
1

MC-CIM: Compute-in-Memory with Monte-Carlo
Dropouts for Bayesian Edge Intelligence

Priyesh Shukla, Graduate Student Member, IEEE, Shamma Nasrin, Student Member, IEEE, Nastaran Darabi,
Student Member, IEEE, Wilfred Gomes, and Amit Ranjan Trivedi, Senior Member, IEEE

Abstract—We propose MC-CIM, a compute-in-memory (CIM)
framework for robust, yet low power, Bayesian edge intelligence.
Deep neural networks (DNN) with deterministic weights cannot
express their prediction uncertainties, thereby pose critical risks
for applications where the consequences of mispredictions are fa-
tal such as surgical robotics. To address this limitation, Bayesian
inference of a DNN has gained attention. Using Bayesian infer-
ence, not only the prediction itself, but the prediction confidence
can also be extracted for planning risk-aware actions. However,
Bayesian inference of a DNN is computationally expensive, ill-
suited for real-time and/or edge deployment. An approximation
to Bayesian DNN using Monte Carlo Dropout (MC-Dropout) has
shown high robustness along with low computational complexity.
Enhancing the computational efficiency of the method, we discuss
a novel CIM module that can perform in-memory probabilistic
dropout in addition to in-memory weight-input scalar prod-
uct to support the method. We also propose a compute-reuse
reformulation of MC-Dropout where each successive instance
can utilize the product-sum computations from the previous
iteration. Even more, we discuss how the random instances can be
optimally ordered to minimize the overall MC-Dropout workload
by exploiting combinatorial optimization methods. Application
of the proposed CIM-based MC-Dropout execution is discussed
for MNIST character recognition and visual odometry (VO) of
autonomous drones. The framework reliably gives prediction
confidence amidst non-idealities imposed by MC-CIM to a good
extent. Proposed MC-CIM with 16×31 SRAM array, 0.85 V
supply, 16nm low-standby power (LSTP) technology consumes
27.8 pJ for 30 MC-Dropout instances of probabilistic inference in
its most optimal computing and peripheral configuration, saving
∼43% energy compared to typical execution.

Index Terms—Bayesian inference, compute-in-memory, Monte-
Carlo dropout, and visual odometry.

I. INTRODUCTION

Bayesian inference of deep neural networks (DNNs) can
enable higher predictive robustness in decision-making [1],
[2]. Unlike classical inference where the network parameters
such as layer-weights are learned deterministically, Bayesian
inference learns them statistically to express model’s uncer-
tainty along with the prediction itself. For many edge devices
such as insect-scale drones [3] and augmented/virtual reality
(AR/VR) glasses [4], such Bayesian inference of DNNs is crit-
ical since the application spaces are highly dynamic whereas
the consequences of mispredictions can be fateful. Using
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Bayesian inference, prediction confidence can be systemati-
cally accounted in decision making and risk-prone actions can
be averted when the prediction confidence is low.

Nonetheless, Bayesian inference of deep learning models
is also considerably more demanding than classical inference.
To reduce the computational workload of Bayesian inference,
efficient approximations have been explored. For example,
Variational inference reduces the learning and inference com-
plexities of fully-fledged Bayesian inference by approximating
weight uncertainties using parametric distributions (such as
Gaussian Mixture Models). Therefore, with Variational in-
ference, only the parameters of the approximating statistical
distributions are learned. Inference workload also simplifies
by operating with analytically-defined density models, rather
than Markov Chain Monte-Carlo (MCMC)-based procedures
as in true Bayesian inference [1].

Even with Variational approximations, the workload of
Bayesian inference remains formidable for area/power-
constrained devices such as nano-drones and AR/VR glasses.
To further simplify the complexities, in [5], a dropout-based
inference procedure, Monte Carlo dropout (MC-Dropout), was
developed where dropout used during training is also used
for inference. Predictions from many dropout iterations of
deep learning model are averaged to determine the net output,
whereas the variance estimates the prediction confidence. In
[5], Gal et al. demonstrated that such dropout-based inference
is, in fact, an efficient Variational approximation of true
Bayesian inference. Robustness of such dropout-based Vari-
ational inference has been demonstrated for applications such
as character recognition [5], pose estimation of an autonomous
drone [6], and RNA sequencing [7].

In this work, we harness the predictive robustness of MC-
Dropout-based Variational inference for robust edge intelli-
gence using MC-CIM. Towards this, our key contributions are:
• We present low-complexity, static random access memory

(SRAM)-based compute-in-memory (CIM) macros termed
as MC-CIM to accelerate probabilistic iterations of MC-
Dropout. Using MC-CIM, the prediction confidence can be
extracted along with the prediction itself. MC-CIM also
exploits co-designed compute-in-memory inference opera-
tors; thereby, unlike [8]–[10], it does not require digital-to-
analog converters (DAC) even for multibit precision opera-
tions. SRAM-immersed asymmetric search analog-to-digital
converter (ADC) is used where product-sum-statistics is
exploited for time-efficiency, i.e., to minimize the necessary
conversion cycles. For probabilistic input/output activations,
we discuss in-memory random number generators that ex-
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Figure 1: Compute-in-Memory (CIM) framework for efficient acceleration of Monte-Carlo Dropout (MC-Dropout)-based Bayesian inference (BI). (a) LeNet-5
with intermediate dropout layers for uncertainty-aware handwritten digit recognition. (b) Modified Inception v3 for uncertainty-aware visual odometry. (c)
Static random access memory (SRAM)-based CIM macro integrating storage and Bayesian inference (BI). Inset figure: 8T SRAM cell with storage and product
ports. CIM is embedded with random dropout bit generator for MC-Dropout inference. (d) Bitplane-wise processing of multiplication-free (MF) operator in
SRAM-CIM removing digital-to-analog converter (DAC) overhead. (e) Timing flows of CIM computation primitives.

ploit parasitic leakage current and bitline capacitance for low
overhead and programmable sampling.

