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Abstract—Many of the existing techniques to detect anomalies in
multi-channel time-series lack flexibility and incur significant processing-
overheads; therefore, real-time, flexible anomaly detection in resource-
constrained edge devices is still an open problem. Addressing the above
challenges, we present an ultra-low-power non von-Neumann framework
for statistical modeling based anomaly detection in multi-channel time-
series. To disruptively minimize the power dissipation for anomaly detec-
tion and enhance scalability to complex time-series statistics, we pursue
a co-designed approach where the anomaly statistics are modelled using
an unconventional Harmonic-Mean of Gaussian-like (HMG) functions.
We show that multivariate HMG functions can be implemented simply
by exploiting the short-circuit current of multi-input inverters. A non-
von Neumann crossbar of charge trap inverters implements a mixture
of HMG function and stores model weights. On Yahoo real time-series
dataset, our anomaly detection approach achieves an f1-score higher than
0.85 even in the presence of significant process variation and consumes
181f)/sensor sample for a three-channel time-series. Compared to baseline
digital and analog approaches for anomaly detection, our framework is
~40x and ~6x more energy efficient, respectively, while being more
scalable to time-series dimension.

I. INTRODUCTION

Over the last decade, internet of things (IoT) has made tremendous
progress and continues to evolve to create an evermore connected
world by coalescing technology and human interaction. It is predicted
that by 2025 the number of networked IoT devices will grow to
more than 30 billion [1]. Unfortunately, such a massive network of
heterogeneous IoT devices poses open serious security threats [2]. In
a hostile environment, under cyber-attacks or tampering, sensed data
from IoT devices can be aberrant and erroneous. Operating a system
with compromised sensing peripherals leads to failure [3].

Since IoTs use thousands of sensors to continuously monitor
different attributes of a physical process, sensed data is often high-
dimensional and large scale. High dimensionality and large scale
of IoT data worsens the complexity of anomaly detection (AD)
algorithms. Existing supervised, semi-supervised and unsupervised
algorithms are infeasible for AD as it’s impractical to have a
complete knowledge of root-cause of various anomalies and/or they
lack flexibility in handling dynamic operating conditions [3]-[8].
Statistical modeling-based AD learns the statistical features of ToT
data and the learned statistics is used for AD. Unlike classification
and NN-based approaches, anomaly detection using statistical models
can be computationally lightweight as well as easy to update. There-
fore, in this work, we pursue multivariate, unsupervised statistical
modeling approach for anomaly detection in time-series data.

Gaussian-Mixture models (GMM) are widely used for unsuper-
vised statistical modeling. Although GMM based statistical modeling
is relatively light-weight compared to NN-based approaches, it is still
computational intensive as its conventional digital implementation
requires multiplication, addition, subtraction and accessing look-up
table for each dimension [9]. Therefore, it is infeasible to use conven-
tional GMM statistical modeling approach for on-the-edge anomaly
detection. Addressing above challenges, our key contributions are:

o« We present a novel co-designed approach for ultra low-power
multivariate statistical modeling. We show that, unlike multivariate
Gaussian function, harmonic-mean of Gaussian (HMG) functions
can be much easily implemented by multi-input inverters by

exploiting their short-circuit current for computing. A mixture of
HMG also provides high fidelity of statistical modeling and shows
comparable accuracy to the conventional approach, yet with a
fraction of energy overhead.

« By exploiting threshold voltage (Vtn) programmability of charge
trap (CT) transistors, we discuss the design of non von-Neumann
crossbars for statistical modelling. Each column of the crossbar
hosts an HMG mixture function. All mixture functions are com-
puted in parallel. For d-dimensional time-series, crossbar requires
d-rows of CT transistors whereas number of columns are governed
by time-series complexity. Therefore, even for high-dimensional,
complicated time-series statistics, computing overheads are mini-
mal.

« We demonstrate the efficacy of our approach on Yahoo time-series
dataset [10]. Our model parameters are learned by Expectation-
Maximization (EM) for HMG mixtures. Our approach achieves an
fl-score higher than 0.85 for anomaly detection on Yahoo real
time-series dataset [10] even in the presence of significant process
variation. Our approach consumes 181fJ with 150 HMG mixture
components
Sec. II discusses the background on CT transistors and non von-

Neuann crossbar architecture using multi-input CT inverters for

HMGM based statistical modeling and anomaly detection. Sec. III

discusses TCAD modeling of CT. Sec. IV presents accuracy results

on benchmark dataset. Sec. VI concludes.

