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Abstract
Tucker decomposition is one of the SOTA CNN model com-
pression techniques. However, unlike the FLOPs reduction,
we observe very limited inference time reductionwith Tucker-
compressed models using existing GPU software such as
cuDNN. To this end, we propose an efficient end-to-end
framework that can generate highly accurate and compact
CNN models via Tucker decomposition and optimized in-
ference code on GPUs. Specifically, we propose an ADMM-
based training algorithm that can achieve highly accurate
Tucker-format models. We also develop a high-performance
kernel for Tucker-format convolutions and analytical perfor-
mance models to guide the selection of execution parameters.
We further propose a co-design framework to determine
the proper Tucker ranks driven by practical inference time
(rather than FLOPs). Our evaluation on five modern CNNs
with A100 demonstrates that our compressed models with
our optimized code achieve up to 2.21× speedup over cuDNN,
1.12× speedup over TVM, and 3.27× over the original models
using cuDNN with at most 0.05% accuracy loss.

CCS Concepts • Computing methodologies → Mas-
sively parallel algorithms; Neural networks; • Software
and its engineering → Source code generation;

Keywords Convolutional neural network, inference, GPU,
performance, model compression.
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1 Introduction
Not only are deep neural networks such as convolutional
neural networks (CNNs) critical to traditional AI tasks [6, 15],
but their applications in science domains are also growing
[4, 20, 26]. However, in recent years, demands to improve the
inference performance of CNNs have never been satisfied.
Prior works approach faster and more efficient CNNs from
different aspects, such as weight pruning [25], quantization
[10, 18], and kernel factorization [34, 41].
Pruning techniques are proposed to remove the weight

redundancy and produce an irregular sparse model to re-
duce the computational cost and memory bandwidth re-
quirements of inference. However, this requires specialized
sparsity-aware accelerators with significant effort in new
hardware design and fabrication.Moreover, some researchers
proposed to create a regular sparsity pattern through hardware-
aware pruning algorithms [9, 25, 43], but their compression
ratio is largely limited by the enforced sparsity patterns.
Quantization is to reduce the number of bits to store the

model weights but faces two main challenges: (1) The quan-
tized CNNs usually require arbitrary precisions (e.g., 4-bit
weight), while widely used accelerators such as GPUs only
support a limited range of precisions (e.g., half precision).
(2) The compression ratio provided by quantization is still
insufficient, considering many large CNN models.
Due to the above limitations, recent CNN model com-

pression studies have mainly focused on a new direction—
building the compact models using kernel factorization such
as matrix/tensor decomposition. Specifically, matrix/tensor
decomposition can represent a large matrix/tensor with the
combination of multiple small matrices/tensors. Correspond-
ingly, the number of the required representation parameters
can be significantly reduced. However, matrix decomposition
needs to convert high-order tensors to matrices and then
perform matrix decomposition, causing loss of spatial infor-
mation, whereas high-order tensor decomposition achieves
much higher accuracy [41]. Thus, various compact CNN
models have been developed using different tensor decompo-
sition approaches [11, 19, 39]. Among those efforts, Tucker
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Figure 1. Overview of our TDC framework for generating TKD-compressed CNN models with high-performance inference code on GPUs.

decomposition (TKD) [38] finds its strengths inminimal mod-
ification of the hardware support, ultra-high compression
ratio, and lower accuracy loss for CNN acceleration.
We identify three major challenges in accelerating TKD-

compressed CNNs on state-of-the-art GPUs.
Lack of hardware-aware TKD algorithms for CNN

acceleration. Once the target hardware platform is selected,
Tucker ranks are the most important parameters impacting
the practical latency. Unfortunately, existing TKD compres-
sion methods [13, 19] select ranks via either laborious efforts
or iterative search, none of which are hardware aware.

Lack of software-aware TKD convolution algorithms
for CNN acceleration. Tucker-based convolution decom-
position can greatly decrease the computation FLOPs by
reducing the number of the input channels and output chan-
nels of the original convolution layer. However, it is hard to
translate the FLOPS reduction to real performance increment
especially for small batch size such as one1. The root cause is
that Tucker-based convolutions suffer from severe resource
under-utilization when executed using existing software like
cuDNN. For example, our evaluation (will be shown in Figure
8) illustrates that TKD-compressed ResNet18 model (with
2.7× FLOPs reduction) using cuDNN only achieves 1.47×
speedup over the original model on A100 GPU.

Lack of performancemodel for tuning tucker-format
convolutions on GPUs. Popular software for high perfor-
mance convolutions such as TVM can generate fast convolu-
tion code by tuning hyper-parameters via machine learning
(ML) approaches on a given set of convolution templates.
However, those computation schemes do not work perfectly
on the tucker-format convolutions on GPUs (will be detailed
in Section 5.1). To solve this issue, an analytical performance
model to guide the parameter tuning for tucker-format con-
volutions on GPUs is urgently needed.

Lack of performance-driven frameworks for highly
efficient and accurate CNN inference on GPUs. Existing
model compression methods are primarily driven by FLOPs
reductions rather than real runtime reductions. However, it is
still unclear how to design an end-to-end compression frame-
work (including training highly accurate TKD-compressed
models and building optimized inference code) to reduce

1A batch size of 1 is important for ML applications that require real-time re-
sponses [12], such as navigation systems in autonomous driving. As another
example, the ability to auto-fill in suggestions when a retail customer enters
a product name into an e-commerce site is required for optimal response.

the model size to the sweet spot where further compression
cannot provide any performance benefit.

To this end, we propose an end-to-end framework, called
Tucker Decomposition Convolution (TDC), that can gen-
erate highly accurate and compact TKD-compressed CNN
models with optimized C++/CUDA code, which can be easily
deployed on GPUs for high-performance inference, as illus-
trated in Figure 1. First, we propose an Alternating Direction
Method of Multipliers (ADMM) based training algorithm
for TKD-format convolutions and incorporate inference per-
formance into the model generation. Second, we propose a
new computation scheme for Tucker-format convolutions
on GPUs. We also build a performance model to guide the
selection of tiling sizes for our convolution kernel rather
than performing an exhaustive search of the best tiling sizes.
Third, we propose a co-design approach that can automati-
cally determine the proper Tucker ranks based on a target
speedup of inference performance. Based on the determined
ranks, we can train a highly accurate TKD-compressedmodel
and generate the optimized code for inference on GPUs. The
main contributions of this paper are summarized as follows:
• We propose an algorithm-hardware co-designed, TKD-
based compression framework that can achieve infer-
ence acceleration on GPUs with high model accuracy.
• We redesign the ADMM-based training algorithm for
TKD-compressed models.
• We develop a new kernel for Tucker-format convolu-
tions and a performance model for tiling size selection.
• We develop an approach to choose the proper Tucker
ranks based on practical inference runtime and plug
them into the training phase for model generation.
• Evaluation results on five modern CNN models with
ImageNet demonstrate that our solution can speed up
the end-to-end inference on A100 by 1.26∼2.21× over
cuDNN and 1.03∼1.12× over TVM on the tested mod-
els. Moreover, compared with the original models, our
compressed models achieve up to 3.27× speedup with
at most 0.05% accuracy loss (even higher accuracy).

In Section 2, we introduce CUDA architecture, TKD-based
model compression, and GPU convolution. In Section 4, we
present our hardware-aware tucker decomposition for CNN
acceleration. In Section 5, we discuss the details of our con-
volution scheme. In Section 6, we present our new co-design
framework. In Section 7, we show our evaluation results. In
Section 8, we conclude this work and discuss future work.
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2 Background
In this section we present the background about CUDA GPU
architecture, tensor decomposition for model compression,
and high-performance software for GPU convolutions.

