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Abstract— We study the challenging problem of following
natural language instructions on a mobile manipulator robot.
This task is challenging because it requires the robot to
integrate the semantics of the unconstrained natural language
instructions with the robot’s egocentric visual observations of
the environment which are typically incomplete and noisy. To
address these challenges, we propose a method that is able to use
visible landmarks to more efficiently explore the environment
in search of the objects described by the natural language
instructions. Additionally, we propose using a pose adjustment
policy during manipulation planning to help the robot recover
from noisy visual observations. We show that this policy can be
trained through experience with reinforcement learning as well
as with human-in-the-loop feedback. We evaluate our approach
on the popular ALFRED instruction following benchmark and
show that these methods achieve state-of-the-art performance
(35.41%) with a substantial (8.92% absolute) gap from prior
work.

I. INTRODUCTION

For a robot deployed in human-centric environments,
natural language provides an intuitive interface enabling non-
expert humans to communicate with the robot and instruct it
to complete useful tasks. However, executing unconstrained
natural language instructions is a challenging problem that
requires the robot to understand the semantics of the instruc-
tions, ground the semantics to real-world objects through
egocentric visual observations, and satisfy the described task
by navigating through the environment and manipulating the
target objects. Despite recent progress, the problem remains
challenging in part because the robot’s perception of the
environment is often incomplete and noisy. Adaptive decision
making is crucial because the robot’s perception of the envi-
ronment is imperfect. Efficient exploration is also necessary
because often the target objects that are required to satisfy
the language instructions are not immediately observable. For
example, the target objects may be in an unseen part of the
environment, they may be inside closed receptacles such as
refrigerators and cupboards, or they may simply be too small
to see from a distance.

In this paper, we propose an approach that more efficiently
explores the environment by predicting visible landmarks
that are likely to lead to the target objects. For humans,
landmarks play an important role in guiding navigational
behavior [1]. The use of landmarks as beacons for goal
localization is a strategy that develops early in childhood,
and may be used in preference to other navigational strategies
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Goal Instruction:

“Place a clean mug in the coffee machine”

“Move to the counter
next to the fridge”

“Turn and take the mug
to the sink”

“Pick up the mug from
the counter”

/1
“Carry the mug to the
coffee machine”

“Put the mug in the sink
and wash it”

“Put the mug in the
coffee machine”

Fig. 1. An example instruction following task from the ALFRED challenge.
Efficient exploration is crucial because the objects referenced by the instruc-
tions are not immediately visible to the robot. The robot has an imperfect
representation of the environment constructed from egocentric RGB images,
highlighting the importance planning and manipulation behaviors that can
adapt when the robot’s perception is inaccurate.

due to its computational simplicity and high reliability [2].
Our approach aims to utilize landmarks for the navigation
phase of the instruction following problem. Towards this
goal, we develop a predictive model of landmarks that are
likely to lead to a given target object and a procedure for
exploring the environment called Landmark Guided Search
(LGS). Additionally, we propose using a pose adjustment
policy during manipulation planning to help the robot recover
from imperfect visual perception. This policy can make
minor local pose adjustments that might be required to
successfully interact with the target objects. For example,
to open a refrigerator, the agent must assume a pose that is
close enough to grasp the refrigerator door handle while far
enough away that the refrigerator door is not blocked. We
call this Reinforced Pose Adjustment (RPA) and we show
that this behavior can be learned both through unsupervised
experience and through human-in-the-loop feedback.

We evaluate our approach on a popular robot instruction
following benchmark, ALFRED [3], and show that these
methods achieve state-of-the-art performance (35.41%) with



a large margin (8.92%) from the previous SOTA [4].
II. RELATED WORK

Natural language is an active area of robotics research
[5] that has been studied in contexts such as instruction
following [6]-[9], knowledge transfer [10]-[12], and dialog
[13]-[15].