• To minimize the computing workload of MC-CIM, we
discuss a novel approach of compute reuse between con-
secutive iterations. In this approach, the output of each
iteration is expressed as a function of the output from the
previous. Thereby, using such nested evaluations, the nec-
essary workload for each iteration minimizes. Even more,
we discuss that probabilistic iterations of MC-Dropout can
be optimally ordered to maximize compute reuse opportuni-
ties. In particular, we discuss a combinatorial optimization
framework based on travelling salesman problem (TSP) to
demonstrate such optimal sample ordering. Our evaluations
show that with compute reuse and optimal sample ordering,
the necessary workload for many probabilistic iterations of
MC-Dropout only increases marginally.

• We discuss the synergy of compute-in-memory and Vari-
ational inference in MC-CIM. We find that MC-Dropout-
based inference flow can reduce the necessary network
size and precision to match the prediction accuracy of a
comparable deterministic inference. Therefore, MC-Dropout

and CIM benefit each other where MC-Dropout reduces the
necessary network size to alleviate the storage bottleneck
of CIM under area constraints. Whereas MC-CIM executes
each iteration of the method with much higher energy
efficiency to alleviate the workload.

• We discuss the application of MC-CIM for confidence aware
predictions in character recognition and visual odometry
(VO) in autonomous insect-scale drones. Especially, while
there is a growing interest in real-time edge-AI, many
applications can be highly vulnerable to misprediction er-
rors. Lightweight Bayesian processing of MC-CIM is highly
suited by extracting both the prediction and prediction
confidence within limited area/power bounds. Especially,
through these applications, we also discuss the interaction of
hardware non-idealities and the fidelity of Bayesian DNNs.

In section II we introduce CIM macros with co-optimized
inference operator. In section III we present MC-CIM for
in-memory MC-Dropout (probabilistic) inference. In section
IV we discuss our dataflow optimization schemes. Power-
performance characterization of MC-CIM is discussed in sec-
tion V. In section VI we perform confidence-aware inference
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for two benchmark applications and conclude in section VII.

II. SRAM-BASED COMPUTE-IN-MEMORY MACRO WITH
CO-DESIGNED LEARNING OPERATORS

A. Compute-in-Memory Optimized Inference Operator

In our prior works [11], [12], we showed that the complexity
of CIM-based deep learning inference can be significantly
simplified by co-designing the learning operator against CIM’s
physical and operating constraints. The novel operator from
our prior work correlates weight w and input feature x as

w ⊕ x =
∑
i

sign(xi) · abs(wi) + sign(wi) · abs(xi) (1)

Here,
∑

performs vector sum, sign() is signum function
operator extracting the sign ±1, · performs element-wise
multiplication, abs() produces absolute value of the operand
and + is element-wise addition operator. Note that unlike the
typical deep learning operator, w · x, where multibit weight
and input vectors are multiplied, the novel operator multiplies
one-bit sign(x) against multibit abs(w), and one-bit sign(w)
against multibit abs(x). Such decoupling of multibit operands
benefits CIM since using a digital bit-plane-wise operation,
i.e., operating on a digital plane of same significance bits in
w and x in one cycle, can be pursued and digital-to-analog
converters can be eliminated. This improves area efficiency
and allows better technology scalability for edge applications.
Figure 1(d) shows such bitplane-wise digital processing of the
operator. Importantly, if a similar bitplane-wise processing is
followed for the conventional operator, the total number of
cycles grow as n2 for n-bit precision whereas for our operator,
they grow as 2(n− 1).

B. Compute-in-Memory (CIM) Macro Architecture

Figure 1(c) shows the baseline CIM macro architecture
using eight transistor static random access memory (8T-
SRAM). The inset in Figure 1(c) shows an 8T-SRAM cell
with various access ports for write and CIM operations. The
write word line (WWL) selects a cell for write operation
and the data bit is written through the left and right write
bit lines (WBLL and WBLR). During inference, input bit is
applied to cell using the column-line (CL) port and output is
evaluated on the product-line (PL). The row line (RL) connects
the bitcells horizontally to select weight bits in the respective
row for within-memory inference. The CIM array operates
in a bitplane-wise manner directly on the digital inputs to
avoid digital-to-analog converters (DACs). Bitplane of like-
significance input and weight vectors are processed in one
cycle as shown in Figure 1(d). Since the 8-T SRAM cell has
decoupled ports for inference and storage, in-SRAM inference
doesn’t impinge on read stability. Thus memory transistors can
be optimally sized to mitigate area concerns at edge platforms.

