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Abstract—Many of the existing techniques to detect anomalies in
multi-channel time-series lack flexibility and incur significant processing-
overheads; therefore, real-time, flexible anomaly detection in resource-
constrained edge devices is still an open problem. Addressing the above
challenges, we present an ultra-low-power non von-Neumann framework
for statistical modeling based anomaly detection in multi-channel time-
series. To disruptively minimize the power dissipation for anomaly detec-
tion and enhance scalability to complex time-series statistics, we pursue
a co-designed approach where the anomaly statistics are modelled using
an unconventional Harmonic-Mean of Gaussian-like (HMG) functions.
We show that multivariate HMG functions can be implemented simply
by exploiting the short-circuit current of multi-input inverters. A non-
von Neumann crossbar of charge trap inverters implements a mixture
of HMG function and stores model weights. On Yahoo real time-series
dataset, our anomaly detection approach achieves an f1-score higher than
0.85 even in the presence of significant process variation and consumes
181fJ/sensor sample for a three-channel time-series. Compared to baseline
digital and analog approaches for anomaly detection, our framework is
∼40× and ∼6× more energy efficient, respectively, while being more
scalable to time-series dimension.

I. INTRODUCTION

Over the last decade, internet of things (IoT) has made tremendous
progress and continues to evolve to create an evermore connected
world by coalescing technology and human interaction. It is predicted
that by 2025 the number of networked IoT devices will grow to
more than 30 billion [1]. Unfortunately, such a massive network of
heterogeneous IoT devices poses open serious security threats [2]. In
a hostile environment, under cyber-attacks or tampering, sensed data
from IoT devices can be aberrant and erroneous. Operating a system
with compromised sensing peripherals leads to failure [3].

Since IoTs use thousands of sensors to continuously monitor
different attributes of a physical process, sensed data is often high-
dimensional and large scale. High dimensionality and large scale
of IoT data worsens the complexity of anomaly detection (AD)
algorithms. Existing supervised, semi-supervised and unsupervised
algorithms are infeasible for AD as it’s impractical to have a
complete knowledge of root-cause of various anomalies and/or they
lack flexibility in handling dynamic operating conditions [3]–[8].
Statistical modeling-based AD learns the statistical features of IoT
data and the learned statistics is used for AD. Unlike classification
and NN-based approaches, anomaly detection using statistical models
can be computationally lightweight as well as easy to update. There-
fore, in this work, we pursue multivariate, unsupervised statistical
modeling approach for anomaly detection in time-series data.

Gaussian-Mixture models (GMM) are widely used for unsuper-
vised statistical modeling. Although GMM based statistical modeling
is relatively light-weight compared to NN-based approaches, it is still
computational intensive as its conventional digital implementation
requires multiplication, addition, subtraction and accessing look-up
table for each dimension [9]. Therefore, it is infeasible to use conven-
tional GMM statistical modeling approach for on-the-edge anomaly
detection. Addressing above challenges, our key contributions are:
• We present a novel co-designed approach for ultra low-power

multivariate statistical modeling. We show that, unlike multivariate
Gaussian function, harmonic-mean of Gaussian (HMG) functions
can be much easily implemented by multi-input inverters by

exploiting their short-circuit current for computing. A mixture of
HMG also provides high fidelity of statistical modeling and shows
comparable accuracy to the conventional approach, yet with a
fraction of energy overhead.

• By exploiting threshold voltage (VTH) programmability of charge
trap (CT) transistors, we discuss the design of non von-Neumann
crossbars for statistical modelling. Each column of the crossbar
hosts an HMG mixture function. All mixture functions are com-
puted in parallel. For d-dimensional time-series, crossbar requires
d-rows of CT transistors whereas number of columns are governed
by time-series complexity. Therefore, even for high-dimensional,
complicated time-series statistics, computing overheads are mini-
mal.

• We demonstrate the efficacy of our approach on Yahoo time-series
dataset [10]. Our model parameters are learned by Expectation-
Maximization (EM) for HMG mixtures. Our approach achieves an
f1-score higher than 0.85 for anomaly detection on Yahoo real
time-series dataset [10] even in the presence of significant process
variation. Our approach consumes 181fJ with 150 HMG mixture
components
Sec. II discusses the background on CT transistors and non von-

Neuann crossbar architecture using multi-input CT inverters for
HMGM based statistical modeling and anomaly detection. Sec. III
discusses TCAD modeling of CT. Sec. IV presents accuracy results
on benchmark dataset. Sec. VI concludes.

II. NON VON-NEUMANN CHARGE TRAP CROSSBARS FOR

ULTRA-LOW-POWER STATISTICAL MODELING

A. Charge Trap (CT) Transistor
Charge Trap (CT) transistors exploit oxygen vacancy defects

created in HfO2 due to metal deposition for charge-trapping based
embedded non-volatile memory (eNVM) effect. Key advantages of
CT-based eNVM is technology scalability to sub-30 nm and FinFET
dimensions as well as low programming voltages [11]. In [11], for 30-
nm channel length CT transistors, short-duration pulses of magnitude
∼1.5 V were applied to the gate (VG) while biasing the drain at
∼1.3 V and grounding the source/body to program. Programming
pulses induce vertical field assisted hot-electron-injection to gate-
dielectric traps; thereby, VTH of the transistor increases. Conversely,
VTH decreases due to charge detrapping when negative pulses is
applied to the gate and the source, drain, and body are grounded.
Notably, CTs can be programmed/erased with voltages under 2V
[11], allowing on-chip low-power programming using standard in-
put/output (I/O) transistors. Moreover, as discussed in [11], CT-
eNVM requires minimal changes in the standard fabrication flow.
B. Exploiting CT Inverters for Gaussian-like Kernel Function