II. NON VON-NEUMANN CHARGE TRAP CROSSBARS FOR
ULTRA-LOW-POWER STATISTICAL MODELING

A. Charge Trap (CT) Transistor

Charge Trap (CT) transistors exploit oxygen vacancy defects
created in HfO> due to metal deposition for charge-trapping based
embedded non-volatile memory (eNVM) effect. Key advantages of
CT-based eNVM is technology scalability to sub-30 nm and FinFET
dimensions as well as low programming voltages [11]. In [11], for 30-
nm channel length CT transistors, short-duration pulses of magnitude
~1.5 V were applied to the gate (Vg) while biasing the drain at
~1.3 V and grounding the source/body to program. Programming
pulses induce vertical field assisted hot-electron-injection to gate-
dielectric traps; thereby, Vru of the transistor increases. Conversely,
Vtu decreases due to charge detrapping when negative pulses is
applied to the gate and the source, drain, and body are grounded.
Notably, CTs can be programmed/erased with voltages under 2V
[11], allowing on-chip low-power programming using standard in-
put/output (I/O) transistors. Moreover, as discussed in [11], CT-
eNVM requires minimal changes in the standard fabrication flow.
B. Exploiting CT Inverters for Gaussian-like Kernel Function

In a CMOS inverter, short-circuit current flows during input signal
transition when both pull-up and pull-down devices are turned on
simultaneously. Prior work [12] has shown that inverter’s short-circuit
current can be modeled using a “Gaussian-like” function as
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Here, p is the Vin at which the inverter current peaks. p depends
on threshold voltage of NMOS and PMOS, i.e., Viu, and Vrup. o
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Figure 1: (a) Circoit diagram of two-input inverter, (b) Short-circuit cument in
a two-input inverier closely matches harmonic-mean of Gaossian-like (HMG)
function, and (¢} Two-input inverter's short-circoit cument as a function of
Vy and V. Simulations are performed using 22-nm echnology modeds [13].

is a technology-dependent fitting parameter. o models the variance
of Gaussian-like Iy and it depends on the thermal wvoltage and
transistor’s ideality factor, 7. g can be modulated by a A amount
by programming NMOS and PMOS threshold voltages as Vi, —
Ve + A and Vg — Vi - A, respectively. Importantly, with the
above relation, only g changes without affecting the peak current

Interestingly, inverter's short circuit current is well-suited to physi-
cally emulate a Gaussian-like kemel function for statistical modeling.
The current is unimodal and with appropriate transistor sizing can be
made symmetric. By designing imverter with CT technology, Vm of
NMOS and PMOS can be programmed, thereby the mean (u) of
Gaussian-like kemnel function can be set as desired.

C. Co-designing Kernel with Curremt Conduction Physics

Although inverter’s short-circuit curent in (1) greatly simplifies
the implementation of a univariate kernel for statistical modeling,
multivariate kemels are still expensive by requiring the product
of the 1-D kemels. Particularly, analog multiplication is needed
since the output of inverter-based realization is in the curment-mode.
Hence, with increasing dimensionality of statistical model, even with
simplified univariate kernel, the necessary analog multiplications for
multi-variate kemmels become a critical bottleneck.

Owercoming this limitation, we propose a co-design approach
where a multivariate kernel is realized through the harmonic-mean of
1-D kemels instead of their product Fig. 1(a) shows four transistor
CT inverter controlled by two input voltages, Vi, Vy. Fig. 1(b-c) show
contour and surface plots respectively of Ipoy e while varying Vi
and Vy. Since the column current shows a Gaussian-like sensitivity
to each input channel (Vx or Vy), the overall column current emu-
lates a harmonic mean of Gaussian-like (HMG) function, following
the Kirchhoff’s law. Fig. 1(b) shows a good comelation between
SPICE-simulated characteristics and modelled characteristics using
the harmonic mean of Gaussian (HMG). Notably, in Fig. 1(b), the co-
designed 2D kemel function matches quite well with a 2D Gaussian
except at the tail of the distribution. Unlike multivariate Gaussian,
HMG functions are realized much simply. For d-dimensional HMG,
d-NMOS and d-PMOS transistors need to be stacked in a column.
A d-dimensional HMG function can be analytically defined as
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where p; are mean of constituent Gaussian-like functions and can
be programmed by controlling the Vi of cormresponding transistors
in the inverter-stack. fppo is the peak current and depends on the
transistor sizing, technology, and supply voltage.
. Non-von-Newmann CT Crossbars for Statistical Inference

