gilbert Gaussian circuit with PMOS input stage. (b) Transfer characteristics of (a) for different Vi. (c)
Transfer characteristics of the Gilbert Gaussian cell with PMOS and NMOS input stage. (d) Mixed-mode non-parametric moment estimation circuit.
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Figure 3: (a) Measurement setup. (b) Measured GGC transfer curves.
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Figure 4: Digital datapath for moment extraction from time series.

dissipation of our setup can be appropriately scaled by bias

gating.

Extracting time series moments with non-ideal GCC char-

acteristics in Fig. 3(b), in fact, results in a mixing of various

order moments. Since the height of physically-realized Kernel

function kp(x, xi) depends on the bias point xi, it can be

represented as kp(x, xi) ≈ h(xi) × k(x, xi) where k(x, xi)
is the true Gaussian-like kernel density function centered at

xi and h(xi) is a height function. If GGCs are operated with

input voltages from zero to 0.8V, h(xi) decreases from unity

with increasing xi, h(xi) ≈ 1 − αxi. Here, α is the slope of

peak height. Consider the Kth order moment extraction as

Ep[x
K ] ≈

∑∫
xk(1− αxi)k(x, xi)dx (3)

Under a narrow kernel function width, the above reduces to

Ep(x
K) = E(xK) − αE(xK+1), i.e., physically measured

Kth order moment is a mixture of true Kth and K+1th

order moments. Subsequently, we will show that training the

ensuing DNN on physically extracted moments, rather than

true moments, allows to overcome such non-idealities.

V. DISCUSSION AND USE-CASES

A. Analog-Domain Operating Precision Space Exploration
Our analog-domain approach offers several degrees of free-

dom along which the necessary workload can be minimized.

E.g., DAC resolution in the density function synthesizer can

be curtailed. Likewise, fewer time steps can be considered

to integrate the density functions for moment extraction. Fig.

5(a-c) shows the impact of precision reduction along the above

Skewness

Kurtosis

(a)

Skewness
Kurtosis

(b)

Skewness
Kurtosis
Digital

Approach

KDE
Approach

(c)

Figure 5: (a) Energy comparison between digital and proposed feature
extraction approaches. (b) Impact of number of time-sweep steps and (c)
DAC resolution on moment extraction.

time and signal spaces by considering a thousand time-traces

from the predictive maintenance dataset [4]. In Fig. 5(a), the

best and worst-case error bounds on the extracted features

(skewness and kurtosis) vs. the number of time-sweep steps

are shown where only about a hundred time-steps are needed

to extract time-series moments accurately. Similarly, in Fig.

5(b), DAC resolution (BDAC) can be minimized to 6-bit without

noticeable accuracy degradation. Many time-series processing

approaches also consider signal downsampling to minimize the

necessary workload. For example, at 1/N downsampling rate,

only every Nth time series sample can be used for processing.

Fig. 5(c) shows the impact of downsampling on the accuracy

of extracted features using the proposed approach. The x-

axis shows the percentage of samples that can be discarded

under downsampling since KDE functions [Eq. (1)] generalize

density estimation by signal interpolation; only a limited

number of time-traces points are needed to estimate signal

density with sufficient accuracy. Therefore, in Fig. 5(c), more

than 90% signal samples can be discarded to minimize the

workload without incurring significant error considerably.

B. Use-case Study on Predictive Maintenance
We discuss the application for predictive maintenance using

NASA’s bearing dataset [4] where a deviation from the typical

operating characteristics of various machinery is sensed, such

as using vibration or sound measurements. On-sensor analytics

for predictive maintenance is gaining prominence to minimize

the latency [1]. The sensors for predictive maintenance are

often placed ad hoc. In constricted spaces, on-sensor analytics

must require minimal footprint and low operating power. Our

analog-domain approach adheres to both of these require-

ments. Utilizing KDE-based signal interpolation, considerable

downsampling can minimize the necessary processing power
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[Figure 5]. To extract various order moments, our analog-

domain processing can reuse the same processing steps and

components, such as density estimation in Eq. (2).

An auto-encoder (AE) operates on the feature map extracted

by the analog front-end for the studied application. AE is

trained on normal time-series data where the encoder com-

presses the input features to a latent representation which is

then reconstructed using the subsequent decoder. Since AE

is only trained on normal data, a high reconstruction error

arises when AE is fed with anomalous time series. We compute

reconstruction error as the average Euclidean distance between

the input and output feature map from AE where the input

feature map corresponds to statistical moments extracted in

our analog-domain approach, i.e., AE is trained based on

physically emulated kernel functions instead of true Gaussian

functions. An error metric γ is defined by normalizing the

reconstruction error on the test data against training data, i.e.,

γ = εtest
εtrain

. Since healthy (normal) data can be better recon-

structed, its γ is smaller; meanwhile, faulty (anomalous) data

has higher γ. Higher discrepancy of γ between healthy and

faulty data better identifies predictive maitenance scenarios.

Fig. 6(a) shows the comparison of γ on healthy and faulty

data when estimating based on ideal Gaussian functions and

based on our on-chip GGCs. For better visualization, γ is

normalized against faulty data in both cases. Even though

our on-chip kernel functions deviate from ideal Gaussian, by

training the subsequent AE on physically implemented kernel

function, the proposed analog approach compares well to an

ideal implementation. Note that physically implemented kernel

function shows many non-idealities such as function amplitude

dependence to function mean and asymmetry as seen in Figure

3(b). Fig. 6(c) shows the impact of process variability by

randomly perturbing kernel function’s mean and amplitude

from the designed using perturbation model shown in Fig.

6(b). Analog approach is quite resilient to such perturbations

which is attributed to a distributed analytics over many GGCs

to minimize the impact of non-idealities of an individual cell.

C. Analog vs. Digital Processing
Unlike in the analog domain, computing with Gaussian

kernels in the digital domain is complex, requiring operations

such as log-ADD [5] and Gaussian function look-up [3],

[6]. Therefore, for digital, we consider moment extraction in

discrete domain as E[xK ] ≈ ∑N
i=1 x

K
i . Fig. 4 shows a com-

parable datapath. Fig. 7 shows the distribution of energy in the

(a) (b)

×E
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rg
y 

sa
vi

ng
s

Figure 7: (a) Energy distribution in the proposed analog approach to process a
hundred sample time-series. (b) Projected energy savings compared to digital
approach (45nm & 22nm) for various order moments.

analog approach for various operations and projected energy

savings (in ×) over digital implementation using component-

level estimates in [7]. For the analog, we consider a signal

downsampling of 10×. For the discrete processing in digital,

the entire trace is considered since it is less amenable to

downsampling in Fig. 5(c). The Analog approach’s energy

dissipation is mostly dominated by the bias power of com-

ponents such as GGC and OP-AMP; therefore, various order

moments require almost similar energy. Comparatively, the

workload of the digital approach increases with moment order

due to more multiplications per sample. Fig. 7(b) considers

4-bit digital processing with 45nm and 22nm technology. By

exploiting signal downsampling and obviating operations such

as additions, the proposed analog approach (in 65nm) requires

17× less energy than 45nm digital for the first-order moment

and 75× less energy for the fifth-order moment. Although

a digital implementation is more technology scalable, the

energy advantages of analog approach are still significant when

comparing to 22nm projections.

VI. CONCLUSION

We have presented a nonparametric analog-domain feature

extraction module to leverage continuous-time signal integra-

tion and interpolation to minimize the necessary workload.

While analog preprocessing is susceptible to non-idealities,

that downstream processing can be co-designed against them.
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