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ABSTRACT

Virtual reality (VR) is an emerging technology
reshaping interactive experience and can be wide-
ly applied in gaming, operation training, and so
on. Despite its great potentials, most existing VR
solutions suffer from low mobility support, high
latency, quick battery drain, as well as high cost of
user devices. To overcome these issues, a mobile
VR system is designed and implemented. The basic
idea is to take advantage of 5G and fog comput-
ing to realize high bandwidth and low latency VR
service. Meanwhile, our design features the inte-
gration of an open 5G base station (BS) and an
intelligent controller. With the help of artificial intel-
ligence (Al) and the interfaces provided by the BS
and fog VR servers, the controller can wisely adjust
both the BS-level and application-level parameters
to enhance system performance. Using our proto-
type system, the impact of various parameters, the
superiority of fog computing over cloud computing
in supporting VR, and the effectiveness of Al in
optimizing system performance are all demonstrat-
ed. In addition, multi-dimensional resource optimi-
zation for VR delivery and strategy design for VR
service migration are identified as two promising
future research directions.

INTRODUCTION

As a disruptive technology that brings new inter-
active experience, virtual reality (VR) has attracted
considerable attention from content providers,
mobile network operators, vertical industry cus-
tomers, and so on. According to Goldman Sachs,
the VR and augmented reality (AR) ecosystem
will grow to an $80 billion market by 2025 [1].
Current applications of VR include entertainment,
education, and skill training, and so on.

There are three common product types of
VR. The first one uses a head mounted display
(HMD) connected to a personal computer (PC)
or a game console in a wired manner. The sec-
ond one relies on an HMD with a mobile phone
attached to it, while the third one adopts an all-in-
one HMD. For all the existing solutions, custom-
ers need to buy high-performance but expensive
devices to enjoy excellent VR quality; meanwhile,
the first solution also restricts users to a small
and fixed area. To achieve light, affordable, and
mobile VR, the concept of cloud VR has been
proposed. The core idea is to move computa-

tion-intensive rendering operations to powerful
cloud servers, and then send rendered frames to
HMDs by video streaming.

In [2], a cloud VR system is presented to
optimize rotation latency and interaction laten-
cy. Rotation latency refers to the time elapsed
from a head movement to the view update in
the HMD, while interaction latency means the
time elapsed after moving an object until that
movement is observed. By mainly rendering the
front-facing view with high resolution and leaving
the rendering of small objects to local devices,
both latency can be effectively reduced. More-
over, performance measurements on a cloud VR
gaming platform called Air Light VR (ALVR) are
conducted in [3]. Following the trend of cloud
VR, some researchers go one step further to con-
sider VR transmission in fog computing enabled
cellular networks. In [4], a Field of View (FoV) ren-
dering scheme deployed at fog computing infra-
structures is proposed for VR video delivery and
the test result reveals that the traffic in the core
and radio access links can be reduced by over 80
percent. In [5], the authors implement a VR solu-
tion also utilizing rendering with fog computing,
where a margin around FoV is streamed back as
well to achieve better adaptation to different net-
work latency conditions.

Although the existing works [2-5] have built
their own VR systems and tested their perfor-
mance, the radio transmission is still based on the
fourth-generation (4G) mobile communication
system or WiFi. Particularly, the data rate of 4G
cannot support the satisfactory experience of
strongly interactive VR whose rate requirement
can reach over 260 Mb/s per user as indicated in
[6], while WiFi suffers low communication range
and potentially severe interference due to the use
of unlicensed band. In addition, to the best of our
knowledge, the potential of artificial intelligence
(Al) in optimizing VR performance on a real-world
testbed has not been investigated before, which,
however, is essential when considering efficient
resource utilization, the dynamic radio environ-
ment, and the co-existence of VR and other
services. To achieve a superior VR experience,
this article designs and implements an (possibly
the first) open 5G and Al empowered mobile VR
system. Owing to the interfaces offered by the
open 5G base station (BS) and the fog VR server,
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both network and application parameters can be
flexibly adjusted by an intelligent controller. Par-
ticularly, an off-line deep reinforcement learning
(DRL) based multi-level parameter optimization
approach is proposed for the intelligent control-
ler. With the prototype system, the impacts of var-

To support mobile and high performance VR applications with substantially lower equipment cost, a
recent trend is to move heavy computing tasks such as graphics rendering to cloud or edge servers

and then send VR contents via video streaming to HMDs over wireless networks, while the HMDs will
focus on the main functions such as sensory data uploading, video frame decoding, head motion

ious parameters on the VR performance and the
efficacy of the DRL based approach are evaluated
and verified.

