
1. Averages of ErdŐs-Szekeres Polynomials

We want to average the Lp norms of Erdős-Szekeres polynomials

Pn ({sj} ; z) =
n∏
j=1

(1− zsj )

over all choices of s1, s2, ..., sn with 1 ≤ s1, s2, ..., sn ≤ M. For 0 < p < ∞, the Lp
norm of such a Pn is

‖Pn ({sj} ; z)‖p =

(
1

2π

∫ 2π

0

∣∣Pn ({sj} ; eiθ
)∣∣p dθ)1/p

.

For p =∞, we note that

‖Pn ({sj} ; z)‖∞ = sup
{∣∣Pn ({sj} ; eiθ

)∣∣ : θ ∈ [0, 2π]
}
.

There are Mn choices for (s1, s2, ..., sn). So one natural average for 0 < p <∞ is

Ap (M,n) =
1

Mn

∑
(s1,s2,...,sn):
all 1≤sj≤M

(
‖Pn ({sj} ; z)‖p

)p
.

There is a formula:

Lemma 1

Ap (M,n) = 2np
1

π

∫ π

0

(
1

M

M∑
k=1

|sin kt|p
)n

dt.

Proof
Now ∣∣1− eisjθ∣∣ =

∣∣∣(eisjθ/2)(e−isjθ/2 − eisjθ/2)∣∣∣
=

∣∣∣(eisjθ/2) (2i sin sjθ/2)
∣∣∣

= 2

∣∣∣∣sin(sjθ2
)∣∣∣∣

and hence (
‖Pn ({sj} ; z)‖p

)p
=

1

2π

∫ 2π

0

n∏
j=1

(
2

∣∣∣∣sin(sjθ2
)∣∣∣∣)p dθ

= 2np
1

2π

∫ 2π

0

n∏
j=1

∣∣∣∣sin(sjθ2
)∣∣∣∣p dθ

= 2np
1

π

∫ π

0

n∏
j=1

|sin (sjt)|p dt

1
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by the substitution t = θ/2. Then the average is

Ap (M,n) =
1

Mn

∑
(s1,s2,...,sn):
all 1≤sj≤M

(
‖Pn ({sj} ; z)‖p

)p

=
1

Mn

M∑
s1=1

M∑
s2=1

...
M∑
sn=1

2np
1

π

∫ π

0

n∏
j=1

|sin (sjt)|p dt


=

2np

Mn

1

π

∫ π

0

 M∑
s1=1

M∑
s2=1

...
M∑
sn=1

n∏
j=1

|sin (sjt)|p
 dt.

Next, we use
M∑
s1=1

M∑
s2=1

...
M∑
sn=1

n∏
j=1

|sin (sjt)|p

=
M∑
s1=1

M∑
s2=1

...
M∑
sn=1

|sin s1t|p |sin s2t|p ... |sin snt|p

=
M∑
s1=1

|sin s1t|p
M∑
s2=1

|sin s2t|p ...
M∑
sn=1

|sin snt|

=

(
M∑
k=1

|sin kt|p
)n

.

So

Ap (M,n) =
2np

Mn

1

π

∫ π

0

(
M∑
k=1

|sin kt|p
)n

dt

= 2np
1

π

∫ π

0

(
1

M

M∑
k=1

|sin kt|p
)n

dt.

�

Lemma 2
For t ∈ [0, π] such that t/π is irrational,

lim
M→∞

1

M

M∑
k=1

|sin kt|p =
1

π

∫ π

0

|sin t|p dt.

