FINITE ABELIAN GROUPS VIA CONGRUENCES

TREVOR D. WOOLEY

ABSTRACT. For every finite abelian group G, there are positive integers n
and d such that G is isomorphic to the multiplicative group of d-th powers
of reduced residues modulo n.

As every beginning student in number theory learns, when n € N, the inte-
gers a with 1 < a < n and (a,n) = 1 form an abelian group when equipped
with the binary operation defined by multiplication modulo n. For each pos-
itive integer d, this multiplicative group U, of reduced residues modulo n
contains the subgroup of d-th powers, namely Ul = {a® : a € U,}. The goal
of this note is to show that, in fact, every finite abelian group is isomorphic to
one of the latter shape.

Theorem 1. Let G be a finite abelian group. Then there exist positive integers
n and d having the property that G = Ui,

Standard introductions to algebra will describe the fundamental theorem of
finitely generated abelian groups (see [2, Theorem 3 of §5.2]). Thus, writing
7, for the additive group of integers modulo r, each finite abelian group G is
isomorphic to a direct product of the shape Z,,, X Z,,, X - -+ X Z,,, , where the
integers mq, ..., m; satisfy

m; =2 and myqm; (1 <i<k). (1)

Given distinct odd prime numbers p; with p; = 1(mod m;), say with p; =
1+m;d;, one finds that Z,,, is isomorphic to the group Ué?i) = (g, where g; is
any primitive root modulo p;. Writing n = p1ps - - - px, the Chinese Remainder
Theorem delivers the familiar conclusion that G is isomorphic to a subgroup

of U,,. Thus, one has
G2 UM x U™ x .o x UM,

Although it is comforting to note that every finite abelian group is isomorphic
to a subgroup of the multiplicative group of residues modulo n, for some n €
N, the need to work with a collection of exponents di,...,d, corresponding
to the prime divisors of n is somewhat inelegant. The primary motivation
for establishing our theorem is to provide a self-contained description of the
abelian group G with only a pair of integers.

Our goal, of identifying a simple congruence-based realization of the abelian
group G of the shape Uéd), would follow were one able to find distinct primes
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D1, ..., Pk corresponding to a common value d for the d;. Indeed, it would then
follow as a consequence of the Chinese Remainder Theorem that

G2UD xUD x. x UD =y,

This approach relies on a special case of Dickson’s conjecture (see [1]). When
k > 1, this as yet unproven conjecture asserts that given a; € Z and m; € N,
there are infinitely many positive integers d for which the k-tuple (mid +
aiy, ..., mgd+ ay) consists of prime numbers, unless there is a congruence con-
dition preventing such from occurring. In the case presently of interest to us,
in which a; = 1 for each i, congruence obstructions are absent, though the con-
jecture has been established only in the case k = 1 (a special case of Dirichlet’s
theorem, for which see [5, Corollary 4.10]). The challenge of obtaining an un-
conditional conclusion requires careful selection of arithmetic progressions in
which to search for the primes p;.

Lemma 2. Suppose that the integers my,...,my satisfy the condition (1).
Then there are distinct prime numbers p1, ..., pr satisfying the congruences

pi = 1+ mum; (modmim;) (1<i<k).

Proof. Dirichlet’s theorem on prime numbers in arithmetic progressions (see
[5, Corollary 4.10]) shows that for each 4, there are infinitely many primes p
with p = 1+mym; (modm2m;), since it is evident that (1+mym;, m3m;) = 1.
The desired conclusion is immediate. O

The proof of the theorem. Let G be a finite abelian group, whence there exist
integers my, ..., my satisfying the condition (1) for which G = Z,,, X Z,,, X

* X Lp,,,- Given distinct prime numbers py,...,p; supplied by the lemma,
define the integers u; via the relation p; — 1 = mym;(1+mqu;), and then write
y; = 1+ mqu;. Also, put d = myy; - - - yg. Since p; — 1 = mym;y;, we see that
for 1 < i < k, one has (p; — 1,d) = myy; D;, where D; is the greatest common

divisor of m; and
H (1 + ml’le).

1<j<k
J#
Since m;|my, this greatest common divisor is plainly 1, and so (p;—1,d) = myy;,
yielding (p; —1)/(p;i —1,d) = m;. Thus U,gf) = Zm, (1 <1< k). Consequently,
if we put n = p1ps - - - pg, then it follows from the Chinese Remainder Theorem
that
Lony X Ly X+ + X Ly LU x U x -+ U = gD,

whence G = Ur(ld). This completes the proof of the theorem. O

The proof of our theorem is more or less algorithmic, in the sense that it
shows how to determine the integers n and d from a standard presentation
of the finite abelian group G. Bounds on these integers may be given in
terms of the order |G| of the abelian group G of interest by using technology
associated with Linnik’s theorem [3, 4]. The latter shows that there is a positive
number L having the property that when m and a are integers with m > 2
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and (a,m) = 1, then the smallest prime number p satisfying p = a (modm)
satisfies p < m’. In particular, Xylouris [6] has shown that such a prime
exists with p < Cm®18, for a suitable positive constant C. By employing such
results, it would be possible to show that both n and d can be taken no larger
than exp(c(log|G|)?), for a suitable positive constant ¢, though less profligate
bounds might well be accessible.

Plucking the example of the abelian group G = Z3 X Z,o almost from thin
air, we may illustrate the relative inefficiency of the method underlying our
theorem. The smallest positive integer d satisfying the property that 3d + 1
and 42d + 1 are simultaneously prime is d = 10, so that

T x Ly = Ugl” x Upyy = Ul
Smaller realizations are given by
Zy % Luz = Us" x Uygy = Usyly
and
L3 X Lyg = Le X Loy = Ug) X Ug) = UEEE%S)'

Meanwhile, the approach suggested by the proof of our theorem asks that we
seek one prime congruent to 1 + 3 - 42 = 127 modulo 3 - 422, and a second
congruent to 1+ 422 modulo 42%. We find that 127 and 1 + 422 4 423 = 75853
are the smallest such primes. We then take n = 127 - 75853 = 9633331 and
d=42-1-43 = 1806. Thus, the realization of G suggested by the proof of our

theorem is (1506) (1506) )
~ 77(1806 1806) ~ 77(1806
Lz X Lz = Ujgr " X Uzggsy’ = Uggazsss -

Acknowledgment: The author’s work is supported by NSF grants DMS-
1854398 and DMS-2001549. The author is grateful to the referees for their
valuable suggestions and comments.

REFERENCES

[1] L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers, Messenger of
Math. 33 (1904), 155-161.

[2] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed., Wiley, Hoboken, NJ, 2004.

[3] Yu. V. Linnik, On the least prime in an arithmetic progression I. The basic theorem,
Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944), no. 2, 139-178.

[4] Yu. V. Linnik, On the least prime in an arithmetic progression II. The Deuring-Heilbronn
phenomenon, Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944), no. 3, 347-368.

[5] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory I. Classical theory,
Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, Cam-
bridge, 2007.

[6] T. Xylouris, On the least prime in an arithmetic progression and estimates for the zeros
of Dirichlet L-functions, Acta Arith. 150 (2011), no. 1, 65-91.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY STREET,
WEST LAFAYETTE, IN 47907-2067, USA

E-mail address: twooley@purdue.edu