The remainder of this article is organized as
follows. The recent trends in mobile VR are brief-
ly introduced in the next section. Following that,
our proposed mobile VR system and its imple-
mentation are presented. The impacts of BS-level
and application-level parameter settings on the
VR performance are tested and the performance
improvement brought by rendering with fog com-
puting is numerically demonstrated. After that,
an offline DRL approach is proposed for system
performance optimization. We then discuss two
open issues and conclude this article.

STATE-OF-THE-ART OF MoBILE VR

SEPARATING RENDERING FROM LOCAL DEVICES

Previously, the implementation of VR common-

ly adopts local computing based solutions that

rely on PCs, gaming consoles, or smart phones as
external rendering devices or just uses standalone

HMDs. These solutions have the following issues:

+ High cost devices: For highly interactive VR
services, local computing devices have to
execute computation-intensive graphic ren-
dering, which requires high-performance
processors. This unavoidably raises the
threshold for enjoying VR experience.

+ Poor user experience: To support high VR
quality, standalone VR HMDs can be heavy
and easy to get hot, which make users feel
uncomfortable.

+ High power consumption: Standalone HMDs
and mobile phones have to be frequently
recharged due to the significant power con-
sumption incurred by graphics rendering.

+ Limited mobility: When HMDs are cable
connected to PCs or game consoles, user’s
mobility is greatly constrained.

To support mobile and high performance VR
applications with substantially lower equipment
cost, a recent trend is to move heavy comput-
ing tasks such as graphics rendering to cloud or
edge servers and then send VR contents via video
streaming to HMDs over wireless networks, while
the HMDs will focus on the functions such as sen-
sory data uploading, video frame decoding, head
motion rendering, and image displaying. In this
way, HMDs can be lighter, much cheaper, and
with lower energy consumption. More important-
ly, users can fully enjoy portable and mobile VR
experience, and application developers do not
have to struggle with heterogeneous HMD opera-
tion systems anymore.

TRENDS FROM THE PERSPECTIVE OF
COMMUNICATION AND COMPUTING

With the separation of heavy rendering tasks from
local devices to cloud or edge servers, communica-
tion and computing both play key roles in ensuring
the quality of experience (QoE) of VR users.

rendering, and image displaying.

The Communication Perspective: Since
non-local servers need to transmit the rendered
VR contents to HMDs within a very short time,
the wireless links should be able to support a high
peak data rate. For example, according to the test
results of China Mobile on a cloud VR game, the
wireless network needs to transmit 0.5-1 Mbits
of data within several milliseconds [7], hence
leading to a peak data rate of several hundred
Mb/s. Facing this challenge, researchers propose
to use millimeter wave (mmWave) [8] and even
Terahertz (THz) communications for wireless VR
transmission.

The Computing Perspective: First, fog com-
puting infrastructures, such as fog access points
[9] or dedicated fog servers, can be exploited
for graphics rendering, which are usually much
closer to users compared to cloud servers, thus
shortening the end-to-end transmission latency.
Second, at fog VR servers, strategic rendering can
be exploited to reduce the rendering latency. For
example, graphics can be pre-rendered based on
the prediction of user’s head rotation and servers
can also choose to render only the FoV image.
Third, a prerequisite for offloading rendering tasks
to a server is that the server has pre-cached the
necessary application codes and original VR con-
tents. This is termed service caching and various
caching policies can be adopted by leveraging
the statistics of VR application requests.

AN INTELLIGENT MOBILE VR GAMING SYSTEM
BASED ON OPEN 5G AND FoG COMPUTING

Motivated by the trends described earlier, we
have designed and implemented a mobile VR
system based on 5G and fog computing, whose
components will be elaborated in this section.

SYSTEM OVERVIEW

Different from the existing systems, the novel-
ty of our design, as shown in Fig. 1, lies in the
integration of an open 5G BS and an intelligent
controller. In recent years, mobile network oper-
ators have paid much attention to the openness
of radio access networks (RANs), which features
softwarized RAN functions running on commodi-
ty hardware with various open interfaces available
to external controllers, and it is envisioned that
open RANs can help reduce the capital expendi-
ture and enable more network flexibility as well
as intelligence. The open 5G BS in our system
directly connects a user plane function (UPF)
close to it, which is responsible for processing
GTP packets and re-direct VR traffic to a fog VR
server. The server is capable of realizing elastic
VR service provisioning, for example, based on
the docker virtualization technique. Via the inter-
faces to the open 5G BS and the fog server, the
intelligent controller can collect rich data relat-
ed to radio transmission and VR application, with
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FIGURET. The architecture of the proposed mobile VR gaming system.

which Al models are trained and utilized to intelli-
gently configure the BS-level and application-level
parameters to enhance system performance. In
the remainder of this section, the details of each
component in Fig. 1 will be introduced.