In a CMOS inverter, short-circuit current flows during input signal
transition when both pull-up and pull-down devices are turned on
simultaneously. Prior work [12] has shown that inverter’s short-circuit
current can be modeled using a “Gaussian-like” function as

IINV ≈ I0,INVexp
(
− (VIN − µ)2

σ2(α+ |VIN − µ|)

)
. (1)

Here, µ is the VIN at which the inverter current peaks. µ depends
on threshold voltage of NMOS and PMOS, i.e., VTH,n and VTH,p. α
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Fi g ur e 1: ( a)  Cir c uit di a gr a m of t w o-i n p ut i n v ert er, ( b) S h ort- cir c uit c urr e nt i n
a t w o-i n p ut i n v ert er cl os el y  m at c h es h ar m o ni c- m e a n of  G a ussi a n-li k e ( H M G)
f u n cti o n, a n d ( c)  T w o-i n p ut i n v ert er’s s h ort- cir c uit c urr e nt as a f u n cti o n of
V X a n d  V Y . Si m ul ati o ns ar e p erf or m e d usi n g 2 2- n m t e c h n ol o g y  m o d els [ 1 3].

i s a t e c h n ol o g y- d e p e n d e nt fitti n g p ar a m et er. σ m o d els t h e v ari a n c e
of  G a ussi a n-li k e I I N V a n d it d e p e n ds o n t h e t h er m al v olt a g e a n d
tr a nsist or’s i d e alit y f a ct or, η . µ c a n b e  m o d ul at e d b y a ∆ a m o u nt
b y pr o gr a m mi n g  N M O S a n d P M O S t hr es h ol d v olt a g es as V T H, n →
V T H, n + ∆ a n d V T H, p → V T H, p - ∆ , r es p e cti v el y. I m p ort a ntl y,  wit h t h e
a b o v e r el ati o n, o nl y µ c h a n g es  wit h o ut aff e cti n g t h e p e a k c urr e nt.

I nt er esti n gl y, i n v ert er’s s h ort cir c uit c urr e nt is  w ell-s uit e d t o p h ysi-
c all y e m ul at e a  G a ussi a n-li k e k er n el f u n cti o n f or st atisti c al  m o d eli n g.
T h e c urr e nt is u ni m o d al a n d  wit h a p pr o pri at e tr a nsist or si zi n g c a n b e
m a d e s y m m etri c.  B y d esi g ni n g i n v ert er  wit h  C T t e c h n ol o g y,  V T H of
N M O S a n d P M O S c a n b e pr o gr a m m e d, t h er e b y t h e  m e a n ( µ ) of
G a ussi a n-li k e k er n el f u n cti o n c a n b e s et as d esir e d.

C.  C o- d esi g ni n g  K er n el  wit h  C urr e nt  C o n d u cti o n  P h ysi cs

Alt h o u g h i n v ert er’s s h ort- cir c uit c urr e nt i n ( 1) gr e atl y si m pli fi es
t h e i m pl e m e nt ati o n of a u ni v ari at e k er n el f or st atisti c al  m o d eli n g,
m ulti v ari at e k er n els ar e still e x p e nsi v e b y r e q uiri n g t h e pr o d u ct
of t h e 1- D k er n els. P arti c ul arl y, a n al o g  m ulti pli c ati o n is n e e d e d
si n c e t h e o ut p ut of i n v ert er- b as e d r e ali z ati o n is i n t h e c urr e nt- m o d e.
H e n c e,  wit h i n cr e asi n g di m e nsi o n alit y of st atisti c al  m o d el, e v e n  wit h
si m pli fi e d u ni v ari at e k er n el, t h e n e c ess ar y a n al o g  m ulti pli c ati o ns f or
m ulti- v ari at e k er n els b e c o m e a criti c al b ottl e n e c k.

O v er c o mi n g t his li mit ati o n,  w e pr o p os e a c o- d esi g n a p pr o a c h
w h er e a  m ulti v ari at e k er n el is r e ali z e d t hr o u g h t h e h ar m o ni c- m e a n of
1- D k er n els i nst e a d of t h eir pr o d u ct. Fi g. 1( a) s h o ws f o ur tr a nsist or
C T i n v ert er c o ntr oll e d b y t w o i n p ut v olt a g es, V X , V Y . Fi g. 1( b- c) s h o w
c o nt o ur a n d s urf a c e pl ots r es p e cti v el y of I I N V,st a c k w hil e v ar yi n g V X

a n d V Y . Si n c e t h e c ol u m n c urr e nt s h o ws a  G a ussi a n-li k e s e nsiti vit y
t o e a c h i n p ut c h a n n el (V X or V Y ), t h e o v er all c ol u m n c urr e nt e m u-
l at es a h ar m o ni c  m e a n of  G a ussi a n-li k e ( H M G) f u n cti o n, f oll o wi n g
t h e  Kir c h h off’s l a w. Fi g. 1( b) s h o ws a g o o d c orr el ati o n b et w e e n
S PI C E-si m ul at e d c h ar a ct eristi cs a n d  m o d ell e d c h ar a ct eristi cs usi n g
t h e h ar m o ni c  m e a n of  G a ussi a n ( H M G).  N ot a bl y, i n Fi g. 1( b), t h e c o-
d esi g n e d 2 D k er n el f u n cti o n  m at c h es q uit e  w ell  wit h a 2 D  G a ussi a n
e x c e pt at t h e t ail of t h e distri b uti o n.  U nli k e  m ulti v ari at e  G a ussi a n,
H M G f u n cti o ns ar e r e ali z e d  m u c h si m pl y. F or d - di m e nsi o n al  H M G,
d - N M O S a n d d - P M O S tr a nsist ors n e e d t o b e st a c k e d i n a c ol u m n.
A d - di m e nsi o n al  H M G f u n cti o n c a n b e a n al yti c all y d e fi n e d as

