1. AVERAGES OF ERDOS-SZEKERES POLYNOMIALS

We want to average the L, norms of Erdés-Szekeres polynomials

P, ({sj};= H (1—2%

over all choices of sy, 59, ..., 5, with 1 < s1,59,...,5, < M. For 0 < p < oo, the L,
norm of such a P, is

1 2n 1/p
12 Gesbiol, = (52 [ 12 (Gsdie) P ag)
For p = 0o, we note that

1Pe ({55} 2)ll o = sup {| P ({s;};€")| : 0 € [0,2n]} .

There are M™ choices for (si,s2, ..., s,). So one natural average for 0 < p < oo is

a0 == Y (IPds)ial,)”
(81,82,...,8n):

all 1<s; <M

There is a formula:

Lemma 1
Ay (M,n) =2"P— / < Zsmkﬂp)
Proof
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by the substitution ¢ = 6/2. Then the average is

a00m) = 0 Y (IPs)iol,)”

(81,52,-++,8n):
all 1<s; <M

Next, we use

M M M
= Z Z Z |sin s1t|” |sin sot|” ... |sin s, t[”
M
= Z |sin s1¢|? Z |sin sot|? ... Z |sin s, |

s1=1 so=1 Sp=1

M n
= (Z |sin kt|p>
k=1

So
2”” 1
Ay (M,n) = / (Z |sin kt|p>
1 "1 "
= 2"”7/ — \sin kt|P| dt
|
Lemma 2
For ¢ € [0, 7] such that ¢/7 is irrational,
| M 1
. - . P _ = . P
A}Ean;bmkﬂ 71_/0 |sint|” dt.
Proof

Let {z} denote the fractional part of a real number, so that {z} = x—greatest
integer < z. For example, {7.34} = 0.34. Note that if « is irrational and f :
[0,1] — R is continuous, then

m 37 3 S = [

This is a classic result in the theory of uniform distribution [3]. We apply this with
f(s) = |sinms|?, s € [0,1], and use the fact that f is periodic of period 1, that is,



f(x+1)= f(x). Then for t/m irrational,

| M | M P
. - . P — . - . v
]\/}llgo E |sin kt| JWIEI})O E sinm (k - )
k=1 k=1
M p

. 1 . t
JWIEHOOM; Smﬂ-{kw}

/ |sins|? ds = 7/ |sint|? dt.

Lemma 3
Let {M,} be any sequence of positive integers with limit oo. Then

. . ]_/n 2]? T . P

liminf A, (M,,,n)""" > — [sint|” dt.
n—oo i 0

Remark

My guess is that the limit exists and equals the right-hand side, but it will be

difficult to prove the corresponding upper bound.

Proof

From the previous lemma, for each ¢ € [0, 7] such that ¢/7 is irrational,

us
— P _ Gn P
nh_}rréo Z|s1nk:t| /0 [sin¢|” dt.

By Egorov’s Theorem, a classic result of measure theory, given ¢ € (0,1), there
exists a set £ of Lebesgue measure ("length") < e such that the convergence above is
uniform for ¢ € [0, 7] \E. Then there exists K such that for n > K and t € [0, 7] \&,

n 1 s
—Z|sink:t|p——/ Isin ¢[? dt
) T Jo

<e.

Then
M,

1 1
an; /[0 e <M Z |sin kt|p> dt

k=1

1 1 (7 "
anw/[o e <7r/0 |sinspds—5) dt

1 1 /™
= 2" —meas ([0,1]\E) ( / |sin s|” ds — 6)
™ m™Jo

%

Ay (M, n)

Y

n

SO

1/n T
A (M, )M/ > 27 Fmeas (0,1] \5)] <1/ isin s” ds — 5) .
T iy 0

Letting n — oo,

n—oo

1 ™
lim inf A (M,,,n)"/™ > 27 (/ |sin s|” ds — 5) .
T Jo

As e > 0 is arbitrary, we obtain the lower bound. B



It might be difficult to establish a corresponding upper bound. On the other
hand, for fixed n and M — oo, it is doable:

Lemma 4
Fix n > 1. Then

20 [T "
lim A, (M,n)= (/ |sintpdt> :
M —oco i 0
Proof

We have for ¢/m irrational, and hence for almost every ¢, that

1 U Yo "
li — sinkt|” | == sint|”dt | .
Jim (ng_:lhm \ ) (W/o |sin | )
Also, for all ¢ € [0, 1],
<1 M "
Z|sink:tp> <1
M=

Lebesgue’s Dominated Convergence Theorem then shows that the stated limit is
true. W

Lemma 5

(@ 2
™ (et

/ |sintpdt:2p1_‘((j_)1).