THE OPEN 5G BS

In the system implementation, the 5G SA proto-
col stack software from Amari is installed on a
general purpose server equipped with an Intel
CPU (9900k) together with 16 GB memory and
a Linux operating system. The software provides
rich interfaces that allow flexible configuration on
radio parameters. Moreover, a hardware acceler-
ation card based on a field-programmable gate
array (FPGA) is integrated to speed up baseband
processing. The 5G radio signal is transmitted/
received by a four-antenna radio unit supporting
100 MHz bandwidth that connects to the BS via
a 40G fiber, and the UPF communicates with the

BS as well as other control plane functions of the
core network coming from Open5GS.

THE Foa VR SERVER

To perform dynamic and low latency rendering,
the fog VR server is constructed with a personal
computer with a gtx1080 graphics card. Mean-
while, the server consists of Steam VR, the ALVR
server program, and pre-downloaded VR game
applications to reduce the service loading time.
ALVR provides an open-source solution to VR
streaming, which invokes the OpenVR API to
register VR HMD's information in SteamVR, and
ALVR also extracts rendered VR frames from
SteamVR. The frames are further encoded by the
ALVR server program using H.264 or H.265 and
streamed to VR HMDs based on UDP transmis-
sion. Moreover, various VR performance metrics
can be fetched from the ALVR program, such
as VR frame transmission latency, frame rate at
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HMDs, and packet loss rate. The performance
metrics that are unavailable, such as black edge
angle and the uplink transmission latency of user
action information, can be acquired by manip-
ulating the ALVR program. In addition, unlike
the traditional 360° video service, our fog VR
server is designed for interactive VR gaming that
requires real-time rendering based on the track-
ing information of user movements, and hence
it would be difficult to use multi-casting in the
multi-user case due to individualized viewpoint
of each user. However, there are still other ways
of enhancing transmission efficiency, such as
using an advanced encoding/compression tech-
nique and advanced transport layer protocol like
QUIC.

THE VR HMD

In our system, we use Oculus quest as the VR
HMD and its screen refresh rate can be up to
90 Hz. With Qualcomm Snapdragon XR inside,
the HMD with ALVR client installed is capable of
decoding VR frames received from the fog VR
server with a high performance. After decoding,
the HMD has to further deal with head motion
rendering to fit the image into current user’s ori-
entation [10]. In addition to establishing the con-
nection with the ALVR server program, the ALVR
client program also allows users to appoint the
IP address of a target VR server by some code
manipulation. Other functions of the ALVR cli-
ent program include HMD/user movement state
acquisition and uploading VR frame rate as well
as black edge angle. Furthermore, since the HMD
is not equipped with a 5G communication chip,
it accesses the 5G BS with the help of a 5G CPE
that translates 5G signal to WiFi signal.

THE INTELLIGENT CONTROLLER

The controller is responsible for configuring VR
application parameters and BS parameters to
optimize a certain objective. Given the system
complexity, it is endowed with decision-making
capability by taking advantage of Al. Specifical-
ly, the controller consists of a data collection
module, an Al model training module, a param-
eter configuration module, and interfaces to
the open 5G BS and the ALVR server pro-
gram. The interfaces are implemented based
on Web socket communication and the data
going through the interfaces is in the JavaScript
Object Notation (JSON) format. Via these inter-
faces, the data collection module can gather
current parameter configurations and various
performance metrics, including the number of
available resource blocks (RBs), the selection
of modulation and coding scheme, VR frame
transmission latency, packet loss rate, and so
on. By feeding such rich data into the Al model
training module, different Al models can be
created, such as models for intelligent system
parameter configuration and models for the
prediction of VR user experience.

V'R PERFORMANCE EVALUATION

In this section, with the wireless VR prototype sys-
tem, the impacts of several key parameters on the
VR performance are evaluated and the advantag-
es of rendering by fog computing is also demon-
strated.

UPF

Local switch

Fog VR
server

Iperf
server
side

FIGURE 2. The network topology for performance evaluation. Note that AMF and
SMF from Open5GS as well as the intelligent controller are also connected

to the switch, which are omitted in the figure.