Using the above multi-imput CT inverters as building blocks,
a mixture of HMG functions can be implemented by connecting
inverters in Fig. 1{a) in parallel, where each inverter implements one
mixture component. A d-dimensional input voltage is applied row-
wise to all the inverters in the array. Resulting total current through
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Figure 2 Multi-input inverter-stack columns (with each column implementing
a multi-variate HMG function) can be connected in parallel to implement
multivariate mixture model, where overall Ipgyy e is proportional to the
likelihood estimate of the inpot (V1,..., V3

parallel inverters will be proportional to the likelihood of the input
voltage. The log-likelihood of a d-dimensional input vector, VI*=4,
can be computed usiﬂg [-[hp-'[“GM as
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where Vili_dl is a d-dimensional input sample, © denotes the HMG
mixture model parameters including A; (mixing proportion) and
pﬁi_dl (mean) for the respective mixture component j. The param-
eters © am learned using the Expectation-Maximization algorithm
(EM) [12]. Although in general EM also learns the variance o for
each mixture component respectively, we chose a fixed o, achieved
by multi-input CT inverter in Fig. 1, for all mixture components.
This simplifies our crossbar implementation, however, also requires
relatively more mixture components to achieve a matching accuracy
to generalized EM-based leaming. For a crossbar with N columns, A;
for a mixture component is implemented by dedicating round(A; = N')
columns for the component 7. p}i_d] isencoded by programming Vo
of respective CT inverters for the component 7.

Although similar non-von-Neumann statistical model inference
was considered in [14], [15], it required unconventional technologies
such as III-IV SOHTFET whereas the curent work achieves similar
capacity with CT transistors that follow conventional fabrication
schemes and can be integrated with typical CMOS modules. In [16],
[17], bump circuits were used for a similar Gaussian mixture model-
based inference, however, high power consumption of each kemel
circuit limits the scalability of the approaches.

E. Anomaly Detection (AD) with Non-von-Newmann CT Crossbar

In Fig. 2, total crosshar current, I, 15 proportional to the like-
lihood of input voltage V.. ¢! applied at their gates. Subsequently,
Iinvioea s digitized using logarithmic ADC to obtain log-likelihood
in digital domain. Further, the computed log-likelihood is compared
against pre-defined likelihood threshold (Pru) to detect if VE;;' is
an inlier or an anomaly, following the rule below

s _ [Outlier, (V9 .10) < P @
sample Inlier, £(Viars.|©) > Pm
For log-ADC, transimpedance amplifier (A, ) with load-resistance Ry
comverts fvsom to an analog voltage. My is chosen depending num-
ber of mixture components, to provide full-range output. Moreover,
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Figure 3: Device simulation study of eNVM Charge-Trap Transistors. (a) Strocture of 22nm NMOS planar device used in TCAD simulation, (b) Hot-electron
injection along with self-heating enhances tunneling of electrons from channel to gate-oxide, () Device Viy increases with time at Vigg = 1.5V and Vs =
1.3V, due to charge-trapping, (d) TCAD model calibration with measurement results from [11] and (2) PTM model is [13] is tuned to match TCAD model
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Figure 4: Circuit configuration to program/erase (a) NMOS devices, (b) PMOS

devices, in CT crossbar.

negative feedback configuration of A, biases parallel, multi-input,

inverters at Vem. An N-bit log-ADC in Fig. 2(b) converts Vin to

equivalent digital-bits using the expression below [18]

N—1
tog, (2 x 10°) = 2=t s the
where ' is code efficiency factor for improving dynamic range.