Proof
Let {x} denote the fractional part of a real number, so that {x} = x−greatest
integer ≤ x. For example, {7.34} = 0.34. Note that if α is irrational and f :
[0, 1]→ R is continuous, then

lim
M→∞

1

M

M∑
k=1

f ({kα}) =

∫ 1

0

f (t) dt

This is a classic result in the theory of uniform distribution [3]. We apply this with
f (s) = |sinπs|p , s ∈ [0, 1], and use the fact that f is periodic of period 1, that is,
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f (x+ 1) = f (x). Then for t/π irrational,

lim
M→∞

1

M

M∑
k=1

|sin kt|p = lim
M→∞

1

M

M∑
k=1

∣∣∣∣sinπ(k tπ
)∣∣∣∣p

= lim
M→∞

1

M

M∑
k=1

∣∣∣∣sinπ{k tπ
}∣∣∣∣p

=

∫ 1

0

|sinπs|p ds =
1

π

∫ π

0

|sin t|p dt.

�

Lemma 3
Let {Mn} be any sequence of positive integers with limit ∞. Then

lim inf
n→∞

Ap (Mn, n)
1/n ≥ 2p

π

∫ π

0

|sin t|p dt.

Remark
My guess is that the limit exists and equals the right-hand side, but it will be
diffi cult to prove the corresponding upper bound.
Proof
From the previous lemma, for each t ∈ [0, π] such that t/π is irrational,

lim
n→∞

1

Mn

Mn∑
k=1

|sin kt|p =
1

π

∫ π

0

|sin t|p dt.

By Egorov’s Theorem, a classic result of measure theory, given ε ∈ (0, 1), there
exists a set E of Lebesgue measure ("length") ≤ ε such that the convergence above is
uniform for t ∈ [0, π] \E . Then there exists K such that for n ≥ K and t ∈ [0, π] \E ,∣∣∣∣∣ 1

Mn

Mn∑
k=1

|sin kt|p − 1

π

∫ π

0

|sin t|p dt
∣∣∣∣∣ < ε.

Then

Ap (Mn, n) ≥ 2np
1

π

∫
[0,1]\E

(
1

Mn

Mn∑
k=1

|sin kt|p
)n

dt

≥ 2np
1

π

∫
[0,1]\E

(
1

π

∫ π

0

|sin s|p ds− ε
)n

dt

= 2np
1

π
meas ([0, 1] \E)

(
1

π

∫ π

0

|sin s|p ds− ε
)n

so

Ap (Mn, n)
1/n ≥ 2p

[
1

π
meas ([0, 1] \E)

]1/n(
1

π

∫ π

0

|sin s|p ds− ε
)
.

Letting n→∞,

lim inf
n→∞

A (Mn, n)
1/n ≥ 2p

(
1

π

∫ π

0

|sin s|p ds− ε
)
.

As ε > 0 is arbitrary, we obtain the lower bound. �
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It might be diffi cult to establish a corresponding upper bound. On the other
hand, for fixed n and M →∞, it is doable:

Lemma 4
Fix n ≥ 1. Then

lim
M→∞

Ap (M,n) =

(
2p

π

∫ π

0

|sin t|p dt
)n

.

Proof
We have for t/π irrational, and hence for almost every t, that

lim
M→∞

(
1

M

M∑
k=1

|sin kt|p
)n

=

(
1

π

∫ π

0

|sin t|p dt
)n

.

Also, for all t ∈ [0, 1], (
1

M

M∑
k=1

|sin kt|p
)n
≤ 1.

Lebesgue’s Dominated Convergence Theorem then shows that the stated limit is
true. �

Lemma 5
(a) ∫ π

0

|sin t|p dt = 2p
Γ
(
p+1
2

)2
Γ (p+ 1)

.

(b) For p ≥ 1,
2p

π

∫ π

0

|sin t|p dt ≥ 4

π
> 1.

Proof
(a) From 3.621.1 in [2], with µ− 1 = p there,∫ π/2

0

(sinx)
p
dx = 2p−1B

(
p+ 1

2
,
p+ 1

2

)
= 2p−1

Γ
(
p+1
2

)2
Γ (p+ 1)

so the identity follows. Next,

B

(
p+ 1

2
,
p+ 1

2

)
=

∫ 1

0

t
p−1
2 (1− t)

p−1
2 dt

(b) We use a well known inequality: for x, y ≥ 1,

B (x, y) ≥ 1

xy
.

