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Precise and reliable prediction of soft and structured materials’ behavior under flow-
ing conditions is of great interest to academics and industrial researchers alike. The
classical route to achieving this goal is to construct constitutive relations that, through
simplifying assumptions, approximate the time- and rate-dependent stress response of
a complex fluid to an imposed deformation. The parameters of these simplified models
are then identified by suitable rheological testing. The accuracy of each model is limited
by the assumptions made in its construction, and, to a lesser extent, the ability to
determine numerical values of parameters from the experimental data. In this work, we
leverage advances in machine learning methodologies to construct rheology-informed
graph neural networks (RhiGNets) that are capable of learning the hidden rheology of a
complex fluid through a limited number of experiments. A multifidelity approach is then
taken to combine limited additional experimental data with the RhiGNet predictions
to develop “digital rheometers” that can be used in place of a physical instrument.

physics-informed neural networks | rheology | rheology-based machine learning |
data-driven constitutive modeling

The quest to accurately predict the rheology of a complex fluid is as old as our ability
to synthesize and measure it. For over a century, phenomenological models have been
developed to describe the stress response of a complex fluid to an applied deformation.
Generally, the number of model parameters and the complexity of the model grow with
the complexity of the fluid’s response to a particular flow. For instance, embedding
the time-dependent response of a thixotropic elastoviscoplastic fluid into a constitutive
equation commonly requires additional equations to be coupled with the main stress—
strain calculator. As a result, rheological constitutive equations for complex fluids are often
described through a series of coupled ordinary or partial differential equations. Many
challenges exist in predicting the rheology of complex fluids through these equations.
One challenge is that, since these models are often developed from the perspective
of fundamental and phenomenological components that describe a material, such as
dashpots, springs, and sliding blocks, they do not necessarily predict the rheological
response of a complex multicomponent system accurately. Another challenge is that,
as the number of equations and material constants grows, the number of experiments
required to characterize them increases as well. A third challenge, which may be the
most important, is that these predictions do not evolve as one’s understanding of the
material does. In other words, once the differential equations have been set, and their
parameters determined, there are no mechanisms by which improved predictions can
be made. However, these constitutive models are mathematical manifestations of the
underlying physical laws that govern the rheology of the material and are demonstrated in
the experimental results. A more efficient path would allow for the continual evolution
of predictions as limited experimental data are obtained. Such methodologies can be
transformative as novel material characterization techniques.

Data-driven models have become incredibly powerful tools for analyzing and predicting
various phenomena (1-4), owing to ever-increasing computational power and the ability
to process a large amount of data at an extraordinary rate. Machine learning (ML)
techniques have been employed in virtually all avenues of science and engineering, and
myriad different methodologies have emerged. Despite their widespread use, conventional
ML frameworks are purely statistical in their foundation and rely on an abundance of
data to achieve accuracy in their predictions. This implies that most ML algorithms are
constrained to predictions in the range of data used in their training (interpolation),
and are generally incapable of making out-of-range predictions (extrapolation). Recent
advances in physics-based ML algorithms have alleviated such issues by directly integrating
physical governing laws into the training process. Physics-informed neural networks
(NNs) (5) provide a platform for the inclusion of the physical underpinnings of a system
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into the ML algorithm. These physical laws can be included im-
plicitly or explicitly into the NN (6, 7). The explicit incorporation
of the governing physical laws in the form of differential equations
has been shown to be particularly effective in speeding up the so-
lution of problems involving well-established constitutive models
(8-12). In contrast, when the physical principles governing the
problem are not particularly accurate, implicit incorporation of
physics through data itself can be more beneficial. By assimilating
the core physics of the problem, large training datasets are made
redundant.