Instruction following for robots has been explored in
domains ranging from coaching RoboCup soccer robots [16],
to executing recipes on cooking robots [17], to routing
robotic forklifts [8] and quadcopter drones [9]. Data-driven
approaches have shown promising results by learning to
directly map language and observations to actions [9], [18]—
[20]. Several benchmarks using simulated physical environ-
ments have been developed to facilitate progress on learned
instruction following for domains such as navigation [21]—
[25] and embodied question answering [26]. ALFRED [3]
is a benchmark situated in the AI2-THOR simulator [27]
that involves following natural language instructions with a
mobile manipulator to complete complex tasks in realistic
indoor household environments. Some early approaches in-
volve training large end-to-end models that directly translate
natural language instructions to low-level actions [3], [28].
Later approaches have decoupled the various aspects of
the problem into a hierarchy of individually learned or
programmed modules that are easier to interpret for humans
and generalize better in unseen environments [4], [29]-[34].
Researchers have developed increasingly sophisticated mod-
ules, most recently the authors of [33] and [4] reconstruct
a 3D map of the environment with semantic labels encoded
in the map. This representation is useful for planning ca-
pabilities because it provides a direct mapping from the
semantics of the natural language to the spatial properties
of the environment. However, in practice, the semantic map
is often noisy (due to inaccurate perception and semantic
inference) and incomplete (due to insufficient exploration of
the environment).

To tackle the exploration problem, [33] proposes doing a
simple random search. The authors of [4] improve on this
with a search policy that predicts the spatial location of target
objects based on the observed semantic map. In our work,
we predict landmarks that are likely to lead to the target
object and utilize those landmarks to more efficiently explore
the environment. Landmarks have been successfully used in
related problems such as mechanical search [35]. Because
our work is in the context of instruction following, our ap-
proach crucially must consider both the language instructions
(which may contain references to relevant landmarks) and
prior experience (which informs relevant landmarks in the
absence of language cues).

To mitigate the inaccuracy problem, we propose using
reinforcement learning and human-in-the-loop feedback. Re-
inforcement learning has been successfully used for other
instruction following tasks such as navigation [36]-[39].
However, it is difficult to apply reinforcement learning to
the wide variety of long-horizon mobile manipulation tasks
evaluated by the ALFRED challenge. In our work, we apply

reinforcement learning to a small sub-task which has a short
horizon, making reinforcement learning more tractable while
still being useful to all of the tasks in ALFRED. Specifically,
we teach our mobile manipulator how to adjust its pose to
successfully interact with a target object after navigating to
that object in the semantic map. By learning how to make
small pose adjustments locally, our mobile manipulator can
adapt and recover from inaccuracies in the 3D semantic
map. Additionally, we show that this approach provides a
framework for human-in-the-loop feedback which has been
used extensively to train autonomous systems [40]-[43] but
to our knowledge has not yet been utilized for instruction
following on a mobile manipulator. By correcting the mobile
manipulator with small pose adjustments, human experts
can give feedback that improves overall performance on the
tasks.

III. PROBLEM STATEMENT
A. Task Background

Our work is done in the context of the ALFRED challenge
[3], where a mobile manipulator robot is required to fol-
low natural language instructions to complete long-horizon
household tasks in realistic indoor home environments (situ-
ated in the AI2-THOR simulator [27]). The challenge spans
seven types of tasks in 120 indoor scenes. The tasks range
from simple pick-and-place tasks to more complex tasks that
require heating, cooling, cleaning, or slicing target objects.

B. Task Description

At each timestep t, the robotic agent receives a new
observation image o; and must choose an action ay.
The agent chooses from 13 possible actions including

5 navigation actions: RotateRight, Rotateleft,
MoveAhead, LookUp, LookDown and 7 object
manipulation actions: PickupObject, PutObject,
OpenObject, CloseObject, ToggleObjectOn,

ToggleObjectOff, SliceObject. Navigation actions
are parameter-free while object manipulation actions are
parameterized by a pixelwise mask to denote the target
object in the robot’s first person view. The agent is given
unconstrained natural language instructions L and to
succeed it must generate a sequence of actions that satisfy
the goal conditions described in L followed by a special
Stop action to end the episode.

IV. METHOD

Our approach consists of five modules: (1) language
processing, (2) perception, (3) navigation, (4) search, and
(5) manipulation. We illustrate the high-level end-to-end
architecture in Figure 2.

The language processing module predicts the next sub-
goal g given the natural language instructions L and the
sequence of previous sub-goals (g;, )i<k. A sub-goal g is a
tuple (type,target) where type is the sub-goal type (e.g.
GotoLocation, PickupObject) and target is the target object
of the sub-goal (e.g. Sink, Apple).



