
Graph Structural Attack by Perturbing Spectral Distance
Lu Lin

ll5fy@virginia.edu
University of Virginia

Charlottesville, VA 22904, USA

Ethan Blaser
ehb2bf@virginia.edu
University of Virginia

Charlottesville, VA 22904, USA

Hongning Wang
hw5x@virginia.edu
University of Virginia

Charlottesville, VA 22904, USA

ABSTRACT
Graph Convolutional Networks (GCNs) have fueled a surge of re-
search interest due to their encouraging performance on graph
learning tasks, but they are also shown vulnerability to adversarial
attacks. In this paper, an effective graph structural attack is investi-
gated to disrupt graph spectral filters in the Fourier domain, which
are the theoretical foundation of GCNs.We define the notion of spec-
tral distance based on the eigenvalues of graph Laplacian tomeasure
the disruption of spectral filters. We realize the attack by maximiz-
ing the spectral distance and propose an efficient approximation
to reduce the time complexity brought by eigen-decomposition.
The experiments demonstrate the remarkable effectiveness of the
proposed attack in both black-box and white-box settings for both
test-time evasion attacks and training-time poisoning attacks. Our
qualitative analysis suggests the connection between the imposed
spectral changes in the Fourier domain and the attack behavior in
the spatial domain, which provides empirical evidence that max-
imizing spectral distance is an effective way to change the graph
structural property and thus disturb the frequency components for
graph filters to affect the learning of GCNs.
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1 INTRODUCTION
Graph signal processing applies the idea of signal processing to
graph data, allowing existing signal processing tools such as spec-
tral filtering and sampling to be used for learning graph embed-
dings [10]. In particular, spectral filters are generalized to create
Graph Convolutional Networks (GCNs), which have prominently
advanced the state of the art on many graph learning tasks [18, 41].
However, despite their great success, recent works show that GCNs
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exhibit vulnerability to adversarial perturbations: such models can
be easily fooled by small perturbations on graph structure or node
properties, and thus generate inaccurate embeddings leading to
erroneous predictions in downstream tasks [8, 47–50].

Graph data differs from image or text data due to the topological
structure formed among nodes. On one hand, GCNs exploit such
structures to aggregate information conveyed in nodes’ neighbor-
hoods, which yield better predictive power on many tasks (such
as link prediction [36] and node classification [33]). But on the
other hand, the complex dependency relations introduced by the
topological structure of graphs also expose learning models to a
greater risk: an attacker can mislead classifiers to erroneous predic-
tions by just slightly perturbing the graph structure, without even
modifying any node features. Various adversarial attacks have been
studied on graph structure [15], considering different prediction
tasks (node classification [43, 48, 50] or graph classification [8, 23]),
attacker’s knowledge (white-box [43, 48, 49] or black-box [8, 23]),
attack phases (test-time evasion attack [5, 8, 48] or training-time
poisoning attack [43, 50]), and perturbation types (edge modifica-
tion [48, 50] or node modification [40]). In this paper, we focus on
the structural attack by adding or removing edges to compromise
the node classification performance of a victim GCN model.

Graph convolution, as the fundamental building block of GCNs,
is designed to filter graph signals in the Fourier domain. Studies
in spectral graph theory [7] show that the spectra (eigenvalues)
of the graph Laplacian matrix capture graph structural properties
(e.g., the second smallest eigenvalue, also known as the Fiedler
value, reflects the algebraic connectivity of graphs [27] ). Therefore
exploiting spectral changes provides a comprehensive way to study
the vulnerability of GCN models. However, so far most structural
attack solutions only search for perturbations in the spatial domain.
Ignoring the direct source of GCN models’ vulnerability which
resides in the Fourier domain limits the effectiveness of attacks.

Studying GCN models’ vulnerability in the Fourier domain can
effectively capture important edges that influence the structural
property the most, e.g., the clustering structure of nodes. According
to the concept of graph signal processing, the eigen-decomposition
of the Laplacian matrix of a graph defines the frequency domain
of message passing on the graph. Recent works have established
the relationship between frequency components and graph clus-
tering [11, 38]. Based on the ascending ordered eigenvalues of the
Laplacian matrix, we can obtain both low- and high-frequency com-
ponents, which play different roles in message passing on graphs.
The eigenvectors associated with small eigenvalues carry smoothly
varying signals, encouraging neighbor nodes to share similar prop-
erties (e.g., nodes within a cluster). In contrast, the eigenvectors
associated with large eigenvalues carry sharply varying signals
across edges (e.g., nodes from different clusters) [4, 14]. Figure 1
illustrates the concept on both the popularly studied social network

 

989

https://doi.org/10.1145/3534678.3539435
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539435
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3534678.3539435&domain=pdf&date_stamp=2022-08-14


KDD ’22, August 14–18, 2022, Washington, DC, USA Lu Lin, Ethan Blaser, & Hongning Wang

Figure 1: Relationship between graph structural property
and frequency components in Fourier domain on the Karate
club graph (TOP) and a random geometric graph (BOTTOM).
Color denotes the edge reconstructed when only using low-
frequency components (b) or high-frequency components
(c). Darker color indicates a larger edge reconstruction value.

graph Karate club and a random geometric graph. We visualize
the edges by their reconstruction using the eigenvectors only as-
sociated with the top low- or high-frequency components in each
graph respectively. For example, in Figure 1 (b), the color of each
edge reflects its reconstruction only using eigenvectors associated
with the lowest eigenvalues. On one hand, the information inside
the closely connected components is retained when low-frequency
components are used to reconstruct the graph; and on the other
hand, the inter-cluster information is captured when constructing
the graph with only high-frequency components. This example
clearly illustrates that graph frequency components encode the
global structure of graphs, which motivates us to study GCN mod-
els’ vulnerability in the Fourier domain.

In this work, we propose a principled graph perturbation strategy
in the Fourier domain to improve the effectiveness of adversarial
attacks against GCN models. Specifically, we define the spectral
distance between the original and perturbed graph, measured by the
change in their Laplacian eigenvalues. Then we build a structural
attack model which directly maximizes the spectral distance in a
black-box fashion. To solve this combinatorial optimization prob-
lem, we relax the binary constraint on edge perturbation to a contin-
uous one, and apply a randomization sampling strategy to generate
valid binary edge perturbations. We name this method SPectral
AttaCk, abbreviated as SPAC. It is worth noting that generating
the SPAC attack requires eigen-decomposition of the Laplacian
matrix, which results in a time complexity of O(𝑛3) with 𝑛 nodes
in a graph. To handle large graphs, we propose an approximation
solution only based on a set of largest and smallest eigenvalues and
their corresponding eigenvectors, and use eigenvalue perturbation
theory [39] to avoid frequent computation of eigen-decomposition,
which reduces the time complexity to O(𝑛2). Our attack method
is evaluated under both white-box and black-box settings for both
evasion and poisoning attacks on a set of benchmark graph datasets.
Promising empirical results demonstrate that convolutional graph
learning models are sensitive to spectral changes, which expands
the scope of adversarial attacks on graphs to the Fourier domain and
opens up new possibilities to verify and enhance GCNs’ robustness
in both the spatial and Fourier domains.