2.1 CUDA Architecture
The thread is the basic programmable unit that allows GPU
programmers to use massive numbers of CUDA cores. CUDA
threads are grouped at different levels such as warp, block,
and grid. Specifically, a group of 32 threads is called a warp.
All threads in the same warp will execute the same instruc-
tion. However, if different threads in a warp follow different
control paths, some threads are masked from performing
any useful work. This situation is called a warp divergence,
which is one of the fundamental factors that limit the per-
formance of GPUs. Multiple warps are combined to form a
thread block, and the set of thread blocks is called the grid.

2.2 Related Work on Tensor Decomposed DNN
Tensor Decomposition for DNNs. Higher-order tensor
decomposition is an advanced technique to explore multi-
dimensional linear correlations on the weight kernels via
directly decomposing high-order kernels to multiple small
tensor cores. Multiple tensor decomposition formats have
been successfully applied in CNN compression. In prior work
[21, 33], CP decomposition is adopted to factorize weight
tensors to reduce computational and storage costs of convo-
lutional layers. Tensor-train (TT) [30] and its variant tensor-
ring (TR) [44] decomposition are also commonly used low-
rank compression methods for CNNs [11, 28, 42]. In addition,
[13, 19] propose to compress and accelerate CNN models
via using Tucker decomposition, and [23] further develops a
mixed CP and Tucker method to improve the model accuracy.
However, these existing works still face several challenges
for efficient CNN acceleration.
Limitations of CP-based Method [33]. In general, CP

decomposition suffers two limitations for high performance
CNN acceleration. At the algorithm level, the CP method,
by its nature, has an inherent instability problem, thereby
causing inferior model accuracy. Though the state-of-the-art
(SOTA) CP method aims to mitigate this challenge, its accu-
racy is still unsatisfying. At the hardware level, the ranks
of different modes in CP are always identical when decom-
posing a kernel tensor, which hinders the adjustment of the
read-write loads in memories by changing the ranks ratio.

Limitations of TT-basedMethod [42]. The state-of-the-
art TT compression [42] has two inherent drawbacks. First,
as stated in [11], to compress a 4-D weight tensor, TT needs
to first convert the original convolution to a huge matrix-
matrix multiplication, and then uses TT to transform the
multiplication to a TT-FC layer [28]. In such a conversion,
important spatial information in filter dimensions (RxS) is
lost and the convolution process no longer exists, thereby

causing non-negligible accuracy drop. Second, according to
tensor theory, when decomposing a 4-D weight tensor, with
the similar rank setting TT brings lower computational cost
reduction than other methods such as Tucker.
Limitations of Tucker-based Method [13]. The state-

of-the-art Tucker work [13] still has unsatisfactory accuracy
performance when compressing modern CNNs (e.g., ResNet)
on ImageNet dataset (will be shown in Table 3). Moreover,
the rank selection of [13] is not performed in a hardware-
friendly way, thus limiting its runtime performance.

Tucker Method for RNN Compression. Tucker decom-
position can also be used for compressing matrix-vector-
multiplication-centered models, e.g., recurrent neural net-
works (RNNs). To that end, we can directly reshape the
weight matrix to a high-order tensor, then decompose it
into Tucker format. Under the Tucker format, the original
matrix-vector multiplication is converted to a series of ma-
trix multiplications in the execution. Considering that matrix
multiplication is well optimized in existing software stacks
and the Tucker-based CNN kernel optimization is still under-
investigated, we focus on CNNs in this work.

2.3 High-Performance Convolutions on GPUs
Software for high-performance convolutions can be cate-
gorized into two classes: (1) library-based implementations
and (2) code generator-based implementations. The most
famous convolution library is cuDNN [5], which is widely
used in open-source frameworks such as TensorFlow [1] and
PyTorch [32]. Specifically, a library like cuDNN can take ar-
bitrary convolution problem size as input and is very easy to
use. However, the performance of library-based implementa-
tion is often less than the code generator-based approaches.
This is because library-based implementations are optimized
to handle a range of problem sizes, whereas the code gener-
ator can be targeted to optimize a given problem size, thus
potentially achieving higher performance. Since the prob-
lem size is known, the code generator can precisely control
factors that affect performance, such as tile sizes, thread
coarsening levels, and memory placement strategies. For
example, TVM [3] is a well-known code generation frame-
work that generates fast convolution code by tuning hyper-
parameters on given convolution templates. However, unlike
TVM, which relies on heavy auto-tuning and ML processes,
our code-generation-based approach employs analytical per-
formance models to efficiently select the best execution pa-
rameters for both high performance and accuracy.

3 Basics of TKD-based Convolution
In this paper, bold calligraphic letters, bold capital letters
and bold lowercase letters represent high-order tensors, ma-
trices and vectors, respectively, e.g., A,𝑨, 𝒂; non-bold letter
with indices A(𝑖1, · · · , 𝑖𝑘 ) denotes the (𝑖1, · · · , 𝑖𝑘 )-th entry
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TKD

Figure 2. The original 4D convolution kernel is converted to three compo-
nents in a Tucker-format convolution layer.

of a 𝑘-th order tensor A; 𝐴(𝑖1, 𝑖2) and 𝑎(𝑖) denote the corre-
sponding entry of the matrix 𝑨 and vector 𝒂, respectively.
All the notations are summarized in Table 1.

Table 1. Notation summary.

𝐶 # i/p channels 𝑁 # o/p channels
𝐻 image height 𝑊 image width
𝑅 stencil height 𝑆 stencil width
X input tensor Y output tensor
K kernel tensor

Give a 𝑘-th order tensor A ∈ R𝑁1×···×𝑁𝑘 , with Tucker
decomposition, it can be generally represented as

A(𝑖1, · · · , 𝑖𝑘 ) =
𝐷1,· · · ,𝐷𝑑∑︁
𝑑1,· · · ,𝑑𝑘

C(𝑑1, · · · , 𝑑𝑘 )·𝑈1 (𝑖1, 𝑑1) · · ·𝑈𝑘 (𝑖𝑘 , 𝑑𝑘 ).

C ∈ R𝐷1×···×𝐷𝑑 is called core tensor, {𝑼𝑖 ∈ R𝑁𝑖×𝐷𝑖 }𝑘𝑖=1 are
called factor matrices, [𝐷1, · · · , 𝐷𝑑 ] are called Tucker ranks.

For compressing a convolutonal layer with kernel tensor
K ∈ R𝐶×𝑁×𝑅×𝑆 using Tucker decomposition, to preserve
the spacial information, we only decompose the first mode
and the second mode, i.e., the output and the input channel.
Hence, kernel K can be decomposed as

K(𝑐, 𝑛, 𝑟, 𝑠) =
𝐷1,𝐷2∑︁
𝑑1,𝑑2

C(𝑑1, 𝑑2, 𝑟 , 𝑠)𝑈1 (𝑐, 𝑑1)𝑈2 (𝑛,𝑑2), (1)

where C ∈ R𝐶×𝑁×𝐷1×𝐷2 , 𝑼1 ∈ R𝐶×𝐷1 , 𝑼2 ∈ R𝑁×𝐷2 are the
compressed components to store and compute in the Tucker-
format convolution layer. The decomposed components are
illustrated in Figure 2.