Rheology-informed NNs can be devised by informing the
ML platform of the underlying rheological constitutive models
both implicitly (13) and explicitly (14). These NNs can also
be integrated with conservation laws into computational fluid
dynamics, and solved to provide velocity fields and fully resolved
flow fields for complex fluids under different flows (15). In this
study, we present a graph-based NN that effectively and accurately
learns the hidden rheology of a complex fluid with respect to mul-
tivariant constitutive equations, using a limited number of simple
flow protocols. We then use this rheology-informed graph NN
(RhiGNet) to predict other rheological features of the test material
on flows that have not been used in the training. Ultimately, by
combining the observational and the inductive learning features,
a digital rheometer twin is devised. We show that this digital
rheometer twin is capable of precisely measuring the complex
response of a fluid to different flow protocols with unprecedented
accuracy. This is beyond what has been made possible with any
constitutive model regardless of model’s type or foundation.

Materials and Methods

We study a thixotropic fluid (16, 17) that is a fumed silica colloidal suspension,
which consists of a hydrophobic fumed silica (R972, Evonik), a highly refined
paraffin 0il (18512, Sigma-Aldrich), and a low molecular weight polybutene (H25,
Indopol). The fumed silica, at 2.9 vol%, was dispersed in paraffin oil and large
molecularweight polyisobutylene, with the ratio between them being 69 wt%:31
wt%. The sample was mixed with a Thinky mixer running at 2,000 rpm for 1 h. All
measurements are performed with the same batch of this suspension.

The rheological experiments were carried out on an ARES-G2, a strain-
controlled rheometer produced by TA Instruments, at 20 °C by using a cone
and plate geometry (diameter, 40 mm; cone angle, 2° [part no. 402760.901]).
All theological properties were collected via TRIOS software. Before performing
any measurements, the material was presheared using a protocol described by
Choi and Rogers (18), which consists of three steps. In the first step, a shear rate
0f 200 5™ is applied for 300 5. Inmediately following shear cessation, a strain of
80% is applied in the direction opposite to the high shear-rate step to eliminate
any directional bias produced from the high-rate shearing. The material is then
held at 0 s for 500 s to allow for the rebuilding of the isotropic structure.

Thixotropic Constitutive Models. The time-dependent stress response of
complex fluids originates from theirinherent viscoelastic and/or thixotropic prop-
erties. Thixotropy refers to the sensitivity of the stress response to the history of the
applied deformation (19-21)and emerges in fluids whose microstructure evolves
underflow due to a consistent competition between structure build-up and break-
up. Many constitutive models have been proposed to recover this competition
through a time evolution equation written for a scalar microstructure parameter.
Nonetheless, the choice of constitutive model should be also made considering
the thermodynamic consistency of the model's prediction with regard to different
flow protocols and conditions. Otherwise, integration of inconsistent constitutive
modelsintothe NN can resultin erroneous results for other flow protocols outside
the range of experimental observations. A number of constitutive models can
be adapted to recover the generic form of the rheological features observed in
the fumed silica gel studied here. In this work, and to fully capture the response
of a complex thixotropic-elasto-visco-plastic fluid, the Bauschinger effect and
kinematic hardening are embedded in the plastic component of the model.
The isokinematic hardening (IKH) model (22, 23) decouples the applied shear
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strain into plastic and viscoelastic contributions, while introducing a back strain
to account for the microstructure orientation with respect to the direction of flow.
The general form of the IKH model can be written as a set of Eqs. 1, where e
and -y, are the viscoelastic and plastic component of the applied shear strain, G
is the elastic modulus, n, and p, are viscoelastic and plastic viscosities, A is the
back strain, C is the back stress modulus, m and g are unitless material constants,
ks is a material constant with unit of stress, and ks and k; are the build-up and
breakage coefficients of the structure parameter.

’y(t) = ’Yve(t) + ’YP(I)
Ao (1) = F(0, 6,70, (1))
S (t

2

.,,( )= Hipsign(a — CA(t))max(0, |o — CA()| — ksA(1)).  [1]
At) = p — (qlA)[)"sign(A()) [7p (D)1
A =ki(1 = (1) — ke A() 76 (1)]

The function f(.) is determined based on the viscoelastic model of choice that
leads to the acquisition of various models, that is, Maxwell IKH (MIKH), Kelvin IKH,
and Elastic IKH. Here we adapt an MIKH model to describe the rheology of fumed
silica gels, as shown in Eq. 2 with nine (9) model parameters.