I I N V,st a c k ≈
I 0,I N V

i = 1 ,..., d e x p ( V i − µ i ) 2

σ 2 ( α + |V i − µ i |)

( 2)

w h er e µ i ar e  m e a n of c o nstit u e nt  G a ussi a n-li k e f u n cti o ns a n d c a n
b e pr o gr a m m e d b y c o ntr olli n g t h e V T H of c orr es p o n di n g tr a nsist ors
i n t h e i n v ert er-st a c k. I 0,I N V i s t h e p e a k c urr e nt a n d d e p e n ds o n t h e
tr a nsist or si zi n g, t e c h n ol o g y, a n d s u p pl y v olt a g e.

D.  N o n- v o n- N e u m a n n  C T  Cr oss b ars f or St atisti c al I nf er e n c e

Usi n g t h e a b o v e  m ulti-i n p ut  C T i n v ert ers as b uil di n g bl o c ks,
a  mi xt ur e of  H M G f u n cti o ns c a n b e i m pl e m e nt e d b y c o n n e cti n g
i n v ert ers i n Fi g. 1( a) i n p ar all el,  w h er e e a c h i n v ert er i m pl e m e nts o n e
mi xt ur e c o m p o n e nt.  A d - di m e nsi o n al i n p ut v olt a g e is a p pli e d r o w-
wis e t o all t h e i n v ert ers i n t h e arr a y.  R es ulti n g t ot al c urr e nt t hr o u g h
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Fi g ur e 2:  M ulti-i n p ut i n v ert er-st a c k c ol u m ns ( wit h e a c h c ol u m n i m pl e m e nti n g
a  m ulti- v ari at e  H M G f u n cti o n) c a n b e c o n n e ct e d i n p ar all el t o i m pl e m e nt
m ulti v ari at e  mi xt ur e  m o d el,  w h er e o v er all I I N Vs,t ot al i s pr o p orti o n al t o t h e
li k eli h o o d esti m at e of t h e i n p ut (V 1 ,...,V d ).

p ar all el i n v ert ers  will b e pr o p orti o n al t o t h e li k eli h o o d of t h e i n p ut
v olt a g e.  T h e l o g-li k eli h o o d of a d - di m e nsi o n al i n p ut v e ct or, V [ 1− d ] ,
c a n b e c o m p ut e d usi n g  H M G M as

( V [ 1− d ] |Θ ) =

M

i = 1

l n

N

j = 1

λ j I I N V,st a c k ( V
[ 1− d ]

i ; µ
[1 − d ]
j , σ, α) ( 3)

w h er e V
[ 1− d ]

i i s a d - di m e nsi o n al i n p ut s a m pl e, Θ d e n ot es t h e  H M G
mi xt ur e  m o d el p ar a m et ers i n cl u di n g λ j ( mi xi n g pr o p orti o n) a n d

µ
[ 1− d ]
j ( m e a n) f or t h e r es p e cti v e  mi xt ur e c o m p o n e nt j .  T h e p ar a m-

et ers Θ ar e l e ar n e d usi n g t h e  E x p e ct ati o n- M a xi mi z ati o n al g orit h m
( E M) [ 1 2].  Alt h o u g h i n g e n er al  E M als o l e ar ns t h e v ari a n c e σ f or
e a c h  mi xt ur e c o m p o n e nt r es p e cti v el y,  w e c h os e a fi x e d σ , a c hi e v e d
b y  m ulti-i n p ut  C T i n v ert er i n Fi g. 1, f or all  mi xt ur e c o m p o n e nts.
T his si m pli fi es o ur cr oss b ar i m pl e m e nt ati o n, h o w e v er, als o r e q uir es
r el ati v el y  m or e  mi xt ur e c o m p o n e nts t o a c hi e v e a  m at c hi n g a c c ur a c y
t o g e n er ali z e d  E M- b as e d l e ar ni n g. F or a cr oss b ar  wit h N c ol u m ns, λ j

f or a  mi xt ur e c o m p o n e nt is i m pl e m e nt e d b y d e di c ati n g r o u n d( λ j × N )

c ol u m ns f or t h e c o m p o n e nt j . µ
[ 1− d ]
j i s e n c o d e d b y pr o gr a m mi n g  VT H

of r es p e cti v e  C T i n v ert ers f or t h e c o m p o n e nt j .
Alt h o u g h si mil ar n o n- v o n- N e u m a n n st atisti c al  m o d el i nf er e n c e

w as c o nsi d er e d i n [ 1 4], [ 1 5], it r e q uir e d u n c o n v e nti o n al t e c h n ol o gi es
s u c h as III-I V S O H T F E T  w h er e as t h e c urr e nt  w or k a c hi e v es si mil ar
c a p a cit y  wit h  C T tr a nsist ors t h at f oll o w c o n v e nti o n al f a bri c ati o n
s c h e m es a n d c a n b e i nt e gr at e d  wit h t y pi c al  C M O S  m o d ul es. I n [ 1 6],
[ 1 7], b u m p cir c uits  w er e us e d f or a si mil ar  G a ussi a n  mi xt ur e  m o d el-
b as e d i nf er e n c e, h o w e v er, hi g h p o w er c o ns u m pti o n of e a c h k er n el
cir c uit li mits t h e s c al a bilit y of t h e a p pr o a c h es.