See for example [1]. If p ≥ 1, then p+1
2 ≥ 1, so

B

(
p+ 1

2
,
p+ 1

2

)
≥
(

2

p+ 1

)2

and then
2p

π

∫ π

0

|sin t|p dt ≥ 1

π

(
2p+1

p+ 1

)2
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Now 2x

x is an increasing function of x for x ≥ 2 (calculus exercise) so the smallest
is when p = 1 and then

2p

π

∫ π

0

|sin t|p dt ≥ 4

π
.

�

2. Variance of ErdŐs-Szekeres Polynomials

If X is a random variable with mean or average E (X), then the variance is√
E
(
X − E (X)

2
)
.

It simplifies after squaring out terms, to√
E (X2)− E (X)

2

In our caseX = ‖Pn ({sj} ; z)‖p and E (X) = Ap (M,n) . The square of the variance
is

Vp (m,n) =
1

Mn

∑
(s1,s2,...,sn):
all 1≤sj≤M

(
‖Pn ({sj} ; z)‖p

)2p
−A2

p (M,n) .

Let us call the first term Bp (M,n) :

Bp (M,n) =
1

Mn

∑
(s1,s2,...,sn):
all 1≤sj≤M

(
‖Pn ({sj} ; z)‖p

)2p

=
1

Mn

∑
(s1,s2,...,sn):
all 1≤sj≤M

(
1

2π

∫ 2π

0

∣∣Pn ({sj} ; eiθ
)∣∣p dθ)2

I want you to try find a formula for Bp (M,n). Show that we can write

Bp (M,n)

=
1

Mn

∑
(s1,s2,...,sn):
all 1≤sj≤M

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

n∏
j=1

(
2

∣∣∣∣sin(sjθ2
)∣∣∣∣)p n∏

j=1

(
2

∣∣∣∣sin(sjφ2
)∣∣∣∣)p dθdφ.

Now follow similar steps to that we did for Ap (M,n).

3. The Case p = 2

Lemma 3.1

hM (t) =
1

M

M∑
k=1

sin2 kt =
1

2

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)
.

Proof
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M∑
k=1

sin2 kt =
M∑
k=1

1

2
(1− cos 2kt)

=
M

2
− 1

2

M∑
k=1

cos 2kt

=
M

2
− 1

2

M∑
k=1

sin ((2k + 1) t)− sin ((2k − 1) t)

2 sin t

=
M

2
− 1

4 sin t
(sin (2M + 1) t− sin t)

=
M + 1/2

2
− sin (2M + 1) t

4 sin t

so

1

M

M∑
k=1

sin2 kt =
1

2

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)
.

�

Lemma 3.2

A2 (M,n) = 2n
2

π

∫ π
2

0

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)n
dt

= 22n
2

π

∫ π
2

0

hM (t)
n
dt

Proof
Since sin(π − t) = sin t, and sin (2M + 1) (π − t) = sin (2M + 1) t, we can replace
[0, π] by

[
0, π2

]
, and

A2 (M,n) = 22n
2

π

∫ π
2

0

(
1

M

M∑
k=1

|sin kt|2
)n

dt

= 22n
2

π

∫ π
2

0

(
1

2

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

))n
dt

= 2n
2

π

∫ π
2

0

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)n
dt

= 22n
2

π

∫ π
2

0

(hM (t))
n
dt.

�

Lemma 3.3
(a) hM has a unique maximim tM ∈

(
π

2M+1 ,
3
2

π
2M+1

)
and

tM =
s0

2M + 1
(1 + o (1)) ,
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where s0 is the unique root of the equation tan s0 = s0 with s0 ∈
(
π, 32π

)
.

(b)

|hM (t)− hM (s)| ≤ M + 1

2
|t− s| .

Proof
(a) First note that if t ∈

[
0, π

2M+1

]
, so sin (2M + 1) t ≥ 0, then

0 ≤ hM (t) ≤ 1

2

(
1 +

1

2M

)
.