Y1) = Ye () + (1)
() = 50 + 0
Ap(t) = uipsign(cr — CA(t)max(0, | — CA()| — ksA(t)). [2]

p
A(t) =, — (qIA(t))"sign(A(t) [ (1)
Alt) =k (1= A1) = kAO(0)]

Physics-Informed NNs. There are two main categories of ML frameworks.
These are referred to as supervised learning and unsupervised learning (24). NNs
are a subset of ML techniques that create a computational data-driven framework
to reconcile the intricate relation between inputs and outputs. This is achieved
by adjusting the variables of each neuron to reduce the deviations between the
actual and predicted data. Traditional NN training processes are carried out solely
on a statistical basis. This has proven to be effective and accurate when extremely
large amounts of data are available and can be used for training the NN. However,
such data simply do not exist in many engineering/scientific applications. For
these cases, one can account for insufficient training data by incorporating the
physical laws of interest into the NN architecture directly (5). These physical
underpinnings can be injected into the NN through three different pathways:
observational biases, learning biases, and inductive biases. Observational biases
refer to the inclusion of the physics in the observed data, which results in implicit
enforcement of physics during the training process (13, 25). Learning biases can
be softly penalized to favor of a specific solution or physical law (26, 27), resulting
in so-called physics-guided NNs. Alternatively, one can incorporate the physical
laws of interest in the form of differential equations into the architecture of the
NN, imposing a hard penalty (14, 28-30) and construction of physics-informed
NNs. While different in methodology, these pathways are not necessarily exclu-
sive and can be used simultaneously.

Here, we first introduce an inductive bias method, RhiGNet, using the foun-
dations in the ADCME library (Automatic Differentiation Library for Computa-
tional and Mathematical Engineering) (31) that are tailored to rheology-related
applications. The backend of ADCME is TensorFlow, a high-performance deep
learning framework that offers parallel processing and automatic differentiation
based on computational graphs, in which a value is represented as an edge,
and a node represents a function. In an inverse RhiGNet framework, we use a
very limited number of experimental data to recover all the parameters of the
MIKH model (Eq. 2). The input data of RhiGNetare ann x 3 matrix, consisting of
time, imposed shear rate, ¥, and the shear stress, o, measured experimentally.
Using these experimental measurements, RhiGNet minimizes the residual for the
constitutive model of choice, in this case the MIKH, and returns the predicted
model parameters. The variables of an inverse RhiGNet framework are trained
by minimizing the loss function defined in Eq. 3, including the residual of each
equation, MSEg, as well as the discrepancy between the predicted and actual data,
MSEj, during the training process.

MSE;,, = MSEg + MSEd. [3]
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Having the model parameters from a set of limited experiments, forward
RhiGNet is used to predict the stress response of the material under a number
of other flow protocols outside the training process, using the constitutive model
without any data. One can argue that the forward RhiGNets are alternative ordi-
nary differential equation (ODE)/partial differential equation solvers based on the
graph model of TensorFlow, where inputs are correlated directly to the predictions
using the constitutive equations and the initial conditions to the problem of
interest instead of numerically solving those differential equations. These inputs
and their corresponding predictions are used to calculate the residual of the
constitutive model, which is to be minimized. Only then can one ensure that the
training process isinformed by physical intuition. This residual is calculated based
on Eq. 4 using the residual of each equation, MSE, as well as the discrepancy
between the predicted and actual initial/boundary conditions, MSEgc.