E.  A n o m al y  D et e cti o n ( A D)  wit h  N o n- v o n- N e u m a n n  C T  Cr oss b ar

I n Fi g. 2, t ot al cr oss b ar c urr e nt, II N V,t ot al , is pr o p orti o n al t o t h e li k e-
li h o o d of i n p ut v olt a g e  V

[ 1− d ]
s a m pl e a p pli e d at t h eir g at es. S u bs e q u e ntl y,

II N V,t ot al i s di giti z e d usi n g l o g arit h mi c  A D C t o o bt ai n l o g-li k eli h o o d
i n di git al d o m ai n. F urt h er, t h e c o m p ut e d l o g-li k eli h o o d is c o m p ar e d
a g ai nst pr e- d e fi n e d li k eli h o o d t hr es h ol d ( P T H ) t o d et e ct if  V

[ 1− d ]
s a m pl e i s

a n i nli er or a n a n o m al y, f oll o wi n g t h e r ul e b el o w

V
[ 1− d ]

s a m p l e =
O utli er , ( V

[ 1− d ]
s a m p l e |Θ ) < P T H

I nli er, ( V
[ 1− d ]

s a m p l e |Θ ) > P T H

( 4)

F or l o g- A D C, tr a nsi m p e d a n c e a m pli fi er ( A v )  wit h l o a d-r esist a n c e R L

c o n v erts I I N Vs,t ot al t o a n a n al o g v olt a g e. R L i s c h os e n d e p e n di n g n u m-
b er of  mi xt ur e c o m p o n e nts, t o pr o vi d e f ull-r a n g e o ut p ut.  M or e o v er,
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Fi g ur e 3:  D e vi c e si m ul ati o n st u d y of e N V M  C h ar g e- Tr a p  Tr a nsist ors. ( a) Str u ct ur e of 2 2 n m  N M O S pl a n ar d e vi c e us e d i n  T C A D si m ul ati o n, ( b)  H ot- el e ctr o n
i nj e cti o n al o n g  wit h s elf- h e ati n g e n h a n c es t u n n eli n g of el e ctr o ns fr o m c h a n n el t o g at e- o xi d e, ( c)  D e vi c e V T H i n cr e as es  wit h ti m e at  VG S = 1. 5 V a n d  V D S =
1. 3  V, d u e t o c h ar g e-tr a p pi n g, ( d)  T C A D  m o d el c ali br ati o n  wit h  m e as ur e m e nt r es ults fr o m [ 1 1] a n d ( e) P T M  m o d el is [ 1 3] is t u n e d t o  m at c h  T C A D  m o d el
c h ar a ct eristi cs.
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Fi g ur e 4:  Cir c uit c o n fi g ur ati o n t o pr o gr a m/ er as e ( a)  N M O S d e vi c es, ( b) P M O S
d e vi c es, i n  C T cr oss b ar.

n e g ati v e f e e d b a c k c o n fi g ur ati o n of A v bi as es p ar all el,  m ulti-i n p ut,
i n v ert ers at  VC M .  A n  N- bit l o g- A D C i n Fi g. 2( b) c o n v erts V I N t o
e q ui v al e nt di git al- bits usi n g t h e e x pr essi o n b el o w [ 1 8]

l o g1 0

V I N

V r a n g e
× 1 0 C =

b N − 1 2 N − 1 + ... + b 0

2 N
C ( 5)

w h er e C is c o d e ef fi ci e n c y f a ct or f or i m pr o vi n g d y n a mi c r a n g e.
I nt er esti n gl y, a b o v e n o n v o n- N e u m a n n A D fr a m e w or k c a n o p er at e

dir e ctl y o n a n al o g i n p uts  V
[ 1− d ]
s a m pl e .  T his is f a v or a bl e si n c e n ot o nl y

A D is p us h e d cl os e t o d at a s o ur c e f or l o w-l at e n c y d et e cti o n b ut
als o d o w nstr e a m pr o c essi n g o v er h e a ds (s u c h as di giti z ati o n a n d
st or a g e) c a n b e a v ert e d f or a n o m al o us s a m pl es.  N ot a bl y, e v e n t h o u g h
t h e cr oss b ar pr o c essi n g is i n a n al o g- d o m ai n, d o m ai n c o n v ersi o n
o v er h e a ds (l o g- A D C i n Fi g. 2) d o es n ot s c al e  wit h si g n al di m e nsi o ns
a n d/ or d et e cti o n  m o d el c o m pl e xit y.  Wit h hi g h er si g n al di m e nsi o n,
m or e r o ws i n t h e cr oss b ar ar e n e e d e d; li k e wis e,  wit h hi g h er si g n al
c o m pl e xit y,  m or e c ol u m ns i n t h e cr oss b ar ar e n e e d e d t o i n h a bit  m or e
mi xt ur e f u n cti o ns i n t h e  m o d el.  Yet, o nl y o n e l o g- A D C at t h e fi n al
di giti z ati o n st e p is n e e d e d.