2 RELATED WORK
Adversarial attacks on graph structures have been extensively stud-
ied in recent years. The vast majority of attack efforts manipulate
graphs in the spatial domain to maximize a task-specific attack
objective. However, the vulnerability of graph convolutions in the
Fourier domain is less studied in existing attack solutions.We bridge
the gap by measuring and maximizing the spectral changes in the
graph Laplacian matrix, such that we can directly disrupt the graph
spectral filters and attack the graph convolutions.
Adversarial attack on graph structures. The attacker aims to
perturb the graph adjacency matrix in directions that lead to large
classification loss. In the white-box setting, the attacker follows the
gradients on the adjacency matrix to find such perturbations [6, 20,
44, 47–50]. Different strategies are exploited to convert continuous
gradients into binary edge modifications. Topology attack [24] uses
randomization sampling to select sub-optimal binary perturbations.
Nettack [49] and FGA [6] select edge changes with the largest
gradient greedily. Metattack [50] first calculates meta-gradient on
graph adjacency matrix to solve a bi-level optimization problem
for poisoning attack, and then greedily picks perturbations with
the largest meta-gradient. In the black-box setting, the attacker
cannot access gradients of the victim model but uses a proxy (e.g.
model output scores) to search for the best perturbations [8, 22, 23].
Reinforcement learning based solutions [5, 8, 23, 29] make a series
of edge addition or deletion decisions that yield the maximal attack
utility and thus can serve for black-box setting.

These attacks search for perturbations in the spatial space, but
the target GCNs generate node embeddings by the signal filters
defined in the Fourier space. Thus the vulnerability of graph con-
volutions reflected on the graph spectral changes cannot be fully
realized. Our method captures such vulnerability directly in the
Fourier domain measured by the spectral distance between the
original and perturbed graphs for a more effective attack.
Spectral perturbations on graphs. Existing attack methods in
the Fourier space are generally sparse. Bojchevski and Günnemann
[2] reformulate random walk based models as a matrix factoriza-
tion problem, and propose an attack strategy to search for edges
that lead to large eigenvalue changes in the derived matrix. How-
ever, this method is model-specific and cannot be easily applied
to general forms of GCNs. GF-Attack [5] constructs an objective
based on the low-rank graph spectra and feature matrix to guide
the attack in a black-box fashion. A universal attack on deformable
3D shape data is proposed to change the scale of its eigenvalues
[30], but it is not studied in the graph domain. DICE [45] corrupts
the graph structure by “deleting edges internally and connecting
nodes externally” across clusters which implicitly influences the
graph’s spectral property. But this heuristic is performed without
any principled guidance. Studies that analyze spectral graph filters
[16, 17, 19] provide the theoretical stability upper bounds of popular
filters used in graph convolution models, such as polynomial and
identity filters. It is shown that the filters become unstable if the
end nodes of changed edges have low degrees or the perturbation
is concentrated spatially around any single node [17]. Our method
empirically shows that we can attack the vulnerability of these
filters and break such requirements by directly maximizing graph
spectral changes.
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3 SPECTRAL ATTACK ON GRAPHS
In this section, we first briefly discuss the spectral graph filters
which are the key building blocks of graph convolution models. We
then propose to maximize the changes on the graph Laplacian spec-
trum, such that we can exploit the edge perturbation budget to most
effectively influence the spectral filters and attack graph convolu-
tions. We solve the resulting optimization problem using gradient
descent, and propose an efficient approximation via eigenvalue
perturbation theory on selective eigenvalues. We finally discuss the
theoretical evidence showing the dependency between the eigen-
values of graph Laplacian and the stability of GCN models, which
supports the proposed spectral attack on graph data.

3.1 Preliminaries
Notations. Let 𝐺 = (𝑉 , 𝐸) be a connected undirected graph with
𝑛 nodes and𝑚 edges. Let A ∈ {0, 1}𝑛×𝑛 be its adjacency matrix.
The diagonal degree matrix can be calculated by D = diag(A1𝑛)
with entry D𝑖𝑖 = 𝑑𝑖 =

∑𝑛
𝑗=1 A𝑖 𝑗 , and 1𝑛 is an all-one vector with

dimension 𝑛. The normalized Laplacian matrix of a graph is de-
fined as L = Laplacian(A) = I𝑛 − D−1/2AD−1/2, where I𝑛 is an
𝑛 × 𝑛 identity matrix. Since L is symmetric positive semi-definite,
it admits an eigen-decomposition L = UΛU⊤. The diagonal matrix
Λ = eig(L) = diag(𝜆1, . . . , 𝜆𝑛) consists of the real eigenvalues of L
in an increasing order such that 0 = 𝜆1 ≤ · · · ≤ 𝜆𝑛 ≤ 2, and the
corresponding U = [u1, . . . , u𝑛] ∈ R𝑛×𝑛 is a unitary matrix where
the columns consist of the eigenvectors of L. X ∈ R𝑛×𝑑 denotes
the node feature matrix where each node 𝑣 is associated with a
𝑑-dimensional feature vector.
Graph Fourier transform. By viewing graph embedding models
from a signal processing perspective, the normalized Laplacian L
serves as a shift operator and defines the frequency domain of a
graph [35]. As a result, the eigenvectors of L can be considered as the
graph Fourier bases, and the eigenvalues correspond to frequency
components. Take one column of X as an example of graph signal,
which can be compactly represented as x ∈ R𝑛 . The graph Fourier
transform of graph signal x is given by x̂ = U⊤x and the inverse
graph Fourier transform is then x = Ux̂. The graph signals in
the Fourier domain are filtered by amplifying or attenuating the
frequency components Λ.
Spectral graph convolution. At the essence of different graph
convolutional models is the spectral convolution, which is defined
as the multiplication of signal x with a filter 𝑔𝜙 parameterized by
𝜙 ∈ R𝑛 in the Fourier domain [9]:

𝑔𝜙 (L) ★ x = U𝑔∗
𝜙
(Λ)U⊤x (1)

where the parameter 𝜙 is a vector of spectral filter coefficients. The
filter 𝑔𝜙 defines a smooth transformation function, and a commonly
used filter is the polynomial filter:

𝑔∗
𝜙
(Λ) =

∑∞
𝑘=0

𝜙𝑘Λ
𝑘 (2)

which can be approximated by a truncated expansion. A commonly
adopted approximation is based on the Chebyshev polynomials
𝑇𝑘 (Λ), which are recursively defined as 𝑇0 (Λ) = I𝑛,𝑇1 (Λ) = Λ and
𝑇𝑘+1 (Λ) = 2Λ𝑇𝑘 (Λ) −𝑇𝑘−1 (Λ) . Using the Chebyshev polynomials

up to the 𝐾-th order achieves the following approximation [13]:

𝑔∗
𝜙
(Λ) ≈

∑𝐾

𝑘=0
𝜙𝑘𝑇𝑘 (Λ̃) (3)

with a rescaled Λ̃ = 2Λ/𝜆𝑛 − I𝑛 .
Graph Convolutional Network (GCN). A vanilla GCN is a first-
order approximation of the spectral graph convolution with the
Chebyshev polynomials [18]. Setting 𝐾 = 1, 𝜙0 = −𝜙1 in Eq. (3)
and approximating 𝜆𝑛 ≈ 2, we obtain the convolution operation
𝑔𝜙 (L) ★ x = (I𝑛 + D−1/2AD−1/2)x. We can replace matrix I𝑛 +
D−1/2AD−1/2 with a self-loop enhanced version L̃ = D̃−1/2ÃD̃−1/2

where Ã = A + I𝑛 and D̃ = D + I𝑛 . This resembles the vanilla GCN
layer with activation function 𝜎 and trainable network parameters
Θ for feature transformation:

H(𝑙+1) = 𝜎
(
L̃H(𝑙)Θ(𝑙)

)
(4)

where the signals from the previous layer H(𝑙) is filtered to gener-
ate new signals H(𝑙+1) . To unify the notations, H(0) = X denotes
the input node features, and Z = H(𝐿) denotes the output node
embeddings of an 𝐿-layer GCN model.

3.2 Spectral Distance on Graphs
Based on the aforementioned spectral perspective for understand-
ing GCNs, we aim to generate edge perturbations that can disrupt
the spectral filters the most when processing input signals on the
graph.Wemeasure the disruption by the changes in the eigenvalues
of graph Laplacian, which we define as the spectral distance.

As shown in Eq. (1), the spectral filters 𝑔∗
𝜙
(Λ) are the key in

graph convolutions to encode graph signals that are transformed
in the Fourier domain. The output of the spectral filters is then
transformed back to the spatial domain to generate node embed-
dings. Therefore, perturbing the spectral filters 𝑔∗

𝜙
(Λ) will affect

the filtered graph signals and produce inaccurate node embeddings.
To measure the changes in spectral filters, we define the spectral
distance between the original graph 𝐺 and perturbed graph 𝐺 ′ as:

Dspectral = ∥𝑔∗
𝜙
(Λ) − 𝑔∗

𝜙
(Λ′)∥2 (5)

where Λ and Λ′ are the eigenvalues of the normalized graph Lapla-
cian for 𝐺 and 𝐺 ′ respectively. The spectral distance Dspectral is
determined by both filter parameters 𝜙 and the frequency compo-
nents Λ. For graph embedding models based on the vanilla GCN
[18], we follow their design of spectral filters which uses the first-
order approximation of the Chebyshev polynomials in Eq. (3) and
sets 𝜙0 = −𝜙1 = 1, which gives:

𝑔∗
𝜙
(Λ) ≈ 𝜙0I0 + 𝜙1Λ = I𝑛 − Λ (6)

Plugging it into Eq. (5), we conclude the following spectral distance
which is only related to the eigenvalues of graph Laplacian:

Dspectral ≈ ∥(I𝑛 − Λ) − (I𝑛 − Λ′)∥2 = ∥Λ − Λ′∥2
= ∥eig(Laplacian(A)) − eig(Laplacian(A′))∥2 (7)

This spectral distance reflects the changes of spectral filters due
to the graph perturbation. Therefore, if we perturb the graph by
directly maximizing the spectral distance, we can impose the most
effective changes to graph filters and thus disrupt the generated
node embeddings the most.
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3.3 Spectral Attack on Graph Structure
Since the spectral distance measures the changes of the spectral
filters on the graph after perturbation, we can produce effective
attacks bymaximizing the resulting spectral distance. In this section,
we first show the general formulation of spectral attack on graph
structure; thenwe propose a practical approach to solve the problem
efficiently; finally we extend the proposed attack to existing white-
box attack frameworks.
Structural perturbation matrix. The goal is to find the perturba-
tion on the graph adjacency matrix that can maximize the spectral
distance Dspectral defined in Eq. (7). We first define the structural
perturbation as a binary perturbation matrix B ∈ {0, 1}𝑛×𝑛 , which
indicates where to flip the edges in 𝐺 . The new adjacency matrix
after the perturbation is then a function of the perturbation matrix,
which can be obtained as follows [48]:

𝑔(A,B) = A + C ◦ B, C = Ā − A (8)

where Ā is the complement matrix of the adjacency matrix A, cal-
culated by Ā = 1𝑛1⊤𝑛 − I𝑛 − A, with (1𝑛1⊤𝑛 − I𝑛) denoting the
fully-connected graph without self loops. Therefore, C = Ā − A
denotes legitimate addition or deletion operations on each node
pair: adding an edge is allowed between node 𝑖 and 𝑗 if C𝑖 𝑗 = 1,
and removing an edge is allowed if C𝑖 𝑗 = −1. Taking the Hadamard
product C ◦ B finally gives valid edge perturbations to the graph.
Spectral attack. To generate an effective structural attack, we
seek a perturbation matrix B that maximizes the spectral distance
Dspectral defined in Eq. (7). More specifically, given a finite budget of
edge perturbation, e.g., ∥B∥0 ≤ 𝜖 |𝐸 | with |𝐸 | denoting the number
of edges, we formulate the SPectralAttaCk (SPAC) as the following
optimization problem:

max
B

LSPAC B Dspectral (9)

subject to ∥B∥0 ≤ 𝜖 |𝐸 |,B ∈ {0, 1}𝑛×𝑛,A′ = 𝑔(A,B)

which is not straightforward to solve because of two challenges:
1) it is a combinatorial optimization problem due to the binary
constraint on B; 2) the objective involves eigen-decomposition
of the Laplacian matrix, which is time-consuming especially for
large graphs. Next, we introduce our practical solution to address
these challenges such that we can efficiently generate the structural
perturbations for the spectral attack.