MSEpi; = MSEg + MSEgc. [4]

Once afull predictive mapping of rheological behavior of the fluid in different
protocols is made with RhiGNets, these maps can be used as the low-fidelity data
for an observational bias method, referred to here as multifidelity RhiGNets (MF-
RhiGNets). These MF-RhiGNets predict the precise rheological response of the
material to animposed deformation, allowing them to be used as a digital twin to
the rheometer. For each protocol, a number of new experimental measurements
are provided as the high-fidelity data, with a much larger map of the RhiGNet-
generated low-fidelity predictions. While the low-fidelity data do not accurately
predict the rheology, they provide the trends and the general behavior required
for optimizing the digital rheometer twin, MF-RhiGNet. While there are several
approaches for multifidelity modeling with different levels of complexities (32),
we construct the relation between the low- and high-fidelity data through a
general expression based on deep NNs. This general form can be expressed as
Eq.5, in which G(.) is a general combination of low-fidelity data, y;¢, and inputs
of the problem at hand, (x). Such a general combination can be decomposed
into a linear and a nonlinear part as shown in Eq. 5.

yre = Gir X) = Gi(yir, X) + Gui(yir, X)- [5]

The training process in the MF-RhiGNets framework is performed by mini-
mizing a loss function defined according to Eq. 6. In this equation, MSE,,, and
MSE,,; are deviations of predicted and actual data for high- and low-fidelity data,
respectively. Additionally, w; is the weight function, and X is I regularization
rates for weight functions to prevent overfitting (33). This multifidelity modeling
can therefore be used to increase the accuracy and efficiency of predictions made
by NNs (13, 34-36).

MSE = MSEy,, + MSE,, + X w!. [6]

We show, in Fig. 1, a schematic view of how RhiGNets and MF-RhiGNets are
devised and employed to create a digital rheometer twin that leverages hybrid

observational and inductive biases to embed the essential physics into the NNs.
The NNs' architecture has a substantial impact on the accuracy of the predictions
as well as the algorithm’s performance. The number of layers in the MF-RhiGNets
architecture, also known as network width, and the number of neurons per layer,
also known as network depth, can both affect the accuracy. In this study, we
use the relative absolute error as the measure of accuracy to investigate and
optimize the role of network hyperparameters and settings. The depth of the
NNs was changed from one to eight layers, and the width was changed from 5 to
200 neurons per layer. Widths ranging between 10 and 25, and depths ranging
between two and four, are found to yield the best levels of accuracy while avoiding
overfitting. Furthermore, the generation of low-fidelity data will increase the total
number of data needed to properly train a network. The number of low-fidelity
data are chosen in a way that the RAE is not dependent on the number of data.
Another parameter that changes the accuracy of multifidelity prediction is the ra-
tio between the number of low- and high-fidelity data points used in the training
process. We have shown previously (13) that this ratio can be optimized to ensure
efficiency of the platform without compromising the accuracy. Here, a thorough
examination of the low-/high-fidelity data size ratio in each stage was conducted,
and a range was chosen to ensure the independence of the prediction from the
number of low-fidelity data. The loss function is optimized using a combination
of Adam optimizer with a learning rate of Te-3 and limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm method together with Xavier's initialization
method, while the hyperbolic tangent function is employed as the activation
function where appropriate.

Results and Discussion

Our ultimate goal is to develop reliable and accurate ML frame-
works as metaconstitutive descriptions for effective and accurate
rheological modeling. To achieve this goal, we first present the
predictions made using RhiGNets to recover the stress response of
a complex fluid in several flow protocols. Using inverse RhiGNets,
the characteristics and properties of the material in terms of
constitutive model parameters are recovered using limited data
from simple experiments. In the first step, we use three instances of
steady shear start-up to recover all nine parameters of the MIKH
model described in Eq. 2. Conventionally, tens of experimental
protocols at different rates are used to recover these parameters.
The thixotropic nature of the fluid under investigation implies that
different rest times after a rejuvenating preshear the sample lead to
different microstructural states at the inception of the flow. Thus,
we choose three different rest times of 100, 300, and 500 s prior to
start-up of flow at constant deformation rates of 4 =1, 10, and
56.2 57!, respectively. It is worth mentioning that there are no
constraints used for parameter recovery of the model in the inverse