With the above Tucker-format decomposed kernel, a con-
volution layer can be performed with three small consecutive
convolutions. Specifically, for an input tensor X ∈ R𝐻×𝑊 ×𝐶 ,
the output tensor Y ∈ R𝐻 ′×𝑊 ′×𝑁 is computed by

Z1 (ℎ,𝑤,𝑑1) =
𝐶∑︁
𝑐=1
X(ℎ,𝑤, 𝑐)𝑈1 (𝑐, 𝑑1), (2)

Z2 (ℎ′,𝑤 ′, 𝑑2) =
𝑅∑︁
𝑟=1

𝑆∑︁
𝑠=1

𝐷1∑︁
𝑑1

Z1 (ℎ,𝑤,𝑑1)C(𝑑1, 𝑑2, 𝑟 , 𝑠), (3)

Y(ℎ′,𝑤 ′, 𝑛) =
𝐷2∑︁
𝑑2

Z2 (ℎ′,𝑤 ′, 𝑑2)𝑈2 (𝑑2, 𝑛), (4)

where ℎ = ℎ′ + 𝑟 − 1,𝑤 = 𝑤 ′ + 𝑠 − 1.
The above Tucker-format convolution is mathematically

equivalent to the original convolution. Figure 3 illustrates
the Tucker-format convolution. The first operation Eq. (2) is
essentially a channel-wise 1×1 convolution that transforms
original channels 𝐶 to the smaller latent channels 𝐷1. Then

1-by-1 R-by-S 1-by-1

Figure 3. Illustration of Tucker-format convolution.

the computation Eq. (3) can be considered as the regular 2D
convolution with the same kernel size 𝑅, 𝑆 from channels 𝐷1
to 𝐷2 (called core convolution). The last computation Eq. (4)
is also a channel-wise 1×1 convolution that transforms the
latent channels 𝐷2 to the original output channels 𝑁 .

Benefits from hardware perspective. Note that regular
𝑅-by-𝑆 convolution is generally more sensitive to size than
one-by-one channel-wise convolution. With this Tucker-
format convolution, one can customize the second convo-
lution by defining 𝐷1 and 𝐷2 as the hardware such as GPU
friendly sizes, then use channel-wise convolution to comple-
ment the unbalanced custom channel sizes.

Computation and storage complexity. The overall stor-
age complexity is number of parameters of factor matrices
𝑼1, 𝑼2 and core tensor C, i.e.,𝐶 ·𝐷1+𝑁 ·𝐷2+𝑅 ·𝑆 ·𝐷1 ·𝐷2. The
overall computation complexity is also the sum of FLOPs of
the three convolutions, i.e.,𝐻 ·𝑊 ·𝐶 ·𝐷1 +𝐻 ′ ·𝑊 ′ ·𝑅 ·𝑆 ·𝐷1 ·
𝐷2 +𝐻 ′ ·𝑊 ′ · 𝑁 · 𝐷2. The Tucker ranks 𝐷1, 𝐷2 are the main
hyper-parameters that decide the overall complexity. Com-
pared with the original convolution layer, the parameters
and FLOPs reduction ratio 𝛾𝑃 , 𝛾𝐹 are given by:

𝛾𝑃 =
𝐶 · 𝑁 · 𝑅 · 𝑆

𝐶 · 𝐷1 + 𝑅 · 𝑆 · 𝐷1 · 𝐷2 + 𝑁 · 𝐷2
, (5)

𝛾𝐹 =
𝐻 ′ ·𝑊 ′ · 𝑅 · 𝑆 ·𝐶 · 𝑁

𝐻 ·𝑊 ·𝐶 · 𝐷1 + 𝐻 ′ ·𝑊 ′ · 𝐷2 · (𝑅 · 𝑆 · 𝐷1 + 𝑁 )
. (6)

4 Hardware-aware Tucker Decomposition
In this section, we describe our proposed hardware-aware
tucker decomposition approach for CNNmodel compression.

4.1 Training Tucker-format Models with ADMM
Limitation of direct training. The capacity of the Tucker-
format model is lower and its depth becomes larger than the
original model, thus it is more sensitive to hyper-parameters
settings. As a result, directly training Tucker-format models
from scratch suffers from significant performance degrada-
tion (Table 2). Another way to obtain a Tucker-format model
is to decompose a pre-trained model, and then retrain. In
this case, the pre-trained model is generally full rank, and
decomposing it to Tucker format leads to a non-negligible
approximation error. Thereby, the accuracy cannot be recov-
ered in the Tucker-format model even after a long retraining.
Table 2. Accuracy comparison between directly training and our ADMM-
based compression for ResNet-20 on CIFAR-10.

Method Top-1 (%) FLOPs↓

Baseline 91.25 N/A
Direct Compression 87.41 60%

ADMM-based 91.02 60%
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Inspired by the previous optimization work [42], we pro-
pose an ADMM-based training technique to obtain high-
accuracy Tucker-format models by gradually imposing low-
Tucker-rank properties onto the original models during train-
ing process. The objective for compressing a baseline model
using optimization-based training is given as

min
W

ℓ (K), s.t. rank(K) ≤ [𝐷∗1, 𝐷∗2], (7)

where ℓ is the loss function of the DNN model, rank(·) re-
turns the latent Tucker ranks of the kernel tensor K, and
𝐷∗1, 𝐷

∗
2 are the desired Tucker ranks.

Since rank(·) is non-differentiable, the above training ob-
jective Eq. (7) cannot be solved by a regular optimizer. Fortu-
nately, Alternating Direction Method of Multipliers (ADMM)
algorithms [2] can efficiently solve this non-convex prob-
lem via alternatively solving two simple sub-problems. As a
result, the training is converted to iterative optimization.

First, with scaled augmented Lagrangian form, the original
problem Eq. (7) can be rephrased as

min
K,K̂∈Q

max
M

ℓ (K) + 𝜌

2
∥K − K̂ +M∥2𝐹 −

𝜌

2
∥M∥2𝐹 , (8)

where K̂ is an introduced variable whose shape is identical
to K, Q is the set where kernel tensors satisfy the target
constraints, i.e., Q = {K̂ |rank(K̂) ≤ [𝐷∗1, 𝐷∗2]}, M is the
dual multiplier, and 𝜌 is the penalty coefficient.
Then, with ADMM, the alternate problem Eq. (8) can be

split into two sub-problems which can be independently
solved, and all the variables are iteratively updated in the
training process.

K-update. The first optimization step is to update the
original kernel tensor, which is to solve

min
K

ℓ (K) + 𝜌

2
∥K − K̂ +M∥2𝐹 . (9)

The above objective is essentially minimizing the original
loss function with 𝐿2-regularization. Hence, K can be up-
dated via standard mini-batch SGD as

K ← K − 𝛼
(
𝜕ℓ (K)
𝜕K

+ 𝜌 (K − K̂ +M)
)
, (10)

where 𝜕ℓ (K )
𝜕K

is the gradient in the back-propagation and 𝛼
is the learning rate.

K̂-update. The following optimization step is to let K̂
satisfy the desired Tucker ranks, i.e.,

min
K̂

∥K − K̂ +M∥2𝐹 , s.t. K̂ ∈ Q . (11)

According to [2], this sub-problem can result in an analytical
solution by directly projecting K +M to set Q. Hence, K̂
can be explicitly updated via

K̂ ← proj(K +M), (12)
where proj is the truncated-HOSVD that truncates the small-
est singular values of mode-1 and mode-2 matricization to
satisfy the rank constraints. To be specific, suppose T =

K +M ∈ R𝐶×𝑁×𝑅×𝑆 , thus the mode-1 and mode-2 matri-
cization of T is 𝑻(1) ∈ R𝐶×𝑁𝑅𝑆 and 𝑻(2) ∈ R𝑁×𝐶𝑅𝑆 , respec-
tively. Performing matrix SVD on 𝑻(1) and 𝑻(2) , we have
𝑼1𝚺1𝑽1 = 𝑻(1) and 𝑼2𝚺2𝑽2 = 𝑻(2) , where 𝚺1 and 𝚺2 are di-
agonal matrices with singular values in descending orders.
To project T with target Tucker ranks, truncating small-
est singular values in 𝚺1 and 𝚺2, with TKD we can obtain
𝑼1 ∈ R𝐶×𝐷

∗
1 , 𝑼2 ∈ R𝐶×𝐷

∗
2 , and Ĉ ∈ R𝐶×𝑁×𝐷∗1×𝐷∗2 . Corre-

spondingly, we can use Eq. 1 to recover back to the projected
tensor K̂ with the truncated 𝑼1, 𝑼2 and Ĉ.

