
Authoring Human Simulators via Probabilistic
Functional Reactive Program Synthesis

Michael Jae-Yoon Chung
Computer Science & Engineering

University of Washington
Seattle, Washington

mjyc@cs.washington.edu

Maya Cakmak
Computer Science & Engineering

University of Washington
Seattle, Washington

mcakmak@cs.washington.edu

Abstract—One of the core challenges in creating interactive
behaviors for social robots is testing. Programs implementing
the interactive behaviors require real humans to test and this
requirement makes testing of the programs extremely expensive.
To address this problem, human-robot interaction researchers
in the past proposed using human simulators. However, human
simulators are tedious to set up and context-dependent and
therefore are not widely used in practice. We propose a program
synthesis approach to building human simulators for the purpose
of testing interactive robot programs. Our key ideas are (1) rep-
resenting human simulators as probabilistic functional reactive
programming programs and (2) using probabilistic inference for
synthesizing human simulator programs. Programmers then will
be able to build human simulators by providing interaction traces
between a robot and a human or two humans which they can
later use to test interactive robot programs and improve or tweak
as needed.

Index Terms—probabilistic programming, program synthesis,
end-user programming, social robots

I. INTRODUCTION

The past decade has been marked by the rise of social
robots, with soaring interest from start-ups, large corporations,
and researchers alike. Purchasing and building social robot
hardware have been democratized through declining price
points and the availability of fabrication and physical comput-
ing tools. However, programming a social robot for a particular
application still requires specialized software development
skills. As a result, the ability to explore new applications is
limited to a small population.

Many companies building social robot platforms aim to
address this problem by outsourcing application development
to 3rd party developers by releasing software development
kits (SDK) [1]–[4]. Such SDK often consists of (1) an ap-
plication programming interface (API) for programming the
company’s robot platform which is implemented in a particular
programming language and (2) other tools and utilities, e.g.,
for debugging and configuration purposes.

While SDK enables developers to program social robots,
creating and maintaining robot applications is still difficult.
The core problem is testing the interactive robot behaviors.
To achieve natural and robust interaction, developers need
to test programs representing the robot behaviors with target
human users, which is an extremely expensive task. Recog-
nizing this problem, human-robot interaction researchers have

employed human simulators to systematically evaluate robot
behavior [5]–[7]. Still, human simulators are not widely used
as they are laborious to build and difficult to reuse because of
their context and user-dependent nature.

In this paper, we propose a program synthesis approach
to building task-dependent human simulators for testing pur-
poses. We propose to represent human simulators as programs
in a probabilistic functional reactive programming language
to enable sampling interaction traces and make reasoning
about time possible. To enable programmers to rapidly pro-
totype human simulators, we propose a program synthesis
that allows users to provide an incomplete program and a set
of input/output pairs and then completes the program using
probabilistic inference.

II. RELATED WORK

Human-robot interaction researchers have a long history of
employing human simulators [6], [8]–[12]. Notably, Steinfeld
and colleagues explicitly emphasized (1) the distinction be-
tween rigorous human modeling and simplified simulations
for evaluation purposes [5] and (2) the importance of sys-
tematically evaluating interaction methods and systems with
the latter, i.e., human simulators. To this end, the community
developed multiple simulation libraries and frameworks for
evaluating service robot applications [13], [14] and control
algorithms designed for providing physical assistance [15].
Our work is the most closely related to the work of Chao
and colleagues that proposes timed Petri nets for representing
socially intelligent robot behaviors and evaluated them using
hand-built human simulators also implemented as TPNs [6].
Similar to our work, they emphasized the importance of the
representation’s ability to model time and asynchronous events
Unlike Chao and colleagues’ work, we use a probabilistic
functional reactive programming language to represent both
robot and human behaviors and focus on exploring ways to
quickly create human simulators.

Recently, human-robot interaction researchers investigated
applications of program synthesis. Synthè is a tool that en-
ables non-programmers like designers to author social robot
behaviors by acting out multiple demonstrations of an inter-
action [16]. The creators of Synthè treated the problem of
authoring from high-level and discrete interaction trances as



a program synthesis with input-output specifications and used
a MaxSMT solver to solve the synthesis problem. A program
synthesis approach also has been employed to ease the work of
creating a low-level controller for a human-robot interaction
task like handover [17]; users specify desired behaviors in
Signal Temporal Logic, which a Mixed-Integer Linear Problem
solver takes to output a controller. Hammond and colleagues
applied a program repair approach, a variant of program
synthesis, to automatically recover failures while running end-
user programs [18]. A probabilistic inference method was
used to detect and recover failures on runtime. While there
is more work of applying program synthesis in the human-
robot interaction domain, our work is unique in its purpose,
i.e., testing interactive robot behaviors.