Landmark
Guided Search

Transformer
Encoding

Perception

Semantic
Segmentation

&
/LJ'?
)
Depth
Mapping

Language
Parsing
Goto(CoffeeMachine)

Transformer Current sub-goal
Encoding 9y

t ickup(Mug)

P

Action Controller

/Deterministic\ / Manipulation \

Navigation
Transformer
Encoding

Reinforced
Pose
Adjustment

RotateLeft

Shortest
Path
Planning

b oo

Fig. 2. The proposed architecture is a composition of five modules. The language parsing module transforms the language instructions into parameterized
sub-goals. The perception module persists visual observations to a 3D semantic voxel map. The search module determines the next target waypoint. The
navigation module uses deterministic planning to generate navigation actions. The manipulation module generates manipulation actions with assistance

from reinforced pose adjustment when necessary.

At each timestep ¢, the perception module updates a
persistent spatial semantic map using the current egocentric
RGB observation image o;. The search module performs
a landmark guided search over the observed semantic map
to update a priority queue of relevant spatial positions and
determine a target position. The navigation module uses
a deterministic policy to navigate to the target position.
After reaching the target position, the sub-goal counter k
is incremented and we predict the next sub-goal.

For manipulation sub-goals, the manipulation module pre-
dicts the next action a; given the natural language instruction
L, the sequence of previous sub-goals (g;, )<k, and the
sequence of previous manipulation actions (a;, );<n. If the
manipulation action succeeds, we continue sampling manip-
ulation actions until the action agyp is sampled at which
point we increment the sub-goal counter k£ and predict the
next sub-goal. If the manipulation action fails, we attempt
to use reinforced pose adjustment (RPA) to recover from
the failure. If the manipulation action still fails after pose
adjustment we discard the current sub-goal g; and the current
target position.

The episode ends when the sub-goal gsrop is sampled
or the maximum horizon is exceeded.

A. Language Processing

The language processing module is responsible for parsing
the natural language instructions into parameterized sub-
goals that can be used for planning. The module consists
of two pre-trained BERT [44] transformer models that
have been fine-tuned on the ALFRED training dataset. The
first transformer predicts the next sub-goal type, typeg,
and the second transformer predicts the target object of
the next sub-goal, targeti. The input to both models
is the natural language instructions L, and the sequence

of past sub-goals (g;,)i<k. The sequence of past sub-
goals is converted to natural language phrases. For exam-
ple, the sub-goal GotoLocation (CounterTop) would
be converted to “go to counter top” and the sub-goal
PickupObject (Apple) would be converted to pick
up apple”. The intuition behind this conversion is that
it allows us to take advantage of semantic relationships
between the sub-goals and instructions that have already been
learned by the pre-trained language models. The phrases are
joined to produce the sub-goal history Hy. The inputs L
and Hj, are concatenated together and encoded by the two
pre-trained BERT transformers. The first model predicts a
distribution over the next sub-goal type P(typey|L, Hy) and
the second model predicts a distribution over the next sub-
goal target object P(targety|L, Hy). We sample from these
distributions to select the next sub-goal type typer and the
next target object targety.

B. Perception

At timestep ¢, the input to the perception module is the
current egocentric RGB image observation o;. Following
prior works [33], we use two neural networks based on the
U-Net [45] architecture to predict the semantic segmentation
o7 and depth map oP from the current RGB image obser-
vation. Both neural networks are trained on images from
the ALFRED training dataset. The depth map ol is then
transformed to a point cloud using a pinhole camera model
and each point is assigned a semantic label based on of.
We persist these observations in a 3D semantic voxel map
Vi € {0,1}XXY*ZXC where the value at each voxel is the
element-wise maximum of the class distributions across all
points that land within the voxel. The voxel map is updated
at each timestep ¢ and aggregated over time.



C. Navigation

When the current sub-goal involves navigation (typey €
{GotoLocation}), the navigation module is responsible for
generating actions to navigate toward the goal location. To
facilitate navigation, we compute a top-down 2D map of
the environment, M; € {0,1}X*¥Y*C by summing over
the height of the voxel map V;. Target locations on the
map are specified as waypoints. A waypoint is a tuple
(x,y,wy) where (z,y) is a position in the map M; and
wy is a yaw angle. Once a target location is specified,
the navigation module uses a Djikstra-based deterministic
planner to generate navigation actions.