III.  S I M U L A T I O N R E S U L T S  A N D M E T H O D O L O G Y

A. T C A D  M o d eli n g of  C h ar g e- Tr a p ( C T) Tr a nsist ors

Fi g. 3 s h o ws  T C A D  m o d eli n g of t h e  C T tr a nsist or c h ar a ct eristi cs
a n d t h eir c ali br ati o n a g ai nst t h e  m e as ur e m e nts r e p ort e d i n [ 1 1].
D e vi c e si m ul ati o ns  w er e p erf or m e d usi n g S e nt a ur us  T C A D [ 1 9]. I n
Fi g. 3( a), c h a n n el-l e n gt h ( L G ) of pl a n ar  N M O S d e vi c e is 2 2 n m,  Hf O2

t hi c k n ess is 1 n m, a n d s u bstr at e is 2 0 0 n m t hi c k. S u bstr at e is  B or o n-
d o p e d  wit h a c o n c e ntr ati o n 5 × 1 0 1 7 c m − 3 a n d S o ur c e/ Dr ai n ar e
P h os p h or o us d o p e d at 1 × 1 0 2 0 c m − 3 c o n c e ntr ati o n. P h ysi cs  m o d els
i n cl u di n g s elf- h e ati n g r el at e d t h er m o d y n a mi c  m o d el, c h ar g e-tr a p pi n g
r el at e d F o wl er- N or d h ei m, h ot- c arri er i nj e cti o n,  m o bilit y d e gr a d ati o n
a n d b a n d- g a p n arr o wi n g  m o d els ar e us e d f or si m ul ati o n. I n Fi g.
3( b), tr a p- c o n c e ntr ati o n i n  Hf O 2 i n cr e as es o v er ti m e d u e t o h ot-
el e ctr o n i nj e cti o n  w h e n str ess e d  wit h a hi g h g at e- v olt a g e ( V g = 1. 5 V).
M or e o v er, hi g h er  V D S e n h a n c es c h ar g e-tr a p pi n g d u e t o s elf- h e ati n g
[ 1 1].  C o ns e q u e ntl y, i n Fi g. 3( c), d e vi c e’s  VT H c a n b e  m o d ul at e d  wit h

Ta bl e I:  C h ar a ct eristi cs of  Ya h o o 3 D- d at as ets

D at as et 1 2 3 4
N u m b er of  D at a- p oi nts 1 4 6 1 1 4 3 9 1 4 4 1 1 4 6 1
N u m b er of  A n o m ali es 5 0 4 3 8 0 3 4

P T hr es  = 1 µ
P T hr es  = 1 0 µ
P T hr es  = 1 0 0 µ
P T hr es  = 1 m
P T hr es  = 1 0 m

P T hr es = 1 0 0 m

( a)

N = 2
N = 1 0
N = 5 0
N = 1 0 0

N = 1 5 0

N = 2 0 0

( b)

Fi g ur e 5: F P a n d F N p erf or m a n c e of dis c uss e d a p pr o a c h, ( a) f or diff er e nt P t hr es

a n d σ k e r n e l , ( b) f or diff er e nt Pt hr es a n d  N.

c o ntr oll e d c h ar g e-tr a p pi n g b y  m o d ul ati n g  V D S .  C o n v ers el y,  w h e n
n e g ati v e p uls es ar e a p pli e d t o g at e a n d dr ai n/s o ur c e ar e gr o u n d e d,
d e vi c e  V T H d e cr e as es d u e t o c h ar g e d etr a p pi n g. I n Fi g. 3( d),  T C A D
m o d el is t u n e d t o  m at c h t h e  m e as ur e m e nt c h ar a ct eristi cs pr es e nt e d
i n [ 1 1]. F urt h er m or e, S PI C E-l e v el pr e di cti v e t e c h n ol o g y  m o d el is
c ali br at e d t o  m at c h t h e  T C A D c h ar a ct eristi cs i n Fi g. 3( e).

I n Fi g. 4( a),  w hil e pr o gr a m mi n g  N M O S  VT H t o a hi g h er v al u e, a
p arti c ul ar c ol u m n is s el e ct e d b y a p pl yi n g a hi g h v olt a g e,  V D P , a cr oss
t h e c ol u m n.  T h e u ns el e ct e d c ol u m ns ar e gr o u n d e d.  A pr o gr a m mi n g
p uls e is a p pli e d t o t h e g at e of t h e s el e ct e d  N M O S d e vi c e a n d t h e
g at e of ot h er d e vi c es ar e h el d at a p assi n g p ot e nti al,  V p ass . Vp ass
i s c h os e n a p pr o pri at el y t o i n hi bit  H CI b y e ns uri n g t h e g at e- c h a n n el
p ot e nti al is n ot hi g h. S u c h bi asi n g c o n diti o n i n cr e as es  V T H of s el e ct e d
d e vi c e t hr o u g h  H CI.  O n t h e c o ntr ar y, t o d e cr e as e  V T H of  N M O S,
dr ai n/s o ur c e of t h e s el e ct e d  N M O S is c o n n e ct e d t o t h e gr o u n d a n d
a hi g h- v olt a g e n e g ati v e p uls e is a p pli e d t o t h e g at e.  T his c a us es t h e
el e ctr o ns i n t h e g at e- di el e ctri c t o t u n n el b a c k a n d d etr a p.