Interestingly, above non von-Neumann A [ framework can operate
directly on analog inputs VP_;'__'. This is favorable since not only
AD is pushed close to data source for low-latency detection but
also downstream processing overheads (such as digitization and
storage) can be averted for anomalous samples. Notably, even though
the crossbar processing is in analog-domain, domain conversion
overheads (log-ADC in Fig. 2) does not scake with signal dimensions
andfor detection model complexity. With higher signal dimension,
more rows in the crossbar are needed; likewise, with higher signal
complexity, more columns in the crossbar are needed to inhabit more
mixture functions in the model. Yet, only one log-ADC at the final
digitization step is needed.
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II. SiMuLaTION RESULTS AND METHODOLOGY

A TCAD Modeling of Charge-Trap (CT) Transistors

Fig. 3 shows TCAD modeling of the CT transistor characteristics
and their calibration against the measurements reported in [11].
Device simulations were performed using Sentaurus TCAD [19]. In
Fig. 3(a), channel-length (Lg) of planar NMOS device is 22nm, HfOz
thickness is Inm, and substrate is 200nm thick. Substrate is Boron-
doped with a concentration 5x10'7cm™ and Source/Drain are
Phosphorous doped at 1:<10®"cm™? concentration. Physics models
including self-heating related thermodynamic model, charge-trapping
related Fowler-Nordheim, hot-camier injection, mobility degradation
and band-gap namrowing models are wsed for simulation. In Fig.
3ib), trap-concentration in HfO: increases over time due to hot-
electron injection when stressed with a high gate-voltage (V, = 1.5V).
Moreover, higher Vs enhances charge-trapping due to self-heating
[11]. Consequently, in Fig. 3(c), device's ¥ can be modulated with

Table I: Characteristics of Yahoo 3D-datasats
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Figure 5: Fp and Fy performance of discussed approach, (&) for different Py,
and Tperner. () for different Py, and N

controlled charge-trapping by modulating Vps. Conversely, when
negative pulses are applied to gate and drain/source are grounded,
device Wy decreases due to charge detrapping. In Fig. 3(d), TCAD
model is tuned to match the measurement characteristics presented
in [11]. Furthermore, SPICE-level predictive technology model is
calibrated to match the TCAD characteristics in Fig. 3ie).

In Fig. 4(a), while programming NMOS Vi to a higher value, a
particular column is selected by applying a high voltage, Vpp, across
the column. The unselected columns are grounded. A programming
pulse is applied to the gate of the selected NMOS device and the
gate of other devices are held at a passing potential, Vs Vs
is chosen appropriately to inhibit HCI by ensuring the gate-channel
potential is not high. Such biasing condition increases V-m of selected
device through HCI. On the contrary, to decrease Wy of NMOS,
drain/source of the selected NMOS is connected to the ground and
a high-voltage negative pulse is applied to the gate. This causes the
electrons in the gate-dielectric to tunnel back and detrap.

Fig. 4(b) illustrates the procedure to program Vm of a PMOS
device in CT crosshar. Each column is designed to have separate n-
wells and body contacts. While programming, source/body terminals
are applied with Vpp, drain is grounded and Vi of the selected
PMOS is increased by applying negative gate pulses. High gate-
source potential causes holes to tunnel to gate-dielectric from the
channel. Gate of the unselected PMOS devices are supplied with
a pass voltage Vpms and source/n-well of the unselected column is
connected to Vinmerr to inhibit tunneling. On the other hand, Vm
of a PMOS device is decreased by grounding source/body/drain and
applying positive gate pulses, causing holes to detrap. In this case,
the unselected columns are biased at Vinmem to avoid detrapping.
B. Anomaly Detection (AD) Accuracy on Yahoo Dataser

We have used 3D time-series traces from Yahoo's real production
traffic dataset [10] to benchmark the performance of our multi-



Table II: fl-score performance of our approach for different 3D-timeseries
datasets with opun=0.07, N=150
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Figure 6: (&) Process-induced variations changes HMG functions” peak-
amplitode and oy, (b) At higher o pyq, AD performance degrades. and
(c) AD [EITDI'IIIB.I].I.‘,E Chglﬂhi TPy 1=0pra=cpy =209,

channel A approach. This dataset consists of 67 univariate time-
series traces and captures anomalies including outliers & change-
points, i.e., captures typical real-world sensor data attributes. Table 1
summarizes properties of used 3D time-series datasets.