D. Landmark Guided Search

The search module is responsible for finding target lo-
cations in the map M;. Our approach is to prioritize ob-
served locations of the target object targety, and to use
predicted landmarks to efficiently explore the environment
when target;, is unobserved.

To track relevant waypoints and facilitate efficient explo-
ration, we maintain two queues of waypoints: a high priority
queue Qpign and a low priority queue (Qjo.. At each timestep
t the queue is updated based on the latest semantic voxel
map. We first search the voxel map for any voxels containing
the current target object targety, which we add to the high
priority queue Qnign. Next, we use a landmark prediction
model to predict an object class landmark that is likely to
lead us to the target object. We then search the voxel map
for any voxels containing landmark; and add those voxels
to the low priority queue Qjoq-

To select the next target waypoint w, the navigation
module chooses the next waypoint from Qpign. If Qnign
is empty then the next waypoint from @, is selected. If
we have exhausted all of the waypoints in both Qp;qn and
Qiow, then navigation module randomly samples from the
observed reachable floor voxels in M;.

To compute waypoints for a given object class, we search
the voxel map for any voxels containing the object. We
cluster all of the resulting voxels into groups of connected
voxels and sort by descending group size to prioritize the
larger clusters of voxels. Within each group we sort voxels
by their distance to the centroid of the cluster to promote
voxels that are centered on their respective clusters. For
each relevant voxel, we compute a waypoint by selecting
the closest navigable position in map M; and a yaw angle
such that the robot is facing the target voxel.

We train a landmark prediction model to predict the object
class landmarky, that is most likely to lead us to the target
object class targety. Because the language instructions can
sometimes contain references to relevant landmarks, the
landmark prediction model is conditioned on the natural
language instructions L and the action history H}, in addition
to the target object class targety. All three inputs, L, Hy,
and target; are concatenated together and encoded by a
BERT transformer model that predicts a distribution over
the landmark object class P(landmarky|targety, L, Hy,),
from which we sample landmarky. To train the model,

we process a new dataset from the ALFRED training split
containing only examples of navigation actions where the
expert policy navigated to a large receptacle object imme-
diately before interacting with a target object. Because the
model is conditioned on both the language instructions and
the target object targety, it can utilize clues in the natural
language instructions in addition to prior experience of large
receptacles that are likely to lead to targety.

E. Manipulation with Reinforced Pose Adjustment

When the current sub-goal type is manipulation (typey ¢
{GotoLocation}), the manipulation module is responsible
for generating actions to satisfy typer. The manipulation
module takes as input the natural language instructions L,
the history of sub-goals Hy, and the sequence of previous
actions (a;, );<¢. Like the sub-goal history, the past actions
are converted to natural languages phrases. For example,
the manipulation action CloseObject(Cabinet) is converted
to “close cabinet”. The past actions are then joined to
produce the action history H ,?. The three inputs L, Hy,
and H{* are concatenated together and encoded by a BERT
transformer model which is used to predict a distribution
over the actions P(a;|L, Hg, H{'), from which we sample
the next action a;. The resulting action a; is then converted
to natural language, concatenated to the other inputs, and
encoded by a second BERT transformer model which is
used to predict the distribution over argument object classes
P(obji|as, L, Hy, Hi*), from which we sample the argument
object obj;. In ALFRED, manipulation actions are parame-
terized by a pixelwise mask to denote the target object in
the egocentric RGB image observation. To select this mask,
we use the semantic segmentation oy from the perception
module and select all pixels from the channel corresponding
to the object class obj;. Because the semantic segmentation
image can be noisy, we threshold the selected masks based on
statistics from the training dataset. Specifically, we consider
a mask valid only if it is above the Sth-percentile of mask
sizes used to interact with the target object in the training
set. This mitigates hallucinated objects and ensures that the
agent has a clear view of the target object before trying to
manipulate it.