The operation within the CIM module in Figure 1(c) begins
with precharging PL and applying input at CL in the first half
of a clock cycle. In the next half of a clock cycle, RL is
activated to compute the product bit on PL port. PL discharges
only when input and stored bit are both one. Figure 2 shows
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Figure 2: Response flow of signals in MC-CIM’s bitplane-wise processing.
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Figure 3: (a) MC-Dropout-based variational Bayesian inference for deep
learning with computation-reuse for successive MC-Dropout iterations. (b)
MC-Dropout mapped to CIM. Input and output neurons are dropped by
deactivating corresponding rows and columns respectively in the CIM.

the response and flow of various signals in 16×31 SRAM-CIM
macro upon input activations. The CIM macro is designed and
simulated using low standby power (LSTP) 16 nm CMOS
predictive technology models from [13].

The output of all PL ports are averaged on the sum line
(SLL) using transmission gates in the figure, determining the
net multiply-average (MAV) of bitplane-wise input and weight
vector. The charge-based output at SLL is passed to SRAM-
immersed analog-to-digital converter (xADC), discussed in
details in our prior work [11]. xADC operates using successive
approximation register (SAR) logic and essentially exploits the
parasitic bitline capacitance of a neighboring CIM array for
reference voltage generation. Operating waveforms of xADC
are shown in Figure 2 in blue. In the consecutive clock
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Std = 0.058
Std = 0.35

(a)

(c) (d)(b)

Figure 4: (a) SRAM-embedded random dropout bit generator. (b) Dropout probability calibration in CIM-embedded RNG. (c) Comparing baseline CCI and
proposed SRAM-embedded CCI (RNGs) for random dropout bit generation probability (p1) amidst transistor mismatches. (d) Tuning SRAM-embedded RNG
for desired dropout probabilities (0.3, 0.5 and 0.7). Histograms correspond to 100 Monte Carlo instances.

cycles different combinations of input and weight bitplanes
are processed and the corresponding product-sum bits are
combined using a digital shift-ADD.

Importantly, compared to [11], we have also uniquely
adapted xADC’s convergence cycles by exploiting the statistics
of MAV leading to a considerable improvement in its time and
energy efficiency. These details are presented subsequently.

III. VARIATIONAL INFERENCE IN COMPUTE-IN-MEMORY

A. MC Dropout-based Inference in Neural Networks

Figure 3(a) shows the high-level overview of MC-dropout-
based Variational inference as presented in [5]. In a dropout
(DO) layer, input and output neurons are dropped randomly in
each iteration following a Bernoulli distribution. Implementing
MC-dropout layers with dropout probability of 0.5 has shown
to adequately capture model uncertainties for robust inference
in many applications [5], [6]. Although in [14], authors have
also developed learning schemes to extract the optimal dropout
probabilities from training data. Considering the mapping
of neural network weights on a CIM array, in Figure 3(b),
randomly dropping input neurons is equivalent to masking

the weight operation in the corresponding column of CIM,
whereas dropping output neurons is equivalent to disabling
corresponding weight rows of CIM. Ensemble of several DO
operations is equivalent to Monte Carlo estimates of network
weights sampled from the posterior distribution of models as
shown in [5]. Predictions in such MC-Dropout-based inference
procedure are made by averaging the model outputs for
regression tasks and by majority voting on classification tasks.
Whereas the model confidence is extracted by estimating the
variance of probabilistic outputs from each iteration.

B. Within-SRAM Dropout Bit Generators
In Figure 1(c), to support random input dropouts, inputs to

CL peripherals are ANDed with a dropout bitstream. Likewise,
for random output dropouts, row activations are masked by
ANDing RL signals with output dropout bitstream. Therefore,
inference in MC-Dropout requires an additional processing
step of dropout bit generation for each applied input vector.
High-speed generation of dropout bit vectors is thereby a
critical overhead for CIM-based MC-Dropout.

In prior works, random number generators (RNG) are
implemented by using analog circuits to amplify noise [15],
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Figure 5: (a) SRAM-immersed analog-to-digital converter (xADC). (b-c) Product-Sum line (SLL) histograms for computation within MC-CIM with asymmetric
and symmetric SAR conversioncycles. (d) Conversion cycle savings in various SAR conversion and computation modes in MC-CIM. (e) Asymmetric and
symetric search for VREF in SAR. Red node - 1st cycle, blue nodes - 2nd cycle. (f) Symmetric and asymmetric SA logic energies.

by exploiting uncertain phase jitters in the oscillators [16],
by using metastability resolution in cross-coupled inverters
by thermal noise [17], and by using continuous/discrete-time
chaos [18]. Among the prior techniques, a cross-coupled
inverter (CCI) circuit is lightest-weight design for random
number generation. However, the entropy of generated random
bits from CCI is greatly affected by transistor mismatches.
Without calibration, most of CCI instances will either show
no randomness at all or a significant bias in the generated
random bit stream [17]. In [17], high entropy in random
number generation is achieved by incorporating programmable
PMOS and NMOS strengths in the CCI. Further fine-grained
tuning was proposed using programmable precharge-clock
delay buffers. However, CCI’s calibration requires significant
overhead, eclipsing its area advantages. Subsequently, we
discuss how SRAM-embedded random number generation can
exploit memory array’s parasitics to mitigate such overheads.

Note that each weight-input correlation cycle for our CIM-
optimal inference operator (⊕) lasts 2(n − 1) clock periods
for n-bit precision weights and inputs. Therefore, for m-
column CIM array, a throughput of m

2(n−1) random bits/clock
is needed. Meeting this requirement, � m

2(n−1)�parallel CCI-
based RNGs are embedded in a CIM array in our scheme,
each capable to generate a dropout bit per clock period.
CCI-based dropout vector generation is pipelined with CIM’s
weight-input correlation computations, i.e., when CIM array
processes an input vector frame, memory-embedded RNGs
sample dropout bits for the next frame.