3.4 Implementation of SPAC
In this section, we discuss our solution for the combinatorial opti-
mization problem involving eigen-decomposition in Eq. (9). Specifi-
cally, we first relax the combinatorial problem and use a randomiza-
tion sampling strategy to generate the binary perturbation matrix;
we then introduce an approximation strategy to reduce the com-
plexity of backpropagation through eigen-decompostion.
Binary perturbation via gradient descent. For the ease of opti-
mization, we relax B ∈ {0, 1}𝑛×𝑛 to its convex hull ∆ ∈ [0, 1]𝑛×𝑛
[48], which simplifies the combinatorial problem in Eq. (9) to be
the following continuous optimization problem:

max
∆

LSPAC B Dspectral (10)

subject to ∥∆∥1 ≤ 𝜖 |𝐸 |,∆ ∈ [0, 1]𝑛×𝑛,A′ = 𝑔(A,∆)

which can be solved via gradient descent. Applying chain rule, we
calculate the gradient with respect to ∆ as follows:

𝜕LSPAC
𝜕∆𝑖 𝑗

=

𝑛∑
𝑘=1

𝜕LSPAC
𝜕𝜆′
𝑘

𝑛∑
𝑝=1

𝑛∑
𝑞=1

𝜕𝜆′
𝑘

𝜕L′𝑝𝑞

𝜕L′𝑝𝑞
𝜕∆𝑖 𝑗

(11)

Recall that L′ = Laplacian(A′) and 𝜆′
𝑘
is an eigenvalue of L′ in

Eq. (7). We now focus on the gradient calculation that involves
eigen-decomposition. Since the gradient calculation on the rest is
straightforward, we leave it to the appendix. For a real and sym-
metric matrix L, one can obtain the derivatives of its eigenvalue
𝜆𝑘 and eigenvector u𝑘 by: 𝜕𝜆𝑘/𝜕L = u𝑘u⊤𝑘 , 𝜕u𝑘/𝜕L = (𝜆𝑘 I − L)+u𝑘
[25, 32]. Therefore, we can directly obtain the closed-form deriv-
ative of the eigenvalues in Eq (11) as: 𝜕𝜆′

𝑘
/𝜕L′𝑝𝑞 = u′

𝑘𝑝
u′
𝑘𝑞
. Note

that the derivative calculation requires distinct eigenvalues. This
does not hold for graphs satisfying automorphism, which reflects
structural symmetry of graphs [12]. To avoid such cases, we add a
small noise term to the adjacency matrix of the perturbed graph1,
e.g., A′ + 𝜀 × (N +N⊤)/2, where each entry in N is sampled from a
uniform distribution U(0, 1) and 𝜀 is a very small constant. Such a
noise addition will almost surely break the graph automorphism,
thus enable a valid gradient calculation of eigenvalues.

Solving the relaxed problem in Eq. (10) using projected gradient
descent gives us a continuous perturbation matrix∆ that maximizes
the spectral change. To recover valid edge perturbations from the
continuous ∆, we then generate a near-optimal solution for the
binary perturbation matrix B via the randomization sampling strat-
egy [48]. Specifically, we use ∆ as a probabilistic matrix to sample
the binary assignments as follows:

B𝑖 𝑗 =

{
1, with probability ∆𝑖 𝑗
0, with probability 1 − ∆𝑖 𝑗

(12)

Time complexity analysis. Suppose we take aforementioned pro-
jected gradient descent for𝑇 steps. For each step, SPAC takes eigen-
decomposition with time complexity O(𝑛3) and samples binary
solution with O(𝑛2) edge flips. The overall time complexity for
solving SPAC is O(𝑇𝑛3 +𝑇𝑛2), which is mainly attributed to eigen-
decomposition and is considerably expensive for large graphs. Next,
we discuss an approximation solution to improve its efficiency.
Efficient approximation for SPAC. To reduce the computation
cost of eigen-decomposition, instead of measuring the spectral dis-
tance over all the frequency components, we decide to only main-
tain the 𝑘1 lowest- and 𝑘2 highest-frequency components which
are the most informative, as suggested by the spectral graph the-
ory (this can also be intuitively observed in Figure 1). Specifically,
Dspectral in Eq. (7) can be approximated as follows:

Dspectral-approx =

√∑
𝑖∈S

(𝜆𝑖 − 𝜆′𝑖 )2 (13)

where S = {1, . . . , 𝑘1, 𝑛−𝑘2, . . . , 𝑛}. This reduces the time complex-
ity O(𝑛3) for exact eigen-decomposition to O((𝑘1 + 𝑘2) · 𝑛2) for
the corresponding selective eigen-decomposition using the Lanc-
zos Algorithm [28]. To avoid frequent computation of the selective
eigenvalues and further improve efficiency, we propose to estimate

1The form of (N + N⊤)/2 is to keep the perturbed adjacency matrix symmetric for
undirected graphs.
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the change in each eigenvalue for any edge perturbation based on
the eigenvalue perturbation theory [2, 5, 31].
Theorem 1. Let u𝑖 be the 𝑖-th generalized eigenvector of L with
generalized eigenvalue 𝜆𝑖 . Let L′ = L+∇L be the perturbed Laplacian
matrix, and M′ be the diagonal matrix summing over rows of L′.
The generalized eigenvalue 𝜆′

𝑖
of the Laplacian matrix L′ that solves

L′u′
𝑖
= 𝜆′

𝑖
M′u′

𝑖
is approximately 𝜆′

𝑖
≈ 𝜆𝑖 + ∇𝜆𝑖 with:

𝜆𝑖 − 𝜆′𝑖 = ∇𝜆𝑖 = u⊤𝑖 (∇L − 𝜆𝑖diag(∇L · 1𝑛))u𝑖 (14)

The proof is given in the appendix. Instead of recalculating the
eigenvalues 𝜆′

𝑖
for the updated L′ in each step when measuring the

spectral distance, we use this theorem to approximate the change
of each eigenvalue in Eq. (13) in linear time. Suppose we execute Eq.
(14) to calculate spectral distance in Eq. (13) for𝑚 steps and compute
the exact eigenvalues every𝑚 step to avoid error accumulation,
we can achieve an overall time complexity O

(
(1 + 𝑘1+𝑘2

𝑚 )𝑇𝑛2
)
. We

name the spectral attack equipped with the approximation stated
in Eq. (13) and (14) as SPAC-approx.