Often the agent is unable to immediately manipulate the
target object obj; from the current waypoint w. This is
typically due to the robot being unable to detect the object
or due to some environmental constraints (for example, to
open a cabinet door the robot must be close enough to
reach the handle while far enough away that the robot
doesn’t block the door). To handle these cases, our manip-
ulation module includes a pose adjustment policy 7, used
when the agent is unable to immediately manipulate the
target object class obj; from the current waypoint w. The
policy must select from a set of predefined pose adjust-
ment action sequences: StepBack, LookUp, LookDown,
StepBackAndLookUp, StepBackAndLookDown. Af-
ter executing the pose adjustment sequence the agent will
retry the manipulation action actiony. Additionally, the agent
can choose to Renavigate, which forces the agent to



Test Seen

Test Unseen

Method
SR GC PLWSR PLWGC | SR GC PLWSR PLWGC
Low-level step-by-step instructions + High-level goal instructions
Seq2Seq [3] 3.98 9.42 2.02 6.27 3.9 7.03 0.08 4.26
MOCA [29] 22.05 28.29 15.10 22.05 5.30 14.28 2.72 9.99
E.T. [28] 3842 4544 27.78 34.93 8.57 18.56 4.10 11.46
LWIT [32] 3092  40.53 43.10 36.76 942 2091 5.60 16.34
HiTUT [30] 21.27 2997 11.10 17.41 13.87  20.31 5.86 11.51
ABP [31] 4455 5113 3.88 4.92 1543 2476 1.08 2.22
FILM [4] 27.67 38.51 11.23 15.06 2649  36.37 10.55 14.30
LGS-RPA (ours) 40.05 48.66 21.28 28.97 3541 4524 15.68 22.76
High-level goal instructions only
LAV [46] 13.35  23.21 6.31 13.18 6.38 17.27 3.12 10.47
HLSM [33] 25.11  35.79 6.69 11.53 1629  27.24 4.34 8.45
FILM [4] 2577  36.15 10.39 14.17 2446 3475 9.67 13.13
LGS-RPA (ours) 33.01 41.71 16.65 24.49 27.80 38.55 12.92 20.01
TABLE I

TEST RESULTS OF THE ALFRED CHALLENGE INCLUDING SEVERAL METRICS: SUCCESS RATE (SR), GOAL CONDITIONED SUCCESS (GC), PATH
LENGTH WEIGHTED SUCCESS RATE (PLWSR), AND PATH LENGTH WEIGHTED GOAL CONDITIONED SUCCESS (PLWGC).

select a new target waypoint from which to attempt the
manipulation action. We train the initial pose correction
policy using offline reinforcement learning in a contextual
bandit setting. First we iterate over each training example
and perform end-to-end rollouts. Every timestep at which
the robot fails to manipulate an object is recorded and
aggregated into a dataset of failed states. Next we iterate
over the failed states and from each example failed state the
agent explores each of the possible action sequences. The
reward for each action sequence is computed from the world
state. Specifically, the agent receives a positive reward if
the agent is able to successfully manipulate the target object
after invoking an action sequence. We model the policy as
a neural network that receives as input the current target
object targety, the attempted manipulation action actiong,
the robot’s egocentric distance to the target waypoint d, the
maximum height h of the target object in the voxel map, and
the type of failure f € {UndetectedObj, EnvConstraint}.
After iterating over all of the starting states, we update the
parameters of m, using AdamW stochastic optimization [47].

Inspired by the DAgger algorithm [48], we further show
that the pose correction model can incorporate human-in-the-
loop feedback. Using an initial pose adjustment policy m,,
we again iterate over each training example and perform end-
to-end rollouts to record a dataset of failed states. We then
sample failed states and present them to a human expert for
annotation. The human expert is shown the robot’s egocentric
RGB observation at the failed state, the target object target,
and the attempted manipulation action actionj. The human
expert is asked to assist the robot by choosing the best
action sequence to invoke from the set of predefined pose
adjustment action sequences. We aggregate these annotations
to produce an annotated pose adjustment dataset Dp which
we use to update the parameters of m, using AdamW
stochastic optimization.