Figure 4(a) shows the proposed SRAM-embedded RNG.
We exploit SRAM’s write parasitics for RNG calibration.
During inference, write wordlines (WWL) to a CIM macro
are deactivated. Therefore, along a column, each write port

injects leakage and noise current to the bitline as shown in
Figure 4(a). Even though the leakage current from each port,
Ileak,ij , varies under threshold voltage (VTH ) mismatches, the
accumulation of leakage current from parallel ports reduces the
sensitivity of net leakage current at the bitlines, i.e.,

∑
i Ileak,ij

shows less sensitivity to VTH mismatches. Each write port
also contributes noise current, Inoi,ij , to the bitline. Since
the noise current from each port varies independently, the net
noise current,

∑
i Inoi,ij , magnifies. We exploit such filtering

of process-induced mismatches and magnification of noise
sources at the bitlines for RNG’s calibration.

An equal number of SRAM columns are connected to both
ends of CCI. Both bitlines (BL and BL) of a column are
connected to the same end to cancel out the effect of column
data. Both ends of CCI are precharged using PCH signal and
then let discharged using column-wise leakage currents for
half a clock cycle. At the clock transition, pull-down transistors
are activated using a delayed PCH (PCHD) to generate the
dropout bit. For the calibration, CCI generates a fixed number
of output random bits serially from where its bias can be
estimated. A simple calibration scheme in Figure 4(b) then
adapts the parallel columns connected to each end until CCI
is able to meet the desired dropout bias within the tolerance.

Figure 4(c) shows the histogram of CCI’s probability (p1)
to produce ‘1’ as the output. An ideal CCI-based RNG should
have p1 = 0.5. The histogram of p1 over hundred instances is
compared against a baseline CCI that doesn’t exploit SRAM
columns for calibration. For each CCI instance, p1 is extracted
based on 500 evaluations. CIM-embedded CCI shows a much
limited variability of p1; for SRAM-embedded CCI, σ(p1) =
0.058, whereas for baseline CCI, σ(p1) = 0.35. In Figure 4(d),
we also show SRAM-embedded RNG calibrated for p1 = 0.3
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and 0.7 bias targets, meeting similarly tight margins.
The operation of CCI-based dropout generation can be

further improved using fine-grained calibration (such as [17])
along with the coarse-grained calibration presented here. How-
ever, our later discussion in Sec. VI will show an adequate
tolerance to RNG’s bias perturbation in MC-Dropout which
has motivated our lightweight scheme above.

C. Exploiting MAV Statistics for ADC’s Time Efficiency

The probabilistic activation of inputs in MC-Dropout can
also be exploited to adapt the digitization of multiply average
voltage (MAV) generated at the sumline (SLL). SLL voltage
in MC-CIM follows VDD − VDD

n

∑
xi · wi where xi and

wi are input and weight vector bits processed in column i,
VDD is the supply voltage, same as the column precharge
voltage, and n is the number of columns in CIM array. At
input dropout probability p1 = 0.5, about half of the input bits
are deactivated. This induces an asymmetry in MAV’s voltage
distribution skewed towards VDD. We exploit this statistics of
MAV to improve the time efficiency of digitization.

In our prior work [11], we presented successive approxi-
mation (SA)-based memory-immersed data converter (xADC).
In Figure 5(a), bitline capacitance of a neighboring CIM
array is exploited in xADC to realize the capacitive DAC
for SA, thereby, averting a dedicated DAC and corresponding
overhead. While xADC in [11] followed typical binary search
of a conventional data converter, here, we discuss an asym-
metric successive approximation. The histogram in Figures
5(b-c) depict skew of MAV distribution that is asymmetrically
situated closer to VDD. We can thus minimize the digitization
cycles for MAV using asymmetric approximation. For this,
reference levels at each cycle are selected based on the MAV
statistics such that they iso-partition the distribution segment
being approximated by the conversion cycle. For example, in
the first cycle, the first reference point R0 is ∼mean(MAV),
instead of half of Vmax where Vmax is the maximum voltage
generated at sumline (SLL). Likewise, in the next iteration,
reference levels R00 and R01 are generated to iso-partition
MAV distribution falling between [0, R0] and [R0, Vmax], re-
spectively. Since asymmetric SA results in unbalanced search
of references in Figure 5(e), very few cases requires more SA
cycles than in conventional SA ADC, and for the majority of
inputs, the total searches are much less.

Figure 5(d) shows the advantage of asymmetric SA over the
conventional one. For a 5-bit conversion of MAV, asymmetric
SA requires on average ∼2.7 cycles, 46% less than the
conventional. In the next section, we will discuss adaptations
of MC-CIM for compute reuse (CR) and sample ordering (SO)
flows which further increase input sparsity, and proportionally
lead to even more benefits of asymmetric SA. In Figure 5(d),
asymmetric SA with CR and SO, only requires two conversion
cycles. The asymmetric SA, however, comes at the cost of
higher logic complexity. In Figure 5(f), a finite state machine
(FSM)-based asymmetric SA logic incurs 2.1fJ/operation on
average whereas the typical SA logic incurs 1.4fJ. The en-
ergy of FSM-based SA logic was extracted using register-
transfer level (RTL) synthesis and extraction using Cadence
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Figure 6: (a) Travelling salesman problem (TSP) to identify optimal (minimum
distance travelled) path covering all cities. (b) Computation savings in MC-
Dropout based BI with typical inference flow, compute reuse in successive
iterations and compute reuse with TSP-based optimal sample ordering.