If t ∈ ( 3
2

π
2M+1 ,

π
2 ], then

0 ≤ hM (t)

=
1

2

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)
≤ 1

2

(
1 +

1

2M
+

1

2M sin t

)
<

1

2

(
1 +

1

2M
+

1

2M sin 3
2

π
2M+1

)

= hM

(
3

2

π

2M + 1

)
.

So hM must have a maximum tM ∈
(

π
2M+1 ,

3
2

π
2M+1

)
, possibly not unique. Write

tM =
sm

2M + 1
, sM ∈

(
π,

3

2
π

)
.

Then

hM (tM ) =
1

2

(
1 +

1

2M
− sin (2M + 1) tM

2M sin tM

)

=
1

2

1 +
1

2M
− sin sM

2M sin
(

sm
2M+1

)


=
1

2

(
1 +

1

2M
− sin sM

2M sM
2M+1

(
1 +O

(
1
M

)))

=
1

2

(
1 +

1

2M
− sin sM

sM
(
1 +O

(
1
M

)))

=
1

2

(
1− sin sM

sM
+O

(
1

M

))
.

Here sin s
s , s ∈

(
π, 32π

)
has a minimum at s0 where

(cos s0) s0 − sin s0 = 0⇔ s0 = tan s0.
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(b) Now

|hM (t)− hM (s)| =
1

M

∣∣∣∣∣
M∑
k=1

(
sin2 kt− sin2 ks

)∣∣∣∣∣
≤ 1

M

M∑
k=1

|sin kt− sin ks|

≤ |t− s|
M

M∑
k=1

k =
M + 1

2
|t− s| .

�

Lemma 3.4
Assume M = M (n) is such that M1/n → 1 as n→∞. Let s0 be as above. Then

lim
n→∞

A2 (M,n)
1/n

= 2

(
1− sin s0

s0

)
.

Proof

A2 (M,n) ≤ 22n
2

π

π

2
hM (tM )

n

so that

lim sup
M→∞

A2 (M,n)
1/M ≤ lim sup

M→∞
22hM (tM )

= lim sup
M→∞

2

(
1 +

1

2M
− sin (2M + 1) tM

2M sin tM

)
= lim sup

M→∞
2

(
1 +

1

2M
− sin sM

2M sin sM
2M+1

)

= 2

(
1− sin s0

s0

)
.

In the other direction, let ε ∈ (0, 1). Then by the lemmas above,

A2 (M,n) > 22n
2

π

∫ tM+ ε
2M+1

tM− ε
2M+1

(hM (t))
n
dt

≥ 22n
2

π

2ε

2M + 1
(hM (tM )− ε)n

so that as M1/n → 1,

lim inf
n→∞

A2 (M,n)
1/n ≥ lim inf

n→∞
22
(

2

π

2ε

2M + 1

)1/N

(hM (tM )− ε)

≥ 2

(
1− sin s0

s0

)
− 4ε,

as above. Since ε > 0 is arbitrary,

lim
n→∞

A2 (M,n)
1/n

= 2

(
1− sin s0

s0

)
.



9

�

Lemma 3.5
Assume that M,n→∞ in such a way that

lim
n→∞

M1/n = ρ ≥ 1.

Then

lim
n→∞

A2 (M,n)
1/n

= 2 max{1, 1

ρ

(
1− sin s0

s0

)
}.

Proof
We have

2

π

∫ π
2

A/(2M+1)

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)n
dt

≤ 2

π

∫ π
2

A/(2M+1)

exp

(
n

[
1

2M
− sin (2M + 1) t

2M sin t

])
dt

≤ exp
( n

2M

) 2

π

∫ π
2

A/(2M+1)

exp
( n

2M sin t

)
dt

≤ exp
( n

2M

) 2

π

π

2
exp

(
n

2M sin A
2M+1

)

= exp
( n

2M

)
exp

(
n

2M 2
π

A
2M+1

)

= exp
( n

2M

)(
exp

2M + 1

2M

πn

2A

)
.