Algorithm 1 summarizes the implementation of SPAC (in line 5)
and its approximation SPAC-approx (in line 7-10). After obtaining
the objective function based on the (approximated) spectral distance,
the algorithm further updates the continuous perturbation matrix
∆ via gradient descent and finally generates the binary structural
perturbation matrix B by sampling from ∆.

3.5 Extension in White-box Setting
The proposed attack only requires information about graph spec-
trum, therefore it can be conducted alone in the black-box setting as
Eq. (9) stated. Since SPAC does not rely on any specific embedding
model, it can also serve as a general recipe for the white-box attack
setting. Next, we show how to easily combine SPAC with white-box
attack models.
VictimGraph EmbeddingModel.Without loss of generality, we
consider the vanilla GCN model for the node classification task.
Given a set of labeled nodes 𝑉0 ⊂ 𝑉 , where each node 𝑖 belongs
to a class in a label set 𝑦𝑖 ∈ 𝑌 . The GCN model aims to learn
a function 𝑓𝜃 that maps each node to a class. We consider the
commonly studied transductive learning setting, where the test
(unlabeled) nodes with associated features and edges are observed
in the training phase. The GCN model is trained by minimizing the
following loss function:

min
𝜃

Ltrain (𝑓𝜃 (𝐺)) =
∑
𝑣𝑖 ∈𝑉0

ℓ (𝑓𝜃 (A,X)𝑖 , 𝑦𝑖 )

where 𝑓𝜃 (X,A)𝑖 and 𝑦𝑖 are the predicted and ground-truth labels
of node 𝑣𝑖 and ℓ (·, ·) is a loss function of choice, such as the cross
entropy loss.
White-box Spectral Attack. We have shown that the changes
of the spectral filters are essential for attackers to disrupt graph
convolutions, thus we propose to maximize the spectral distance
between the original graph and the perturbed one. In themeanwhile,
maximizing the task-specific attack objective is necessary to achieve
the attack’s goal to compromise the prediction performance. To
generate edge perturbations that lead to both disrupted spectral
filters and erroneous classifications, we propose to maximize the
spectral distance and task-specific attack objective simultaneously.
Specifically, given the test node-set𝑉𝑡 ⊂ 𝑉 , the attackmodel aims to

Algorithm 1 Spectral Attack on Graph Structure

Input: 𝐺 = (X,A); total step 𝑇 ; step size 𝜂; 𝑘1, 𝑘2,𝑚.
1: Initialize continuous perturbation ∆0 ∈ [0, 1]𝑛×𝑛
2: Initialize perturbed Laplacian matrix L′ = Laplacian(𝑔(A,∆))
3: for 𝑡 = 0, . . . ,𝑇 − 1 do
4: if SPAC then
5: L(∆) = ∥Λ − Λ′∥2 by Eq. (10), with Λ′ = eig(L′)
6: else if SPAC-approx then
7: if 𝑡 %𝑚 = 0 then
8: L(∆) =

√∑
𝑖∈S (𝜆𝑖 − 𝜆′𝑖 )2 by Eq. (13)

9: else
10: L(∆) =

√∑
𝑖∈S (u⊤𝑖 (∇L − 𝜆𝑖diag(∇L · 1𝑛))u𝑖 )2 by Eq.

(14) and Eq. (13), with ∇L = L′ − L
11: end if
12: end if
13: Compute gradient on ∆: g𝑡 = ∇L(∆) by Eq. (11)
14: Update ∆𝑡+1 = ∆𝑡 + 𝜂 · g𝑡
15: Project ∆𝑡+1 to its convex hull ∆𝑡+1 ∈ [0, 1]𝑛×𝑛
16: end for
17: Output binary perturbation B by sampling from ∆𝑇 via Eq. (12)

find the edge perturbation B that solves the following optimization
problem:

max
B

∑
𝑣𝑖 ∈V𝑡

ℓatk (𝑓𝜃 ∗ (A′,X)𝑖 , 𝑦𝑖 )︸                           ︷︷                           ︸
task-specific attack objective Lattack

+𝛽 · LSPAC

subject to ∥B∥0 ≤ 𝜖,B ∈ {0, 1}𝑛×𝑛,A′ = 𝑔(A,B)
𝜃∗ = argmin

𝜃
Ltrain (𝑓𝜃 (𝐺)) (15)

where the third constraint controls when to apply the attack: setting
𝐺 = 𝐺 makes it an evasion attack, so that the graph embedding
model training is not affected; and setting 𝐺 = 𝐺 ′ makes it poi-
soning attack with perturbed training data. The attack objective
Lattack is a flexible placeholder that can adapt to many loss designs,
for a simple example, the cross-entropy loss on test nodes in the
node classification task. The hyper-parameter 𝛽 balances the effect
of these two components, which is set based on graph properties
such as edge density. Algorithm 1 also applies for the white-box
setting by plugging in Lattack to the objective function. We will
discuss the choices of attack objectives and hyper-parameters in
the experiment section for our empirical evaluations.

3.6 Discussion
Our spectral attack is based on the fact that the spectral filters are
the fundamental building blocks for graph convolutions to process
graph signals in the Fourier domain. Therefore, searching the graph
perturbations in the direction that causes the most changes in the
spectral filters, measured by eigenvalues of graph Laplacian, is
expected to best disrupt graph convolutions. This is also supported
by recent theoretical evidence in the field.

Some recent literature has shown that the stability of GCN mod-
els is closely related to the eigenvalues of the graph Laplacian. For
example, it is proved that the generalization gap of a single layer
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Table 1: Dataset statistics. 𝐷 is the node feature dimension
(“-” means no node feature). 𝐾 is the number of classes.

Dataset #Node #Edge Density D K

Cora 2,708 5,278 0.0014 1433 7
Citeseer 3,312 4,536 0.0008 3703 6
Polblogs 1,490 16,715 0.015 - 2

Blogcatalog 5,196 171,743 0.013 8189 6

Table 2: Average running time (in seconds) for 10 runs of
evasion attack with 𝑇 = 100 and 𝜖 = 0.05.

Datasets Random DICE GF-Attack SPAC SPAC-approx

Cora 0.05 55.58 66.73 212.53 75.46
Citeseer 0.06 46.72 57.22 116.07 60.93
Polblogs 0.02 14.84 21.73 44.18 22.98

Blogcatalog 1.46 127.72 132.23 352.52 147.34

GCN model 𝑓𝜃 trained via 𝑇 -step SGD is O(𝜆2𝑇𝑛 ), where 𝜆𝑛 is the
largest eigenvalue of graph Laplacian [42]. Meanwhile, Weinberger
et al. [46] proved that a generalization estimate is inversely propor-
tional to the second smallest eigenvalue of the graph Laplacian 𝜆2.
These findings suggest that manipulating the graph by perturbing
the eigenvalues can potentially aggravate the generalization gap of
GCN, causing a larger generalization error.