Experiments
. . Inverse
Viode Fasmeten | @Fpuy Multi-Fidelity MF-RhIGNets
and —
| >N Prediction
Material Constants \ RhIGNets Prediction KhIGNets
Forward b <.
(LF Data) = N
Y=Yp+Yve
. 0o 00 %90
pezity o0 00 ..
* 2 & o . . .
Vp =%p‘“’max(o, |6 — CAl —ksA) ° e e o ®
A=y - @AD" sign (M| o0 00 :

A=k (1 -0 — koA

oo’ 00

Fig. 1. Schematic view of the digital rheometer twin construction: a hybrid RhiGNets (inductive bias) and MF-RhiGNets (observational bias) platform for
accurate rheological predictions. The RhiGNets framework is based on the graph mode of TensorFlow, including MIKH constitutive equations to guide the
training process. Limited experimental data are fed to the inverse framework of RhiGNets to acquire material constants and model parameters, followed by
forward RhiGNets for preliminary predictions of different flow protocols. Thereupon, a combination of RhiGNet predictions and experimental data is fed to

MF-RhiGNets to make digital measurements of unseen flow protocols.
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Fig. 2.
0(0.1) to O(100).

framework, except some physical ones, such as nonnegative value
for elastic modulus. Results from two of these three experiments
are plotted in Fig. 2B, showing different stress overshoots and
long time responses. The recovered material parameters from
the inverse RhiGNet for the MIKH model are: G = 920 Pa,
Ny = 1,000 Pa - s, pp = 2.4 Pa - s, by = 0.02 1/s, kp = 3.0,
ks = 25 Pa, C'= 100 Pa, ¢ = 5, and m = 1. A relatively long
thixotropic time constant (1/k1 = 50 s), and a saturating, and
a saturating back stress of C'/q =20 Pa in the same range as
the static yield stress, k3 =25 Pa, further suggest a complex
rheological response.

Having the material constants for the MIKH parameter,
RhiGNet is then used to predict the stress response of the gel
under a series of different flow protocols and deformation rates.
To this end, start-up of flow at various shear rates and rest times
prior to shear, flow reversal, stress jump, and oscillatory shear rates
covering a full range of small to large magnitudes are performed
and compared against the RhiGNet predictions. Figs. 2 and 3
represent the comparison between the experimentally measured
stress response of the fumed silica gel to these flow protocols and
the predictions made by RhiGNet based on model parameters
recovered from the three initial steady shear start-up experiments.
In Fig. 24, shear stress responses of the fluid to start-up of flow
experiments with a wide range of shear rates from 4 = 0.1 [s7!]
to 100 [s~1] are shown after 500 s of rest prior to the inception of
flow, qualitatively tracked through the RhiGNet predictions. The
results clearly show that the predictions are valid well beyond the
range of training data, as the upper and lower limits of shear rates
predicted were not used in the recovery of material constants.
Furthermore, for the same shear rates applied, RhiGNet can
predict the role of rest time from 50 s to 500 s on the stress
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overshoot and long time stress response of the material as shown
in Fig. 2B for applied shear rates of ¥ =1 and 10 s7!. Flow
reversal experiments, in which the applied deformation rate
is reversed in sign instantaneously, are also shown in Fig. 2C,
with stresses and deformation rates shown with a negative sign.
Trends similar to the start-up of flow experiments are observed in
these measurements where the RhiGNet predictions qualitatively
describe the rheology measured experimentally.