M-update. The update step for dual multiplier M can
be considered as the optimization for the dual problem (the
maximizing problem described in Eq. 8) by gradient descent
with fixed step size 1

𝜌
, i.e., M←M + K − K̂.

In summary, the above three updates are alternatively
performed during the optimization-incorporated training.

4.2 Plug-in Hardware-Aware Constraints
Even though one can obtain a highly accurate Tucker-format
compressed model using the introduced optimization-based
training technique in the previous subsection, it is still chal-
lenging to get the desired on-device speedup. This is because
(1) the decomposed model architecture is determined by the
target Tucker ranks in Eq. (7), which are set empirically.
Thus, it difficult to fit all practical hardware devices; (2) the
compressed Tucker-format models are not well supported by
existing convolution software (e.g., cuDNN) and deep learn-
ing framework (e.g., PyTorch), thereby leading to undesired
latency in terms of theoretical FLOPs reduction.

To address this challenge, we reformulate the optimization
objective Eq. (7) such that the rank setting with practical
GPU latency can be considered as plug-in constraints, i.e.,

min
W

ℓ (K), s.t. rank(K) ≤ Pdevice. (13)

Specifically, we first generate a benchmark with GPU per-
formance for our designed kernel. Then, we find the proper
Tucker ranks that can obtain the best latency and satisfy the
overall compression budget. Correspondingly, we plug these
rank settings as Pdevice in the above Eq. (13).
We will introduce TDC in detail in Section 6 after we

present our design for efficient Tucker-format convolution.

5 Our Convolution Kernel Design
In this section, we first discuss the limitations of TVM’s con-
volution scheme and then propose our convolution scheme
with a performance analysis.

5.1 Discussion on TVM’s Convolution Scheme
TVM follows direct convolution to design its scheme [3].
Specifically, the threads in each thread block are responsible
for computing output positions with continuous coordinates
on the same panel. Thus, the threads responsible for nearby
positions have some overlapping from the perspective of the
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input tensor. Moreover, all threads in the same thread block
require the same kernel weight elements. Each thread block
keeps two shared memory buffers: one is for the input tensor
and the other one is for the weight tensor. After loading
the input to the shared buffer, each thread starts its own
computation. Listing 1 shows its pseudo code.

Limitations of TVM’s convolution scheme. First, TVM
introduces two thread synchronizations because its scheme
uses the shared memory to achieve data reuse from both
kernel tensor and input tensor (lines 1 and 2) at each itera-
tion of C (input channel). Second, TVM’s scheme splits the
workloads on height and width dimensions for the threads.
Hence, the tiles of input tensor are different for each thread.
Accordingly, there exists overlapping of the tensor tile for
each thread. To load all the required tiles of input tensor
to the shared memory will potentially limit the achievable
GPU occupancy. Moreover, since the tiles of input tensor are
different across threads, they cannot load all tiles across C
at one time and hence need to traverse the C loop with addi-
tional thread synchronizations (line 6). Third, TVM’s scheme
does not split workloads across the input channels. How-
ever, convolutions in Tucker format have relatively small
ranks for input/output channels, resulting in a smaller work-
load. Thus, not splitting across input channels leads to the
under-utilization of resources.
1 / / I npu t : I npu t t e n s o r X , Conv k e r n e l K
2 / / Output : Output t e n s o r Y
3 shared f l oa t s h a r ed_ i npu t [ ]
4 shared f l oa t s h a r e d _k e rn e l [ ]
5 f l oa t l o c a l _ i n p u t [ ]
6 f l oa t l o c a l _ k e r n e l [ ]
7 f l oa t l o c a l _ compu t e [ ]
8 for c = 0 to C :
9 t h r e a d s _ s y n c h r o n i z a t i o n ( )
10 l o ad i npu t to s h a r ed_ i npu t
11 l o ad k e r n e l to s h a r e d _k e rn e l
12 t h r e a d s _ s y n c h r o n i z a t i o n ( )
13 l o ad l o c a l _ i n p u t
14 l o ad l o c a l _ k e r n e l
15 for n =0 to N:
16 l o c a l _ compu t e
17 wr i t e _ou t

Listing 1. Pseudocode of TVM convolution design.

5.2 Proposed Tucker-format Convolutions
Our proposed scheme for Tucker-format convolutions is also
a direct-convolution-based scheme. In our design, we first tile
the input tensor across its height (H), width (W), and input
channel (C). There are 𝐻

𝑇𝐻
× 𝑊

𝑇𝑊
× 𝐶

𝑇𝐶
thread blocks in total,

and each tile with the size of𝑇𝐻 ×𝑇𝑊 is mapped to a thread
block. We then assign every thread block 𝑁 threads (where
𝑁 is the number of output channels) and map each thread to
one output channel. After that, each thread block will load a
cube with the size of (𝑇𝐻 + 𝑅 − 1) × (𝑇𝑊 + 𝑆 − 1) ×𝑇𝐶 of
the input tensor to its shared memory at the very beginning.
After loading the tile of the input tensor to the shared mem-
ory, each thread will compute its contribution to the input
tensor and save the intermediate result to a temporary array
(in register) with the size of 𝑇𝐻 ×𝑇𝑊 . In summary, each

thread performs the following computation.

Y(𝑛, 𝑡ℎ, 𝑡𝑤) =
𝑇𝐶−1∑︁
𝑐=0

𝑅−1∑︁
𝑟=0

𝑆−1∑︁
𝑠=0
I(𝑐, 𝑡ℎ − 𝑟, 𝑡𝑤 − 𝑠) × K(𝑛, 𝑐, 𝑟, 𝑠)

Finally, after finishing the computation, each thread will
write the final output result from its temporary array to its
mapped output channel. Hence, the input tensor is reused
across all the output channels in our design. In other words,
all the threads inside the thread block need the same tile of
the input tensor. Note that our proposed scheme splits the
workload across the input channels, which not only provides
a higher degree of parallelism but also enables us to load the
input tensor at once. This can help avoid thread synchroniza-
tions which occur in the TVM’s scheme. Furthermore, since
each thread is responsible for a different output channel,
there is no atomic writing required inside a thread block.
Still, this scheme has a limitation—although splitting the

workload across all output channels helps us get a fully
reused input tensor and avoids thread synchronizations, the
data volume in the kernel is high, and the kernel data loaded
for each thread is not usable for other threads. Thus, the data
reuse rate in this scheme is lower than TVM’s scheme.
To mitigate this issue, we use the format of CRSN for