4 EXPERIMENTS
We performed extensive evaluations of the proposed spectral at-
tack on four popularly used graph datasets, where we observed
remarkable improvements in the attack’s effectiveness. This section
summarizes our experiment setup, performance on both evasion
and poisoning attacks, and qualitative analysis on the perturbed
graphs to study the effect of the spectral attack.

4.1 Setup
Datasets. We evaluated the proposed attack on two citation net-
work benchmark datasets, Cora [26] and Citeseer [37], as well as
two social network datasets, Polblogs [1] and Blogcatalog [34].
Table 1 summarizes the statistics of these datasets. We followed
the transductive semi-supervised node classification setup in [18],
where only 20 sampled nodes per class were used for training, but
the features and edges of all nodes were visible to the attacker
during the training stage. The predictive accuracy of the trained
classifier was evaluated on 1000 randomly selected test nodes. The
evasion attacker can query the trained classifier, but cannot access
the training nodes; the poisoning attacker can observe the training
nodes, but cannot access the labels of the test nodes.
Baseline attacks. We compared the proposed attack model SPAC
against three attacks in the black-box setting, and further verified
the effectiveness of SPAC by combining it with five baselines in
white-box setting2. Black-box baselines for both evasion and poison-
ing attack include: 1) Random directly attacks the graph structure
by randomly flipping the edges; 2) DICE [45] is a heuristic method
that deletes edges internally and connects nodes externally across

2We conducted the comparative experiments using DeepRobust Library [21].

Table 3: Misclassification rate (%) with 𝜖 = 0.05 for evasion
attack (upper rows) and poisoning attack (lower rows).

Stage Attack Cora Citeseer Polblogs Blogcatalog

Evasion

Clean 0.184 0.295 0.128 0.276
Random 0.189 0.301 0.153 0.280
DICE 0.205 0.308 0.202 0.329

GF-Attack 0.198 0.311 0.179 0.333
SPAC 0.220 0.314 0.212 0.354

SPAC-approx 0.212 0.305 0.208 0.341

PGD-CE 0.237 0.349 0.167 0.441
SPAC-CE 0.255 0.352 0.188 0.458

PGD-C&W 0.249 0.388 0.216 0.447
SPAC-C&W 0.260 0.395 0.229 0.464

Poison

Clean 0.184 0.295 0.128 0.276
Random 0.189 0.309 0.126 0.277
DICE 0.207 0.310 0.246 0.306

GF-Attack 0.195 0.306 0.202 0.334
SPAC 0.222 0.338 0.234 0.478

SPAC-approx 0.215 0.322 0.220 0.454

Max-Min 0.240 0.359 0.167 0.489
SPAC-Min 0.255 0.375 0.188 0.504

Meta-Train 0.290 0.392 0.274 0.360
SPAC-Train 0.285 0.412 0.298 0.377

Meta-Self 0.427 0.499 0.478 0.590
SPAC-Self 0.489 0.508 0.472 0.599

class clusters; 3) GF-Attack [5] perturbs the structure by maxi-
mizing the loss of low-rank matrix approximation defined over
small eigenvalues. We further evaluate the performance of SPAC
combined with white-box attack baselines which include: 1) PGD-
CE [48] is an evasion attack which maximizes the cross-entropy
(CE) loss on the test nodes via projected gradient descent (PGD)
algorithm [24]; 2) PGD-C&W [48] is an evasion attack which per-
turbs edges by minimizing the C&W score, which is the margin
between the largest and the second-largest prediction score, defined
by Carlini-Wagner attack [3]; 3)Max-Min [48] is a poisoning attack,
which solves the bi-level optimization problem by iteratively gener-
ating structural perturbations (to maximize the cross-entropy loss)
and retraining a surrogate victim model on the perturbed graph (to
minimize the loss); 4) Meta-Train [50] is a poisoning attack which
uses meta-gradients on the perturbation matrix to maximize the
training classification loss; 5) Meta-Self [50] is a poisoning attack
that extends Meta-Train to maximize the self-training loss on test
nodes using the predicted labels;
Variants of SPAC. The proposed attack can be realized with exact
and approximated spectral distance, which gives SPAC and SPAC-
approx. We will compare their attack performance and running
time. Meanwhile, adopting the objectives from white-box baselines
to Eq. (15) generates the following white-box attack variants: 1)
SPAC-CE is an evasion attack that jointly maximizes the cross-
entropy loss and spectral distance; 2) SPAC-C&W is an evasion
attack combining the negative C&W score and spectral distance; 3)
SPAC-Min extendsMax-Min bymaximizing the loss as in SPAC-CE
for poisoning attack; 4) SPAC-Train includes the spectral distance
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Figure 2: Misclassification rate under different perturbation rates for evasion attack.

Figure 3: Misclassification rate under different perturbation rates for poisoning attack.

to Meta-Train for the meta-gradient calculation; 5) SPAC-Self en-
hances the loss of Meta-Train by the spectral distance. The detailed
objective for each variant is summarized in the appendix.
Hyper-parameters.We adopt a two-layer GCN as the victim clas-
sifier, whose hidden dimension of the first layer is 64 and that of the
second layer is the number of classes 𝐾 on each dataset. The setup
for total step 𝑇 and step size 𝜂 is summarized in the appendix. For
SPAC-approx, we set 𝑘1 = 128, 𝑘2 = 64 and𝑚 = 10. In the white-box
setting, the hyper-parameter 𝛽 controls the weight of the spectral
distance in the overall attack objective. Since the spectrum reflects
the global property of the graph, the weight should be tuned based
on the graph statistics. Empirically, we find that setting 𝛽 propor-
tional to the density of graph is effective. Specifically, according to
the density of each dataset listed in Table 1, we set 𝛽 = 1.4 for Cora
network, 𝛽 = 0.8 for Citeseer, 𝛽 = 13.0 for Blogcatalog, and 𝛽 = 15.0
for Polblogs. The sensitivity of hyper-parameters is discussed in
Section 4.3. All experiments were conducted on RTX2080Ti GPUs.

4.2 Structural Attack Performance
Performance in evasion attack. In the evasion attack setting, we
first trained a GCN classifier on the small training set 𝑉0 with a
clean graph Ĝ = G. Then the classifier was fixed, and the attackers
generated edge perturbations based on the classifier’s predictions
on the test nodes. Table 3 summarizes the misclassification rates
under 𝜖 = 0.05, which allows 5% edges to be perturbed. An extensive
comparison with different perturbation rates is provided in Figure
2, where the solid lines with darker color denote SPAC variants
while the dashed lines with lighter color represent baseline attacks.