Outside of the human-robot interaction research literature,
our work is related to work investigating techniques to use
a model to guide test generation for reactive systems [19],
spoken dialogue systems [20], computer vision [21], and
autonomous driving [22] and modeling temporal processes
via probabilistic programming [23], [24]. Our work is also
inspired by a popular reactive programming framework in the
web development community such as RxJS1 and an existing
method for synthesizing functional reactive programs [25],
[26].

III. APPROACH

A. Probabilistic Functional Reactive Programming

Probabilistic functional reactive programming is a tool for
designing and using complex stochastic asynchronous event
streams where the streams refer to variables that can change
their values over time and the events refer to the occurrence
of a new value in such streams. Our key idea is to borrow
features from an existing programming language that is great
at creating complex event streams, i.e., functional reactive
programming, and another language that is great at creating
statistical models, i.e., probabilistic programming, and apply
them for modeling stochastic asynchronous event streams, e.g.,
human behaviors.

Let us try to model an extremely simple speaking behavior
of a person, e.g., of speaking and being silent alternatively.
Here is an example functional reactive program using RxJS’s
observables like interval and operators like map:2

1 var human = interval(1000).pipe(
2 map(function (number) {
3 return number + 1;
4 }), // periodically emits from 1
5 startWith(0), // emits 0 immediately
6 map(function (number) {
7 return number % 2 === 0
8 ? "speak" // if number is even
9 : "silent"; // if number is odd

10 }), // maps the number to a string
11 );

1https://rxjs.dev/
2We assume readers’ familiarity with RxJS and JavaScript. For a tutorial

on reactive programming involving RxJS in JavaScript, see https://gist.github.
com/staltz/868e7e9bc2a7b8c1f754.

12 // human emits:
13 // "silent" at 0ms
14 // "speak" at 1000ms
15 // "silent" at 2000ms
16 // "speak" at 3000ms
17 // ...

The program creates an event stream that alternatively emits
strings “silent” and “speaking” at a fixed interval of 1000
milliseconds. It essentially implements a simple timed state
machine with two states.

It is likely that the fixed interval is too restrictive to model
a speaking behavior of a person. Here is an example of
the program that creates an event stream that emits strings
“silent” and “speaking” at two different fixed intervals, 2000
milliseconds and 1000 milliseconds.

1 var makeHuman = function(state) {
2 return merge(
3 of(state), // emits state immediately
4 of(state).pipe(
5 // Delays an event
6 delay(
7 // Select a delay duration per state
8 state === "speak" ? 2000 : 1000
9 ),
10 // Maps an event to a stream, resulting
11 // in a stream of streams
12 map(function (s) {
13 // This body gets called in future,
14 // i.e., after delay
15 return makeHuman(
16 // State transition function
17 s === "speak"
18 ? "silent"
19 : "speak"
20 );
21 }),
22 // Flattens the stream of streams
23 switchAll(),
24 )
25 );
26 };
27 var human = makeHuman("silent");

28 // human emits:
29 // "silent" at 0ms
30 // "speak" at 1000ms
31 // "silent" at 3000ms
32 // "speak" at 4000ms
33 // "silent" at 6000ms
34 // ...

To create a stream that infinitely emits events with alternating
intervals, this program employs a higher order stream to call
the recursive function in future (i.e., after delay).

While the new program is better, a real person is likely to
speak (or be silent) for a stochastic amount of duration, and
therefore still too restrictive to model the desired human be-
havior. The following example introduces some randomness in
the previous example program by employing probabilistic pro-
gramming’s elementary random primitives like gaussian:3

3We used the syntax of WebPPL (http://webppl.org/). For a tutorial on
probabilistic programming involving WebPPL, see http://adriansampson.net/
doc/ppl.html.



1 var makeHuman = function(state) {
2 return merge(
3 of(state),
4 of(state).pipe(
5 // Sample durations at each occurrence
6 var speakDuration = gaussian(2000, 1000);
7 var silentDuration = gaussian(1000, 500);
8 delay(state === "speak"
9 ? speakDuration
10 : silentDuration
11 ),
12 map(function (s) {
13 // State transition function
14 return makeHuman(s === "speak"
15 ? "silent"
16 : "speak"
17 );
18 }),
19 switchAll()
20 )
21 );
22 };
23 var human = makeHuman("silent");

24 // human emits:
25 // "silent" at 0ms
26 // "speak" at a sampled milliseconds from
27 // gaussian(1000, 500)
28 // "silent" at the previous event timestamp
29 // plus a sampled milliseconds from
30 // gaussian(2000, 1000)
31 // "speak" at the previous event timestamp
32 // plus a sampled milliseconds from
33 // gaussian(1000, 500)
34 // ...

