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Abstract—This work presents a novel low-power CMOS imple-
mentation for fast statistical feature extraction from time series.
Machine learning (ML) models have become standard for time
series processing, however, need to rely on a statistical feature
extraction stage. Low power statistical feature extraction from
time series has received limited attention despite its central role.
Addressing this gap, we present a CMOS-based nonparametric
statistical feature extraction. We exploit hardware-level oppor-
tunities in the analog domain, such as eliminating additions by
current outputs and simplifying kernel cells. We also leverage
algorithmic opportunities to utilize continuous-domain sample
integration to downsample time series without affecting accuracy.
Our propositions are experimentally verified using TSMC 65nm
test chip and show 17-75x lower energy than an advanced digital
design on various statistical features. While analog processing is
susceptible to non-idealities, co-designing the downstream ML
model against such non-idealities can retain accuracy to benefit
from the analog domain’s area/energy efficiency.

Index Terms—Anomaly detection, statistical feature extraction

I. INTRODUCTION

The gaining prominence of internet-of-things (IoT), cyber-
physical systems (CPS), and digital twins have created the
need for efficient, real-time on edge processing of time-series.
In addition, machine learning (ML) methods are becoming
prominent for time-series analytics. Mainly, spatial-domain
ML models such as convolution neural networks (CNN) and
auto-encoder (AE), traditionally developed for images, are be-
ing increasingly applied on time series. For example, ADEPOS
[1] determines time series anomalies by extracting statistical
features such as mean, variance, kurtosis, and other higher-
order moments over a sweeping window. The statistical feature
map is then processed through AE. The feature extraction
reduces the downstream ML model. It fuses data from multiple
time series by converting it on a spatial map such that streams
with mismatching and varying sampling rate can be efficiently
combined. Likewise, in [2], similar time-series preprocessing
was followed by wavelet transformation.

Although DNN accelerators are vigorously being re-
searched, efficient on-edge time series feature extraction has
received only limited attention. Addressing this critical gap,
we make the following key contributions in this paper:

o We present efficient circuits for nonparametric feature ex-
traction from time-series. A nonparametric model makes
minimal assumptions on the underlying data statistics, un-
like parametric models. Therefore, our feature extraction
modules are generic, especially suited for testbeds where
data statistics is obscure or changes frequently.

o Our time-series processing is lightweight. Gaussian Ker-
nels are implemented in analog mode to leverage current-
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mode output, avoiding dedicated adders for kernel inte-
gration and enabling parallel processing. We recast the
mathematical framework for statistical moment extraction
such that the same hardware units can be multiplexed for
any moment order. Our processing also exploits continu-
ous domain sample interpolation, allowing downsampling
of time series to minimize workload significantly.

o We also experimentally verify our propositions using a
65 nm CMOS test-chip. While analog domain processing
is susceptible to various non-idealities, using predictive
maintenance as a test example, we show that downstream
ML models can be trained against such non-idealities to
harness the benefits of analog processing.

II. NON-PARAMETRIC STATISTICS ESTIMATION AND
HIGHER-ORDER MOMENTS EXTRACTION

A. Non-Parametric Statistics Estimation

Unlike parametric statistical models such as Gaussian or
Poisson distribution, a non-parametric model makes fewer
assumptions about the underlying statistics of input data.
Thereby, non-parametric statistical models are widely applica-
ble, even for the cases where signal stream statistics changes
frequently. For nonparametric density estimation, we adopt
Kernel Density Estimation (KDE). Using KDE, the density
f(z) of a random variable 2 can be estimated from observed

samples z; as e
f@) =5 2 k(=) (M
i=0

where k() is a kernel function, h is kernel function width,
and N is number of observed samples. For k(), symmetric
and unimodal functions such as Gaussian or Triangular are
suitable [3]. Fig. 1(a) shows an example density estimation.

B. Statistical Moment Extraction from Density Function

A K" order moment of random variable  is computed as
E[zK] = [ 2% f(2)dz. Here, E[] is an expectation operator
and f(x) is probability density function. To efficiently extract
various order moments, the following scheme is pursued.
f(x) is estimated nonparametrically using (1). For K order
moment from f(z), a time-sweep x = ¢(t) is applied to the
function f(z) and the function output is integrated. Aiming
hardware efficiency as a key objective, our main rationale
behind the approach is to reuse the same density estimator for
f(z) and integrate its outputs using appropriate time-sweeps
g(t) for various statistical order moments. Hence,

/ Fg(t))dt = / g,(%f(x)dm- @
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Figure 1: (a) Example nonparametric statistical density estimation. (b) Time-sweeps of g(t) for various order moments. (c) Mixed-mode non-parametric
statistical feature extraction from streaming sensor data. Extracted statistical feature map is passed to downstream ML model.