In the black-box setting, randomly flipping edges (Random) can-
not effectively influence the classifier’s overall performance. DICE
provides an effective attack by leveraging the label information. GF-
Attack undermines the performance of GCNs by attacking its low-
rank approximation. Our methods, both SPAC and SPAC-approx,
disrupt the overall spectral filters and achieve the largest misclassi-
fication rate. This shows the effectiveness of the proposed attack
principle based on the spectral distance, which reveals the essence
of vulnerability in graph convolutions.

Second in the white-box setting, SPAC-CE and SPAC-C&W stand
in stark contrast to PGD-CE and PGD-C&W: we can observe a
remarkable improvement introduced by SPAC in the misclassifi-
cation rate. The evasion attack results confirm that maximizing
the spectral distance can considerably disrupt the trained classi-
fier by changing the graph frequencies in the Fourier domain and
invalidating the spectral filters.
Performance in poisoning attack. In the poisoning attack set-
ting, we can only indirectly affect the classifier by perturbing the
training graph structure. We generated the edge perturbations, and
then used the poisoned structure to train the victim GCN model
and reported its misclassification rate on test nodes in a clean graph.
From Table 3 and Figure 3, we can again verify the effectiveness of
the proposed spectral attack. Under the black-box setting, SPAC and
SPAC-approx are the most effective attacks in most cases. Under the
white-box setting, Max-Min only accesses training nodes to perturb
the graph without querying test nodes. Meta-Train calculates the
meta-gradient on training nodes to capture the change of loss after
retraining the surrogate GCN model. Meta-Self instead does not
use the training nodes, but only queries CGN’s prediction scores
on test nodes. Among baselines, the Meta-Self attack is shown to
be the most effective, which is expected, because the current semi-
supervised setting provides a much larger set of unlabeled nodes
that can be fully used by Meta-Self. Overall, our attack based on
the spectral distance still brought in a clear improvement to the
misclassification rate across different datasets and attack methods.
Computational efficiency.Weempirically evaluated the efficiency
of SPAC and SPAC-approx in Table 2, which compares the average
running time of 10 runs for evasion attack. Our proposed SPAC-
approx can achieve a comparable efficiency as GF-Attack. Combin-
ing with the attack performance, SPAC-approx is verified to be an
effective and efficient structural attack.

4.3 Analysis of SPAC
Given the empirical effectiveness of the proposed attack strategy,
we now analyze the sensitivity of hyper-parameters including 𝑘1, 𝑘2
and𝑚 for SPAC-approx and 𝛽 for white-box setting. We also illus-
trate the behavior of SPAC in both Fourier and spatial domains.
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Figure 4: Sensitivity analysis on 𝛽 under SPAC-CE attack.

Figure 5: Analysis on spectral changes (top) and spatial edge
changes (bottom) between SPAC-CE and PGD-CE.

Sensitivity of 𝑘1, 𝑘2 and𝑚 in SPAC-approx. For SPAC-approx,
the trade-off of its attack performance and efficiency is achieved
by selecting 𝑘1 low- and 𝑘2 high-frequency components and by
approximating the eigenvalue change for𝑚 steps. Figure 6 demon-
strates such trade-off under SPAC-approx poisoning attack with
budget 𝜖 = 0.05. Left side shows the misclassification rate range
when using different 𝑘1 and 𝑘2; right side compares the misclassifi-
cation rate and running time when using different approximation
step𝑚. The result suggests that the attack performance does not
dramatically drop with changed parameters, and we can achieve a
good balance between attack effectiveness and efficiency.
Sensitivity of hyper-parameter 𝛽 in white-box setting. Figure
4 shows the performance of SPAC-CE under different settings of
the coefficient parameter 𝛽 . We can clearly observe that different
𝛽 values lead to rather stable performance, which suggests the
spectral distance term can be applied to real applications without
the requirement of tedious hyper-parameter tuning.
Effect of SPAC in Fourier and spatial domain. We are inter-
ested in investigating how the changes of the graph in the Fourier
domain affect its spatial structure. To serve this purpose, we com-
pared the output of the perturbed graphs from SPAC-CE and PGD-
CE on Cora under budget 𝜖 = 0.4 in Figure 5. The top plots the
difference between eigenvalues of the normalized Laplacian matrix
for the graph perturbed by SPAC-CE and the graph perturbed by
PGD-CE. The x-axis shows the eigenvalues of the original graph.
The bottom counts the number of different types of edge perturba-
tions, where “inter-cluster” edges are those connecting nodes with
different class labels and “intra-cluster” edges connect nodes with
the same class label. We observe that SPAC-CE perturbed graph
in a direction leading to larger high eigenvalues and smaller low
eigenvalues, compared with PGD-CE. This spectral difference in
the Fourier domain is also reflected in the spatial domain: 1) more

Figure 6: Sensitivity analysis on 𝑘1, 𝑘2 (left) and𝑚 (right) un-
der SPAC-approx poisoning attack.

Figure 7: The edge perturbation generated by SPAC on a ran-
dom geometric graph with 𝜖 = 0.05. Green denotes edges
added by the attack, while red marks removed edges.

edges are added than removed; 2) specifically, more inter-cluster
edges were added while fewer inter-cluster edges were removed.
To intuitively demonstrate the perturbations generated by SPAC,
we applied SPAC to attack the random geometric graph in Figure
1 with budget 𝜖 = 0.05, and the perturbed graph is visualized in
Figure 7. The green edges that are added by SPAC connect different
node clusters, while red edges are removed within clusters. This
shows that maximizing the spectral distance can modify the global
connectivity of the graph: for example, SPAC-CE strengthened the
connectivity between different clusters to confuse the classifier.

5 CONCLUSION
In this paper, we propose a novel graph structural attack strategy
by maximizing the spectral distance between the original and the
perturbed graphs. The design is motivated by the spectral perspec-
tive for understanding GCNs. An efficient approximation solution
is further designed to reduce the computational complexity of spec-
tral distance. Our experiments demonstrated the effectiveness of
this new direction, and our qualitative study suggested that the
proposed spectral attack tends to modify the global connectivity of
a graph and enlarge the generalization gap of GCN models.