Fi g. 4( b) ill ustr at es t h e pr o c e d ur e t o pr o gr a m  V T H of a P M O S
d e vi c e i n  C T cr oss b ar.  E a c h c ol u m n is d esi g n e d t o h a v e s e p ar at e n-
w ells a n d b o d y c o nt a cts.  W hil e pr o gr a m mi n g, s o ur c e/ b o d y t er mi n als
ar e a p pli e d  wit h  V D P , dr ai n is gr o u n d e d a n d  VT H of t h e s el e ct e d
P M O S is i n cr e as e d b y a p pl yi n g n e g ati v e g at e p uls es.  Hi g h g at e-
s o ur c e p ot e nti al c a us es h ol es t o t u n n el t o g at e- di el e ctri c fr o m t h e
c h a n n el.  G at e of t h e u ns el e ct e d P M O S d e vi c es ar e s u p pli e d  wit h
a p ass v olt a g e  V p ass a n d s o ur c e/ n- w ell of t h e u ns el e ct e d c ol u m n is
c o n n e ct e d t o  V I N HI BI T t o i n hi bit t u n n eli n g.  O n t h e ot h er h a n d,  VT H

of a P M O S d e vi c e is d e cr e as e d b y gr o u n di n g s o ur c e/ b o d y/ dr ai n a n d
a p pl yi n g p ositi v e g at e p uls es, c a usi n g h ol es t o d etr a p. I n t his c as e,
t h e u ns el e ct e d c ol u m ns ar e bi as e d at V I N HI BI T t o a v oi d d etr a p pi n g.

B.  A n o m al y  D et e cti o n ( A D)  A c c ur a c y o n Y a h o o  D at as et

We h a v e us e d 3 D ti m e-s eri es tr a c es fr o m  Ya h o o’s r e al pr o d u cti o n
tr af fi c d at as et [ 1 0] t o b e n c h m ar k t h e p erf or m a n c e of o ur  m ulti-
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Ta bl e II: f 1-s c or e p erf or m a n c e of o ur a p pr o a c h f or diff er e nt 3 D-ti m es eri es
d at as ets  wit h σ H M G = 0. 0 7,  N = 1 5 0

D at as et P t hr es

1 µ 1 0 µ 1 0 0 µ 1 m 1 0 m 1 0 0 m
1 0. 9 8 0. 9 6 0. 9 4 0. 8 8 0. 7 4 0. 6 0
2 1 1 1 1 0. 8 6 0. 7 1
3 0. 8 6 4 8 0. 8 7 4 3 0. 8 7 9 1 0. 8 7 9 1 0. 8 9 3 8 0. 8 9 3 8
4 0. 8 2 9 0. 8 5 0. 8 3 9 5 0. 7 6 0. 4 5 9 0. 2 7 2

v ari ati o n i n 
p e a k is 

m o d el e d as

Ɲ(I, σ P V 1 )

v ari ati o n i n 
σ H M G  i s 

m o d el e d as

Ɲ( σ H M G , σP V 2 )

N
or

m.
 I

I
N

V,
st

ac
k

V i n

( a)

0 2 0 4 0

P V 2

0. 8

0. 9

1

Av
g. 

f1
-s

co
re

N = 1 5 0
N = 5 0

( b)

0 1 0 2 0 3 0

P V

0. 9

0. 9 5

1

Av
g. 

f1
-s

co
re

N = 1 5 0
N = 5 0

( c)

Fi g ur e 6: ( a) Pr o c ess-i n d u c e d v ari ati o ns c h a n g es  H M G f u n cti o ns’ p e a k-
a m plit u d e a n d σ H M G , ( b)  At hi g h er σ P V 2 , A D p erf or m a n c e d e gr a d es. a n d
( c) A D p erf or m a n c e d e gr a d es σ P V 1 = σ P V 2 = σ P V > 2 0 %.

c h a n n el A D a p pr o a c h.  T his d at as et c o nsists of 6 7 u ni v ari at e ti m e-
s eri es tr a c es a n d c a pt ur es a n o m ali es i n cl u di n g o utli ers  & c h a n g e-
p oi nts, i. e., c a pt ur es t y pi c al r e al- w orl d s e ns or d at a attri b ut es.  Ta bl e I
s u m m ari z es pr o p erti es of us e d 3 D ti m e-s eri es d at as ets.

M e a n w hil e, f or A D , al g orit h mi c p ar a m et ers s u c h as  H M G f u n cti o n
st a n d ar d d e vi ati o n ( σ H M G ) a n d n u m b er of  mi xt ur es c o m p o n e nts (N )
d et er mi n es t h e a c c ur a c y of esti m at e d d e nsit y.  A d diti o n all y, σ H M G a n d
li k eli h o o d-t hr es h ol d ( Pt hr es) p ar a m et ers d e fi n e cl assi fi c ati o n h y p er-
pl a n e f or A D .  H e n c e, o pti m al c h oi c e of t h es e p ar a m et ers is i m p er-
ati v e. Fi g. 5( a) s h o ws f als e p ositi v es ( F P ) a n d f als e n e g ati v es ( FN )
p erf or m a n c e of o ur a p pr o a c h v s.  σ H M G , f or v ari o us Pt hr es a n d f or
N = 1 5 0. F P i n cr e as es at l o w σ H M G d u e t o i n a c c ur at el y l o w-li k eli h o o d
esti m at es f or i nli ers.  C o ntr aril y, at hi g h er σ H M G , FN i n cr e as es d u e t o
i n a c c ur at el y hi g h er li k eli h o o d esti m at es f or o utli ers.  M e a n w hil e, at
hi g h P t hr es, i n cr e as e d FP i s d u e t o i n a c c ur a c y i n cl assi fi c ati o n h y p er-
pl a n e.  At l o w er P t hr es, FN i n cr e as es d u e t o o utli ers h a vi n g s uf fi ci e ntl y
hi g h er li k eli h o o d t h a n P t hr es.