This program creates a stream that emits two events alterna-
tively with sampled intervals from two normal distributions.
Once again, the use of recursion and higher order stream
enables sampling from the two distributions at every event
occurrence, which makes the overall event emission pattern
more random.

Our final program is still too rudimentary to model an
interesting human behavior, however, we believe creating a
more complex program, e.g., consisting of more states and
multiple streams, is straightforward.

B. Program Synthesis via Probabilistic Inference

Program synthesis is the idea of automatically generating a
program that implements the desired specification. We employ
the specification style of using a set of input/output pairs, or
rather a set of input/output traces where a trace is a set of
recorded event value and timestamp pairs. The probabilistic
functional reactive program synthesis relies on sketching and
probabilistic inference. Sketching is a synthesis technique that
first asks the user for a template program (i.e., sketch) that
implements the high-level structure of the desired program
with a specification and then fills in the details automatically.

For example, in the previous scenario of modeling a speak-
ing behavior, it might be difficult or tedious for a programmer
to select distribution parameters for the duration random
variables. Using a sketch, the programmer can leave such an
uncertain part of the program with holes.

4 ...
5 // Sample durations at each occurrence

6 var h1 = uniform(0, 10000);
7 var h2 = uniform(0, 10000);
8 var speakDuration = gaussian(h1, 1000);
9 var silentDuration = gaussian(h2, 500);
10 ...

In this example, variables h1 and h2 and their exact values
will be determined by the synthesizer.

Programmers can use holes to express uncertainty in control
flow. For example, a programmer can create a sketch that
expresses uncertainty in state transition.

12 ...
13 // State transition function
14 h3 = flip(0.5);
15 return makeHuman(h3
16 ? // 1st transition function
17 s === "speak"
18 ? "silent"
19 : "speak"
20 : // 2nd transition function
21 s === "speak"
22 ? "hesitate"
23 : s === "hesitate"
24 ? "silent"
25 : "speak"
26 );
27 // should define hesitateDuration
28 // for the 2nd transition function
29 ...

In this example, depends on the value of h3, different state
transition function will be used.

To turn the synthesis problem into a probabilistic inference
problem, we propose defining holes as random variables. With
our choice of the specification style, a set of input and output
traces, as a dataset, typical probabilistic inference techniques
like MCMC can be used for determining the most likely values
for the holes.

C. Human Simulator and Robot Behavior Authoring Workflow

The goal of the proposed synthesis approach was to enable
programmers to easily create and maintain human simulators
for testing interactive robot behaviors. To that end, we propose
the following workflow for programmers when developing
interactive robot behaviors.

1) Define a target human-robot interaction and create an
initial robot program and a human simulator sketch.

2) Collect input and output traces from human-robot or
human-human interactions.

3) Synthesize the human simulator program with the col-
lected traces.

4) Update the robot behavior.
5) Repeat 2)-4) until satisfied.

When the output human simulator needs to be tweaked, e.g.,
to model a similar human behavior in a different context, the
programmer can manually set the values for the holes or by
repeating steps 2) through 4). In addition, the initial sketch
can be improved and refactored over time as the programmer
gains experience in working with the synthesizer for to make
the re-using process more effective.



IV. CONCLUSION

In this paper, we presented (1) the idea of using proba-
bilistic functional reactive programming for representing hu-
man behaviors, (2) a program synthesis technique based on
probabilistic inference for building human simulators in the
context of testing interactive programs, (3) and a potential
workflow for using the synthesizer for developing interactive
robot behaviors. We believe the problem of building human
simulators for testing purposes is important and the proposed
approach for representing human behaviors and creating hu-
man simulator programs opens up new and exciting research
directions such as other synthesis techniques, human simulator
domain-specific language design, and further applications.

REFERENCES

[1] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choregraphe: a
graphical tool for humanoid robot programming,” in Proceedings of the
18th IEEE International Symposium on Robot and Human Interactive
Communication, pp. 46–51.

[2] A. Naveed, “Jibo SDK - The Beginnings,” ttps://youtu.be/
POv4bYS3eRQ, 2016, accessed: 2020-12-14.

[3] Anki, “Cozmo SDK,” http://cozmosdk.anki.com/docs/, 2016, accessed:
2020-12-14.

[4] MYSTYROBOTICS, “MYSTYROBOTICS SDK,” http:
//sdk.mistyrobotics.com/, 2020, accessed: 2020-12-14.

[5] A. Steinfeld, O. C. Jenkins, and B. Scassellati, “The oz of wizard:
simulating the human for interaction research,” in Proceedings of the
4th ACM/IEEE International Conference on Human-robot Interaction,
2009, pp. 101–108.