the kernel tensor to reduce the time overhead of loading
the kernel data. This is because by using the CRSN format,
the kernel tensor loading will be fully coalesced, which can
reduce the time overhead. Note that the kernel tensor format
conversion can be completely done offline once, which will
not affect the inference performance. More details about our
proposed convolution scheme can be found in Listing 2.
1 / / I npu t : I npu t t e n s o r X , Conv k e r n e l K
2 / / Output : Output t e n s o r Y
3 shared i n p u t _ t i l e [TC ] [ ( TH+R−1 ) ∗ (TW+S −1 ) ]
4 f l o a t t emp_ r e s u l t [TH] [TW] , k e r n e l [R ] [ S ]
5 unsigned int t i l e _ t c _ i d = b l o c k I d / (H/TH ∗ W/TW)
6 unsigned int t i l e _ i d = b l o c k I d %(H/TH ∗ W/TW)
7 unsigned int t i l e _ h _ i d = t i l e _ i d / (W/TW)
8 unsigned int t i l e _w _ i d = t i l e _ i d %(W/TW)
9 unsigned int output_n = t h r e a d I d x . x
10 / / copy t i l e d i npu t t e n s o r from g l o b a l t o sha red
11 copy ( i n p u t _ t i l e , X )
12 s yn c t h r e ad s ( ) / / s ynch ron i z e a l l t h r e a d s in a th r e ad b l o ck
13 for c = 0 to TC :
14 copy ( ke rne l , K , n , c+ t i l e _ t c _ i d ∗TC)
15 for ( v , h ,w) in ( i n p u t _ t i l e ) :
16 for r = 0 to R
17 for s = 0 to S
18 y_out = h − r
19 x_out = w − s
20 i f y_out <0 or x_out < 0 or y_out >TH or x_out >TW:
21 continue
22 r e s u l t = v ∗ k e r n e l [ r ] [ s ]
23 t emp_ r e s u l t [ y_out ∗TW+x_out ] += r e s u l t
24 / / Wri te the ou tpu t back to memory
25 for th to TH :
26 for tw to TW:
27 y = t i l e _ i d / (W/TW) ∗TH+ th
28 x = t i l e _ i d %(W/TW) ∗TW+tw
29 atomicAdd ( Y [H∗W∗N+y ∗W∗N+x ∗N+n ] , t emp_ r e s u l t [ th ∗TW+tw ] )

Listing 2. Pseudocode of our core convolution design.
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5.3 Computation latency analysis
In our convolution kernel for Tucker core tensors, tiling
plays an important role to determine the data movement vol-
ume and computation resource utilization. In the following
discussion, we will model computation and memory latency
based on a given tiling size and convolution shape. Based on
these models, we will propose our tiling size selection.
From the perspective of resource utilization: the total

number of thread blocks can be denoted as num_blks =
𝐻
𝑇𝐻
× 𝑊

𝑇𝑊
× 𝐶

𝑇𝐶
. Since each thread block has 𝑁 threads, the

total number of threads in our core convolution kernel is
Num_ths = Num_blks × 𝑁 . The number of FLOPs for each
thread block is flops_blk = 2 × (𝑇𝐻 + 𝑅 − 1) × (𝑇𝑊 + 𝑆 − 1)
× 𝑇𝐶 × 𝑁 × 𝑅 × 𝑆 . The peak performance for each thread
block is blk_peak = GPU_peak × 𝑁

GPU_ths . Thus, the compu-
tation latency for each thread block can be estimated as
comp_latency_blk =

FLOPs_blk
Blk_peak . If we combine all the equations

above, we can derive the computation latency for a thread
block as comp_latency_blk =

2 · (𝑇𝐻 + 𝑅 − 1) · (𝑇𝑊 + 𝑆 − 1) ·𝑇𝐶 · GPU_ths · 𝑅 · 𝑆
GPU_peak

When launching a GPU kernel, if the number of threads
requested is greater than the total threads that a GPU can
provide, the computation will be divided into multiple waves,
and the kernel can be completed only after the last wave
finishes. We formulate the number of GPU waves as

comp_waves =
⌈

Num_ths
GPU_ths × Occupancy

⌉
=

⌈
𝐻
𝑇𝐻
× 𝑊

𝑇𝑊
× 𝐶

𝑇𝐶
× 𝑁

GPU_ths × Occupancy

⌉
.

(14)

Eq. (14) illustrates that the total number of GPU waves is
determined by the convolution problem shape (𝐻 ,𝑊 , 𝐶 , 𝑁 ),
tiling sizes (𝑇𝐻 , 𝑇𝑊 , 𝑇𝐶) and the GPU hardware metrics
(GPU_ths). Note that the occupancy can be estimated by the
hardware metrics such as shared memory size, register file
size along with the given tiling sizes (𝑇𝐻 ,𝑇𝑊 ,𝑇𝐶); or simply
put we can obtain it by querying via the NVCC compiler to
get the exact occupancy for specific tiling sizes.
The computation latency for each wave is equal to the

computation latency of a thread block as all the thread blocks
in a wave have the same FLOPs for a dense convolution.
Hence, the total computation latency for the kernel is

comp_latency = comp_waves · comp_latency_blk. (15)
When only considering the computation latency, an op-

timized tiling configuration (𝑇𝐻 , 𝑇𝑊 , 𝑇𝐶) for a given con-
volution shape (𝐻 ,𝑊 , 𝐶 , 𝑁 ) is to minimize 𝐶𝑜𝑚𝑝_𝑙𝑎𝑡𝑒𝑛𝑐𝑦
under the constraint of 𝑇𝐻 ≤ 𝐻,𝑇𝑊 ≤𝑊,𝑇𝐶 ≤ 𝐶 .

5.4 Memory latency analysis
On the GPU, besides computation latency, memory latency
also plays an important role in the overall latency. Different

tiling sizes affect not only the computation latency but also
the data movement, which further influences the memory
latency. Different tiling selections will affect the data move-
ment from different GPU memory hierarchies such as shared
memory, register, and global memory. Since global memory
is the slowest memory, we only analyze the data movement
from the perspective of global memory. For a given tiling size
(𝑇𝐻 , 𝑇𝑊 , 𝑇𝐶) and convolution shape (𝐻 ,𝑊 , 𝐶 , 𝑁 ), the data
movement volume of convolution kernel can be denoted as

𝑣𝑜𝑙𝑢𝑚𝑒𝑘 =

⌈
𝐻

𝑇𝐻

⌉
×
⌈
𝑊

𝑇𝑊

⌉
×𝐶 × 𝑁 . (16)

The input tensor volume can be denoted as

𝑣𝑜𝑙𝑢𝑚𝑒𝑥 =

⌈
𝐻

𝑇𝐻

⌉
×
⌈
𝑊

𝑇𝑊

⌉
×𝐶×

(𝑇𝐻 + 𝑅 − 1) × (𝑇𝑊 + 𝑆 − 1).
(17)

The output tensor volume can be denoted as

𝑣𝑜𝑙𝑢𝑚𝑒𝑦 = 𝐻 ×𝑊 × 𝑁 × 𝐶

𝑇𝐶
. (18)

Thus, the total data-movement volume can be denoted as
𝑣𝑜𝑙𝑢𝑚𝑒_𝑡𝑜𝑡𝑎𝑙 = 𝑣𝑜𝑙𝑢𝑚𝑒𝑥 + 𝑣𝑜𝑙𝑢𝑚𝑒𝑘 + 𝑣𝑜𝑙𝑢𝑚𝑒𝑦 . (19)

Based on Eq. (16), (17), (18), we can also find an optimized
tiling option to minimize the overall data movement latency.

5.5 Analytical model for tiling selection
The previous analyses show that the tiling option has a signif-
icant effect on both computation latency (𝑐𝑜𝑚𝑝_𝑙𝑎𝑡𝑒𝑛𝑐𝑦) and
memory latency (𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑎𝑡𝑒𝑛𝑐𝑦). An ideal tiling option
will minimize both latencies. However, the best tiling option
for the computation latency may not be the best option for
the memory latency, vice versa. Hence, the best tiling option
should minimize the overall latency.