Alt h o u g h o ur a p pr o a c h is li mit e d i n i n d e p e n d e ntl y pr o gr a m mi n g
σ H M G f or e a c h  mi xt ur e f u n cti o n t o r et ai n t h e si m pli cit y of i m pl e m e n-
t ati o n t hr o u g h  m ulti-i n p ut i n v ert ers, a l ar g e  mi xt ur e of  H M Gs c a n b e
e asil y i m pl e m e nt e d b y pr o p orti o n all y i n cr e asi n g n u m b er of cr oss b ar
c ol u m ns  wit h o ut si g ni fi c a nt i n cr e as e i n ar e a/ p o w er o v er h e a ds. Fi g.
5( b) s h o ws t h e F P a n d F N a n al ysis t o d et er mi n e o pti m al N a n d P t hr es.
St atisti c all y, hi g h er N pr o vi d es a c c ur at e d e nsit y esti m at es i n t ur n
i m pr o vi n g A D ef fi ci e n c y.  H o w e v er, e n er g y- ef fi ci e n c y of t h e pr o p os e d
fr a m e w or k r e d u c es  wit h i n cr e asi n g N .  T h er ef or e, o pti m al c h oi c e of
N a n d P t hr es d e p e n ds o n tr a d e- off b et w e e n e n er g y- ef fi ci e n c y a n d A D
a c c ur a c y.  Ta bl e II s u m m ari z es f 1-s c or e of o ur a p pr o a c h o n diff er e nt
d at as ets. f 1-s c or e is c o m p ut e d as

f 1 − s c o r e =
T P

T P + 0 .5 × ( F N + F P )
( 6)

h er e,  T P is t h e n u m b er of tr u e p ositi v es.  A n f 1-s c or e hi g h er t h a n ≈
0. 8 5 is a c hi e v e d t hr o u g h o pti m al c h oi c e of P t hr es f or N = 1 5 0 a n d σ H M G

= 0. 0 7. Fi g. 6 s h o ws t h e i m p a ct of pr o c ess-i n d u c e d v ari ati o n i n  H M G
f u n cti o n o n A D ef fi ci e n c y. Pr o c ess- v ari ati o n i n d e vi c es aff e ct  H M G
f u n cti o n’s p e a k- a m plit u d e a n d σ H M G .  C orr es p o n di n gl y, i n Fi g. 6( a),
σ P V 1 a n d σ P V 2 ar e us e d t o  m o d el v ari ati o ns i n i m pl e m e nt e d  H M G. I n
Fi g. 6( b), A D p erf or m a n c e d e gr a d es f or σ P V 2 > 2 0 %. Fi g. 6( c) s h o ws
c o m bi n e d eff e ct of σ P V 1 a n d σ P V 2 o n A D p erf or m a n c e. I n Fi g. 6( c),
A D p erf or m a n c e d e gr a d es f or σ P V > 2 0 % ,  w h er e σ P V 1 = σ P V 2 = σ P V .
I nt er esti n gl y, usi n g f e w er  mi xt ur e c o m p o n e nts (N = 5 0) e x hi bits b ett er
r esili e n c e a g ai nst σ P V a n d σ P V 2 i n d u c e d v ari ati o ns.

L o g A D C

R o w-
c h a r gi n g

I n v e rt e r 
A r r a y 

C o m p a r at o r

( a)

0 0. 2 0. 4 0. 6

V
i n

 ( V)

0

0. 5

1

No
r

m. 
I

I
N

V,
st

ac
k

1 D
2 D
3 D
4 D
5 D

( b)

Fi g ur e 7: ( a)  E n er g y c o ns u m pti o n of diff er e nt  m o d ul es i n n o n- v o n- N e u m a n n
A D fr a m e w or k, ( b) I m p a ct of di m e nsi o n alit y o n σ H M G .