Currently, we focused on perturbing the eigenvalues of graph
Laplacian, without controlling the eigenvectors. As the eigenvec-
tors also play an important role in the spectral filters, it is important
to expand our scope to manipulate eigenvectors for improved ef-
fectiveness. Applying the model-agnostic SPAC to attack a broader
group of graph embedding models will also be interesting to un-
derstand the fundamental vulnerability of the graph structure.
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6 APPENDIX
We list the detailed gradient calculation of the spectral distance
term with eigen-decomposition, the proof of Theorem 1, the attack
objectives for different white-box variants of SPAC and the hyper-
parameter setup.

6.1 Gradient of the Spectral Distance
Recall that we obtain the following form via the chain rule:

𝜕LSPAC
𝜕∆𝑖 𝑗

=

𝑛∑
𝑘=1

𝜕LSPAC
𝜕𝜆′
𝑘

𝑛∑
𝑝=1

𝑛∑
𝑞=1

𝜕𝜆′
𝑘

𝜕L′𝑝𝑞

𝜕L′𝑝𝑞
𝜕∆𝑖 𝑗

Here is the detailed calculation of each component:

𝜕LSPAC
𝜕𝜆′
𝑘

=
𝜆′
𝑘
− 𝜆𝑘

∥Λ − Λ′∥2
𝜕𝜆′
𝑘

𝜕L′𝑝𝑞
= u′

𝑘𝑝
u′
𝑘𝑞

𝜕L′𝑝𝑞
𝜕∆𝑖 𝑗

=
C𝑖 𝑗

2
√
𝑑 ′𝑝𝑑

′
𝑞

(1𝑖=𝑝
A′
𝑝𝑞

𝑑 ′𝑝
+ 1𝑗=𝑞

A′
𝑝𝑞

𝑑 ′𝑝
− 21𝑖=𝑝,𝑗=𝑞)

where 𝑑 ′𝑝 is the degree on node 𝑝 of the perturbed graph: 𝑑 ′𝑝 =∑𝑛
𝑘=1 A

′
𝑘𝑝
, and similarly 𝑑 ′𝑞 =

∑𝑛
𝑘=1 A

′
𝑘𝑞
. Meanwhile, A′ is the

adjacency matrix of the perturbed graph. The indication function
1condition is 1 if the condition is true, otherwise it is 0.

6.2 Proof of Theorem 1
Proof. Theorem 1. For the generalized eigenvalue problem: Lu𝑖 =
𝜆𝑖Mu𝑖 , if the matrix is slightly perturbed L′ = L + ∇L, we aim to
find the corresponding eigenvalue perturbation: 𝜆′

𝑖
= 𝜆𝑖 +∇𝜆𝑖 . From

eigenvalue perturbation theory [39], we have

𝜆′i − 𝜆i ≈ u⊤i (∇L − 𝜆i∇M)ui
And for a normalized graph Laplacian L′ = L + ∇L, we have ∇M =

diag(∇L · 1𝑛). Submitting ∇M concludes the proof.

6.3 Attack Objectives for White-box Variants
Recall that SPAC can be flexibly combined with the white-box
attack framework as shown in Eq. (15), which consists of a task-
specific attack objective Lattack and the proposed SPAC objective
LSPAC. We denote the training node set as 𝑉0 and test node set as
𝑉𝑡 . Different choices of Lattack result in the following variants.
SPAC-CE combines SPAC with PGD-CE [48], and maximizes the
cross-entropy loss on the target test set for evasion attack:

Lattack =
∑
𝑣𝑖 ∈𝑉𝑡

crossEntropy(𝑓𝜃 (A + ∆,X)𝑖 , 𝑦𝑖 )

SPAC-C&W combines SPAC wih PGD-C&W [48], and maximizes
the negative C&W score on the target test set for evasion attack:

Lattack = −
∑
𝑣𝑖 ∈𝑉𝑡

max{𝑍𝑖,𝑦𝑖 −max
𝑐≠𝑦𝑖

𝑍𝑖,𝑐 − 𝜅}

where 𝑍𝑖,𝑐 denotes the prediction logit on label 𝑐 , and 𝜅 ≥ 0 is a
confidence level of making wrong decisions. Intuitively, the C&W
score evaluates how good the model can differentiate the prediction
on the ground-truth label and on the label with the (second) highest
likelihood. So the attack aims to confuse the model by maximizing
the negative C&W score.
SPAC-Min combines SPAC and Max-Min [48], and maximizes the
cross-entropy loss on the training set, while a surrogate model 𝑓𝜃 ′ is
iteratively retrained. The perturbed graph is then used to train a
victim model, and we report the classification performance of the
test set on clean graph. The 𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑 graph is generated by:

Lattack =
∑
𝑣𝑖 ∈𝑉0

crossEntropy(𝑓𝜃 ′ (A + ∆,X)𝑖 , 𝑦𝑖 )

SPAC-Train combines SPAC with Meta-Train [50], and maximizes
the cross-entropy loss on labeled training nodes, arguing that if a
model has a high training error, it is likely to generalize poorly:

Lattack =
∑
𝑣𝑖 ∈𝑉0

crossEntropy(𝑓𝜃 ′ (A + ∆,X)𝑖 , 𝑦𝑖 )

The objective is similar to SPAC-Min, but instead of retraining
the surrogate model, SPAC-Train calculate meta-gradients on the
perturbation matrix through the surrogate model.
SPAC-Self combines SPAC with Meta-Self [50], and maximizes
the cross-entropy loss on unlabeled test nodes which are assigned
pseudo labels predicted by the model trained on tbe clean graph:

Lattack =
∑
𝑣𝑖 ∈𝑉𝑡

crossEntropy(𝑓𝜃 ′ (A + ∆,X)𝑖 , 𝑦𝑖 )

where 𝑦𝑖 is the predicted label from the model trained on the clean
graph 𝑓𝜃 .

6.4 Hyper-parameter Setup
For attack methods that involve projected gradient descend (e.g.,
SPAC/PGD-CE, SPAC/PGD-C&W, SPAC/PGD-Min, SPAC and SPAC-
approx), we optimize the attack objective by gradient descent for
𝑇 = 100 iterations; we set adaptive step size for gradient descent as
𝜂 = 𝑇 ·𝜖/

√
𝑡 , which is related to the perturbation budget ratio 𝜖 , such

that for each step we can use up the budget while not exceeding
the budget too much. For SPAC/Meta-Train and SPAC/Meta-Self,
the iteration is decided by the perturbation budget: for each step,
choose the edge entry that has the largest gradient. For GF-Attack,
the top-𝐾 smallest eigenvalues are selected for 𝐾-rank approxi-
mation with 𝐾 = 𝑛 − 128 following the paper’s setting. For our
approximation model SPAC-approx, the reported results are based
on 𝑘1 = 128 lowest eigenvalues and 𝑘2 = 64 largest eigenvalues.
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