Here, ¢’ = dg/dt. Note that by setting ¢’ = 1/2% = 1/¢%,
the integral of the above time-sweep will compute the K™
order moment of x. The equivalent function for such moment
extraction is g(t) = [(K + 1)t]"/(5+1), Note that the above
relation is valid only when ¢(t) is invertible, i.e., for each
x, t = g~ 1(x) exists. Since the captured sensor traces are
range-limited, the estimated density function is range-limited
as well. Considering that sensor outputs are mapped from zero
to Vpp, g(t) becomes invertible with respect to x, hence the
above procedure is applicable.

To extract K" order moment, ¢ should be swept from zero

K+1
DD

to 2y to consider 0 — Vpp sweep of z. Practically, to
complete time-sweeps for various K within a constant time

interval T},,,,, a scaling factor ax = [(K+1)TVDD]1/(K+1> can
max

= (T e (K + 1Y/ D,
The true K*" order moment can then be extracted by dividing
the integral output by ax. Fig. 1(b) shows such time-sweeps
of g(t) for various order moments. At higher order moments,
the curvature of g(¢) w.r.t. time increases.

be applied, i.e. g(t)

III. FRONT-END FOR STATISTICAL FEATURE EXTRACTION

Fig. 1(c) shows a system-level overview of our statistical
feature extraction on time-series using the above approach. In
Fig. 1(c), a nonparametric density estimator extracts f(z) from
the captured time-trace. A feature extractor operates on f(x)
to extract various order moments, i.e., E[xK ]. Signal moments
are digitized and then passed to the following deep learning
stage. We discuss each component in detail:

A. Kernel Cell for Density Estimation

We use Gaussian kernel function for our KDE-based density
extraction. Fig. 2(a) shows the circuit of Gilbert Gaussian
Cell (GGC) to implement a density kernel. An input voltage
(corresponding to x in Eq. (1)) is applied to vi.s; terminal and
potential applied at v; is equivalent to x; in Eq. (1). Fig. 2(b)
shows the simulated 1,,; vs. vs0s¢ Characteristics for different
v; using TSMC 65nm models. Notably, peak of the Gaussian
I,y decreases with increasing common mode voltage v;. A
higher v; reduces the over-drive voltage of Mg (tail-device)
and reduces the peak current. Degradation in peak current can
be overcome by complementing PMOS-based input stage with
a similar NMOS-based stage as shown in Fig. 2(c), however
doubling the overheads. Even though the analog approach
introduces such systematic non-idealities in feature extraction,
we will later discuss that downstream ML processing of time-
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series can be co-designed against such non-idealities.

B. Non-parametric Statistical Feature Extractor

Fig. 2(d) shows mixed-mode implementation of non-
parametric statistical feature extractor based on GGCs. KDE
is implemented using parallel GGC-based Gaussian kernels.
Shorting outputs of GGCs adds-up current from all cells to
generate a total current I, which essentially estimates
the likelihood of test input v.s; against reference samples
[v1, .., uN], 1.e., P(vgest|v1, .., vn ). To generate the time-sweep
of v[,, for the K" order moment, pre-encoded time-sweep
values following v/, = [(K—&-I)T‘:if]l/(f(“) [(K + 1)t/ (K+D)
are digitally stored and a DAC applies them as input to KDE-
based density estimator within a time interval of O — 7,,4,. The
output of density estimator is integrated using an amplifier to
estimate moments in analog domain, which are later digitized
for the downstream ML processing. By repeating the time-
sweep vi_, for various order moments, the same circuit can
be utilized for various moment order extraction.