C.  P o w er- Perf or m a n c e  C h ar a ct eriz ati o n

Fi g. 7( a) s h o ws e n er g y br e a k d o w n f or  m o d ul es i n dis c uss e d n o n
v o n- N e u m a n n A D ar c hit e ct ur e.  O ur A D c o ns u m es a n o v er all e n er g y
of 1 8 1. 2fJ  w hil e o p er ati n g at ∼ 3 0 0 M H z o n a 3 D ti m e-s eri es.  L o g-
A D C c o ns u m es 4 2 % of t h e t ot al e n er g y, as its d esi g n i n cl u d es
c o m p ar at ors a n d  O p a m ps.  T h e e n er g y c o ns u m pti o n of l o g- A D C i n
[ 1 8] is pr oj e ct e d t o 2 2 n m t e c h n ol o g y usi n g f oll o wi n g ass u m pti o ns:
E n er g y ∝ ( 2 2 n m/ Te c h N o d eR E F ) 2 ,  E n er g y ∝ ( 0. 8 V/ V D DR E F ) 2 , a n d
E n er g y ∝ 2 ( 4 − Pr e cisi o n R E F ) .  E n er g y s p e nt t o a p pl y i n p uts t o t h e cr oss b ar
a c c o u nts f or 3 2 %.  H M G M i m pl e m e nt ati o n usi n g 1 5 0  m ulti-i n p ut
i n v ert ers a n d a c o m p ar at or a c c o u nts f or 2 6 % of t h e t ot al e n er g y.
Fi g. 7( b) c o nsi d ers s c al a bilit y of o ur a p pr o a c h t o i n cr e asi n g i n p ut
di m e nsi o n alit y. I n t h e fi g ur e, i m pl e m e nt e d σ H M G wit h  m ulti-i n p ut-
i n v ert er i n cr e as es  wit h ti m e-s eri es di m e nsi o n.  T his is d u e t o a
d e cr e as e i n g ai n at e a c h i n p ut c h a n n el d u e t o s eri es c o n n e cti o n.
A c o ns e q u e n c e of i n cr e asi n g σ H M G i s t h at a pr o p orti o n all y hi g h er
pr o gr a m mi n g a n d i n p ut r a n g e  will b e n e e d e d f or  m ulti-i n p ut-i n v ert ers
at i n cr e asi n g ti m e-s eri es di m e nsi o n alit y.

D.  C o m p aris o n t o St at e- of-t h e- Art

Ta bl e III c o m p ar es p erf or m a n c e of o ur n o n v o n- N e u m a n n A D
a p pr o a c h  wit h a n e q ui v al e nt di git al a n d a n al o g b as eli n e c o nsi d er e d
i n [ 1 6]. F or  Ta bl e III, A D i n 3 D ti m e-s eri es d at a is c o nsi d er e d.
N ot a bl y,  m ulti pli er is r e q uir e d f or a n al o g b as eli n e d esi g n f or 3 D ti m e-
s eri es pr o c essi n g, t h er ef or e,  m ulti pli er i n [ 2 0] is us e d. P erf or m a n c e
p ar a m et ers of b as eli n e d esi g ns ar e pr oj e ct e d usi n g t h e ass u m pti o ns
m e nti o n e d i n pr e vi o us s e cti o n.  A D C o v er h e a ds i n b as eli n e d esi g n a n d
i n n o n- v o n- N e u m a n n A D a p pr o a c h  will b e si mil ar, t h er ef or e, it is
n ot i n cl u d e d i n e n er g y c o m p aris o n.  N ot a bl y, pr o p os e d a p pr o a c h is at
t h e l e ast ∼ 6 × e n er g y ef fi ci e nt c o m p ar e d t o b as eli n e A D a p pr o a c h es.
M or e o v er, o ur A D a p pr o a c h c o m bi n es p ositi v e as p e cts of b ot h a n al o g
a n d di git al r ef er e n c e d esi g ns i n [ 1 6].

Ta bl e III:  C o m p aris o n of o ur a p pr o a c h  wit h st at e- of-t h e- art

D esi g n A n al o g  K D E Di git al  K D E C T  A n al o g (T his  w or k)
Te c h n ol o g y S c al a bilit y Li mit e d Hi g h er Hi g h er

A D L at e n c y L o w Hi g h L o w
E n er g y/ 3 D-s a m pl e 7 9. 8fJ 5 3 6. 4 1fJ 1 3. 4 4fJ

D et e cti o n  M o d el S c al a bilit y Li mit e d S c al a bl e S c al a bl e

I  V.  C O N C L U S I O N

We pr es e nt e d a n ultr a-l o w- p o w er fr a m e w or k f or a n o m al y d et e cti o n
i n  m ulti- c h a n n el ti m e-s eri es d at a.  O ur a p pr o a c h l e v er a g es s h ort cir c uit
c urr e nt of i n v ert ers b as e d o n  C T t o r e ali z e a  H M G f u n cti o n f or
st atisti c al  m o d eli n g of ti m e-s eri es.  E v e n  m or e,  m ulti v ari at e  H M G
f u n cti o n is c o- d esi g n e d  wit h k er n el  m o d el a g ai nst c urr e nt c o n d u cti o n
pri n ci pl es i n a  m ulti-i n p ut i n v ert er. S p e ci fi c all y,  w e s h o w e d t h at a
h ar m o ni c  m e a n of  G a ussi a n-li k e f u n cti o n, i nst e a d of  m ulti v ari at e
G a ussi a n, is e asi er t o i m pl e m e nt as  w ell as pr o vi d es hi g h a c c ur a c y
A D .  M a n y  H M G f u n cti o ns c a n b e e v al u at e d i n p ar all el t hr o u g h t h e
pr o p os e d  C T cr oss b ars, e n a bli n g hi g h- p erf or m a n c e.  T h e pr o p os e d
n o n- v o n- N e u m a n n cr oss b ar ar c hit e ct ur e f or A D c o ns u m es 1 8 1fJ.
M or e o v er, pr o p os e d A D fr a m e w or k is o ur fr a m e w or k is ∼ 4 0 × a n d
∼ 6 × m or e e n er g y ef fi ci e nt c o m p ar e d t o b as eli n e d esi g ns.
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