TEST SCENARIO, PERFORMANCE METRICS AND
SYSTEM PARAMETERS

Given the co-existence of extensive differentiated
services in future wireless networks, we consider
the test scenario in Fig. 2, where there is an Ocu-
lus HMD accessing the open 5G BS via a 5G CPE
and there is also a commercial 5G mobile phone
(MP) associated with the 5G BS directly. The MP
is inserted with a dedicated subscriber identifica-
tion module (SIM) card that records information
for authentication at Access & Mobility Manage-
ment Function (AMF). To simulate a high data
rate service, we continuously send UDP packets
to the MP from a PC using an iperf command
and the sending rate is 1Gb/s.

In the subsequent tests, the following perfor-
mance metrics are considered.

Downlink Data Rate: It measures the data
transmission speed in the downlink. Data rate
information can be collected from the open 5G
BS on a per-user basis.

Packet Loss Rate: It is calculated every second
and is defined as the number of frame data pack-
ets not correctly received by the HMD divided by
the total number of frame data packets sent by
the fog VR server. This metric is automatically cal-
culated by the ALVR server program. A high pack-
et loss rate will lead to strong mosaic effect on the
HMD screen, which degrades the view clarity.

The Angle of Black Edge: In interactive VR
applications, usually users frequently rotates their
heads. During the rotation, black domains or
smears can appear at the edge of the FoV, which
are called black edge. Clearly, the angle of black
edge directly affects the immersing experience,
which, however, has been seldom measured in
prior work. Following the definition given by [10],
we have modified the code of the ALVR client for
online calculation of the black edge angle.

Frame Rate: It refers to the actual rate at which
frames are displayed at the HMD. To achieve a satis-
factory Qok, frame rate should be close to 60 frames
per second [5]. The value of this metric is periodically
uploaded by the ALVR client to the ALVR server.

Peak Signal-to-Noise Ratio (PSNR): PSNR is a
common metric to measure the similarity between
two pictures. This metric will be adopted to intui-
tively compare the performance of fog rendering
with that of cloud rendering. The details related to
PSNR calculation will be introduced later.
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TABLET. Test results.

THE IMPACTS OF KEY PARAMETERS

As for parameters to be adjusted, we mainly focus
on the number of RBs available to the open 5G
BS, receiving buffer size at the HMD, and the res-
olution of VR frames. Note that these parameters
can be set by the intelligent controller via imple-
mented interfaces mentioned before.

First, the impacts of the number of RBs are
evaluated under a fixed buffer size and VR frame
resolution, which are set to 200KB and 1536 x
768, respectively, while adaptive coding rate for
VR streaming is adopted. From Line 5 to Line 11
of Table 1, it can be seen that the downlink date
rate of the MP increases significantly with increased
number of RBs. As for the VR HMD, the number of
RBs mainly affects its packet loss rate that is reduced
from 47 percent to nearly O percent, and mean-
while a larger number of RBs also contributes to the
improvement of black edge angle. From Line 13 to
18, we keep the number of RBs at 150 and show
the impacts of buffer size on the user performance
under the resolution of 1536 x 768. It is observed
that the data rate of both VR HMD and MP only
slightly fluctuate under various buffer sizes. How-
ever, the buffer size has a considerable influence
on the packet loss rate of VR service. At last, the
impacts of VR frame resolution are demonstrated
from Line 20 to 23. It is intuitive that a larger frame
resolution leads to a much higher data rate of VR
service. However, due to the limited radio resource,
a higher resolution setting also results in a lower VR
experience, namely a lower frame rate, a higher
packet loss rate, and a higher black edge angle.

PERFORMANCE COMPARISON BETWEEN
FOG RENDERING AND CLOUD RENDERING
We adopt PSNR to illustrate the performance

improvement brought by moving graphics ren-
dering to the fog VR server. By using PSNR, the

similarity between the frame viewed by the user
and the original frame at the VR server is mea-
sured quantitatively. To simulate the transmis-
sion condition for cloud rendering, we manually
increase the round trip time and packet loss rate
between the UPF and the fog VR server by 40ms
and 3 percent, respectively. In Fig. 3, the blue and
orange curves correspond to the PSNR values for
different frame indexes in the fog VR case and
cloud VR case, respectively, while the green and
purple curves correspond to the average PSNR
values achieved in the fog VR case and cloud
VR case, respectively. First, with the increment
of frame index, the VR user’s head always rotates
at an angular speed of around 60°/s, and hence
both curves fluctuate due to the fast and frequent
change of user viewpoint. Second, owing to the
lower latency and packet loss rate in the fog VR
case, the blue curve is above the orange curve for
most of the frames and hence the average PSNR
is significantly improved by fog VR as indicated
by the gap between the green and purple curves.
Meanwhile, it can be seen from Fig. 3 that the
view quality when PSNR is relatively lower has
been significantly enhanced as well.