Another flow protocol that is commonly used to characterize
the thixotropic behavior of a complex fluid is the stress jump
experiment, in which the deformation rate is abruptly changed,
having already reached stable flow conditions. The evolution of the
shear stress is monitored from the time the shear rate was changed.
Fig. 2D shows the experimental and RhiGNet predictions for the
time-dependent stress response from an experiment in which the
rate is jumped from 4 = 100 and 10 s~! to lower deformation
rates. One should note that the accuracy of RhiGNet has its
footing in the constitutive model that is chosen to represent the
fluid under investigation. As such, and since the IKH model itself
does not recover the stress jump experiments accurately, observed
deviations are rather expected. Here, rather significant deviations
are observed at very short times and small strains, with a very good
agreement being observed at longer times and larger strains. Ex-
perimentally, the rheometer takes a short but finite amount of time
to change the rate, as opposed to an ideal step function. As long
as the interval over which the rate is changed is smaller than any
material timescale, this finite duration should have minimal effect.

Oscillatory shearing is one of the most informative and com-
monly used flow protocols for characterizing complex fluids. This
protocol allows the user to select the timescale and the strength
of flow independently through tuning of the frequency and the
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Fig. 3. RhiGNets prediction for oscillatory applied shear strain at three different frequencies and various strain amplitudes.

amplitude and can thus be used to probe a wide range of behaviors.
Fig. 3 presents the map of oscillatory shear flow predictions for
a wide range of amplitudes from O(0.01) to O(10) and three
different frequencies, measured experimentally and also digitally
with RhiGNets using the same material parameters recovered
from the three initial start-up experiments. The stress response is
predominantly elastic at small strain amplitudes, and larger ampli-
tudes elicit nonlinear viscoelastic and elastoviscoplastic responses.
While the general trends observed here seem to be appropriately
predicted by RhiGNet, large deviations are observed particularly
at small and medium amplitudes.

Results presented in Figs 2 and 3 clearly show a qualitative
agreement between the experimental data and the prediction
made by RhiGNet. There are, however, clear departures from the
experimentally measured values that may result from having cho-
sen a constitutive relation that doesn’t match the correct physics
or poor mapping of the model parameters. Most constitutive
models are developed for ideal materials or behaviors that do not
lend themselves well to more-complex responses. For example,
it is common to assume the existence of an ideal thixotropic
and viscoelastic behavior, while real complex fluids such as the
one investigated here are believed to have multiple length scales
and timescales associated with their microstructural evolution
under flow. The state of the microstructure in these gels is best
described as being an arrested disordered fractal that spans the
sample. Thus, an ideal method of choice to describe and model
the rheology is to initially perform a set of experiments to provide
a basic understanding of their rheological behavior, followed by
refinement through additional experimentation.

Metamodeling frameworks that can learn and evolve with
additional experimentation, and which are founded in the funda-
mental rheological constitutive models, can provide a leap forward
in accurate modeling of complex fluids. The main advantage
is that, with sufficient training, these metamodels can digitally
measure the rheological response of the material, as opposed to
qualitatively describing a certain behavior. Here, we implement
a multifidelity method to combine the RhiGNet predictions with
additional experimental data, and quantitatively describe complex
flow behavior of the fumed silica gels. We use the preliminary
predictions made by the RhiGNet framework as our low-fidelity

PNAS 2022 Vol. 119 No.20 e2202234119

data, as these data are generated by the constitutive model. Ad-
ditional experimental measurements are then included as the
high-fidelity data that describe the behavior in the flow protocol
under question. For instance, oscillatory shear measurements can
be provided as additional training data if the small- or large-
amplitude oscillatory shear predictions are sought. In other words,
MF-RhiGNets leverage the abundance of low-fidelity data made
by RhiGNets, and can learn the accuracy of limited high-fidelity
experimental data on the go. As an example, Fig. 4 shows the
comparison between MF-RhiGNet predictions for the oscillatory
shear strain protocol with the experimental data. These predictions
are made by using their respective low-fidelity data generated by
RhiGNets, which are presented as red lines in Fig. 3, combined
with three additional oscillatory shear experiments. Overall, for
each frequency of interest, three experimental measurements are
sufficient to enable quantitatively accurate predictions. As clearly
shown in Fig. 4, MF-RhiGNet is now capable of predicting the
rheology to a sufficiently high degree that it can be regarded as a
digital measurement.