We note that a previous work [31] demonstrates that dense
convolution is likely to be compute bound. Thus, in our tiling
analytical model, we put the computation latency in prior to
the memory latency. Specifically, our tiling analytical model
first computes the 𝑐𝑜𝑚𝑝_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 for all the tiling size op-
tions. Based on the results, we sort the tiling configurations
in increasing order. Then, we select the top (5%, 15%) of
tiling configurations (A100, 2080Ti) as our candidates. For
those selected candidates, we pick the one which has the
minimum𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 as our final tiling selection. Our
tiling analytical model allows to generate high-performance
convolution code on GPUs for a given shape without going
through a costly parameter tuning process required by TVM.

In addition to our analytical modeling, we also provide an
auto-tuning script for core convolutions as part of our frame-
work. The auto-tuning process is based on an exhaustive
search of tiling size. For a give core convolution shape, we run
all tiling options (the number of tiling options is 𝐻 ×𝑊 ×𝐶)
and obtain the best one based on their actual latency. The
exhaustive search guarantees to produce the best tiling op-
tion for a given convolution shape. However, it requires a
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high time overhead of offline tuning like TVM. The code
generated by our analytical model achieves a slightly worse
performance compared with exhaustive search (called “ora-
cle”), i.e., ∼25% performance drop on both A100 and 2080Ti
machines, while it is still 1.5× faster than TVM on average.
The performance comparison of the code generated with
“oracle” and “model” approaches will be shown later.

Our analytical modeling provides the user an option to
generate a fast Tucker-friendly convolution kernel for quick
deployment; while if the user looks for extreme performance
and does not care about the costly offline tuning process,
using the exhaustive search is recommended.

6 Our Proposed Co-design Framework
In our Tucker decomposition, an original convolution kernel
will be two 1×1 convolutions and one core convolution. The
filter of our core convolution has the same height (𝑅) and
width (𝑆) compared with the original convolution. The input
channels (𝐷1) and output channels (𝐷2), i.e., the ranks for the
core convolution (𝐶, 𝑁 ), for our core convolution are smaller
than the original convolution. The smaller (𝐷1, 𝐷2), the more
FLOPs we can reduce. Theoretically, the ranks (𝐷1, 𝐷2) for
our core convolution can be reduced to any size. Greedily,
we can reduce them until (1,1). However, if the ranks are too
small, it causes two problems: (1) It would cause a significant
drop on model accuracy (hard to recover). (2) It would de-
crease the potential for pruning the next convolution layers.
The fundamental idea of our proposed co-design frame-

work is only considering the reduced ranks that can provide
a performance/runtime benefit. In Section 5, we have demon-
strated that different convolution shapes may end up to with
the same computation latency by adjusting tiling size. Figure
4 shows the overall latency changing trend for two convolu-
tions with their 𝐶,𝐻,𝑊 fixed and 𝑁 changes from 32 to 256
on 2080Ti machine. The blue line has𝐶 = 64, 𝐻 = 28,𝑊 = 28
and the red line has 𝐶 = 64, 𝐻 = 14,𝑊 = 14. Both of their
running time trend lines are in a monotonic staircase when
the output channels (𝑁 ) increase. It shows the fact that
the overall latency may remain the same when the FLOPs
changes. The most important reason is that an optimized
tiling strategy can increase the parallelism level for a larger
problem to reduce the overall latency. Intuitively, we can
employ this to guide our decomposition and training process
to avoid the “over rank reduction” situation.
For a given trained CNN, users need to first carefully

determine a decomposition budget 𝐵 (i.e., the target FLOPs
reduction ratio). An aggressive budget may lead to accuracy
drop, so we recommend to choose 𝐵 based on state-of-the-art
FLOPs reduction ratios. While in the scenario where there
is no FLOPS reduction ratio for reference, we recommend
to start the budget from 10%; we can further increase the
budget as long as the current budget meets the accuracy
requirement after training for some epochs.
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Figure 4. Runtime of convolutions with different numbers of output chan-
nels (the number input channels is fixed to 64).

After that, we select our decomposition ranks for retrain-
ing based on 𝐵. The entire process of our rank selection
is shown in Figure 5. Specifically, the first step is to gen-
erate the micro-kernel CUDA code for all possible decom-
posed convolutions for each original convolution in the
model by applying their optimized tiling size (as described
in Section 5), and empirically run them to get a performance
table 𝑇 . Theoretically, for a convolution layer with shape
(𝐶, 𝑁,𝐻,𝑊 ), there exist 𝐶 × 𝑁 decomposition candidates
because the decomposed input channel can be any number
from {1, 2, 3...,𝐶 − 1} and the output channel can be any
number from {1, 2, 3..., 𝑁 − 1}. However, reducing the input
and output channels by one at a time is unnecessary for two
reasons: (1) it reduces FLOPs by very small amounts, and (2)
it may cause idle threads in some convolution schemes as a
GPU warp performs as a group of 32 threads. To this end, we
reduce the input channels and output channels by 32 each
time. Hence, there exist 𝐶

32 ×
𝑁
32 decomposition candidates.

For each convolution layer, assuming the number of input
channels is C and the number of output channels is N. With
a budget of 𝐵, we choose the (𝐷1, 𝐷2) such that the overall
FLOPs in the Tucker-formatmodel is less than the budget, i.e.,
P(𝐷1, 𝐷2) ⪅ 𝐵, where 𝐷1 and 𝐷2 are the Tucker ranks that
determine the input channel and output channel of the core
convolution. Note that since Tucker decomposition allows
to decrease both 𝐶 and 𝑁 , there will be multiple (𝐷1, 𝐷2)
candidates. Thus, we further look up the performance table
𝑇 to select (𝐷1, 𝐷2) based on its performance/latency.

Considering that the Tucker decomposition brings two
more 1 × 1 convolutional layers, and the extra two 1 × 1 of
kernel launch time may even cause the performance worse
than the original convolutional layer, we use a threshold 𝜃

Figure 5. Workflow of proposed hardware-ware rank selection.
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Algorithm 1: TDC: Proposed co-design framework
for hardware-aware Tucker decomposed training.

1 Input: Pre-trained CNN kernel K, decompose budget 𝐵, optimized
benchmark table𝑇 , training epochs 𝐸;

2 Output: Hardware-aware Tucker decomposed kernels 𝑼1,𝑼2, C.
3 𝐷∗1, 𝐷

∗
2 = max{argminP(𝐷1,𝐷2 ) ≤𝐵 𝑇 (𝐷1, 𝐷2 ) }; //Minimize the

overall latency while maximize ranks under the budget
4 Plug 𝐷∗1, 𝐷

∗
2 to Equation (13);

5 K̂ ← K,M← 0;
6 //ADMM-incorporated training
7 while 𝑒 < 𝐸 do
8 K ← K − 𝛼

(
𝜕ℓ (K)
𝜕K

+ 𝜌 (K − K̂ +M)
)
;

9 K̂ ← proj(K +M) ;
10 M←M + K − K̂;
11 end
12 𝑼1,𝑼2, C = TKD(K ) ; //Decompose to Tucker format
13 Fine-tune 𝑼1,𝑼2, C in the Tucker-format model.

to determine whether (𝐷1, 𝐷2) should be selected. Specifi-
cally, assuming (𝐷1, 𝐷2) has a latency of 𝑡1 and the original
(𝐶, 𝑁 ) convolution layer has a latency of 𝑡2, we will not ap-
ply Tucker decomposition on this layer if 𝑡1 ≥ (1 − 𝜃 ) × 𝑡2.
For simplicity, we choose 𝜃 = 15% in our experiments. Fur-
thermore, if this convolution layer is unchanged, it will save
𝐶 × 𝑅 × 𝑆 × 𝐻 ×𝑊 × 𝑁 × 𝐵 FLOPs in budget which can be
further utilized; in other words, we can increase 𝐵 by the
saved FLOPs reduction to the remaining convolution layers.