0 p

(b) For p > 1,
20 [T 4
—/ lsint|”dt > = > 1.
™ 0 Y

Proof

(a) From 3.621.1 in [2], with u — 1 = p there,

7T‘/2 1 1
/ (sinz)’de = 2"°'B <p+ R )
0 2 2

p+1 2
p—1 (%)
F(p+1)

so the identity follows. Next,
p+1 p+1 /1 p=1 p=1
(B2 )= [ - a
(3 55) - [ o
(b) We use a well known inequality: for z,y > 1,

1

Ty
See for example [1]. If p > 1, then p—;l >1,s0

2
p(Prletl), (2
2 2 )= \p+1

v [T 120t ?
—/ |sint|P dt > — ( )
T Jo T \p+1

and then
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Now 2~ is an increasing function of @ for z > 2 (calculus exercise) so the smallest

is when p = 1 and then
2p (7 4
—/ |sint|” dt > —.
™ Jo ™

2. VARIANCE OF ERDOS-SZEKERES POLYNOMIALS

If X is a random variable with mean or average E (X), then the variance is

\/E (X - E(X)Q).
It simplifies after squaring out terms, to

\/E (X2?) - E(X)*

In our case X = || P, ({s;};2)ll, and E (X) = A, (M, n) . The square of the variance
is

Gmm =1 3 (IPsdial,)” - 4200

(81,82,...,8n):
all 1<s; <M

Let us call the first term B, (M, n) :

By = o S (IPa(sdial,) "

(51,82,,8n):
all 1<s; <M

D SN € A (YRR

(81,82,..., Sn):
all 1<s; <M

2

I want you to try find a formula for B, (M,n). Show that we can write

B, (M,n)
1 2 2m ” p n ¢ p
= i <2ﬂ_> / / ( sm( )D H ( sm( ) ) dode.
(?17‘927 38n) j=1
all 1<s]<M
Now follow similar steps to that we did for A, (M,n).
3. THE CASE p=2
Lemma 3.1
l 1 1 sin(2M + 1)t
h kt=— — -]
Zsm 2 < YoM T T 20t )

Proof



M M 1
Zsin2kt = 25(1—00821%)
k=1 k=1
M
M o1
= 7—5 cos 2kt
k=1
B %_lﬁf:sin((%—kl)t)—sin((2k—1)t)
22 2sint
k=1
M 1
= 7_4sint(Sin(2M+1)t_Sint)
O M+1/2 sin(2M +1)¢
2 4sint
SO
1 & 1 1 sin(2M + 1)t
.2
— N sin?kt == (14— -2 T 7))
M;E’m 2( oM T T 2Msmt >
|

Lemma 3.2

AQ (]\47 n)

2 [ 1 sin(2M +1)t\"
p I+ —— - ") a4t
7T/(; ( * 2M 2M sint )

s

2 2
22n = / hoar (8)™ dt
0

™

Proof
Since sin(r — t) = sint, and sin (2M + 1) (7 — t) = sin (2M + 1) ¢, we can replace
[0, 7] by [0, g], and

x M n
Ay (M,n) = 2%3/2 (Al/fzsmk:tF) dt
T Jo k=1

2 (2 (1 1 sin(2M +1)t\\"
— 92:m% Z (1 [ S dt
7r/0 (2<+2M 2M sint ))
2 (% 1 sin(2M +1)t\"
= 2n= T+ —— -2 at
WA <+2M 2M sint )

2 32
_ g2 / (hat ()" dt.
T Jo
|

Lemma 3.3
(a) hps has a unique maximim tp; € (2M+1’ %2A}T+1) and




where sq is the unique root of the equation tan sg = sg with sg € (77, %77)
(b)

[ (1) = s ()] < L 5],
Proof
(a) First note that if t € [0, ﬁﬂ}, so sin (2M + 1)t > 0, then
1 1
0<hp(t) < 3 (1+2]\/[>
Ift e (%21\/717+1’ %]7 then
0 < hy(t)

1 1 sin (2M + 1)t
2M 2M sint

1 1
14— 4+~
< Jr2M+2Msint>

2
< L 1+ L + L
2 2M  2Msin 2 I

IN

22M+1

. T 3 . . .
So hjr must have a maximum ty; € (m7 5%)’ possibly not unique. Write

t __Sm V= §
M — 2M—|—1’ M 7T32 .
Then
1 1 sin (2M + 1)ty
har (tar) = = (14— - =2 T
e (tar) 2( o 2M sintyy )
:;G+ﬁfﬁww
2Msm<2]\s4";1)
1 1 sin s
2(1+W2M SM 1MO 1 )
2M+1( +0 (37))
1 1+L7 sin sy :
2 2M sy (1+0(5))
1 sin spy 1
= ~(1- —1).
(o ()
Here 55 s € (7, 27) has a minimum at sy where

(cos sp) so — sinsg = 0 < sp = tan so.