IV. DENSITY FUNCTION MEASUREMENTS

The test chip for KDE-based density estimation was de-
signed with 65nm TSMC technology. The prototype chip
consisted of 10 GGCs and a two-stage OPAMP (operating
as transimpedance amplifier), covering a total area of 0.0207
mm?. Fig. 3(a) shows the measurement setup. A personal
computer (PC) programs Pynq-Z2 FPGA to control the serial-
to-parallel (SPI) interface and configure DAC array with input
and reference samples. DAC array generates analog reference
voltages [v1,...,un] and input vs.s; for the density estimator.
Subsequently, the test-chip output is read out using a logic
analyzer and visualized on PC. Fig. 3(b) shows the output
transfer characteristics of on-silicon GGCs at various common-
mode voltage. Earlier, we discussed that with only a PMOS-
type input stage, GCCs experience a drop in current peak as
the common-mode voltage increases. The same is observed ex-
perimentally. The measured GGC characteristics were curve-
fitted to functionally evaluate the proposed methodology with
more GGCs than implemented on the test chip. A key goal
of our experimental setup was to analyze the impact of
analog-domain non-idealities such as deviation in GGC curves
from true Gaussian function. On-silicon KDE consumed an
average power of 48uW at Vpp=1.2V allowing ~350 MHz
processing speed. Since the majority of IoT applications deal
with time traces sampled at a much lower frequency, the power
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Figure 2: (a) Gaussian kernel implemented using Gilbert Gaussian circuit with PMOS input stage. (b) Transfer characteristics of (a) for different V;. (c)
Transfer characteristics of the Gilbert Gaussian cell with PMOS and NMOS input stage. (d) Mixed-mode non-parametric moment estimation circuit.
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Figure 4: Digital datapath for moment extraction from time series.

dissipation of our setup can be appropriately scaled by bias
gating.

Extracting time series moments with non-ideal GCC char-
acteristics in Fig. 3(b), in fact, results in a mixing of various
order moments. Since the height of physically-realized Kernel
function kp(x,x;) depends on the bias point z;, it can be
represented as k,(z,x;) ~ h(x;) x k(x,x;) where k(z,z;)
is the true Gaussian-like kernel density function centered at
x; and h(x;) is a height function. If GGCs are operated with
input voltages from zero to 0.8V, h(x;) decreases from unity
with increasing z;, h(z;) ~ 1 — ax;. Here, « is the slope of
peak height. Consider the K order moment extraction as

E,[x"] ~ Z/xk(l — ax;)k(z, z;)dx 3)
Under a narrow kernel function width, the above reduces to
Ey(2¥) = E(2X) — aE(z®T), ie., physically measured
K order moment is a mixture of true K* and K+1'"
order moments. Subsequently, we will show that training the
ensuing DNN on physically extracted moments, rather than
true moments, allows to overcome such non-idealities.

V. DISCUSSION AND USE-CASES

A. Analog-Domain Operating Precision Space Exploration
Our analog-domain approach offers several degrees of free-
dom along which the necessary workload can be minimized.
E.g., DAC resolution in the density function synthesizer can
be curtailed. Likewise, fewer time steps can be considered
to integrate the density functions for moment extraction. Fig.
5(a-c) shows the impact of precision reduction along the above
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Figure 5: (a) Energy comparison between digital and proposed feature
extraction approaches. (b) Impact of number of time-sweep steps and (c)
DAC resolution on moment extraction.
time and signal spaces by considering a thousand time-traces
from the predictive maintenance dataset [4]. In Fig. 5(a), the
best and worst-case error bounds on the extracted features
(skewness and kurtosis) vs. the number of time-sweep steps
are shown where only about a hundred time-steps are needed
to extract time-series moments accurately. Similarly, in Fig.
5(b), DAC resolution (Bpac) can be minimized to 6-bit without
noticeable accuracy degradation. Many time-series processing
approaches also consider signal downsampling to minimize the
necessary workload. For example, at 1/N downsampling rate,
only every N™ time series sample can be used for processing.
Fig. 5(c) shows the impact of downsampling on the accuracy
of extracted features using the proposed approach. The x-
axis shows the percentage of samples that can be discarded
under downsampling since KDE functions [Eq. (1)] generalize
density estimation by signal interpolation; only a limited
number of time-traces points are needed to estimate signal
density with sufficient accuracy. Therefore, in Fig. 5(c), more
than 90% signal samples can be discarded to minimize the
workload without incurring significant error considerably.
B. Use-case Study on Predictive Maintenance