Finally, after going through all convolution layers, we can
obtain (𝐷∗1, 𝐷∗2) as our target ranks for Tucker decomposition
and plug them into Equation (13) to perform the ADMM-
based training to fine-tune for several epochs, obtaining the
high-performance model with the lowest latency. Algorithm
1 shows the detail of our co-designed training process.

7 Performance Evaluation
7.1 Experimental Setup
We use two platforms for evaluation: (1) Nvidia GTX 2080
Ti (68 SMs, 11 GB) machine running Ubuntu 20.04 LTS and,
and (2) Nvidia Ampere A100 (108 SMs, 80GB) machine run-
ning Ubuntu 18.04.4 LTS. We use CUDA 11.3.1 paired with
cuDNN 8.2.0 on the 2080Ti platform and CUDA 11.6.1 paired
with cuDNN 8.2.1 on the A100 platform. These platforms
represent two different GPU architectures (Ampere and Tur-
ing), which are designed for two different user groups (con-
sumer and enterprise). On both of the platforms, we use
TVM 0.7.0 paired with LLVM 10.0.0. For cuDNN’s convolu-
tion operations, regarding the layerwise performance eval-
uation, we compare our micro-kernel with three different
cuDNN convolution methods (i.e., GEMM-based convolu-
tion IMPLICIT_GEMM [7], WINOGRAD-based convolution
WINOGRAD [29], and FFT-based convolution FFT [29]) and
TVM; regarding the end-to-end performance evaluation, we
fix the cuDNN convolution method as IMPLICIT_GEMM [7]
since it has the best performance compared with the other

Table 3. Performance comparison between TDC and existing SOTA com-
pression methods. MD denotes matrix decomposition. DN-1/-2 denote
DenseNet-121/-201. Most existing tensor decomposition works do not re-
port results for ResNet-50, VGG-16 and DenseNet on ImageNet.

Model Compression
Method

Top-1/Drop
(%)

FLOPs↓

Re
sN

et
-1
8

Original [14] No compr. 69.75/-0.00 N/A
FPGM [16] Pruning 68.41/-1.34 42%
DSA [27] Pruning 68.61/-1.14 40%
SCOP [37] Pruning 68.62/-1.13 45%
TRP [40] MD 65.51/-4.24 60%
Stable [33] CPD 69.06/-0.69 65%
Opt. TT [42] TTD 69.29/-0.46 60%
Std. TKD [19] TKD 66.65/-3.10 60%
MUSCO [13] TKD 69.28/-0.47 58%

TDC TKD 69.70/-0.05 63%

Re
sN

et
-5
0

Original [14] No compr. 76.13/-0.00 N/A
FPGM [16] Pruning 75.59/-0.54 42%
HRank [24] Pruning 74.98/-1.15 44%

TDC TKD 77.46/+1.33 40%
Stable [33] CPD 74.66/-1.47 60%

TDC TKD 76.42/+0.29 60%

VG
G
-1
6 Original [14] No compr. 71.59/-0.00 N/A

CC [22] MD 68.81/-2.78 50%
TDC TKD 71.62/+0.03 80%

D
N
-1 Original [14] No compr. 74.43/-0.00 N/A

TDC TKD 76.33/+1.90 10%

D
N
-2 Original [14] No compr. 76.88/-0.00 N/A

TDC TKD 76.92/+0.04 10%

two cuDNN convolution methods on the 2080Ti machine.
Moreover, in the experiment, we run 1,000 inferences with
different inputs for each model and report the average time.

We choose five CNN models including one VGG [35], two
DenseNets [17], and two ResNets [14] on large-scale dataset
ImageNet [8]. These three types of networks represent the
architecture of modern CNNs. However, modern CNNs also
grow inwidth. For example, there are networkswhich are not
deep but are wide such as GoogleNet [36] and NasNet [45].
In those CNNs, there are multiple convolutions computed at
the same time at each convolution stage.We leave those wide
CNNs to our future work due to two factors: (1) It is difficult
to develop a scheme that minimizes the latency for multiple
concurrent convolutions. (2) It is challenging to determine
the ranks for the concurrent convolutions in the same stage.

7.2 Evaluation on Model Accuracy
We evaluate TDC and compare it with other state-of-the-
art CNN model compression approaches including prun-
ing based approaches such as FPGM [16], DSA [27], SCOP
[37], the matrix decomposition based approach such as TRP
[40], and other tensor decomposition approaches. Table 3
shows that the test accuracy and FLOPs reduction with dif-
ferent methods. For the budget 𝐵, we choose 65%/60% for
ResNet-18/-50, since state-of-the-art works have achieved
these FLOPs reductions; similarly, we choose 50% for VGG-
16 at the beginning, leading to a much higher accuracy than
the state-of-the-art work CC [22], so we increase the budget
to 65% and further to 80%; for DN-1/-2, due to no existing
work to refer to FLOPs reduction ratio, we choose 10% as the
budget. It is seen that our compression method provides the
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Figure 6. Performance comparison of our proposed kernel with TVM and cuDNN on all convolution shapes in the tested CNN models on A100.
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Figure 7. Performance comparison of our proposed kernel with TVM and cuDNN on all convolution shapes in the tested CNN models on 2080Ti.

highest test accuracy even with the highest FLOPs reduction
for all tested DNNmodels. Specifically, our TKD-compressed
models reduce the FLOPs by up to 63% with only 0.05% ac-
curacy drop compared with the original non-compressed
models on the tested CNNs. Note that except ResNet-18, the
inference accuracy of our TKD-compressed models even has
higher accuracy than that of the original non-compressed
models, thanks to the proposed training algorithm.

We also evaluate the impact of different target budgets on
accuracy. We choose 65%, 70%, 75%, and 80% as our target
budgets for ResNet-18. The achieved accuracies are 69.70%,
67.86%, 66.59%, and 64.81%, respectively, and the achieved
FLOPs reductions are 66%, 70%, 76%, and 80%, respectively. It
illustrates that aggressive target budgets lead to significant
accuracy drops. Thus, we recommend users choose the bud-
get 𝐵 based on existing work (e.g., 65% in ResNet-18 from
[22]) or starting from 10% if no prior knowledge.

7.3 Evaluation on Convolution Kernel Performance
To demonstrate the effectiveness of our proposed convolu-
tion kernel, we compare the runtime of our kernel against

the convolution kernel generated by TVM code generator
and provided by cuDNN. We use the data type of float32
(single precision), the filter size of 3 (for core convolution),
and the batch size of 1 (for inference).
Figure 6 and Figure 7 show the speedup of our scheme

compared to TVM and cuDNN across all the core convolution
shapes in the networks. On A100, our convolution with ora-
cle/modeling approaches achieve a 5.38×/4.91× speedup over
cuDNN-FFT, 3.12×/2.92× speedup over cuDNN-WINOGRAD,
8.95×/8.63× speedup over cuDNN-GEMM, and 1.81×/1.72×
over TVM on average; on 2080Ti, our convolution with ora-
cle/modeling approaches achieves 8.17×/6.21× speedup over
cuDNN-FFT, 2.75×/2.12× speedup over cuDNN-WINOGRAD,
5.84×/5.38× speedup over cuDNN-GEMM, and 2.35×/1.81×
over TVM on average.
From Figure 6 and Figure 7, we can observe that there

are two shapes (64, 32, 224, 224) and (64, 32, 112, 112) from
VGG16 where our solution is actually slower than or similar
to TVM and cuDNN. The main reason is that our scheme
splits theworkload across the output channels inside a thread
block, while TVM splits the workload across height/width.
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Figure 8. End-to-end evaluation of inference performance on A100.
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Figure 9. End-to-end evaluation of inference performance on 2080Ti.