CL1 CL2 CLN

x1 x2 xN

DO bits for ith and i-1th iterations

DO1,i DO2,i DON,i

DO1,i-1 DO2,i-1 DON,i-1

Cycle-1: Activated in ith but not in i-1th

CL1 CL2 CLN-1

x1 x2 xN

DO bits for ith and i-1th iterations

DO1,i DO2,i DON,i

DO1,i-1 DO2,i-1 DON,i-1

Cycle-2: Activated in i-1th but not in ith

Figure 7: Logic operations to implement compute reuse.

RC compiler. Nonetheless, since energy overheads of ADC
are dominated by analog operations, comparator and DAC
precharge, asymmetric SA is more energy efficient overall.

IV. DATA-FLOW OPTIMIZATION IN MC-CIM

A. Compute Reuse in MC-Dropout Inference

Two successive MC-Dropout iterations in Figure 3(a) can
share common input/output neurons. Therefore, the workload
in MC-Dropout can be reduced significantly by iteratively
computing the product-sum in each iteration as Pi = Pi−1 +
W × IAi − W × IDi . Here, IAi indicates the input neurons
that are active in the current iteration but were dropped in
the previous one. IDi denotes the input neurons that were
active in the previous iteration but are dropped currently. This
way, we perform only the newer computations and reuse the
overlapping ones.

Figure 6(b) shows the advantages of such compute reuse.
Considering an example processing of fully-connected input
and output layers with 10 neurons in each layer, the figure
compares the necessary multiply-accumulate (MAC) opera-
tions for typical and compute reuse-based execution. For a
MC-Dropout inference that considers hundred dropout sam-
ples for prediction, compute reuse-based execution requires
only ∼52% MAC operation compared to a typical flow.
Figure 7 shows the implementation of compute reuse. At each
iteration, computations are performed in two cycles. In the
first, cycle-1, only those activations that are present in ith

iteration but not in i-1th are processed. While in second, cycle-
2, activations that are present in i-1th iteration but not in ith are
processed. The selection of non-overlapping activations can be
made by retaining dropout bits for the previous iteration and
using simple logic operations as shown in the figure.
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Figure 8: Simulation methodology projecting MC-CIM macro’s characteristics
to Bayesian deep neural network (DNN) inference.

The compute-reuse method is applicable for MC-Dropout
inference procedures when only one layer is subjected to
probabilistic inference while the other layers operate through
classical deterministic inference. Although in its most general
case, as discussed in the seminal work by the authors [5],
MC-Dropout inference can be applied on all layers of a DNN
by considering the dropout probability to be 0.5, the same
value used during the training, in more practical settings, as
discovered in [6], applying the procedure on the layer just
before final regression and classification output performs opti-
mally. In [6], authors found that when dropout procedure was
applied on all layers, the prediction accuracy on the considered
visual odometry application degraded. Even more, since the
probability of dropout bits in a layer can itself be learned (i.e.,
need not be 0.5 or same as used during the training) [14], it
is possible to minimize the energy and latency overhead of
Bayesian edge intelligence by limiting dropout iterations to
only one layer and learning the probability parameters using
variational inference procedures such as in [5]. Under such
practical considerations, we have presented our compute reuse
methods. Note that making only the last layer of a classical
deep neural network, generative or Bayesian is an emerging
technique explored in many other works and settings such as
autonomous navigation in [6] and gene sequencing in [7].

B. Optimally Ordering Dropout Steps

Moreover, we can make the above compute reuse even more
effective by optimally ordering the dropout samples of MC-
Dropout inference. The ordering has to be such that the suc-
cessive iterations have the maximum overlap of active/inactive
neuron set so that the cumulative workload minimizes while
traversing through the entire dropout sample set.

A combinatorial optimization problem that is equivalent to
our objective here is the traveling salesman’s problem (TSP).
TSP is a well-studied problem whose objective is to find an
optimal traversal path by a salesman to visit ‘n’ cities where
each city is visited only once as shown in Figure 6(a). In
an analogy to TSP, iterations of MC-Dropout represent cities.
For two samples ‘i’ and ‘j’, IAij + IDij represents their distance
where IAij indicates the input neurons that are active in the
‘i’ iteration but were dropped in ‘j.’ IDij denotes the input
neurons that were active in the ‘j’ iteration but are dropped
in ‘i.’ Even though, TSP is an NP-hard problem, several
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Figure 9: Energy comparison at various operating modes of MC-CIM for MC-
Dropout inference with 30 dropout iterations per input and 6-bit precision.

Figure 10: Energy breakdown comparisons in various operating modes of
16× 31 MC-CIM macro for MC-Dropout inference at 6-bit precision.

efficient optimization procedures exist for the problem [19].
Using these combinatorial optimization procedures, an optimal
dropout sequence can be computed in advance and embedded
in the inference flow. Figure 6(b) compares computation
savings in typical, compute reuse and compute reuse with
optimal sample ordering. Compared to typical inference flow,
the computation savings for a hundred MC-Dropout samples
using compute reuse with TSP-based optimal sample ordering
is even better, ∼80% in the figure.