We discuss the application for predictive maintenance using
NASA’s bearing dataset [4] where a deviation from the typical
operating characteristics of various machinery is sensed, such
as using vibration or sound measurements. On-sensor analytics
for predictive maintenance is gaining prominence to minimize
the latency [1]. The sensors for predictive maintenance are
often placed ad hoc. In constricted spaces, on-sensor analytics
must require minimal footprint and low operating power. Our
analog-domain approach adheres to both of these require-
ments. Utilizing KDE-based signal interpolation, considerable
downsampling can minimize the necessary processing power
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Figure 6: Impact of (a) systematic and (c) process-induced non-idealities in
the proposed analog approach. (b) Process variability is emulated by randomly
perturbing kernel function mean and amplitude using a Gaussian function.
[Figure 5]. To extract various order moments, our analog-
domain processing can reuse the same processing steps and
components, such as density estimation in Eq. (2).

An auto-encoder (AE) operates on the feature map extracted
by the analog front-end for the studied application. AE is
trained on normal time-series data where the encoder com-
presses the input features to a latent representation which is
then reconstructed using the subsequent decoder. Since AE
is only trained on normal data, a high reconstruction error
arises when AE is fed with anomalous time series. We compute
reconstruction error as the average Euclidean distance between
the input and output feature map from AE where the input
feature map corresponds to statistical moments extracted in
our analog-domain approach, i.e., AE is trained based on
physically emulated kernel functions instead of true Gaussian
functions. An error metric 7 is defined by normalizing the
reconstruction error on the test data against training data, i.e.,
v = :;ﬁ Since healthy (normal) data can be better recon-
structed, its 7y is smaller; meanwhile, faulty (anomalous) data
has higher . Higher discrepancy of  between healthy and
faulty data better identifies predictive maitenance scenarios.

Fig. 6(a) shows the comparison of + on healthy and faulty
data when estimating based on ideal Gaussian functions and
based on our on-chip GGCs. For better visualization, vy is
normalized against faulty data in both cases. Even though
our on-chip kernel functions deviate from ideal Gaussian, by
training the subsequent AE on physically implemented kernel
function, the proposed analog approach compares well to an
ideal implementation. Note that physically implemented kernel
function shows many non-idealities such as function amplitude
dependence to function mean and asymmetry as seen in Figure
3(b). Fig. 6(c) shows the impact of process variability by
randomly perturbing kernel function’s mean and amplitude
from the designed using perturbation model shown in Fig.
6(b). Analog approach is quite resilient to such perturbations
which is attributed to a distributed analytics over many GGCs
to minimize the impact of non-idealities of an individual cell.

C. Analog vs. Digital Processing

Unlike in the analog domain, computing with Gaussian
kernels in the digital domain is complex, requiring operations
such as log-ADD [5] and Gaussian function look-up [3],
[6]. Therefore, for digital, we consider moment extraction in
discrete domain as E[zX] ~ 2N | «K. Fig. 4 shows a com-

parable datapath. Fig. 7 shows the distribution of energy in the
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Figure 7: (a) Energy distribution in the proposed analog approach to process a
hundred sample time-series. (b) Projected energy savings compared to digital
approach (45nm & 22nm) for various order moments.

analog approach for various operations and projected energy
savings (in x) over digital implementation using component-
level estimates in [7]. For the analog, we consider a signal
downsampling of 10x. For the discrete processing in digital,
the entire trace is considered since it is less amenable to
downsampling in Fig. 5(c). The Analog approach’s energy
dissipation is mostly dominated by the bias power of com-
ponents such as GGC and OP-AMP; therefore, various order
moments require almost similar energy. Comparatively, the
workload of the digital approach increases with moment order
due to more multiplications per sample. Fig. 7(b) considers
4-bit digital processing with 45nm and 22nm technology. By
exploiting signal downsampling and obviating operations such
as additions, the proposed analog approach (in 65nm) requires
17x less energy than 45nm digital for the first-order moment
and 75x less energy for the fifth-order moment. Although
a digital implementation is more technology scalable, the
energy advantages of analog approach are still significant when
comparing to 22nm projections.

VI. CONCLUSION

We have presented a nonparametric analog-domain feature
extraction module to leverage continuous-time signal integra-
tion and interpolation to minimize the necessary workload.
While analog preprocessing is susceptible to non-idealities,
that downstream processing can be co-designed against them.
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