Meanwhile, for AD, algorithmic parameters such as HMG function
standard deviation (7)) and number of mixtures components (N)
determines the accuracy of estimated density. Additionally, o and
likelihood-threshold (Pures) parameters define classification hyper-
plane for A, Hence, optimal choice of these parameters is imper-
ative. Fig. 5(a) shows false positives (Fp) and false negatives (Fy)
performance of our approach vs. ouwmc, for various Pres and for
N=150. Fp increases at low mipa due to inaccurately low-likelihood
estimates for inliers. Contrarily, at higher dipgg, Fx increases due to
inaccurately higher likelihood estimates for outliers. Meanwhile, at
high Pies, increased Fp is due to inaccuracy in classification hyper-
plane. At lower Pans, Fu increases due to outliers having sufficiently
higher likelihood than Py,

Although our approach is limited in independently programming
ouma for each mixture function to retain the simplicity of implemen-
tation through multi-input inverters, a large mixture of HMGs can be
easily implemented by proportionally increasing number of crosshar
columns without significant increase in area’power overheads. Fig.
5(b) shows the Fp and Fn analysis to determine optimal V and Piares.
Statistically, higher NV provides accurate density estimates in tum
improving A D efficiency. However, energy-efficiency of the proposed
framework reduces with increasing V. Themefore, optimal choice of
N and Py, depends on trade-off between energy-efficiency and AD
accuracy. Table II summarizes f1-score of our approach on different

datasets. fl-score is computed as
TF

TP+ 0.5 x (Fy + Fp) ©
here, TP is the number of true positives. An fl-score higher than =
0.85 is achieved through optimal choice of Pies for N=150 and ouma
=0.07. Fig. 6 shows the impact of process-induced variation in HMG
function on AD efficiency. Process-variation in devices affect HMG
function's peak-amplitude and oumc. Comespondingly, in Fig. 6(a),
apvy and opyz are used to model variations in implemented HMG. In
Fig. 6i(b), A} performance degrades for opvz =20%. Fig. 6(c) shows
combined effect of opy and gm; on AD performance. In Fig. 6(c),
AD performance degrades for opy >20% , where opvi=op= opy.
Interestingly, using fewer mixture components (N =50) exhibits better
resilience against opy and opy> induced variations.
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Figure 7: () Energy consumption of different modules in non-von-Neumann
AD framework, (b) Impact of dimensionality on oypg.

C. Power-Performance Characterization

Fig. T(a) shows energy breakdown for modulkes in discussed non
von-Neumann A ) architecture. Our A D consumes an overall energy
of 181.2f] while operating at ~300MHz on a 3D time-series. Log-
ADC consumes 42% of the total energy, as its design includes
comparators and Opamps. The energy consumption of log-ADC in
[18] is projected to 22nm technology using following assumptions:
Energy o (22nm/TechNoderix)®, Energy o (0.8V/VDDger)?, and
Energy oc 204~ Prcisimiss ) Energy spent to apply inputs to the crosshar
accounts for 32%. HMGM implementation using 150 multi-input
inverters and a comparator accounts for 26% of the total erergy.
Fig. 7T(b) considers scalability of our approach to increasing input
dimensionality. In the figure, implemented ogy; with multi-input-
inverter increases with time-series dimension. This is due to a
decrease in gain at each input channel due to series conmection.
A consequence of increasing oumo is that a proportionally higher
programming and input range will be needed for multi-input-inverters
at increasing time-series dimensionality.
D. Comparison to State-of-the-Art

Table Il compares performance of our non von-Neumann ALY
approach with an equivalent digital and analog baseline considered
in [16]. For Table IMI, A} in 3D time-series data is considered.
Notably, multiplier is required for analog baseline design for 3D time-
series processing, therefore, multiplier in [20] is used. Performance
parameters of baseline designs are projected using the assumptions
mentioned in previous section. ADC overheads in baseline design and
in non-von-Neumann A[D approach will be similar, therefore, it is
not included in energy comparison. Notably, proposed approach is at
the least ~6 energy efficient compared to baseline A approaches.
Momeover, our AL approach combines positive aspects of both analog
and digital reference designs in [16].

Table 11I: Comparison of our approach with state-of-the-art
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IV. CoNCLUSION

We presented an ultra-low-power framework for anomaly detection
in multi-channel time-series data. Our approach leverages short circuit
current of inverters based on CT to realize a HMG function for
statistical modeling of time-series. Even more, multivariate HMG
function is co-designed with kemel model against current conduction
principles in a multi-input inverter. Specifically, we showed that a
harmonic mean of Gaussian-like function, instead of multivariate
(Gaussian, is easier to implement as well as provides high accuracy
AD. Many HMG functions can be evaluated in parallel through the
proposed CT crossbars, enabling high-performance. The proposed
non-von-Meumann crossbar architecture for AD consumes 181f]L
Momeover, proposed AD framework is our framework is ~40x and
~f more energy efficient compared to baseline designs.
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