(b) Now

M
1 .. 9 .9
|har () — has (8)] = i ];(sm kt — sin® ks)
M
< MZ|Sink‘t—sinks\
k=1
<

M

[t — s M +1

7 g k= ) |t —s|.
k=1

|

Lemma 3.4
Assume M = M (n) is such that M*/™ — 1 as n — oo. Let so be as above. Then

lim Ay (M,n)"/" =2 <1 - Smso) .

n—oo So

Proof

27 "
Ay (M,n) < 22";§hM (tm)
so that
limsup As (M, n)l/M < limsup 2%hys (tar)

M—oo M—o0

1 sin (2M+ 1) t]u
M—00 2M 2M sintyy

= limsup2 (1—1— — —

. 1 sin SM
= limsup2 |1+ - — 77—
M—o0 ( 2M  2M sin QMJ‘fH )

In the other direction, let € € (0,1). Then by the lemmas above,

2n2 tv+oxiT n
Ay (M,n) > 2= (har ()" dt
™ tas— 5os
M +1

nl 2 n
= 2 gy (e () —e)

so that as MY/"™ — 1,

2 2e
liminf Ay (M. 7)™ > liminf22 | =
A T

)1/N (har (tar) =€)

v
V]
7N
—
|

&.
@ | B
C|w
(=)
'
|
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as above. Since € > 0 is arbitrary,

lim Ay (M,n)"" =2 <1 - Smso) .

n—oo




Lemma 3.5
Assume that M,n — oo in such a way that

lim MY™ =p>1.

Then
1 .
lim As (M,n)l/” = 2max{1, — <1 - SmsO)}.
n—oo P So
Proof
‘We have
2/2 <1+lsm(2]\4'+1)t) dt
™ Ja/c2m+1) 2M 2M sint
< 2/2 exp<n[1m<21‘4_+1)t]>dt
T A/(2M+1) 2M 2M sint
< (g2 [ )
xp (=) = Xp (5=
< ex (L)ZZQX _n
= P/ 72 P\ aMsin i
- o () o ()
= PYV: orr2_ A
2 2M?2M+1
o ( n > o 2M +17mn
= X —_— X - .
P\ P7oM 24
Also,
2 /"‘/“M*” L _sm@MADH
T Jo 2M 2M sint
9 [A/@M+1) rq n
_ 7/ <hm(t)> dt
™ Jo 2
2 A sin sq "
4 (1 n) .
7r2M+1( 50 +0())
Then
9 [A/CMFY 1 sin(2M+1t\"
i/ 14 L sm@M A DN
T Jo 2M 2M sint
n 2M + 1 1n 2 A sin sq "
< . — - 1-— 1
= eXp(QM) (eXp oM 2A)+7T2M+1( 50 +O())
SO

., 1/n
z /A/(2M+1) 1+ i sin (2M + 1)t n 0 /
T Jo 2M 2M sint

< (14 0(1))max {exp (%) Mll/n <1 _ sn;:()) } ,
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Thus
lim sup As (M, n)l/n

M—oo

1 .
< 2max{exp <%),f (1 - smso>}.
p So

As we can take A arbitrarily large,

1 .
limsup Az (M,n)"/" < 2max{1, - <1 - smso>}.
M —o0 P S0

Also as in the proof of the lemma above,
) tv+syirr N
As (M,n) > 22”7/ (has (2))" dt
t

T _ €
M™=3MF1

nl 2 n
2* Zonr o1 P (bar) =€)

>

SO

9 .
lim inf Ay (M, n)Y/™ > = <1 - smso> .
p

n—o00 So

Next, we showed above that

22 [T
lim inf Ay(M,n)Y/" > —/ sin dt = 2
T Jo

Thus,
1 .
lim inf Ay(M,n)Y/™ > 2max{1, - (1 - smso>}.
n—oco p 50
[ |

3.1. The case p an even integer. We use the formula [2, p. 25, 1.320.1]

¥y 2;{2;2::)(—1)""“ () cos(2<r—k>x)+(2[)}}

= 2; 2;(—1)j <r2—7ﬁj) cos (2jx) + (2:>}

Lemma 4.1

Let r > 1 and
1 M
ha (t) = — Z sin®" kt.
Mk:l
Then
1 [2r 1 2 < i 2r
har () = — - -1y
vir = 5 (7) Rz ()
1 2 < ( 2r \sin(j(2M +1)¢)
— = -1y .
+227“MZ( )<r—j) sin jt

Jj=1
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Proof
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