Also,

2

π

∫ A/(2M+1)

0

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)n
dt

=
2

π

∫ A/(2M+1)

0

(
1

2
hm (t)

)n
dt

≤ 2

π

A

2M + 1

(
1− sin s0

s0
+ o (1)

)n
.

Then

2

π

∫ A/(2M+1)

0

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)n
dt

≤ exp
( n

2M

)(
exp

2M + 1

2M

πn

2A

)
+

2

π

A

2M + 1

(
1− sin s0

s0
+ o (1)

)n
so (

2

π

∫ A/(2M+1)

0

(
1 +

1

2M
− sin (2M + 1) t

2M sin t

)n
dt

)1/n

≤ (1 + o (1)) max

{
exp

( π

2A

)
,

1

M1/n

(
1− sin s0

s0

)}
.
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Thus

lim sup
M→∞

A2 (M,n)
1/n

≤ 2 max

{
exp

( π

2A

)
,

1

ρ

(
1− sin s0

s0

)}
.

As we can take A arbitrarily large,

lim sup
M→∞

A2 (M,n)
1/n ≤ 2 max{1, 1

ρ

(
1− sin s0

s0

)
}.

Also as in the proof of the lemma above,

A2 (M,n) > 22n
2

π

∫ tM+ ε
2M+1

tM− ε
2M+1

(hM (t))
n
dt

≥ 22n
2

π

2ε

2M + 1
(hM (tM )− ε)n

so

lim inf
n→∞

A2(M,n)1/n ≥ 2

ρ

(
1− sin s0

s0

)
.

Next, we showed above that

lim inf
n→∞

A2(M,n)1/n ≥ 22

π

∫ π

0

sin2 dt = 2

Thus,

lim inf
n→∞

A2(M,n)1/n ≥ 2 max{1, 1

ρ

(
1− sin s0

s0

)
}.

�

3.1. The case p an even integer. We use the formula [2, p. 25, 1.320.1]

sin2r x =
1

22r

{
2
r−1∑
k=0

(−1)
r−k

(
2r

k

)
cos (2 (r − k)x) +

(
2r

r

)
}
}

=
1

22r

2

r∑
j=1

(−1)
j

(
2r

r − j

)
cos (2jx) +

(
2r

r

)
}

 .

Lemma 4.1
Let r ≥ 1 and

hM (t) =
1

M

M∑
k=1

sin2r kt.

Then

hM (t) =
1

22r

(
2r

r

)
− 1

22r
2

M

r∑
j=1

(−1)
j

(
2r

r − j

)

+
1

22r
2

M

r∑
j=1

(−1)
j

(
2r

r − j

)
sin (j (2M + 1) t)

sin jt
.
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Proof

hM (t) =
1

M

M∑
k=1

1

22r

2
r∑
j=1

(−1)
j

(
2r

r − j

)
cos (2jkt) +

(
2r

r

)
}


=

1

22r

(
2r

r

)
+

1

22r
2

M

r∑
j=1

(−1)
j

(
2r

r − j

) M∑
k=1

cos (2jkt)

=
1

22r

(
2r

r

)
+

1

22r
2

M

r∑
j=1

(−1)
j

(
2r

r − j

) M∑
k=1

sin (j (2k + 1) t)− sin (j (2k − 1) t)

sin jt

=
1

22r

(
2r

r

)
+

1

22r
2

M

r∑
j=1

(−1)
j

(
2r

r − j

){
sin (j (2M + 1) t)− sin jt

sin jt

}

=
1

22r

(
2r

r

)
− 1

22r
2

M

r∑
j=1

(−1)
j

(
2r

r − j

)
+

1

22r
2

M

r∑
j=1

(−1)
j

(
2r

r − j

)
sin (j (2M + 1) t)

sin jt
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