Hence, for the convolution with large height and width, our
scheme suffers a large kernel volume (referred to Equation
(16)). However, we argue that this type of shape is becoming
rare in modern CNN architecture designs. This is because
the height (H) and width (W) of convolution layers decrease
rapidly when the model goes deeper (mainly due to pooling
layers), and hence the input channel (C) and output chan-
nel (N) increase. After an input goes into the model, after
one or two layers, H/W decrease to a medium size, and the
convolution shapes are likely to have very few large H/W
but many medium H/C with large C/N. For example, in the
CNNs released in recent years such as DenseNet, ResNet,
and GoogleNet, the largest H/W is 56 for all the convolution
layers (except the first convolution layer for the input). VGG
is still considered one of the modern CNNs, however, it is
older than the other tested models with lower accuracy.

7.4 Evaluation on End-to-End Inference Time
To fully demonstrate that our proposed co-design frame-
work is effective not only for core convolutions but also for
the entire network, we present the end-to-end performance
(involving all layers) on the tested CNN models. To better
understand the performance improvement, we implement
the five models using C++/CUDA code to eliminate the over-
head of Python deep learning framework. For example, in
PyTorch, padding operation is done on the CPU side which
requires additional memory copy between device and host.

Figures 8 and 9 show the inference time comparison among
original models, TKD-compressed models with cuDNN, and
TKD-compressed models with our optimized convolution op-
erations. Specifically, the blue bars show the inference time

of the original models on A100 and 2080Ti. For the implemen-
tation of original models, we call the cuDNN library for all
the layers including the convolution layers. The red bars rep-
resent the inference time of TKD-compressed models which
also call the cuDNN library for all the layers. The yellow bars
represent the inference time of TKD-compressed models us-
ing TVM generated kernel for the core convolutions. The
green bars represent the inference time of TKD-compressed
models using our optimized kernel for the core convolutions.
Note that for a fair comparison, we use cuDNN to implement
other layers (including 1×1 convolution, pooling layers, etc.)
and the 𝑁𝐶𝐻𝑊 data layout (i.e., TVM’s best-fit data layout)
for both our solution and the TVM solution.

On A100, our five TKD-compressed models (DenseNet121,
DenseNet201, ResNet18, ResNet50, and VGG16) using our
optimized core convolution kernel with oracle/modeling
achieves speedup of 2.14×/2.11×, 1.7×/1.68×, 3.27×/3.24×,
2.07×/ 2.04×, and 2.37×/2.33×, respectively, compared with
the original non-compressedmodels using cuDNN. The speedup
over the TKD-compressedmodels using cuDNN is 1.41×/1.38×,
1.42×/1.40×, 2.21×/2.18×, 1.26×/1.25×, and 1.45×/1.43×, re-
spectively. The speedup over the TKD-compressed models
using TVM is 1.03×/1.01×, 1.04×/1.03×, 1.12×/1.11×, 1.02×/
1.01×, and 1.09×/1.08×, respectively.

On 2080Ti, the compressed models using our optimized
core convolution kernel achieves speedup of 4.15×/3.80×,
2.62×/2.55×, 7.3×/6.55×, 2.83×/2.75×, and 2.73×/2.45×, re-
spectively, comparedwith the non-compressedmodels imple-
mented with cuDNN. The speedup over the compressed mod-
els using cuDNN is 2.16×/1.97×, 1.81×/1.74×, 3.71×/3.25×,
1.38×/1.35×, and 1.68×/1.53×, respectively. The speedup over
the compressed models using TVM is 1.13×/1.04×, 1.13×/
1.08×, 1.91×/1.69×, 1.09×/1.06×, 1.25×/1.14×, respectively.

8 Conclusion and Future Work
In this paper, we propose an efficient end-to-end framework
to generate highly accurate and compact CNN models via
Tucker decomposition and optimized C++/CUDA code for
GPU inference. We incorporate hardware constraints into
the model generation and develop a new scheme for Tucker-
format convolutions with high-performance GPU kernels.
Evaluation on modern CNNs with A100 demonstrates that
our compressed models with optimized code achieve up to
2.37× speedup over cuDNN and 1.10× speedup over TVM.
In the future, we plan to extend our work to cover wide

CNNs such as GoogleNet andNasNet by developing a scheme
that can determine the ranks for multiple concurrent convo-
lutions and minimize the latency.
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A Artifact Description/Evaluation
A.1 Overview
The artifacts contain all code, scripts, and datasets that are
necessary for reproducing our results. The artifacts can
be obtained from https://github.com/black-cat-sheriff/TDC-
PPOPP and https://doi.org/10.5281/zenodo.7439434.

A.2 Package Requirements
• cmake(>=3.10)
• cuDNN(>=8)
• CUDA >=11 (A100)
• CUDA >=10 (2080Ti)
• python3(>=3.7)
• tensorly(0.7.4, pip install tensorly==0.7.0)
• timm(0.5.4, pip install timm==0.5.4)
• torch(>=1.4)
• torchvision
• numpy

Note that we require the version of timm to be 0.5.4.

A.3 SETUP
export CUDA_PREFIX='/usr/local/cuda'
export CUDA_INCLUDE=$CUDA_PREFIX/include
export CUDA_LIB64=$CUDA_PREFIX/lib64
export LD_LIBRARY_PATH=$CUDA_LIB64:$LD_LIBRARY_PATH
export PATH=$CUDA_PREFIX/bin:$PATH

Please change /usr/local/cuda to the path to your CUDA
library. We assume that cuDNN is installed in CUDA_PREFIX,
which means that cuDNN header files are in CUDA_INCLUDE
and cuDNN library files are in CUDA_LIB64. Also, please note
that some cuDNN versions only have lib folder rather than
lib64 folder, please change CUDA_LIB64 accordingly.

A.4 TDC TRAINED MODEL EVALUATION
A.4.1 Tucker-format model accuracy evaluation

Table 3.
We provided 6K images to demonstrate our models, but you
are encouraged to obtain more images from ImageNet.
cd inference
python main.py --model tkc_resnet18 \

--data-path test_images/
python main.py --model tkc_resnet50 \

--data-path test_images/
python main.py --model tkc_densenet121 \

--data-path test_images/
python main.py --model tkc_densenet201 \

--data-path test_images/
python main.py --model tkc_vgg16 \

--data-path test_images/

Note that test_images is the path to the folder where the
images used for the demo are saved (i.e., 6K images in total).

You will observe the following result.

A.4.2 Performance Evaluation of TDC-generated
Core Convolution Layers

Please go to the main folder and run:
python3 run_2080Ti.py & python3 run_A100.py

It will generate three tables.

A.4.2.1 Comparison among TDC oracle kernel, cuDNN,
and TVM. You will get the first table like below, including
convolution shapes, convolution schemes, runtimes, and
TDC speedups. Please refer to Figure 7.

A.4.2.2 Comparison amongTDCmodeling kernel, cuDNN,
and TVM. You will get the second table like below, includ-
ing convolution shapes, convolution schemes, runtimes, and
TDC speedups.

A.4.2.3 End-to-end performance comparison among pure
cuDNN on original models, pure cuDNN on TK com-
pressed models, and TK compressed models. You will get
the third table like below, each model has two rows - the first
one is header and the second one is runtime. Please refer to
Figure 9.
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