Figure 11: Energy distribution of MC-CIM peripherals along with external
SRAM for accessing pre-computed dropout bits.

Also note that the above strategy of precomputing and
optimally ordering dropout bits obviates SRAM-embedded
TRNGs. However, instead, additional storage of ordered
dropout schedules becomes necessary. These dropout sched-
ules can be stored in an additional SRAM interfaced with
CIM to sequentially readout during MC-Dropout. Although
the storage of dropout schedules is an important overhead of
the sample-ordering method, [6] shows that sufficient output
statistics can be extracted from few (∼10-30) dropout itera-
tions making pre-computation of samples and their ordering an
attractive alternative for many applications. The access energy
of pre-computed dropout bits from this external SRAM is
11.25 pJ extracted from an opensource tool Accelergy [20].
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JSSC’17 [8] ISCAS’20 [9] JSSC’19 [10] VLSI’19 [21] TCAS-I’20 [22] TCAS-I’21 [23] ASPLOS’18 [24]* TVLSI’20 [25] This work**

Memory cell 6T SRAM 8T SRAM 10 SRAM 17T TBC! 6T SRAM Dual-SRAM BlockRAMs 8T SRAM 8T SRAM

Technology 130nm 45nm 65nm 12nm 65nm 28nm FPGA 14nm 16nm

Input 
precision 

10 6 6 4 5 5 8 6 4/6

Weight 
precision 

10 6 6 4 1 2/4/8 8 6 4/6

ML 
algorithm

CNN - CNN CNN CNN CNN CNN - CNN

ML dataset MNIST - MNIST MNIST MNIST MNIST MNIST - MNIST

Accuracy 
(%)

90 0.5 KL-div 98.3 98.91 97.2 98.3 97.8 - 98.4

Supply 
voltage (V)

1 1 1 0.72 1 1 - 0.8 0.85V

Main CLK 
frequency

50 MHz 1 GHz 5 MHz (ADC: 
250 MHz)

- 100 MHz 214 MHz 213 MHz 80 MHz 1 GHz

Energy 
efficiency
(TOPS/W)

46.6 pJ/
classification

91 fJ/MC-
sample

40.34 79.3! 60.6! 18.45! - 119.3! 52,694.8 Images/J 16.94
609.7 (precision 

scaling)

3.5"/2.23"

Table I: Comparison with current art in compute-in-memory (CIM) frameworks

!17T Ternary bit cell (TBC) comprised of two 6T SRAM cells.
!TOPS/W corresponds to CIM macro and estimated per inference.     *VIBNN: Existing Bayesian neural network accelerator.
**MC-CIM with compute reuse and optimal MC-Dropout sample ordering.
"TOPS/W corresponds to CIM macro and estimated for 30 MC-Dropout inference iterations.
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Figure 12: Precision-Accuracy comparison between deterministic and MC-
Dropout inference for (a) character recognition, and (b) visual odometry (VO).
(c) Impact of parameter-reduction on accuracy for VO.

The energy breakdown with the access energy of pre-computed
dropout bits is shown in Figure 11.

V. POWER-PERFORMANCE CHARACTERIZATION OF
CIM-BASED MC-DROPOUT MACRO

A. Methodology to Project Macro-Characteristics to System

In Figure 8, we present our methodology to project CIM’s
macro-level characteristics to system-level benchmarks. First,
a full precision MC-Dropout-based DNN model is downgraded
to CIM’s lower input and weight precision. Next, process
variability-induced non-idealities in RNG-generated dropout
bits are accounted by adding statistical perturbation to dropout
probabilities as shown in the Figure 13(c). The perturbation
statistics are extracted from Macro-level SPICE simulations
at varying power-constraints. For example, as fewer SRAM

columns are used for RNG calibration (using the circuit in
Figure 4(a)), a higher deviation in dropout probabilities is
observed. Conversely, operating a RNG with fewer SRAM
columns results in lower power operation since the net ca-
pacitance at CCI ends decreases. Such deviations in dropout
probabilities are fitted with a Beta distribution, as shown
in Figure 13(c), and distribution parameters are used in the
perturbation layers to study the system-level power scaling.

B. Energy characterization of MC-CIM

We characterize MC-CIM’s total energy for MC-Dropout-
based probabilistic inference by considering the energy con-
sumed for random number generation, product-sum com-
putation, analog-to-digital conversion and accumulation of
product-sums. In Figure 9 we compare the energy consumption
by MC-CIM for MC-Dropout inference with 30 dropout itera-
tions per input. Compared to conventional configuration of typ-
ical operator and typical ADC, MC-CIM with multiplication-
free (MF) operator, asymmetric successive approximation and
MAC with compute reuse saves ∼34% energy consuming
32 pJ. Energies for different configurations of MC-CIM are
shown in the bar plot in Figure 9. With compute reuse as well
as additionally incorporating optimal sample ordering, energy
consumption reduces even more to 27.8 pJ. Figure 10 shows
the energy breakdown for various peripheral operations in MC-
CIM at three different configurations as shown in the figure.
An interesting note from the figure is that while in majority of
CIM approaches the net energy is dominated by ADC, such
as also for the typical processing in the left most pie-chart,
with compute reuse and MAV statistics-aware time-efficient
ADC, the proportion of ADC’s contribution to total energy
reduces in compute reuse case to <21% and compute reuse
with sample ordering case to to <16%.