V. EXPERIMENTS
A. Experimental Setup

Dataset: The ALFRED dataset contains 8,055 expert
trajectories averaging 50 steps each, resulting in 428,322
image-action pairs. Each expert trajectory is annotated with
multiple language directives, which consist of a high-level
goal statement and a set of low-level instructions, for a
total of 25k language annotations. The expert trajectories are
grouped into sub-goals, with each sub-goal corresponding
to one of the low-level instructions. Each sub-goal is pa-
rameterized with a target object and an optional receptacle
object. The dataset is split into training, validation, and test
folds. The validation and test folds are further split into two
conditions: seen and unseen environments.

Metrics: Success Rate (SR) is the fraction of rollouts
for which the object positions and state changes completely
satisfy the task goal-conditions at the end of the action se-
quence. Goal Condition Success Rate (GC) is the fraction of
goal-conditions completed at the end of an episode to those
necessary to have finished a task. Path Length Weighted
Success Rate (PLWSR) is the success rate weighted by
rollout length. Path Length Weighted Goal Condition Success
Rate (PLWGC) is the goal-condition success weighted by
rollout length.

Baselines: There are two types of baselines on the AL-
FRED benchmark: those that use the low-level step-by-
step instructions [3], [28], [30]-[32] and those that use
only the high level instructions [4], [33], [46]. Successfully
completing tasks based only on the high-level instructions
is desirable because the low-level step-by-step instructions
can be too tedious and unrealistic for a non-expert human
to provide. However, this presents additional difficulties
because the high-level instructions can be ambiguous and
under-specified. Our approach can be evaluated in either
context so we compare our results to both types of baselines.



Training Details: The BERT classification models used
by the language processing, landmark guided search, and
manipulation planning modules use pre-trained distilbert-
base-uncased” weights from the Transformers package
[49] fine-tuned on examples processed from the ALFRED
training set using AdamW with a learning rate of 5e-5. The
U-Net models used for perception are trained by prior work
[33]. The pose adjustment models used by the manipulation
planning module were trained using AdamW and a learning
rate of le-3.

B. Quantitative Results

In Table I we compare our approach with state-of-the-art
methods for the two test sets of the ALFRED challenge.
When the low-level step-by-step instructions are included,
our approach achieves state-of-the-art performance in unseen
environments and competitive performance in seen environ-
ments. ABP [31] and LWIT [32] perform better on the
seen environments, potentially reflecting more overfitting
to the environments and directives seen during training. In
the setting with only high-level instructions our approach
achieves state-of-the-art performance across both seen and
unseen environments. Notably, in unseen environments our
approach with only high-level instructions outperforms even
the previous state-of-the-art methods that utilize the low-level
step-by-step instructions.

Using the validation split as a development dataset, we
show additional insights in Table II by comparing our base
method to agents that use ground truth perception (+ gt per-
ception), ground truth language parsing (+ gt lang), or both
(+ gt perception, lang). We find that ground truth language
parsing only provides negligible benefits (1.83% absolute
improvement on unseen and 0.65% on seen) indicating that
the learned language parsing model is already very strong.
Ground truth perception provides a significant performance
increase (21.5% absolute improvement on unseen and 5.65%
on seen) indicating that there is large room for improvement
in the agent’s perception capabilities.

In Table III we compare the success rate of different
learning strategies for the pose adjustment policy: Reinforce-
ment Learning (RL), Human-in-the-Loop Feedback (HITL),
and a combination of both (RL + HITL). We find that all
three strategies have competitive performance and we get the
highest success rate from a combination of reinforcement
learning and human feedback.

In Table IV we compare the success rate of Landmark
Guided Search with a random search and we find that
Landmark Guided Search increases performance by 4.34%
in unseen environments and 3.72% in previously seen envi-
ronments.

C. Qualitative Results

The qualitative results of Landmark Guided Search are
illustrated in Figure 3. In the first example the robot is
searching for a mug that is initially too far away to detect
in the cluttered scene. Our landmark prediction model infers
that the counter-top is a likely landmark and by following

Val Seen Val Unseen
Method SR GC SR GC
Base Method 4386 5251 3318 44.68
+ gt perception 4951 58.02 54.68 60.80
+ gt lang 4451 5391 3501 4471
+ gt perception, lang  51.77 6132 61.76 64.49
TABLE II

DEVELOPMENT RESULTS ON THE VALIDATION SPLITS WITH
GROUND-TRUTH PERCEPTION AND LANGUAGE PARSING ORACLES.