All MF-RhiGNets and RhiGNets predictions in Figs. 2—4 have
been made using the three sets of experimental start-up of flow
data to recover the material parameters. The effect that the choice
of the initial flow protocol has on the final predictions is unclear.
Here, we seek to interrogate the robustness of the methodology
with respect to the type of data that are made available in the
first step. To do so, different oscillatory shear experiments that
include the initial transient response and the steady alternating
state at a frequency of 1 rad/s are used by the inverse RhiGNet.
The recovered parameters are presented in Table 1. It should be
noted that the parameter 7 is set to be 1.0 in this table, as it
only shows the temperature sensitivity of the material, not the
focus of the current study. The values of the viscosities 7,, and
ftp, elastic modulus, G, static yield stress, k3, and the dynamic
yield stress, C'/q, are found to be consistent regardless of the
experiments used in their recovery, and within a reasonable range
for all trained systems but the ones with only three sets of steady-
state oscillatory shear measurements. The two time constants for
the time evolution of microstructure, k1 and ks, are consistently
recovered to be zero when steady-state data are used for training.
This is expected, as the steady state is devoid of transience by
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Fig. 4. MF-RhiGNets predictions and experimental measurements for oscillatory shear protocols with three different frequencies and various strain

amplitudes. Ang. Freq., angular frequency.

definition, and the microstructure parameters can be recovered
analytically. It is also clear, from large deviations in steady-state
training sets with three measurements, that at least four sets of
measurements are required to recover the material parameters.
The results in Table 1 clearly show that the material parameters
found by the NN are significantly affected by the choice of initial
experiment used in their recovery. This could be because complex
constitutive equations such as MIKH, with nine different model
parameters, do not necessarily have a unique solution for a given
stress response. In other words, different combinations of these
model parameters could recover similar rheological behaviors.
Another reason that the material parameters are affected by the
choice of initial experiment used in their recovery is that not all
components of a constitutive model are necessary to recover differ-
ent flow protocols. That is, some parameters lose their significance
in particular experiments. The parts of the models that describe
transience will never be probed by steady-state experiments.
While material constants that are recovered from an initial
set of experiments vary by changing the protocols used in the
experiment, the ultimate goal remains to be obtaining an accu-
rate prediction of rheological features of a complex system. The
robustness of the digital rheometer twin lies in its capacity to
predict accurate rheological behavior, and not in the values of
the parameters corresponding to a particular model. Thus, the
predictions are tested against experimental data that MF-RhiGNet
has never been exposed to. For this purpose, we choose a stress—
growth experiment, using the model parameters recovered from
oscillatory shear data. Predictions are shown in Fig. 5. Here, two
different sets of MIKH parameters acquired from shear strain
amplitude flow protocols shown in Table 1 are used to generate
the low-fidelity data and to predict start-up of shear flow at
4 =10 s~1. Despite the significant differences in the parameters

that are used to generate the low-fidelity data, both of these
predictions closely track the rheological behavior of the gel in both
the transient and the steady-state conditions. One should note
that increasing the number of available experimental data during
the model parameter recovery step will always result in a more
confident retrieval of those parameters. As such, the solution of a
complex set of ODEs to one simple applied kinematic may very
well not be unique. Nonetheless, it is clear that, even with model
parameters that roughly describe the observed experimental mea-
surements, a2 multifidelity approach will always result in accurate
predictions being made for unobserved kinematics.