In Table I, we compare MC-CIM with current arts in CIM
frameworks [8]–[10] and [21]–[25]. MC-CIM operates at 1
GHz clock, 0.85V and 6-bit input/weight precision to maintain
state-of-the-art accuracy on various inference benchmarks.
The energy efficiency of MC-CIM in its with MF operator,
compute reuse, SRAM-embedded dropout-bit generation is
∼3.04 TOPS/W (at 4-bit precision) and ∼2 TOPS/W (at 6 bits)
for 30 MC-Dropout network iterations whereas that for the
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Model prediction

(a) (b)

High prediction confidence

Lower prediction confidence

(c) (d) (e)

Figure 13: (a) Distribution of output classes for multiple rotations of digit 3. (b) Normalized entropy of all MC-Dropout (Bayesian) samples summed for 12
image rotations quantifying uncertainty in predictions. (c) Beta distributions for various ’a’. (d) Entropy with various dropout probability perturbations. (e)
Entropy at various input/weight precisions.

most optimal configuration incorporating TSP-based optimal
MC-Dropout sample ordering (and thus offline dropout-bits
sampling) is ∼3.5 TOPS/W (at 4 bits) and ∼2.23 TOPS/W
(at 6 bits). Compared to the other benchmarks in the table,
although TOPS/W in our design is lower, note that our
design considers Bayesian inference where each prediction is
made by averaging predictions from thirty iterations and can
extract both the prediction and the confidence on prediction,
unlike other benchmarks in the table which only consider
a classical inference of deep learning models. In Table I,
we also compare MC-CIM with existing Bayesian neural
network (BNN) accelerator, VIBNN [24], which is FPGA-
based BNN implementation with the energy efficiency of
52,694.8 Images/J predicting MNIST images with 97.81%
accuracy at 8-bit precision.

C. Synergy between probabilistic inference and MC-CIM

Bayesian inference methods such as MC-Dropout are criti-
cal for the next generation risk-aware applications. Our previ-
ous discussion shows a significant synergy between Bayesian
inference and MC-CIM, suggesting compute-in-memory as a
promising pathway for robust intelligence in edge devices.
Typical Bayesian inference methods operate by sampling. By
coalescing sampling and inference on each sample within
the same physical structure, compute-in-memory reduces data
movements and energy cost for probabilistic iterations. In
Figure 12, we show the prediction accuracy curves for char-
acter recognition and visual odometry at various input/weight

precision of MC-CIM. Both applications and their networks
are discussed in more details later. Notably, compared to deter-
ministic deep learning model, MC-CIM is more precision scal-
able, showing better accuracy at 4-bit precision. Even more,
In Figure 12(c), when using a thinner network with fewer
parameters for VO, we find that Bayesian inference maintains
a better accuracy than deterministic inference. Therefore, while
high area demand is an important challenge for compute-
in-memory methods compared to typical digital accelerators
which utilize more density efficient memory units, by allowing
better precision scalability, Bayesian inference also reduces the
storage cost for CIM implementation of the method, thereby
it is synergistic with CIM.

VI. CONFIDENCE-AWARE INFERENCE UNDER
UNCERTAINTIES WITH MC-CIM

We next study confidence-aware inference under uncer-
tainties with MC-CIM. Two benchmarking applications are
considered. First, for character recognition using MNIST [26],
we study MC-CIM’s capacity to express predictive uncer-
tainties when the input images are disoriented. Since the
original network was trained only on the standard training
images in MNIST dataset, a higher order of disorientation
in input images should lead to MC-CIM expressing lower
confidence (higher uncertainty) in its predictions. Secondly,
for visual odometry (VO) in autonomous drones, we evaluate
a correlation factor between the error from the ground truth
and MC-CIM’s estimate of predictive uncertainty. With a
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0.09: relatively poor
robustness at 2-bit
input/weight precision

Good correlation
between predicted
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Figure 14: MC-Dropout samples based indoor (RGB-D dataset) localization and trajectory of drone in (a) X-Y, (b) Y-Z and (c) X-Z position coordinates,
and comparison with deterministic network configurations at various inference conditions (a deterministic inference with 32-bit and 4-bit precision input and
weights, and MC-Dropout inference at 4-bit precision inputs and weights and 30 Bayesian samples per image frame). (d) Confidence bounds of MC-Dropout
based pose samples around the mean pose prediction. (e) Correlation between the uncertainty (variance) and the error in the pose estimates. (f) Implication
of PVT variation induced non-idealities in dropout probability of error-variance correlation.

strong correlation between the error and MC-CIM’s predictive
uncertainty, a higher variance in probabilistic estimates will
indicate lower confidence in predictions. Thereby, downstream
decision and control units can account for MC-CIM’s predic-
tion confidence for planning risk-aware drone control.

A. Predictive Uncertainties under Character Disorientation

In Figure 13, we evaluate MC-CIM’s predictive uncertainty
in digit recognition by forwarding through twelve different
rotation configurations of handwritten digit ‘3.’ For each input,
MC-CIM is operated 30 times, each time employing a random
dropout of neurons. Our previous simulation methodology,
integrating macro-level SPICE simulations with network-level
functional simulation in Sec. V, is followed. In Figure 13(a),
a scatter plot of output classes over twelve different rotations
is prepared where with increasing image-ID, the input image
is disoriented to a higher degree. As evident in the figure,
with the original image (Image-ID: 1), all thirty iterations
evaluate the correct output class, and thereby, MC-CIM is
highly confident in its prediction. However, with increasing
Image-ID, as the input image is disoriented to a higher degree,
MC-CIM’s predictions are dispersed over many output classes
which indicates a lower prediction confidence.