[6] C. Chao and A. L. Thomaz, “Timing in multimodal turn-taking interac-
tions: Control and analysis using timed petri nets,” Journal of Human-
Robot Interaction, vol. 1, no. 1, pp. 4–25, 2012.

[7] J. G. Trafton, L. M. Hiatt, A. M. Harrison, F. P. Tamborello, S. S. Khem-
lani, and A. C. Schultz, “Act-r/e: An embodied cognitive architecture for
human-robot interaction,” Journal of Human-Robot Interaction, vol. 2,
no. 1, pp. 30–55, 2013.

[8] J. G. Trafton, A. C. Schultz, D. Perznowski, M. D. Bugajska, W. Adams,
N. L. Cassimatis, and D. P. Brock, “Children and robots learning to
play hide and seek,” in Proceedings of the 1st ACM SIGCHI/SIGART
Conference on Human-robot Interaction, 2006, pp. 242–249.

[9] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, vol. 2, 2016.

[10] S. Nikolaidis, Y. X. Zhu, D. Hsu, and S. Srinivasa, “Human-robot mutual
adaptation in shared autonomy,” in Proceedings of the 12th ACM/IEEE
International Conference on Human-robot Interaction, 2017, pp. 294–
302.

[11] R. Choudhury, G. Swamy, D. Hadfield-Menell, and A. D. Dragan,
“On the utility of model learning in hri,” in Proceedings of the 14th
ACM/IEEE International Conference on Human-robot Interaction, 2019,
pp. 317–325.

[12] M. J.-Y. Chung and M. Cakmak, “Iterative repair of social robot pro-
grams from implicit user feedback via bayesian inference,” interaction,
vol. 1, p. 2.

[13] S. Lemaignan, G. Echeverria, M. Karg, J. Mainprice, A. Kirsch, and
R. Alami, “Human-robot interaction in the morse simulator,” in Pro-
ceedings of the 7th ACM/IEEE International Conference on Human-
robot Interaction, 2012, pp. 181–182.

[14] O. Robotics, “Service Robot Simulator,” https://www.openrobotics.org/
blog/2018/5/22/service-robot-simulator, 2018, accessed: 2020-12-14.

[15] Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C. Kemp,
“Assistive gym: A physics simulation framework for assistive robotics,”
in IEEE International Conference on Robotics and Automation, 2020,
pp. 10 169–10 176.

[16] D. Porfirio, E. Fisher, A. Sauppé, A. Albarghouthi, and B. Mutlu,
“Bodystorming human-robot interactions,” in Symposium on User In-
terface Software and Technology, 2019.

[17] A. Kshirsagar, H. Kress-Gazit, and G. Hoffman, “Specifying and synthe-
sizing human-robot handovers,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2019.

[18] J. C. Hammond, J. Biswas, and A. Guha, “Automatic failure recov-
ery for end-user programs on service mobile robots,” arXiv preprint
arXiv:1909.02778, 2019.

[19] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
“Model-based testing of reactive systems: Advanced lectures,” in
Springer LNCS, vol. 3472, 2005.

[20] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young, “A survey of
statistical user simulation techniques for reinforcement-learning of dia-
logue management strategies,” Knowledge Engineering Review, vol. 21,
no. 2, pp. 97–126, 2006.

[21] C. Jiang, S. Qi, Y. Zhu, S. Huang, J. Lin, L.-F. Yu, D. Terzopoulos, and
S.-C. Zhu, “Configurable 3d scene synthesis and 2d image rendering
with per-pixel ground truth using stochastic grammars,” International
Journal of Computer Vision, vol. 126, no. 9, pp. 920–941, 2018.

[22] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario specifica-
tion and scene generation,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2019, pp. 63–78.

[23] N. D. Goodman and A. Stuhlmüller, “The Design and Implementation of
Probabilistic Programming Languages,” http://dippl.org, 2014, accessed:
2020-12-9.

[24] G. Baudart, L. Mandel, E. Atkinson, B. Sherman, M. Pouzet, and
M. Carbin, “Reactive probabilistic programming,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 898–912.

[25] J. L. Newcomb and R. Bodik, “Using human-in-the-loop synthesis to
author functional reactive programs,” arXiv preprint arXiv:1909.11206,
2019.

[26] B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito, “Synthesizing
functional reactive programs,” in Proceedings of the 12th ACM SIG-
PLAN International Symposium on Haskell, 2019, pp. 162–175.


	Introduction
	Related Work
	Approach
	Probabilistic Functional Reactive Programming
	Program Synthesis via Probabilistic Inference
	Human Simulator and Robot Behavior Authoring Workflow

	Conclusion
	References