SYSTEM PERFORMANCE OPTIMIZATION BASED ON
REINFORCEMENT LEARNING

JoINT OPTIMIZATION OF MULTI-LEVEL PARAMETERS

Considering the scarcity of radio resource and the
diverse performance requirements of the VR HMD
and MPs, we propose a batch constrained offline
DRL based approach to system performance
optimization. The aim is to balance the RB usage
and VR performance while guaranteeing the tar-
get data rate of MPs. Our approach is developed
by extending an open-source offline RL algorithm
called batch constrained offline deep RL. The
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state space, action space, and reward function are
re-defined to adapt it to our problem. Interested
readers are referred to [11] for more details. Here,
we mainly introduce the definition of state, action,
and reward as well as the underlying environment
where learned policies will be deployed.

Environment: Instead of using a simulat-
ed environment, the prototype system used for
performance evaluation above is taken as the
underlying environment with one more MP, from
which we collect enough transition data for offline
DRL model training. After training is finished, the
trained model is applied to the environment to
optimize system parameter configuration in an
online fashion.

State: In DRL, the learning agent selects an
action based on currently observed state. In our
experiment, state is composed of the state associ-
ated with the two MPs expressed as

1 1 2 2
{dImCS/ u’mCSI San/ dImCS/ UImCS/ Snrz}

as well as the state related to the VR HMD
{dP,cs, uP\cs, snr3, Framelatency, Actionlatencys},

where dl,,¢s and ul,,s represent the modulation
and coding schemes (MCS) adopted in the down-
link and uplink, respectively, and snr is the signal-
to-noise ratio (SNR) measured in the uplink by the
open 5G BS. In addition to MCS and SNR informa-
tion, the state of VR HMD also incorporates Fra-
melatency and ActionLatency. The former refers to
the latency of delivering a VR frame from the fog
VR server to the VR HMD, while the latter mea-
sures the latency induced by uploading the move-
ment information of the HMD to the VR server.

Action: Earlier, the impacts of several system
parameters were evaluated, including the number
of RBs at the open BS, receiving buffer size at the
HMD, and the VR frame resolution. Since these
parameters all affect user performance, our DRL
model intends to optimize them jointly. Then,
each action of the learning agent represents a
possible tuple of these parameters denoted by
{RBNum, FrameResolution, BufferSize}. Specifical-
ly, RBNum € {25, 50, ..., 250}, FrameResolution
€ {1024 x 512, 1536 x 768, 2048 x 1024}, and
BufferSize € {0.1MB, TMB, 2MB}. Therefore, there
are 90 different actions in total.

Reward: Reward is a signal fed back by the
underlying environment, which guides RL agents
to adjust their action selection policies. In this arti-
cle, our goal is to improve the QoE level of the
VR user while reducing the resource consump-
tion at the open BS and satisfying the data rate
requirement of the other two users. Therefore,
the reward function is expressed as follows.

RBNum

=1 = |, 2T
" [al RBNwmay

0 |f - ftarget|>
+a + PLR + —F—
: (3600 target

: |Ri_ Réargetl

+ aj Ri
= target

’

(1)
where RBNum,, is the maximal number of avail-
able RBs at the open 5G BS, which is 273 under

PSNRjunder cloud VR
PSNR'under fog VR

----- Avera

2] |===— Average PSNR under cloud VR

e PSNR under fog VR
Ml

1 1

0 150 20 250 300
frame inde

350

FIGURE 3. Time-varying PSNR values under fog rendering and cloud rendering:
VR frame resolution: 2560 x 1280; the number of RBs: 250; receiving buf-

fer size: 2MB; the angular velocity of user head rotation: 60°/s.