The uncertainty in MC-CIM’s predictions can be quantita-
tively extracted by evaluating the cross-entropy, i.e., −

∑
pi×

log(pi) where pi is the output probability for the ith digit
class, as shown in Figure 13(b). pi is extracted by dividing
the occurrence of ith class in the ensemble from the total
number of dropout iterations. Cross-entropy will be small

when one of the output class is dominant, i.e., when MC-
CIM is quite confident in its prediction. Cross-entropy will be
high when none of the output class is dominant, indicating
lower prediction confidence.

Compared to the functional evaluations of MC-Dropout for
such confidence-aware predictions, two main non-idealities
that affect MC-CIM are: (i) low precision of weights and
inputs, and (ii) process-induced bias in embedded RNGs. In
Figure 13(c-e), we systematically study these two factors.
First, to study the system-level impact of RNG bias, instead
of choosing the ideal dropout bias (p=0.5), we sample it from
a symmetric Beta distribution, p ∼ B(a, a). With decreasing
a, the variance of Beta distribution increases (Figure 13(c)),
therefore, the sampled bias p deviates much more from the
ideal, emulating non-idealities of a circuit implementation of
RNG. Incorporating such random bias perturbation, in Figure
13(d), we again extract the cross-entropy characteristics from
MC-CIM similar to Figure 13(b). Despite selecting a very
small a, i.e., considering a very high degree of RNG non-
ideality, the cross-entropy curves do not deviate much from the
ideal, thereby indicating a higher degree of tolerance to RNG
non-idealities in MC-CIM. In Figure 4, we have exploited
this attribute to simplify RNG design by considering only
CIM-embedded coarse-grained calibration. In Figure 13(e), we
show the affect of low input and weight precision in MC-
CIM on the probabilistic inference. Except at 2-bit precision
where the entropy is high (∼0.4) even for the Image-ID: 1,
not much deviation is observed in the entropy curves for 4-bit
precision onward and thus indicating MC-CIM’s tolerance to
low-precision for probabilistic inference.
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B. Confidence-Aware Self-Localization of Drones

Visual odometry (VO) is a localization framework where the
position and orientation of a moving camera, such as mounted
on a drone, is estimated based on input image sequences.
Using VO, an autonomous drone can localize itself from visual
inputs. In recent years, deep learning methods have become
popular for VO. A DNN-based regression network, PoseNet,
was shown in [27] showing high accuracy for VO with a
lightweight and easily trainable network. In [28], we presented
floating-gate transistor based CIM framework for localization
using classical particle filtering. Here, we test PoseNet under
variational execution and with MC-CIM’s non-idealities.

For our study, the network was trained with scenes 1, 2 and
3 of RGB-D scenes v2 dataset [29] and tested with scene-4
consisting of 868 RGB sequential image frames. Figure 14(a-
c) illustrates the ground truth and estimated pose-trajectories
for: 4-bit classical (deterministic) inference and (MC-dropout-
based) 4-bit probabilistic inference with 30 samples per image
frame. Figure 14(d) depicts a scatter plot of pose-error vs. vari-
ance (uncertainty) in the probabilistic inference. Interestingly,
a high correlation between the error and predictive uncertainty
can be seen. Therefore, unlike classical (deterministic) infer-
ence, MC-CIM’s probabilistic inference can indicate when
the mispredictions are likely by expressing high predictive
uncertainties. The quantitative estimate of error-uncertainty
correlation (Pearson correlation coefficient [30]) observed in
Figure 14(d) is 0.31.

In Figure 14(e-f), we study the impact of MC-CIM’s non-
idealities on error-variance correlation. In Figure 14(e), we
observe a good error-uncertainty correlation (> 0.3) at 4-
bit input/weight precision onward in MC-CIM’s probabilistic
inference. The implication of dropout probability (p1)’s bias
perturbation due to CIM-embedded RNG’s non-idealities in
MC-Dropout inference is shown in Figure 14(f). On the x-
axis is dropout probability sampled from symmetric Beta
distribution, p ∼ B(a, a), with varying degrees of variance
parametrized by a. The error-uncertainty correlation in pose
estimates is reasonably good even at high dropout probability
perturbations where a is as low as 2 shown in Figure 14(f).
The correlation drops for p1 ∼ B(1.25, 1.25) as shown in the
Figure. Thus MC-CIM proves to be robust amidst its non-
idealities in performing confidence-aware self-localization.

VII. CONCLUSION

We presented MC-CIM, a compute-in-memory framework
for probabilistic inference targeting edge platforms that not
only gives prediction but also the confidence of prediction
which is crucial for risk-aware applications such as drone
autonomy and augmented/virtual reality. For Monte Carlo
Dropout (MC-Dropout)-based probabilistic inference, MC-
CIM is embedded with dropout bits generation and optimized
computing flow to minimize the workload and data move-
ments. With our proposed techniques we benefit significantly
in energy savings even with additional probabilistic primitives
in CIM framework. Our study on the implications on non-
idealities in MC-CIM on probabilistic inference shows promis-
ing robustness of the framework for two applications - mis-

oriented handwritten digit recognition and confidence-aware
visual odometry in drones.
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