Conclusion

For many decades, efforts have been made to develop phenomeno-
logical and empirical models that describe the rate- and time-
dependent rheology of complex fluids. These models have brought
valuable insight into the physical underpinnings of the fluids’
macroscopic behavior in different flow regimes. However, these
models have limited ability to precisely predict the rheological
features of real nonideal complex fluids. Here, we have built upon
these fundamental physical understandings and leveraged data-
driven approaches to introduce an adaptable and comprehensive
algorithm that can be used as a digital rheometer. We showed
that the RhiGNet platform is capable of learning the hidden
theology of a complex fluid from a very limited number of
experiments performed. Note that, alternatively, one can devise
rheology-informed NNs to construct new functional forms of
the constitutive equations. However, here we denote “hidden
rtheology” as the rich rheological response of a naturally com-
plex fluid (such as one studied here) that cannot be trivially
discovered from a simple applied kinematic such as stress growth

Table 1. Predicted IKH parameters using RhiGNet framework
ID no. Flow protocol No. of experiments G (Pa) =, (Pa-s) wup(Pa-s) ki (1/s) k ks(Pa) C(Pa) q m
1 Start-up flow 3 920 1,000 2.4 0.02 3.0 25 100 5.0 1.0
2 Start-up flow 3 800 1,060 2.2 0.04 10.0 45 560 20 1.0
3 Start-up flow 3 820 1,000 1.3 0.01 53 43 56 25 1.0
4 Transient oscillatory 3 920 987 4.6 0.0 0.03 76 33 39 1.0
5 Transient oscillatory 3 875 763 3.6 0.0 4.0 8.4 160 115 1.0
6 Transient oscillatory 4 1,030 585 4.3 0.0 36 10.6 520 54 1.0
7 Transient oscillatory 4 875 950 4.9 0.0 002 77 30 35 1.0
8 Steady-state oscillatory 3 410 180 4.0 0.0 0.0 8.0 31 41 1.0
9 Steady-state oscillatory 3 100 890 3.6 0.0 0.0 5.0 100 10.0 1.0
10 Steady-state oscillatory 4 870 950 4.3 0.0 0.0 5.3 51 10.0 1.0
11 Steady-state oscillatory 4 910 980 4.6 0.0 0.0 7.0 236 29 1.0
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Fig. 5. Prediction of start-up of a flow at shear rate of 10 s™' using two sets
of low-fidelity data.

experiments. Once this hidden rheology is learned, predictions
of the rheological behavior can be made for flow protocols that
have not been observed by the NN, with a qualitative agreement
between the predictions and the experimental measurements.
More importantly, these predictions can be made almost instantly
and can be used as low-fidelity data for the training of MF-
RhiGNets. Combining the power of informing the NNs through
observational biases and inductive biases, these MF-RhiGNets
then can make predictions that quantitatively agree with exper-
iments. These digital measurements can be made using a handful
of experiments to characterize a truly complex rheological fea-
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ture, after which experimentation can be replaced by the digital
rheometer, with predictions made at no cost. We also showed that
these digital rheometers can learn the hidden rheology through
inverse RhiGNets and can therefore be reliably and robustly used
regardless of the choice of experimental data employed in their
training process. Similar to other digital twins, the accuracy of
these digital rheometers increases with additional experiments
performed, and, upon reaching an acceptable accuracy, the phys-
ical rheometer twin is no longer required for characterization
of the fluid. Additionally, the physical rheometer will be prone
to experimentation artifacts such as edge fracture of the sample
at high shear rates, while the digital rheometer can potentially
still function, since the main constitutive equations remain valid
regardless of the range of deformation rate applied. This should
help in theoretical developments and studies of empirical rule such
as Cox—Merz which are generally affected by such limitations.
This offers a robust framework for using data-driven and ML
algorithms as the next generation of constitutive models with un-
precedented efficiency and accuracy. While a particular complex
fluid, a fumed silica gel, and a constitutive model, MIKH, have
been used in this study, the methodology can be generally applied
to all complex fluids and models. Nonetheless, and since the basis
of these predictions are founded in the governing constitutive
equation describing the observed experiments, extreme caution
should be taken in the choice of these physical laws. In other
words, limitations of the underlying physical models carry over
to the NN predictions, and thus it is of utmost importance to
embed constitutive relations that are rigorously derived and are
consistent for different applied kinematics and stresses.
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