T00MHz bandwidth, 8 is the black edge angle
perceived by the VR HMD, PLR is the packet loss
rate for end-to-end VR transmission, f and fiage
represent the actual frame rate at the HMD and
target frame rate, respectively, R' and Riyoe repre-
sent the actual downlink rate and target downlink
rate of MP i, while a4, o, and a3 are weight fac-
tors, indicating the importance of resource usage
at the open BS, the importance of VR perfor-
mance, and the importance of the QoS of users
requesting high speed UDP service, respectively.
According to the test results in Table 1, a lower
VR frame resolution will lead to higher MP data
rate under fixed number of RBs. Hence, with the
above reward design, our DRL agent is encour-
aged to choose a relatively high VR resolution to
improve user experience, since a too low resolu-
tion will lead to a potentially large

3 |Ri_RtL.:arget|
o3 Yi=1 Y
target

and then the total reward will be degraded. Finally,
it is worth noting that other reward setting or VR
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QoE models can be easily incorporated owing to
the model-free nature of our proposed approach.

EVALUATION RESULTS

To show the effectiveness of the proposed system,
90,000 pieces of transition data are collected from
the environment described above and used for
the offline training of our DRL model, whose basic
settings such as model structure and learning rate
follow that in [11]. As for the parameters in the
reward definition, since we care more about the
QoE of the VR user than the RB usage and the
QoS of the other two users, a4, oy, and a3 are set
to 0.3, 0.4, and 0.3, respectively. In addition, f,,
et 1S set to 60 FPS, while Rigge is set to 320Mb/s
or both MPs. At the open BS, proportional fair
user scheduling policy is adopted. After training the
model, the DRL model is deployed in the parame-
ter configuration module of the intelligent control-
ler for online system performance optimization.

In Fig. 4, the online optimization performance
of our proposal, traditional DRL based parameter

optimization, and random parameter selection are
compared. Particularly, the traditional DRL refers
to the deep RL algorithm proposed in [12], which
shares the same state space, action space, and
reward function as our proposal. Since our pro-
posal is based on a modified version of the tradi-
tional DRL that better fits into offline training, the
achieved reward is improved by 19 percent rela-
tive to that of the traditional DRL. Furthermore, the
scenes seen by the VR user under different opti-
mization schemes are also shown in the figure. It
can be seen that our proposal leads to the best
VR quality. Moreover, the data rate achieved by
each MP is also the highest with our proposal. To
intuitively demonstrate the necessity of conducting
joint optimization of multi-level parameters, the
results of optimizing only single-level parameters
with our proposal are also presented in Fig. 5, from
which it can be observed that joint optimization
outperforms single-level optimization.

OPEN ISSUES

RESOURCE OPTIMIZATION FOR VR SERVICES

To fully utilize the edge caching resources to
reduce the VR latency, the authors in [13] pro-
pose a view synthesis-based VR caching scheme,
which can synthesize an uncached but request-
ed view using its adjacent views. In [14], both
mmWave and sub-6 GHz links are used for
VR transmission to enjoy the high bandwidth
of mmWave communications while guarantee-
ing disruption-free transmission with sub-6GHz.
Although the above works achieve good per-
formance, the joint optimization of cache, com-
putation, and radio resource has not been fully
addressed, which is the key to further improve the
VR performance. However, since cache resource
is often adjusted on a larger timescale than com-
putation and radio resource, the corresponding
problem features mixed-timescales, hence being
challenging to solve.

VR SERVICE MIGRATION STRATEGIES

In mobile VR scenarios, users can traverse areas
covered by different BSs, which incurs BS hando-
ver. When a handover event occurs for a user,
the virtual machine (VM) running its requested VR
application may also need to be migrated from
the fog computing platform of its current BS to
the platform of another BS, which is critical to
ensure a stable service performance [15]. Con-
sidering the dense deployment of BSs in future
networks, studying the way of identifying the
appropriate target BS for handover is essential,
which should not only take the wireless channel
quality into account but also consider the com-
puting resource utilization of the target BS as well
as VM migration latency.

CONCLUSIONS

This article presented a wireless virtual reality
(VR) service system that incorporates an intelli-
gent controller, an open 5G base station (BS), and
a fog VR server implemented with Air Light VR
(ALVR). On one hand, by offloading graphics ren-
dering from user HMDs to a fog computing plat-
form, better user experience has been achieved
compared to traditional cloud based VR. On the
other hand, via interfaces to the open BS and
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ALVR server program, the controller can make
wise decisions on radio and application param-
eter configuration by utilizing reinforcement
learning. Finally, towards a practical multi-VR-user
scenario, due to more diversified content requests
and the higher transmission rate demands, it is
essential to study VR quality level selection under
both storage and communication constraints to
enhance the user quality-of-experience, which will
be investigated in our future work.
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