Val Seen Val Unseen
Method SR GC SR GC
RL 41.56 50.12 3041 42.79
HITL 4298 51.64 31.72 44.16
RL + HITL 43.86 5251 33.18 44.68
TABLE III

DEVELOPMENT RESULTS ON THE VALIDATION SPLITS SHOWING THE
EFFECT OF POSE ADJUSTMENT TRAINED WITH REINFORCEMENT
LEARNING (RL), HUMAN-IN-THE-LOOP FEEDBACK (HITL), OR BOTH.

the counter-top the robot quickly finds the mug. The ran-
dom search eventually finds the mug but it wastes many
timesteps exploring unnecessary areas of the environment.
The benchmark tasks are made up of several steps over a
long-horizon and we must complete the task in a limited
amount of time so it’s important to be as efficient as possible
for every step. In the second example the robot is searching
for a desk lamp that is initially occluded around a corner.
The landmark guided search model determines that a desk
is a good landmark candidate and quickly finds the lamp
after searching the visible desks in the scene. The random
search never finds the lamp because it ends up failing due
to collision while exploring random areas of the scene. This
illustrates that inefficient exploration also exposes the robot
to more opportunities for collision and other failure modes.

Figure 4 contains examples illustrating the use of Rein-
forced Pose Adjustment. In the first example sequence the
robot has planned to open a microwave, but the microwave
is mounted above the stove so it is not immediately visible
to the robot at the target waypoint. Through experience, the
policy has learned to adjust the robot heading upward which
allows the robot to successfully interact with the microwave.
In the second example sequence the robot needs to open a
refrigerator door but initially the robot’s body is blocking the
door. The policy has learned to adjust it’s pose by moving
backward in order to successfully open the refrigerator door.

Val Seen Val Unseen
Method SR GC SR GC
Random search 38.12  49.71 20.02  40.34
Landmark Guided Search  43.86  52.51 33.18  44.68
TABLE IV

DEVELOPMENT RESULTS ON THE VALIDATION SPLITS SHOWING THE
EFFECT OF LANDMARK GUIDED SEARCH COMPARED TO RANDOM
SEARCH.



Fig. 3. Two examples depicting top-down views of unseen environments
qualitatively illustrating the use of landmarks as beacons for navigation.
In each row we first show the robot’s field of view (left), followed by
the landmark based search route depicted in green (center), and finally a
random search route depicted in blue (right). In all images the target object
is depicted by a star.

Fig. 4. Two example sequences from unseen environments illustrating the
use of learned pose adjustment. In sequence (a) the robot has planned to
interact with a microwave but the microwave is mounted above the robot’s
heading at this waypoint. Through experience, the robot has learned to adjust
it’s heading to successfully interact with the microwave. In (b) the robot
needs to open a refrigerator door but the door is blocked by the robot at this
waypoint. The robot has learned to move backward in order to successfully
open the refrigerator door.

VI. CONCLUSION

In the context of human-centric robot deployments, we ad-
dressed the problem of natural language instruction following
on a mobile manipular robot. We showed that our approach
using an efficient landmark-based search system combined
with an adaptive pose adjustment policy enables state-of-
the-art performance on the popular ALFRED instruction
following challenge. While effective, our pose adjustment
policy is quite simple and limits the robot to a fixed set
of adjustment strategies. Future work should explore more
flexible recovery policies with more sophisticated training
regimes. Additionally, reinforcement learning and human-
in-the-loop feedback could potentially be utilized to improve
other modules or complete end-to-end models. Finally, while

our methods are designed with robot platforms in mind, we
have evaluated our approach in simulated environments and
we leave exploration of physical deployment challenges to
future work.

ETHICS STATEMENT

We study natural language as a means of instructing a
mobile manipulator robot. While natural language is an
intuitive interface for non-expert humans, other modalities
should additionally be considered to develop robot interfaces
that are accessible to humans with speech-impairment or
other disabilities that prohibit natural language instruction.

Our research is situated in home environments simulated
by AI2-THOR [27] which may bias the results towards North
American homes. Future work should incorporate a more
diverse set of environments.
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